
Proceedings of NAACL-HLT 2018, pages 1676–1686

New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

Encoding Conversation Context for Neural Keyphrase Extraction
from Microblog Posts

Yingyi Zhang†∗ Jing Li‡ Yan Song‡ Chengzhi Zhang†

†Nanjing University of Science and Technology
{yingyizhang, zhangcz}@njust.edu.cn

‡Tencent AI Lab
{ameliajli,clksong}@tencent.com

Abstract

Existing keyphrase extraction methods suffer

from data sparsity problem when they are con-

ducted on short and informal texts, especially

microblog messages. Enriching context is one

way to alleviate this problem. Considering that

conversations are formed by reposting and re-

plying messages, they provide useful clues for

recognizing essential content in target posts

and are therefore helpful for keyphrase iden-

tification. In this paper, we present a neural

keyphrase extraction framework for microblog

posts that takes their conversation context into

account, where four types of neural encoders,

namely, averaged embedding, RNN, attention,

and memory networks, are proposed to repre-

sent the conversation context. Experimental

results on Twitter and Weibo datasets1 show

that our framework with such encoders outper-

forms state-of-the-art approaches.

1 Introduction

The increasing popularity of microblogs results in

a huge volume of daily-produced user-generated

data. As a result, such explosive growth of data far

outpaces human beings’ reading and understand-

ing capacity. Techniques that can automatically

identify critical excerpts from microblog posts are

therefore in growing demand. Keyphrase extrac-

tion is one of the techniques that can meet this

demand, because it is defined to identify salient

phrases, generally formed by one or multiple

words, for representing key focus and main topics

for a given collection (Turney, 2000; Zhao et al.,

2011). Particularly for microblogs, keyphrase ex-

traction has been proven useful to downstream

applications such as information retrieval (Choi

*Work was done during the internship at Tencent AI Lab.
1Our datasets are released at: http://ai.tencent.

com/ailab/Encoding_Conversation_Context_

for_Neural_Keyphrase_Extraction_from_

Microblog_Posts.html

Target post for keyphrase extraction:

”I will curse you in that forum” is the lowest of low. You
are an embarrassment president Duterte. Childish!

Messages forming a conversation:

[R1]: any head of state will be irked if asked to report
to another head of state
[R2]: Really? Did Obama really asked Duterte to report
to him? LOL

Table 1: An example conversation about “presi-

dent Duterte” on Twitter. [Ri]: The i-th message in

conversation ordered by their positing time. pres-

ident Duterte: keyphrase to be detected; Italic

words: words that are related to the main topic in

conversations and can indicate the keyphrase.

et al., 2012), text summarization (Zhao et al.,

2011), event tracking (Ribeiro et al., 2017), etc.

To date, most efforts on keyphrase extraction on

microblogs treat messages as independent docu-

ments or sentences, and then apply ranking-based

models (Zhao et al., 2011; Bellaachia and Al-

Dhelaan, 2012; Marujo et al., 2015) or sequence

tagging models (Zhang et al., 2016) on them. It

is arguable that these methods are suboptimal for

recognizing salient content from short and infor-

mal messages due to the severe data sparsity prob-

lem. Considering that microblogs allow users to

form conversations on issues of interests by re-

posting with comments2 and replying to messages

for voicing opinions on previous discussed points,

these conversations can enrich context for short

messages (Chang et al., 2013; Li et al., 2015),

and have been proven useful for identifying topic-

related content (Li et al., 2016). For example, Ta-

ble 1 displays a target post with keyphrase “presi-

dent Duterte” and its reposting and replying mes-

sages forming a conversation.

Easily identified, critical words are mentioned

multiple times in conversations. Such as in [R2],
keyword “Duterte” re-occurs in the conversation.

2On Twitter, reposting behavior is named as retweet.

1676

Also, topic-relevant content, e.g., “head of state”,

“another head of state”, “Obama”, helps to in-

dicate keyphrase “president Duterte”. Such con-

textual information embedded in a conversation

is nonetheless ignored for keyphrase extraction in

existing approaches.

