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Encoding and communicating navigable speech soundfields

Abstract

This paper describes a system for encoding and communicating navigable speech soundfields for applications
such as immersive audio/visual conferencing, audio surveillance of large spaces and free viewpoint television.
The system relies on recording speech soundfields using compact co-incident microphone arrays that are then
processed to identify sources and their spatial location using the well-known assumption that speech signals
are sparse in the time-frequency domain. A low-delay Direction of Arrival (DOA)-based frequency domain
sound source separation approach is proposed that requires only 250 ms of speech signal. Joint compression is
achieved through a previously proposed perceptual analysis-by-synthesis spatial audio coding scheme that
encodes sources into a mixture signal that can be compressed by a standard speech codec at 32 kbps. By also
transmitting side information representing the original spatial location of each source, the received mixtures
can be decoded and then flexibly reproduced using loudspeakers at a chosen listening point within a
synthesised speech scene. The system was implemented based on this framework for an example application
encoding a three-talker navigable speech scene at a total bit rate of 48 kbps. Subjective listening tests were
conducted to evaluate the quality of the reproduced speech scenes at a new listening point as compared to a
true recording at that point. Results demonstrate the approach successfully encodes multiple spatial speech
scenes at low bit rates whilst maintaining perceptual quality in both anechoic and reverberant environments.
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Abstract 

This paper describes a system for encoding and communicating navigable speech soundfields for applications such as 

immersive audio/visual conferencing, audio surveillance of large spaces and free viewpoint television. The system relies 

on recording speech soundfields using compact co-incident microphone arrays that are then processed to identify sources 

and their spatial location using the well-known assumption that speech signals are sparse in the time-frequency domain. 

A low-delay Direction of Arrival (DOA)-based frequency domain sound source separation approach is proposed that 

requires only 250 ms of speech signal. Joint compression is achieved through a previously proposed perceptual 

analysis-by-synthesis spatial audio coding scheme that encodes sources into a mixture signal that can be compressed by a 

standard speech codec at 32 kbps. By also transmitting side information representing the original spatial location of each 

source, the received mixtures can be decoded and then flexibly reproduced using loudspeakers at a chosen listening point 

within a synthesised speech scene. The total bit rate for transmission of a navigable scene of up to three speech sources is 

48 kbps. Subjective results demonstrate the approach successfully encodes multiple spatial speech scenes at low bit rates 

whilst maintaining perceptual quality in both anechoic and reverberant environments.    

 

 Key words: Immersive Audio/Visual Conferencing, Interactive Audio/Visual Applications, Spatial Audio, Speech 

Soundfields 

1. Introduction 

Traditional audio/visual communication systems, such as a standard Voice over Internet Protocol (VoIP)-based video 

conference, do not replicate a face-to-face meeting experience when more than two participants are engaged in 

conversation. While large video displays can be used, most commonly available systems utilise only mono or stereo 

playback, which limits the ability to provide for spatially accurate reproduction of each participants voice. It has been 

demonstrated that allowing a listener to flexibly locate the speech reproduced for each participant in a teleconference 

provides benefits such as increased realism of the meeting as well as improving their ability to effectively multitask [1]–
[5]. This is referred to in this paper as a navigable soundfield and achieving this requires more sophisticated approaches 

for recording, encoding and reproducing the speech scenes compared with traditional audio/visual conferencing solutions. 

Key to this application is to firstly consider the soundfield as consisting of multiple independent speech signals arriving 

from different directions, which are typically referred to as spatial audio objects [6]. Such a parametric description 

provides the flexibility required to achieve navigable soundfields [6] and is the state-of-the art approach for efficient 

encoding of 3D soundfields [7], [8] as well as allowing for flexible reproduction that is not tied to a specific loudspeaker 

setup [7], [9], [10]. This paper describes a complete system based on the spatial audio object approach for providing 

navigable soundfields. There are three main components to the system: soundfield recording and derivation of spatial 

speech sources; joint compression of the speech sources; and reproduction via loudspeakers. The system is designed for 

applications where a listener  wishes to flexibly choose how and when to reproduce individual talkers or complete 

speech scenes, for example, within an immersive audio/visual communication application, for ‘zooming in’ to an area of 
interest in large indoor space monitored by audio recordings or reproducing a chosen listening point within free 

viewpoint television applications for interactive audio/visual experiences [11].  
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For soundfield recording to derive individual speech objects, one approach is to have each participant wear a close 

talking microphone. While this can lead to high quality recordings of the speech objects, the use of individual 

microphones is cumbersome. Further, when there are multiple participants at multiple geographic locations, this can lead 

to high transmission bandwidth requirements as each recorded speech signal is separately compressed and transmitted. A 

more realistic and natural experience can be achieved using a microphone array [12][13] to record the speech scenes at 

each remote site. This frees participants from using close talking microphones and allows participants to more easily join 