In this paper, we present a neural keyphrase

extraction framework that exploits conversation

context, which is represented by neural encoders

for capturing salient content to help in indicating

keyphrases in target posts. Conversation context

has been proven useful in many NLP tasks on so-

cial media, such as sentiment analysis (Ren et al.,

2016), summarization (Chang et al., 2013; Li

et al., 2015), and sarcasm detection (Ghosh et al.,

2017). We use four context encoders in our model,

namely, averaged embedding, RNN (Pearlmut-

ter, 1989), attention (Bahdanau et al., 2014), and

memory networks (Weston et al., 2015), which are

proven useful in text representation (Cho et al.,

2014; Weston et al., 2015; Huang et al., 2016; Nie

et al., 2017). Particularly in this task, to the best

of our knowledge, we are the first to encode con-

versations for detecting keyphrases in microblog

posts. Experimental results on Twitter and Sina

Weibo datasets demonstrate that, by effectively

encoding context in conversations, our proposed

approach outperforms existing approaches by a

large margin. Quantitative and qualitative analy-

sis suggest that our framework performs robustly

on keyphrases with various length. Some en-

coders such as memory networks can detect salient

and topic-related content, whose occurrences are

highly indicative of keyphrases. In addition, we

test ranking-based models with and without con-

sidering conversations. The results also confirm

that conversation context can boost keyphrase ex-

traction of ranking-based models.

2 Keyphrase Extraction with

Conversation Context Encoding

Our keyphrase extraction framework consists of

two parts, i.e., a keyphrase tagger and a conversa-

tion context encoder. The keyphrase tagger aims

to identify keyphrases from a target post, and the

context encoders captures the salient content in

conversations, which would indicate keyphrases in

the target post. The entire framework is learned

synchronously with the given target posts and their

corresponding conversation context. In prediction,

the keyphrase tagger identifies keyphrases in a

𝑥𝑖,𝑡−1 𝑥𝑖,𝑡 𝑥𝑖,𝑡+1
𝒗𝑖,𝑡−1 𝒗𝑖,𝑡 𝒗𝑖,𝑡+1

Context Encoder

𝑦𝑖,𝑡−1 𝑦𝑖,𝑡 𝑦𝑖,𝑡+1
Keyphrase Tagger

𝒉𝑡−1 𝒉𝑡 𝒉𝑡+1

𝐼 𝐼𝒗𝑖,𝑠−1𝑐 𝒗𝑖,𝑠𝑐 𝒗𝑖,𝑠+1𝑐

𝑥𝑖,𝑠−1𝑐 𝑥𝑖,𝑠𝑐 𝑥𝑖,𝑠+1𝑐
Conversation context 𝒙𝑖𝑐 Target post 𝒙𝑖

𝐼𝐼𝑐 𝐼𝑐 𝐼𝑐

𝒆𝑖𝑐

+ + +

… …

… …

…

…

…

…

… …

Figure 1: The overall structure of our keyphrase

extraction framework with context encoder. Grey

dotted array refer to the inputs of target posts that

are also used in context encoding.
SINGLE xi,t is a one-word keyphrase (keyword).

BEGIN xi,t is the first word of a keyphrase.

MIDDLE
xi,t is part of a keyphrase but it is neither
the first nor the last word of the keyphrase.

END xi,t is the last word of a keyphrase

NOT xi,t is not a keyword or part of a keyphrase.

Table 2: Definitions of different yi,t.

post with the help of representations generated by

the encoder. Figure 1 shows the overall structure

of our keyphrase extraction framework. In the rest

of this section, Section 2.1 describes the keyphrase

taggers used in our framework; Section 2.2 gives

the details of different context encoders.

2.1 Keyphrase Taggers

We follow Zhang et al. (2016) to cast keyphrase

extraction into the sequence tagging task. For-

mally, given a target microblog post xi formulated

as word sequence < xi,1, xi,2, ..., xi,|xi| >, where

|xi| denotes the length of xi, we aim to produce

a tag sequence < yi,1, yi,2, ..., yi,|xi| >, where yi,t
indicates whether xi,t is part of a keyphrase. In

detail, yi,t has five possible values:

yi,t ∈ {SINGLE, BEGIN,MIDDLE, END,NOT}

Table 2 lists the definition of each value. Zhang

et al. (2016) has shown that keyphrase extraction

methods with this 5-value tagset perform better

than those with binary outputs, i.e., only marked

with yes or no for a word to be part of a keyphrase.