or leave an online meeting at each site. The use of microphone arrays for multichannel speech and audio processing has 

attracted significant attention over many years, with applications including sound source localisation, multichannel 

speech enhancement/noise reduction, Blind Source Separation (BSS) to identify individual sound sources and soundfield 

recording for subsequent playback using spatial audio reproduction approaches [13]–[16]. Sound source localisation is 

often simplified to estimating the Direction of Arrival (DOA), which suffices for the spatialized playback applications 

targeted in this paper. Time Delay of Arrival (TDOA) is a common approach for estimating the DOA from recordings 

from microphone arrays, such as the Uniform Linear Array [12][17]. This is based on the principle of estimating time 

differences of arrival for sound sources recorded by adjacent microphones based on knowledge of the microphone 

separations. Robust methods to achieve good performance in additive noise and reverberant environments have been 

proposed including the Generalised Cross Correlation with PHAse Transform (GCC-PHAT) [18] and the Steered 

Response Power with PHAse Transform (SRP-PHAT) [19].  

In addition to designing robust signal processing algorithms that achieve high DOA estimation accuracy, two 

important factors for practical deployment are the size of the array and the processing delay of the chosen algorithm. One 

disadvantage of the TDOA-based approach is that the signals must be recorded by microphone arrays consisting of 

several spatially separated microphones. While increasing the number of microphones is important to improve the 

directional response and hence highly accurate soundfield recording [12][13], this leads to larger arrays and increases the 

number of channels to process. This spacing is also governed by the spatial sampling theorem, which is analogous to the 

time-domain Nyquist sampling theorem and requires the spacing to be less than half the wavelength of the sound of 

interest (for narrowband speech this equates to a minimum spacing of 5 cm to ensure spatial aliasing does not occur for 

an assumed maximum frequency of 3.4 kHz). Delay of the chosen algorithm can be characterised by two components: 

the computational complexity and the amount of signal samples required to achieve accurate DOA estimates. Both these 

components impact on the ability to achieve real-time performance, which is a critical issue for speech communication 

systems where signals must be recorded, processed and transmitted within a maximum time delay. Whilst computational 

complexity can be addressed by hardware choices and algorithmic optimisations, the chosen DOA method must be 

designed to require minimal signal samples to achieve high accuracy. To address these issues, this paper describes the 

use of more compact co-incident microphones for DOA estimation within the proposed immersive spatial audio 

communication system. Such arrays have been previously investigated for speech DOA estimation and include the 

acoustic vector sensor [20] and the soundfield microphone [21]. While existing techniques have been shown to achieve 

high accuracy, they often require a relatively high delay in terms of the length of signal required (e.g. 2 s of signal is 

required in [21]). Hence, this paper proposes the use of a low delay DOA estimation method applied to soundfield 

microphone recordings that requires approximately 250 ms of speech and hence is more suitable to immersive audio 

communication systems. 

The other main task performed in the first stage of the system is to derive the individual speech objects. This 

typically requires a BSS algorithm to separate the multichannel recordings into individual speech signals. To improve 

performance in reverberant environments where convolutive mixing occurs, it is common to perform separation in the 

time-frequency domain [15]. When applied to microphone arrays, BSS approaches can utilise spatial location 

information to help resolve the permutation problem typically encountered in frequency domain methods by assigning 

time-frequencies to unique sources based on their estimated DOA. This helps to improve the separation performance and 
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is the approach adopted in this paper. Various time-frequency based BSS techniques using single spatial microphone 

recordings have been proposed [15],[22]. This typically involves first transforming time domain components to the short 

time frequency domain using, for example, a standard Short Time Fourier Transform (STFT) and then estimating the 

DOA for the individual time-frequency components. Individual sources are then identified based on labelling of 

time-frequency components with similar DOA estimates using clustering or other statistical analysis techniques applied 

to histograms formed from the DOA estimates. One limitation of this approach is the assumption that only one source is 

active (or has significant energy) in each time-frequency instant. While this assumption has been shown to be valid for up 

to 80% of time frequency components when two speech signals are mixed together, there remain time-frequency instants 

where more than one source is active, which becomes more common in reverberant environments and when more than 

two sources are active [23]. This can result in distortion of the separated speech sources. To address this, the system of 

this paper adopts the Collaborative BSS (CBSS) approach [24] that was previously investigated by the authors and 

shown to provide significantly improved separation performance in terms of estimated perceptual quality. CBSS utilises 

time-frequency-based DOA estimates derived from multiple co-incident microphone arrays to achieve separation and 

while this previous work analysed complete audio recordings (up to 10s) to maximise the DOA estimation accuracy, in 

this paper the low delay DOA estimation methods are used within CBSS to examine the practical performance limits.      