To predict keyphrase tags, we use four state-

of-the-art neural sequence taggers, namely, recur-

rent neural networks (RNN) (Pearlmutter, 1989),

RNN with gated recurrent units (GRU) (Chung

et al., 2014), long short-term memory (LSTM)

networks (Hochreiter and Schmidhuber, 1997),

and bidirectional LSTM (BiLSTM) (Graves and

Schmidhuber, 2005).

1677

… …

Figure 2: The structure of attention-based conver-

sation context encoder.

In addition to one-type output, we also use

joint-layer RNN proposed by Zhang et al. (2016),

which is demonstrated to be the state-of-the-

art keyphrase tagger in previous work without

modeling conversation context. As a multi-task

learner (Collobert and Weston, 2008), joint-layer

RNN tackles two tasks with two types of outputs,

y1i,t and y2i,t. y1i,t has a binary tagset, which indi-

cates whether word xi,t is part of a keyphrase or

not. y2i,t employs the 5-value tagset defined in Ta-

ble 2. Besides the standard RNN version, in imple-

mentation, we also build the joint-layer RNN with

its GRU, LSTM, and BiLSTM counterparts. To be

consistent, taggers with one-type output with the

5-value tagset are named as single-layer taggers.

As shown in Figure 1, our keyphrase tagger is

built upon input feature map I(·), which embeds

each word xi,t in target post into a dense vector

format, i.e., I(xi,t) = νννi,t. We initialize input fea-

ture map by pre-trained embeddings, and update

embeddings during training.

2.2 Context Encoders

We aggregate all reposting and replying messages

in conversations to form a pseudo-document as

context by their posting time, and input context

in forms of word sequences into context encoder.

Let xc
i denote the context word sequence of the

target post xi, we propose four methods to encode

x
c
i , namely, averaged embedding, RNN, attention,

and memory networks. Similar to keyphrase tag-

gers (see Section 2.1), each word xci,s in context xc
i

takes the form of a vector νννci,s mapped by an input

layer Ic(·), which is also initialized by pre-trained

embeddings, and updated in the training process.

2.2.1 Averaged Embedding

As a straightforward sentence representation tech-

nique, averaged embedding simply takes the aver-

Softmax 𝑷𝑖Σ 𝒆𝑖𝑐

𝒗𝑖,𝑠𝑐 𝒗𝑖,𝑠+1𝑐𝒗𝑖,𝑠−1𝑐 𝒗𝑖,𝑡 𝒗𝑖,𝑡+1𝒗𝑖,𝑡−1
𝑴𝑖

𝒗𝑖,𝑡−1 ⋅ 𝒗𝑖,𝑠𝑐 𝒗𝑖,𝑡−1 ⋅ 𝒗𝑖,𝑠+1𝑐𝒗𝑖,𝑡−1 ⋅ 𝒗𝑖,𝑠−1𝑐
𝒗𝑖,𝑡 ⋅ 𝒗𝑖,𝑠𝑐 𝒗𝑖,𝑡 ⋅ 𝒗𝑖,𝑠+1𝑐𝒗𝑖,𝑡 ⋅ 𝒗𝑖,𝑠−1𝑐
𝒗𝑖,𝑡+1 ⋅ 𝒗𝑖,𝑠𝑐 𝒗𝑖,𝑡+1 ⋅ 𝒗𝑖,𝑠+1𝑐𝒗𝑖,𝑡+1 ⋅ 𝒗𝑖,𝑠−1𝑐

⋅𝑪𝑖
𝒖𝑖,𝑠−1𝑐 𝒖𝑖,𝑠𝑐 𝒖𝑖,𝑠+1𝑐 |𝒙𝑖|

… … … …

𝒗𝑖,𝑡−1 ⋅ 𝒗𝑖,𝑠𝑐 𝒗𝑖,𝑡−1 ⋅ 𝒗𝑖,𝑠+1𝑐𝒗𝑖,𝑡−1 ⋅ 𝒗𝑖,𝑠−1𝑐

Figure 3: The structure of the conversation context

encoder based on memory networks.

age embeddings of words in a context, i.e., νννci,s, as

the encoding of context representation, i.e.,

e
c
i =

1

|xc
i |

|xc
i
|∑

s=1

νννci,s (1)

where |xc
i | is the length of xc

i in the context.

2.2.2 RNN

RNN encoders employ the recurrent neural net-

work model for the embedded context sequence

< νννci,1, ννν
c
i,2, ..., ννν

c
i,|xc

i
| >, through the recurrent

functions over all the states:

h
c
i,s = δh(W

1

hh
c
i,s−1

+W
2

hννν
c
i,s) (2)

where W
1

h and W
2

h are learnable weight matri-

ces, and δh is the component-wise sigmoid func-

tion. The encoder representation is thus given by

the hidden units at the last state:

e
c
i = h

c
|xc

i
| (3)

In this paper, RNN-based encoders have four

variants, namely, RNN, GRU, LSTM, and BiL-

STM. Particularly, as BiLSTM has two opposite

directions, its context representation takes the con-

catenation of the last states from both directions,

which come from two ends of a given context.

2.2.3 Attention

Attention-based encoders put attention mecha-

nism (Bahdanau et al., 2014) upon RNN model

for “soft-addressing” important words in the con-

versation context. In this paper, we use the

feed-forward attention (Raffel and Ellis, 2015;

SØnderby et al., 2015), as shown in Figure 2. The

encoder is thus represented as

e
c
i =

|xc
i
|∑

s=1

αc
i,sh

c
i,s (4)

1678

where αc
i,s is the attention coefficient obtained for

word x
c
s, which implicitly reflects its importance

for helping keyphrase identification. αc
i,s is com-

puted via a softmax over the hidden states by

αc
i,s = softmax(a(hc

i,s)) (5)

where a(·) is a learnable function formulated as:

a(hc
i,s) = tanh(Wah

c
i,s) (6)

which takes input only from on h
c
i,s. Wa are pa-

rameters of the function a(·) to be learned.

2.2.4 Memory Networks

The encoder based on memory networks

(MemNN) (Weston et al., 2015) stores and

updates the representations of conversation

contexts in a memory module. The updated

representations are used to guide the keyphrase

tagger. Figure 3 illustrates its structure.

Formally, each embedded context sequence

V
c
i =< νννci,1, ννν

c
i,2, ..., ννν

c
i,|xc

i
| > is stored into mem-

ory Mi. We then yield the match between embed-

ded target post Vi =< νννi,1, νννi,2, ..., νννi,|xi| > and

context memory Mi by their inner product acti-

vated by softmax:

Pi = softmax(Vi ·Mi) (7)

where Pi,j,j′ captures the similarity between the

j-th word in conversation context xc
i and the j′-th

word in target post xi.

To transform context input xc
i into an aligned

form so that it is able to be added with Pi,

we include another embedding matrix Ci =<

µµµi,1, ...,µµµi,|xc
i
| >. Similar to attention encoder,

the MemNN encoder aims to generate a represen-

tation, which addresses the important part in the

conversation context that helps tagging keyphrases

in target post xi. The sum of Ci and matching

matrix Pi serves as the encoded representation for

conversation context:

e
c
i = Pi +Ci (8)

In particular, both attention and MemNN ex-

plores salient words in conversations that describe

main focus of the conversation, which helps indi-

cate keyphrases of a target post. In comparison,

MemNN explicitly exploits the affinity of target

posts and conversations in matching each other,

while attention implicitly highlights certain con-

text without taking target posts into account.

Dataset
of an-
not. msgs

of msgs
in context

Context
length

Vocab

Twitter

Train 3,976 3.38 49.74 34,412
Dev 497 3.19 46.44 7,186
Test 497 3.30 48.09 8,779

Weibo

Train 13,816 1.97 55.77 25,259
Dev 1,727 2.01 45.00 9,106
Test 1,727 1.82 51.95 9,305

Table 3: Statistics of two datasets. Train, Dev, and

Test denotes training, development, and test set,

respectively. # of annot. msgs: number of mes-

sages with keyphrase annotation, each containing

conversation context. # of msgs in context: av-

erage count of message in conversation context.

Context length: average count of words in conver-

sation context. Vocab: vocabulary size.

3 Experiment Setup

3.1 Datasets

Our experiments are conducted on two datasets

collected from Twitter and Weibo3, respectively.

The Twitter dataset is constructed based on

TREC2011 microblog track4. To recover conver-

sations, we used Tweet Search API5 to retrieve full

information of a tweet with its “in reply to status

id” included. Recursively, we searched the “in re-

ply to” tweet till the entire conversation is recov-

ered. Note that we do not consider retweet rela-

tions, i.e., reposting behaviors on Twitter, because

retweets provide limited extra textual information

for the reason that Twitter did not allow users to

add comments in retweets until 2015. To build

the Weibo dataset, we tracked real-time trending

hashtags6 on Weibo and used the hashtag-search

API7 to crawl the posts matching the given hash-

tag queries. In the end, a large-scale Weibo corpus

is built containing Weibo messages posted during

January 2nd to July 31st, 2014.