 The second stage of the system, joint compression of the speech sources, relies on spatial audio coding designed 

based on a spatial audio object approach. State of the art approaches include [7], [8], [25] . A unique aspect of this work 

is the joint compression of multiple speech sources derived from multiple spatial sound scenes to allow for efficient 

transmission as a single compressed mixture signal. This exploits the advantages provided by a parametric description of 

the soundfield, which allows for flexible encoding of multiple speech objects regardless of their originating location. In 

this paper, results are presented when using the previously proposed Perceptual Analysis-by-Synthesis (PABS) approach 

to spatial audio coding but adapted here to encoding speech objects derived using the low delay DOA and CBSS methods 

introduced above.  

 The third and final stage in the proposed system is the flexible reproduction of speech scenes via loudspeakers. In 

this work, a 5.1 surround sound system was chosen for the loudspeaker reproduction as it was determined suitable for 

spatialising the limited number of speech sources in each scene as well as being a common reproduction setup. An 

alternative approach could be binaural reproduction using headphones, however loudspeakers were chosen as a more 

natural reproduction experience targeting multiple participants at each geographical site. A key task in this stage is to 

also selectively create the so called “listening point”. This allows a user to effectively “zoom in” to a particular location 
within the original soundfield to listen to a specific talker. This is achieved by also encoding information representing the 

original spatial location of each speech object. Such information is then used to derive virtual microphone recordings at 

the chosen listening point that can then be used to reproduce a personalised soundfield using loudspeakers. A subjective 

evaluation using the MUltiple Stimuli with Hidden Reference and Anchor (MUSHRA) approach  [26] was conducted to 

measure the performance of the proposed system for reproducing speech scenes of high quality.    

 Section 2 of this paper presents the system overview of the proposed soundfield while Section 3 describes the low 

delay DOA estimation approach for speech sound objects. Section 4 will review the CBSS approach based on low delay 

DOA estimation. Section 5 will review the PABS approach used for soundfield compression while Section 6 will 

describe the flexible reproduction of speech soundfields. Results from subjective testing are presented in Section 7 with 

conclusions and future work presented in Section 8. 
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Fig. 1 An example soundfield navigation scenario. A speech soundfield consisting of three sources is recorded at one site 

using two co-incident microphones. Listener 1 and Listener 2 at two different remote sites each select a different 

‘listening’ position within the original soundfield, which is reproduced by deriving a virtual microphone recording at the 
selected ‘listening point’. 

2. Overview of Soundfield Navigation and Speech Sparsity 

This section describes the soundfield navigation framework investigated in this paper, introduces the proposed system for 

achieving soundfield navigation and highlights the key concept of speech sparsity used within the proposed system. 

2.1 Soundfield Navigation 

Fig. 1 is an illustrative example of a soundfield navigation scenario where three sources (S1, S2 and S3) are recorded by 

two microphone arrays M1 and M2 at a given recording site. It is desirable that:  

 the information of the interested soundfiled can be efficiently captured by a limited number of observations (i.e. 

the spatial recordings) 

 these spatial recordings can be efficiently compressed such that the listening points (on demand virtual 

microphone signals) can be interactively selected by different users based on the same transmitted signal.  

 

The proposed soundfield navigation system starts by employing multiple co-incident microphone arrays (M1 and M2 in 

the example of Fig. 1) to record the speech soundfield. The recorded signals are then processed to derive DOA estimates 

for each source which is then followed by a source triangulation process to pinpoint the location of each source within 

the recording site. The triangulation procedure requires prior knowledge of the microphone locations, which is encoded 

within the transmitted side-information.  
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Fig. 2 Using DOA derived at a single recording point does not allow for accurate reproduction at a desired listening 

point. 

 

It should be noted that while other BSS techniques may also successfully achieve source separation using DOA estimates, 

source location (i.e. spatial position including distance from the microphone) cannot usually be derived with a single 

microphone array. An example is given in Fig. 2. It can be observed that while source DOA can be estimated from a 

single microphone recording, the possible source direction with respect to the desired listening point can be in any 

direction within the grey area. Hence, two co-incident microphones are used within the scenario of Fig. 1 whilst the 

system proposed for achieving soundfield navigation is described in the next sub-section. 

2.2 Soundfield Navigation Framework 

The system of the proposed soundfield navigation framework is illustrated in Fig. 3. Recordings from multiple 

co-incident microphone arrays are transformed to the frequency domain and processed to estimate the DOA of each 

speech source using the low delay technique described in Section 3.  Based on these DOA and source location estimates, 

the CBSS technique described further in Section 4 is performed to jointly separate the sources from the microphone 

recordings where each microphone will have one set of separated sources. These separated speech sources are then 

further processed by a source ownership estimation stage and followed by employing the Psychoacoustic-based 

Analysis-By-Synthesis (PABS) compression scheme [23], as discussed in Section 5. The compressed mixture signal is 

further encoded by the AMR-WB+ [27] codec and transmitted along with side information representing the spatial 

location of speech sources. By receiving the same compressed speech signal with spatial side information, each user can 

then select a desired reproduced soundfield by “zooming in” to a preferred location and performing selective playback of 
the simultaneous speech sources as shown in Figure 1. This is achieved by simulating a virtual microphone recording 

signal at the desired listening point from the received speech sources and their spatial location information. The 

personalized soundfield signal can be reproduced by standard 5.1 surround playback system while the listening point can 

be adjusted freely by the user. A key to implementing this framework is a reliance on the sparsity of speech soundfields in 

the time-frequency domain. 
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Fig. 3 Soundfield Navigation System including all stages from recording to reproduction. 