For keyphrase annotation, we follow Zhang

et al. (2016) to use microblog hashtags as gold-

3Weibo is short for Sina Weibo, the biggest microblog
platform in China and shares the similar market penetration
as Twitter (Rapoza, 2011). Similar to Twitter, it has a length
limitation of 140 Chinese characters.

4http://trec.nist.gov/data/tweets/
5http://developer.twitter.com/en/docs/

tweets/search/api-reference/get-saved_

searches-show-id
6http://open.weibo.com/wiki/Trends/

hourly
7http://www.open.weibo.com/wiki/2/

search/topics

1679

Single-layer Taggers Joint-layer Taggers
RNN GRU LSTM BiLSTM RNN GRU LSTM BiLSTM

No Encoder 44.9±1.4 53.9±4.7 54.9±3.8 60.8±3.6 51.0±3.3 56.1±3.4 55.1±2.6 62.5±0.9

Context Encoder
Avg Emb 50.4±0.9 58.8±2.9 56.0±0.7 62.2±3.0 51.5±1.7 59.0±3.5 58.7±3.7 64.5±0.4

RNN 46.4±1.6 56.4±1.9 55.6±2.5 59.0±2.4 52.2±2.8 54.4±2.8 58.3±1.8 63.7±1.3

GRU 50.3±0.8 53.7±1.0 58.0±0.9 56.8±2.3 50.8±4.8 52.3±3.8 57.0±2.1 63.0±1.3

LSTM 51.6±2.0 56.4±1.4 57.9±2.3 64.0±3.1 50.8±3.1 57.9±2.3 58.3±4.0 64.2±0.6

BiLSTM 49.2±1.7 58.3±1.1 56.0±2.0 62.6±3.2 52.7±3.4 56.8±1.0 56.5±3.6 63.7±2.3

Att (LSTM) 48.7±1.7 58.1±1.7 58.1±3.1 64.0±1.8 51.7±4.8 57.4±2.3 58.0±2.4 63.8±1.5

Att (BiLSTM) 51.7±1.4 58.3±1.5 57.0±3.6 62.8±2.5 52.3±4.3 58.0±1.8 59.0±3.9 64.2±3.4

MemNN 53.6±0.3 59.4±3.1 59.5±4.1 62.4±4.8 53.7±3.5 59.4±2.1 62.3±3.3 65.5±1.6

Table 4: Comparisons of the average F1 scores (%) and their standard deviations measured on Twitter over

the results of models with 5 sets of parameters for random initialization. The left half reports results of

single-layer taggers; The right half reports results of joint-layer taggers. Each column: results of the same

tagger with different encoders. Each row: results of different taggers with the same encoder. No Encoder:

taggers without encoding context. Abbreviations for context encoders: Avg Emb – averaged embedding;

Att (LSTM) – attention on LSTM; Att (BiLSTM) – attention on BiLSTM; MemNN – memory networks.

standard keyphrases8 and filtered all microblog

posts by two rules: first, there is only one hash-

tag per post; second, the hashtag is inside a post,

i.e., containing neither the first nor the last word

of a post. Then, we removed all the “#” symbols

in hashtags before keyphrase extraction. For both

Twitter and Weibo dataset, we randomly sample

80% for training, 10% for development, and the

rest 10% for test. Table 3 reports the statistics of

the two datasets. The dataset released by Zhang

et al. (2016) is not used because it does not con-

tain conversation information.

We preprocessed Twitter dataset with Twitter

NLP tool9 (Gimpel et al., 2011; Owoputi et al.,

2013) for tokenization. For Weibo dataset, we

used NLPIR tool10 (Zhang et al., 2003) for Chi-

nese word segmentation. In particular, Weibo con-

versations have an relatively wide range (from 3 to

8,846 words), e.g., one conversation could contain

up to 447 messages. If use the maximum length

of all conversations as the input length for en-

coders, padding the inputs will lead to a sparse ma-

trix. Therefore, for long conversations (with more

than 10 messages), we use KLSum (Haghighi and

Vanderwende, 2009) to produce summaries with a

length of 10 messages and then encode the pro-

duced summaries. In contrast, we do not sum-

marize Twitter conversations because their length

range is much narrower (from 4 to 1,035 words).

8Zhang et al. (2016) proves that 90% of the hashtag-
annotated keyphrases match human annotations.

9http://www.cs.cmu.edu/˜ark/TweetNLP/
10https://github.com/NLPIR-team/NLPIR

3.2 Model Settings

For keyphrase taggers based on RNN, GRU, and

LSTM, we follow Zhang et al. (2016) and set their

state size to 300. For the BiLSTM tagger, which

has two directions, we set the state size for each

direction to 150. The joint-layer taggers employ

the same hyper-parameters according to Zhang

et al. (2016). The state size of context encoders

shares the same settings with keyphrase taggers.

In training, the entire keyphrase extraction frame-

work uses cross-entropy loss and RMSprop opti-

mizer (Graves, 2013) for parameter updating.

We initialize input feature map I for target post

and Ic for conversation context by embeddings

pre-trained on large-scale external microblog col-

lections from Twitter and Weibo. Twitter embed-

dings are trained on 99M tweets with 27B tokens

and 4.6M words in the vocabulary. Weibo embed-

dings are trained on 467M Weibo messages with

1.7B words and 2.5M words in the vocabulary.

In comparison, we employ neural taggers with-

out encoding conversation context, which are

based on RNN, GRU, LSTM, and BiLSTM. We

also compare our models with the state-of-the-art

joint-layer RNN (Zhang et al., 2016) and its GRU,

LSTM, and BiLSTM variations.

To further illustrate the effectiveness of lever-

aging conversation context for keyphrase extrac-

tion, we also evaluate some ranking-based mod-

els, namely, TF-IDF (Salton and Buckley, 1988),

TextRank (Mihalcea and Tarau, 2004), and KEA

implemented by KEA-3.011 (Witten et al., 1999).

11www.nzdl.org/Kea/Download/KEA-3.0.zip

1680

Single-layer Taggers Joint-layer Taggers
RNN GRU LSTM BiLSTM RNN GRU LSTM BiLSTM

No encoder 58.8±1.4 66.2±0.8 67.3±1.6 74.8±0.7 55.5±0.5 64.1±0.7 64.9±0.6 76.8±0.5

Context Encoder
Avg Emb 63.3±0.9 68.2±0.7 69.4±0.4 76.6±0.9 61.1±1.2 69.7±1.3 69.3±0.7 79.8±0.6

RNN 58.2±1.6 64.9±0.6 65.3±0.8 73.1±0.1 60.9±0.5 67.1±0.6 66.7±0.5 71.2±0.7

GRU 56.5±0.8 67.0±0.6 67.4±1.1 73.8±0.7 58.4±1.1 65.5±0.8 67.1±0.4 76.2±0.7

LSTM 59.4±2.0 67.6±0.8 68.1±0.5 75.5±0.2 61.1±1.9 68.4±1.1 69.5±0.7 78.1±1.0

BILSTM 60.8±1.7 68.6±1.0 68.4±0.7 75.9±0.7 61.6±1.8 69.3±1.0 69.6±0.3 78.2±0.8

Att (LSTM) 62.4±1.8 67.6±1.1 69.0±0.7 75.8±1.2 63.1±1.3 70.2±0.8 70.8±1.3 79.3±0.5

Att (BiLSTM) 59.6±1.4 68.6±0.6 70.4±1.0 76.5±0.8 61.5±2.2 70.5±0.6 71.0±0.5 80.5±1.7

MemNN 61.1±0.4 69.3±0.5 69.9±0.7 79.1±1.1 61.8±1.4 68.7±0.9 69.3±0.4 79.6±1.4

Table 5: Comparisons of F1 scores on Weibo. The abbreviations are defined the same as those in Table 4.

We design two experiment settings when running

these models: 1) each target post is treated as a

document; 2) each conversation (containing the

target post) is treated as a document. We select the

top N words for each target post by their ranked-

orders and the threshold N is tuned on the de-

velopment set. As a result, N ranges from 2 to

7 for various methods. Particularly, since TF-

IDF and TextRank extract keywords instead of

keyphrases, we aggregate the selected keywords

according to Bellaachia and Al-Dhelaan (2012).