 

2.3 Sparsity of Speech Soundfields 

Speech signals are known to be sparse in the time-frequency domain. The STFT has been employed in the BSS technique 

described in [28] to separate the speech signals via sparse-based binary mask. The sparse property of speech can be 

generally described by: 

 𝑆𝑖(𝑛, 𝑘) ∙ 𝑆𝑗(𝑛, 𝑘) = 0, ∀𝑛, 𝑘                                  (1) 

 

where Si(n,k) and Sj(n,k) is the time-frequency representation of simultaneously occurring speech signal si and sj, 

respectively, n is the frame number and k is the frequency index. This speech orthogonality (1) has been verified in [28] 

to be satisfied for time-frequency components corresponding to 94% of the energy of 2 simultaneous speech sources. 

While the orthogonality of (1) reduces as the number of sources increases, results in [28] still show that 79% of the 

energy of simultaneous speech sources satisfies (1). Hence, due to the sparseness of the speech resulting from (1), peaks 

in the histogram formed from time-frequency DOA estimates [20]–[22] correspond to unique sources, i.e. one 

time-frequency component is contributed by no more than one source. Thus if the time-frequency DOA estimates have 

the same DOA, they correspond to the same source. Hence, the source locations can be estimated by finding the peaks of 

the DOA histogram. This is the basis of the time-frequency DOA estimation algorithms used in this work and forms the 

basis of the source separation approach using CBSS (Sections 4) as well as the soundfield compression approach using 

the PABS spatial audio coder [23] (Section 5). 

3. Low Delay DOA Estimation 

Fig. 4 is an illustration of the system used for low delay DOA estimation consisting of the following four stages: 

Time-Frequency DOA estimation; Energy Weighted DOA Histogram Estimation; Kernel Density estimation; and Local 

Maximum Estimation. Each of these stages will be described in more detail in this section.  
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Fig. 4 Overview of Low-Delay DOA Estimation System. 

 

3.1 Time-Frequency DOA Estimation 

A soundfield microphone is adopted as the co-incident microphone array in this work, which records four channels that 

are converted to the Ambisonics B-format that includes one omnidirectional channel (w) and the three orthogonal 

directional components of the sound field (x, y and z). Converting these signals to the time frequency domain results in 

the corresponding frequency domain signals indicated in Fig. 4 as W1, X1, Y1 and Z1). Following [20], [22], [24] the 

azimuth of the DOA is estimated for each time-frequency as: 𝜇𝑚,𝑙(𝑛, 𝑘) = 𝑡𝑎𝑛−1(𝑌1(𝑛,𝑘)𝑋1(𝑛,𝑘)        (2) 

While we assume 2D sources in this work the extension to 3D is straightforward. The DOA of each speech source is 

identified as a peak of the histogram formed from estimates of (2) [20], [22], [24]. An example DOA histogram is shown 

in Fig. 5 (a) for a 10 s recording of 3 simultaneously occurring speech sources recorded in a reverberant environment and 

sampled at 20 kHz and using a 1024 point Modified Discrete Cosine Transform (MDCT) with 50% overlapping windows. 

Estimated locations of the three sources are indicated by the  peak labels S1, S2 and S3. 

 

       

Fig. 5 The normalised DOA Histogram obtained from a recording of three simultaneous sources labelled as the peaks (a) 

using the entire 10 s duration of the sources (b) using 250 ms of data (approximately 9 frames for 20 KHz sampling, 

1024 point MDCT and 50% overlapping). 

 

3.2 Energy Weighted DOA Histogram Estimation 

While reliable DOA estimation has been achieved by analysing the intensity vector statistics [21], this DOA estimation 

process requires 2 seconds of the recordings, which is not desirable for low-delay applications, where DOA estimation 

over a short period of time e.g. less than 400 ms is more desirable for applications such as speaker tracking and 

segmentation [29]. However, using less data makes it more difficult to accurate determine the peaks in the DOA 

histogram. This can be seen in the example of Fig. 5 (b) for the same recording as Fig. 5 (a) but now using only 250 ms 

of data. To address this, it is common to adopt techniques to consider only time-frequencies where the direct component 
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of the source signal has significant energy compared with the background noise or reverberant components. In this paper, 

an energy weighting is applied to the DOA histogram such that time-frequencies with higher energy make a greater 

contribution to the histogram count compared to low energy sources. It was found that this resulted in more pronounced 

histogram peaks when estimating the DOA using a limited number of frames of time-frequency components.  

 

3.3 Kernel Density Estimation and Local Maximum Estimation 

While energy weighting leads to stronger peaks in the DOA histogram, an appropriate peak picking method is still 

required. Here, a stochastic approach is considered whereby the DOA histogram is assumed to be an undersampled 

representation of the probability distributions of the DOAs corresponding to each of the underlying sources. The Kernel 

Density Estimation [30] (KDE) method is used to estimate these probably density functions and results in smooth density 

distribution curves with peaks that can be then processed to determine source locations. Fig. 6 shows an example of 

applying this approach to the energy weighted DOA histogram using a Gaussian kernel and for three sources and using 

only 9 frames of data. The final step then involves a local maximum estimation of the peaks of the KDE derived 

distribution function to identify a unique source DOA. These are indicated in green in Fig. 5 for the example multisource 

recording. 

 

 

Fig. 6 KDE applied to the energy weighted DOA histogram obtained for three sources and 9 frames of data. The 

Gaussian-based KDE derived probability density function is shown as the dashed red curve while estimated peaks 

corresponding to a source DOA are indicated by the green bars. 

 

4. Low delay Collaborative Blind Source Separation (CBSS) 

This section provides and overview of the Collaborative Blind Source Separation (CBSS) approach used for deriving 

unique speech sources from the co-incident microphone array recordings. Since the approach uses multiple co-incident 

microphones to improve the separation and localisation, this results in mutiple versions of each source (one for each 

microphone) and hence a source ownership stage is described for selecting one version for subsequent compression and 

transmission. 
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Fig. 7 Example cause of musical distortion in separated speech signals. The section of the DOA histogram illustrated in 

red corresponds to time-frequency components with multiple active sources. 

 

4.1Overview of CBSS 

When the w-disjoint orthogonality of simultaneously occurring speech signals (1) is met, DOA estimates performed 

in the time-frequency domain using (2) will correspond to the location of a true speech source. In practice, 

simultaneously occurring speech signals are not strictly w-disjoint orthogonal for all time-frequencies [24] and the 

separated speech signals using the sparse-based approaches applied to the mixture suffer spectral distortion. This is a 

result of the non-sparse components combining in the mixture and hence DOA estimates using the recorded channels X1 

and Y1 in (2) do not correspond to true source DOAs. An illustrative example is provided for the DOA histogram of Fig. 

7, where the sections highlighted in red occur in between true source DOAs. Since the time-frequency of the DOA 

estimates in the highlighted sections must be assigned to one source or discarded, this can lead to a distortion of the 

spectrum of one or more sources when the w-disjoint orthogonality assumption is violated. Further, if three frontal 

sources of equal energy are considered, one directly in line with the array and two at equal angles but opposite sides of 

the array, the non-sparse components contributed by the left and right sources may lead to the same DOA estimate as the 

middle source. This causes crosstalk distortion, where the separated sources contain spectral content from more than one 

source at the corresponding time-frequency. A similar problem can exist in the Linearly Constrained Minimum Variance 

(LCMV) [31] beamformer, where the distortionless constraint can be difficult to maintain when there are multiple 

overlapping time-frequency sources.  

To address these problems, the Collaborative Blind Source Separation (CBSS) technique is adopted here. This was 

originally proposed in [24] and aims to decompose the mixture of non-sparse components into their corresponding 

sources using a pair of coincident microphone arrays with known location. This assumes that no more than two speech 

sources contribute to one time-frequency instant in the mixture. Based on the possible contributor source pairs for one 

coincident microphone array, their corresponding DOA for the second coincident microphone array is estimated. The 

non-sparse components can then be correctly decomposed by comparing these estimates with the DOA obtained from the 

second coincident microphone array recordings. A detailed description of the methods used to resolve musical and 

cross-talk distortion is provided in [24], where results from objective PESQ and subjective MUSHRA tests verified the 

significant improvement in the quality of separated speech signals compared with existing BSS approaches. While [24] 

utilized 10 s of data for source DOA estimation, in this paper the low delay DOA estimation technique of Section 3 is 

adopted within the proposed soundfield navigation framework. 
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Fig. 8 Spatial parameters used to represent the original location of the speech source within the recorded soundfield. 