4 Experimental Results

Section 4.1 to 4.5 present quantitative and quali-

tative analysis of our neural keyprhase extraction

models. Section 4.6 reports the performance of

ranking-based models where we test the general

applicability of incorporating conversation context

to non-neural keyphase extraction methods.

4.1 Overall Comparisons

Table 4 and Table 5 report F1 scores on Twitter

and Weibo, respectively.12 We have the following

observations.

Conversation context is useful for keyphrase ex-

traction. By combining the encoded context in

conversations, the F1 scores of all taggers are bet-

ter than their basic versions without context en-

coders. It confirms that content in conversations

helps in indicating keyphrases in target posts.

Selecting the correct context encoder is impor-

tant. Encoding context simply by RNN or GRU

yields poor results. The reason for RNN is that

it suffers from gradient vanishing problem when

encoding long conversations (conversions in our

12We also tried BiRNN and BiGRU as keyphrase taggers
and as context encoders. They are outperformed by BiLSTM.
We don’t report these results due to the space limitation.

two datasets have over 45 words on average). The

reason for GRU is that its forget gates may be not

well trained to process important content when the

training set is small.

The results of AvgEmb are the worst on Twit-

ter while competitive to other encoders on Weibo.

The performance of AvgEmb is competitive to

other complex context encoders on Weibo. The

reason may be that incorrect word orders generally

do not affect the understanding in Chinese, where

word order misuse is prevalent in Chinese Weibo

messages. As a result, encoding word orders, as is

done by the encoders except AvgEmb, might bring

noise to keyphrase extraction on Weibo dataset. In

contrast, AvgEmb is the worst encoder on Twitter

dataset, as word order is crucial in English.

Identifying salient content in context is impor-

tant. Four types of context encoders have differ-

ent behaviors. Avg Emb considers all words in

conversation context are equally important. RNN-

variant context encoders, i.e., RNN, GRU, LSTM,

and BiLSTM, additionally explore the relations

between succeeded words without distinguishing

salient and non-salient words. Attention (Att

(LSTM) and Att (BiLSTM)) and MemNN can

recognize critical content in conversations, which

would indicate keyphrases in target posts. There-

fore, our keyphrase extraction framework with at-

tention or MemNN encoder has generally better

F1 scores than those with other encoders.

MemNN can effectively capture salient content

in context. On Twitter dataset, MemNN achieves

the best F1 scores when combining with var-

ious keyphrase taggers except for single-layer

GRU and BiLSTM. On Weibo dataset, although

MemNN does not always outperform other en-

coders, its performance is close to the best ones.

1681

SL BiLSTM JL BiLSTM
Twitter Weibo Twitter Weibo

No encoder 60.8 74.8 62.5 76.8

Avg Emb 61.0 75.7 63.3 79.2
RNN 58.8 72.7 63.1 71.1
GRU 56.4 73.1 62.7 76.0
LSTM 61.3 75.2 63.9 77.8
BiLSTM 62.0 75.4 62.3 78.0
Att (LSTM) 62.6 75.6 63.7 79.2
Att (BiLSTM) 62.0 76.5 63.9 79.9
MemNN 61.6 77.4 65.1 79.2

Table 6: The F1 scores of BiLSTM taggers mea-

sured on test instances without conversation con-

text (%). SL BiLSTM and JL BiLSTM denote

keyphrase tagger as single-layer and joint-layer

BiLSTM, respectively. The other abbreviations

are defined the same as those in Table 4.

4.2 Test without Conversation Context

Although we have shown in the previous section

that conversation context is useful for training ef-

fective models for keyphrase extraction on mi-

croblog posts, it is necessary to consider that con-

versation context might be unavailable to some

microblog posts, which do not sparking any re-

post or reply message. Under this circumstance,

the models trained on messages with conver-

sation context might be affected in extracting

the keyphrases for messages without conversation

context. To study whether conversation context

is critical in testing process, we assume that the

conversations are only available for training data,

while all the target posts in the test set have no

context to be leveraged. To this end, we apply the

models trained for the experiment in Section 4.1

on the test posts without using their conversation

context. In prediction, context encoders of the

trained models take the target posts instead of con-

versation as input. Results are reported in Table 6,

where models with context encoders yield better

F1 scores than their counterparts without such en-

coders no matter providing conversation to test

data or not. This observation indicates that encod-

ing conversations in training data helps in learn-

ing effective keyphrase extraction models, which

is beneficial to detect keyphrases in a microblog

post with or without its conversation context. In

addition, by comparing Table 6 with Table 4 and 5,

we find that, for each model with context encoder,

higher F1 scores are observed when conversation

context is used in testing process. This observa-

tion confirms that, conversation context of target

posts helps in indicating keyphrases in prediction.