4.2 Source Ownership Estimation  

Applying CBSS process to each microphone will result in multiple estimates of the each source. Denoting 𝑆𝑚,𝑙(𝑛, 𝑘) as 

the m
th

 source separated from the l
th

 microphone recording, for time-frequency instant (𝑛, 𝑘), spatial parameters are 

required to represent the spatial information of this time-frequency source. These spatial parameters (as shown in Fig. 8) 

are obtained from the source triangulation stage and can be represented as the combination of the azimuth 𝜇𝑚,𝑙(𝑛, 𝑘) 
and the distance 𝑑𝑚,𝑙(𝑛, 𝑘) corresponding to microphone l, which is given by: 

 𝑃𝑚,𝑙(𝑛, 𝑘) = [𝜇𝑚,𝑙(𝑛, 𝑘), 𝑑𝑚,𝑙(𝑛, 𝑘)]                               (3) 

 

Thus, if the spatial location and orientation of the l
th

 microphone is known, the spatial location of source m with respect 

to microphone l can be derived from 𝑑𝑚,𝑙(𝑛, 𝑘). Since the separated sources from different microphone recordings are 

duplicated, it is redundant to transmit all of these sources to represent the original soundfield. Here, the source ownership 

estimation aims to preserve the best version of the separated source among all available versions. Suppose 𝑄(∙) 
represents the quality of the separated source. Microphone 𝑙𝑜 owns one particular source 𝑆𝑚 if 

 𝑙𝑜 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑙 (𝑄(𝑆𝑚,𝑙))                                   (4) 

Here, the selection criterion used for 𝑄(∙) is based on the minimum source to microphone distance and hence denoting 𝑑𝑚,𝑙 is the distance between the m
th

 source and the l
th

 microphone leads to  𝑙𝑜 = arg𝑚𝑖𝑛𝑙(𝑑𝑚,𝑙)                                     (5) 

 

Note that if the source is located at the same distance to the microphones, the owner is assigned to either of the 

microphone. Thus, for each source, only one version is sent to the compression stage with side information indicating the 

spatial parameter corresponding to the owner microphone. For source 𝑆𝑚, the spatial parameters 𝑃𝑚 corresponding to 

the owner microphone is:  𝑃𝑚 = [𝑙𝑚𝑜 , 𝑃𝑚,𝑙𝑚𝑜 ] = [𝑙𝑚𝑜 , 𝜇𝑚,𝑙𝑚𝑜 , 𝑑𝑚,𝑙𝑚𝑜 ]                            (6) 

 𝑆𝑚 and 𝑃𝑚 will be sent to the PABS compression stage along with the microphone location and orientation. 
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5. Soundfield compression via PABS 

This section provides an overview of the psychoacoustic-based analysis-by-synthesis approach for spatial audio coding 

that is employed within the soundfield navigation system. 

5.1 Overview of PABS 

A psychoacoustic-based analysis-by-synthesis approach is employed to compress the navigable speech sources [23]. 

Based on exploiting sparsity of speech in the perceptual time-frequency domain, multiple speech signals are encoded into 

one mono mixture signal, which can be further compressed using a standard speech codec. The mono mixture signal is 

formed from the time-frequency components estimated from the CBSS stage of Section 4. Side information is used to 

store information about the corresponding source label and original spatial location, which enables flexible decoding and 

reproduction. For time-frequency instants where there is more than one active source estimated from the CBSS stage, an 

iterative process based on a perceptual distortion measure as described in [24] is used to maximise an overall objective 

estimation of the perceptual quality of each source in each frame. The mono mixture signal is further compressed using a 

standard speech codec, which in this case as in [24] is the AMR-WB+ codec operating at 32 kbps. Full details can be 

found in [23] where results from subjective testing showed that the approach can both main perceptual quality of 

individual speech sources as well as the perceptual quality of the spatialised speech scene. While [24] original sources 

were available or recorded with close-talking (lapel) microphones, in this paper sources are obtained using the low delay 

DOA and CBSS approaches applied to the microphone array recordings (Sections 3 and 4). The next sub-section further 

describes how the corresponding speech sources are decoded using the received mixture signal and side information.  

5.2 PABS for Soundfield Navigation  

Side information in the time-frequency domain indicates the origin of the preserved time-frequency sources. Assume 𝑆𝑑′(𝑛, 𝑘) represents the decoded time-frequency from the received mono PABS mixture and 𝑃𝑑′(𝑛, 𝑘) is the received 

spatial parameter. For the m
th

 source, a separation mask 𝑀𝑚(𝑛, 𝑘) can be obtained as: 

 𝑀𝑚(𝑛, 𝑘) =  {1, 𝑃𝑑′(𝑛, 𝑘) = 𝑃𝑚(𝑛, 𝑘)0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                 (7) 

 

where 𝑃𝑚(𝑛, 𝑘)  indicates the desired source. Thus, the reconstructed speech source 𝑆𝑚′(𝑛, 𝑘)  with the spatial 

parameter 𝑃𝑚′(𝑛, 𝑘) can be extracted in the time-frequency domain by: 

 𝑆𝑚′(𝑛,𝑘) = 𝑀𝑚(𝑛, 𝑘) ∙ 𝑆𝑑′(𝑛,𝑘)∀𝑛, 𝑘                                  (8) 

 

The extracted time-frequency sources and corresponding spatial parameter will be used to achieve free listening point 

navigation by generating the virtual microphone signal at the desired listening point. Details of virtual microphone signal 

generation is presented in the next Section. 
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Fig. 9 Selective Listening Point. 

 

6. Flexible Reproduction of Speech Soundfields  

As discussed in Section 5, the speech sources are separated from the mixture along with their spatial parameters. Thus, 

for one speech source, the available information in the receiver end is the separated speech source with the azimuth, μ, 
distance from the owner microphone to the source, d, and the source ownership information, l. As shown in Fig. 9, if the 

source is owned by the microphone located at position O, the aim is to generate the virtual microphone signal at O' based 

on the available information at recorded position O. In order to simulate a high quality virtual microphone signal, the 

following two requirements need to be ensured: 

 

 The power (volume) of the simulated virtual microphone signal should be generated based on the distance 

difference, i.e. (the difference between d and d' )  

 The spatial location of the sources in respect to the new location, i.e. μ ' 
 

The spatial location of the source for the virtual microphone can be obtained by geometrical calculation. Suppose the 

owner microphone is located at O(0,0) (note that this information is transmitted from the recording site and assumed to 

be known) and the desired position is located at O'(x, y) , the position of the source with respect to the owner microphone 

can be calculated from μ and d as (𝑑 ∙ 𝑐𝑜𝑠 𝜇 , 𝑑 ∙ 𝑠𝑖𝑛 𝜇) . The position of the source with respect to the virtual microphone 

is ( 𝑑 ⋅ 𝑐𝑜𝑠𝜇 − 𝑥, 𝑑 ⋅ 𝑠𝑖𝑛𝜇 − 𝑦). Thus, the source azimuth in respect to the virtual microphone μ' is given by: 

 

𝜇′ = {  
  arc tan 𝑑∙𝑠𝑖𝑛 𝜇−𝑦𝑑⋅𝑐𝑜𝑠𝜇−𝑥 , 𝑖𝑓 𝑑 ∙ 𝑠𝑖𝑛 𝜇 − 𝑦 > 0arc tan 𝑑∙𝑠𝑖𝑛 𝜇−𝑦𝑑⋅𝑐𝑜𝑠𝜇−𝑥 + 180, 𝑖𝑓 𝑑 ∙ 𝑠𝑖𝑛 𝜇 − 𝑦 < 00, 𝑖𝑓 𝑑 ∙ 𝑠𝑖𝑛 𝜇 − 𝑦 = 0, 𝑎𝑛𝑑 𝑑 ⋅ 𝑐𝑜𝑠𝜇 − 𝑥 > 0180, 𝑖𝑓 𝑑 ∙ 𝑠𝑖𝑛 𝜇 − 𝑦 = 0, 𝑎𝑛𝑑 𝑑 ⋅ 𝑐𝑜𝑠𝜇 − 𝑥 < 0                      (9) 

d' is given by: 𝑑′ =  √( 𝑑 ⋅ 𝑠𝑖𝑛 𝜇 − 𝑦 )2   +  ( 𝑑 ⋅ 𝑐𝑜𝑠 𝜇 − 𝑥 )2                       (10) 

 

Hence, by using the inverse-square law of sound propagation [32], the virtual microphone signal S' is given by: 𝑆′ = 𝑆 ∙ 𝑑2/𝑑′2                                     (11) 
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Fig. 10 Recording Configuration for the Subjective Evaluation. 

 

Note that for reverberant conditions, the virtual microphone signal generated based on (11) simulates the direction source 

while reverberant effects may be generated based on the simulated direct source according to specific room configuration 

of the recording site, which is out of the scope for this thesis. Using S' and d', the spatial recording at position O' can be 

simulated. Spatialised reproduction using loudspeakers is achieved using frequency domain amplitude panning [33], [34]. 

 

7. Subjective Evaluation  

 

In this section, the proposed soundfield navigation system is evaluated. The aim of this evaluation is to compare the 

sound scene simulated based on the purposed navigation framework with real recordings of the same scene. As illustrated 

in Fig. 10, the recording setup consists of three soundfield microphones to record three speech sources. The recordings of 

microphone M2 is used as the ground truth where simulated virtual microphone signals are generated from recordings of 

M1 and M3 in the same location. The Australian National Database of Spoken Language [35] is chosen for the evaluation. 

A total of 24 Sentences (sampled at 20 kHz) containing 24 different Australian native speakers of different ages and 

genders were selected as the testing database. Three recording conditions are considered in the evaluation: an anechoic 

chamber; and small and large conference rooms. The anechoic condition used a Core Sound TetraMic [36] to record two 

to three overlapping speech sources. The two reverberant conditions using the image method [37] were implemented 

through RoomSim [38] to simulate the reverberant recordings of the small (RT60 = 200 ms) and large (RT60 = 500 ms) 

conference room. A total of 9 sessions of overlapping speech sources (3 sessions each include 2 overlapped sources, other 

6 sessions each include 3 overlapped sources) are employed in the MUSHRA test. A total of 15 people participated the 

listening test and conditions for each test file are listed in Table 1.  

The results are shown in Fig. 11 with 95% confidence intervals. Note that the PABS scheme requires 32 kbps to 

compress the speech mixture while up to 8 kbps to compress the spatial location parameter. Here, the distance also needs 

to be compressed at a total bit rate of (up to) 8 kbps depending on required accuracy leading to a total bit rate of 48 kbps 

for transmitting the mixture signal and side information. As shown in Fig. 11, compared to the reference (the ground 

truth), the proposed framework achieved excellent perceptual quality (MUSHRA scores all above 80) for generating the 

virtual microphone signals. Conditions for only testing the CBSS technique (i.e. assuming perfect condition for other 

parts such as DOA estimation and compression) to evaluating the whole system (condition DOA_CBSS_PABS) under 

the low-delay condition achieved similar MUSHRA scores. Note that the listeners can always pick up the hidden 

references and the anchors.  
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Table 1. MUSHRA Test Conditions for Fig. 11 

Name Descriptions 

REF The spatial reproduction based on real recording in M2 

CBSS The spatial reproduction based on simulated virtual microphone signal generated from 

real recording in M1 and M3 using CBSS method 

CBSS_PABS The speech sources from condition CBSS further compressed using the PABS scheme at 

48 kbps then rendered similar to condition CBSS 

DOA_CBSS Condition CBSS using the low-delay DOA estimates to separated the speech sources and 

rendered based on these low-delay version sources 

DOA_CBSS_PABS The speech sources from condition DOA-CBSS further compressed using the PABS 

scheme at 48 kbps then rendered similar to condition CBSS 

Anchor The 3.5 kHz low-pass filtered unlocalised anchor  

 

 

 

Fig. 11. MUSHRA test Results. 

 

In order to understand the source of the minor degradation in Fig. 11, the possible types of distortions have been 

classified into two categories, namely, the distortion of speech quality and the inaccurate spatial location of the source. 

The participants of the listening test were also asked to point out the source of degradation while providing the 

MUSHRA score. For each condition, the options are: 

 No distortion (None) 

 Distortion of speech quality (Speech) 

 Distortion of spatialisation (Spatialisation) 

 Distortion of both speech quality and spatialisation (Both) 



 

15 

 

   Table 2. Degradation Analysis for the listening test files. 

 

Name Source of Distortion 

None Speech Spatialisation Both 

REF 99% 1% 0% 0% 

CBSS 78% 22% 1% 0% 

CBSS_PABS 63% 34% 3% 0% 

DOA_CBSS 64% 33% 2% 0% 

DOA_CBSS_PABS 68% 31% 1% 0% 

Anchor 0% 0% 0% 100% 

 

 

The average percentages of listeners choosing each distortion type over all nine files evaluated are shown in Table 2, 

which shows that more than 60% of listeners indicated no distortion for all evaluated conditions. Comparing the two 

types of distortion, the speech distortion was the most commonly chosen option by listeners, with only up to 3% of 

listeners on average indicating distortion in the spatialisation of the speech soundfield. The highest percentage is for the 

CBSS condition and corresponds to the MUSHRA results as in this condition there is no compression and errors due to 

DOA estimation inaccuracies are minimized by processing the entire speech recording. Higher percentages were found 

for the conditions incorporating low delay DOA (DOA_CBSS) and DOA_CBSS_PABS), which all had similar results. 

Comparing these with the results for CBSS indicate the compression likely contributes most to the overall perceived 

speech distortion since results for CBSS_PABS (without low delay DOA compression) are similar to results for the two 

low delay DOA conditions (DOA_CBSS and DOA_CBSS_PABS). 

8. Conclusions 

This paper described a framework for encoding and communicating navigable speech soundfields for immersive 

audio/visual applications. Presented are details of each stage of a system incorporating this framework that includes a low 

delay approach to estimating the DOA of individual speech sources, incorporation of the DOA information within a BSS 

approach that utilises multiple co-incident microphones for reducing distortion of separated sources and a 

perceptual-based compression approach for low bit rate encoding of mixtures representing the soundfields. The 

subjective results indicate the proposed framework successfully achieves low-delay free listening point navigation by 

employing two soundfield microphone recordings while only requiring up to 48 kbps for compressing the navigable 

speech soundfield. The presented framework ensures satisfactory perceptual quality of the speech sources as well as their 

correct spatialisation. The proposed approach has application to creating personalized sound scenes for spatialised 

multi-site teleconferencing, remote surveillance of large spaces and free-viewpoint TV. Suggestions for future research 

include further reducing the data required for accurate DOA estimation and a more detailed analysis of the performance 

as a function of number of navigable speech sources and total transmission bit rate.   
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