Figure 4: The heatmap of the context representa-

tion generated by MemNN (see Eq. 8). The hori-

zontal axis refers to words in the conversation con-

text, while the vertical axis refers to words in the

target post. Darker colors indicate higher weights.

The red box indicates the keyphrase to be detected.

4.3 Qualitative Analysis

To qualitatively analyze why MemNN encoder

generally performs better in comparison, we con-

duct a case study on the sample instance in Ta-

ble 1. Recall that the keyphrase should be “pres-

ident Duterte”. We compare the keyphrases pro-

duced by the joint-layer BiLSTM tagger with var-

ious context encoders, given in Table 7. Of all

models, only the one with MemNN encoder tags

correctly. Interestingly, Avg Emb does not ex-

tract any keyphrase. The reason might be that it

considers each word in conversations independent

and equally important. Therefore, when using

this encoder, non-topic words like “if ” and “LOL”

may distract the keyphrase tagger in identifying

the key information. Models with BiLSTM, Att

(BiLSTM), and the basic model without encoder

mistakenly extract the sentiment word “childish”

since sentiment words are prominent on Twitter.

We also visualize context representation gen-

erated by MemNN for conversation context in

a heatmap shown in Figure 4. It is ob-

served that MemNN highlights different types of

words for keyphrases and non-keyphrases. For

keyphrases, MemNN highlights topical words

such as “Obama”. For non-keyphrases, MemNN

highlights non-topic words, e.g., “be”, “to”.

Therefore, features learned for keyphrases and

non-keyphrases are different, which can thus

benefit keyphrase tagger to correctly distinguish

keyphrases from non-keyphrases.

4.4 Keyphrases with Various Lengths

To further evaluate our methods, we investigate

them on keyphrases with various lengths. Figure 5

1682

Extracted keyphrase

Gold-standard president duterte

No encoder duterte childish

Context Encoder
Avg Emb NULL
BiLSTM duterte childish
Att (BiLSTM) president duterte childish
MemNN president duterte

Table 7: Outputs of joint-layer BiLSTM combined

with various context encoders given the example

illustrated in Table1. “NULL”: Avg Emb did not

produce any keyphrase.

shows the histograms of F1 scores yielded by a

single-layer and a joint-layer tagger on Twitter and

Weibo when keyphrase lengths are different. Note

that we only report the results of BiLSTM taggers

because their overall F1 scores are the best accord-

ing to Table 4 and Table 5.

In general, the F1 scores of all models decrease

when keyphrases becomes longer, which implies

that detecting longer keyphrases is harder than

short ones. In comparison of different context en-

coders, we observe that MemNN obtained the best

F1 score in detection of long keyphrases. This is

because MemNN highlights salient content in con-

versation context by jointly considering its sim-

ilarities with keyphrases in target posts. When

the keyphrases become longer, there are more

words in context highlighted, which hence helps

keyphrase tagger. For short keyphrases, MemNN

is still competitive with other context encoders.

The observation suggests that MemNN is robust

in detecting various length of keyphrases.

4.5 Error Analysis

In this section, we briefly discuss the errors found

in our experiments. It is observed that one ma-

jor incorrect prediction is additionally extracted

neighboring words surrounding a gold-standard

keyphrase. For example, in the tweet “Hillary

Clinton accepted gifts from UAE, Saudi Arabia,

Oman and others while SOS. CROOKED Podesta

Emails 29 ...”, in addition to the gold-standard

“Podesta Emails 29”, our models also extract out

“CROOKED”. In general, these additionally ex-

tracted words are mostly modifiers of keyphrases.

External features for identifying modifiers can be

used to filter these auxiliary parts of a keyphrase.

Another main error comes from the words that

are not keyphrases in target posts but reflect the

topics in conversations. For example, joint-layer

(a) SL BiLSTM on Twitter (b) JL BiLSTM on Twitter

(c) SL BiLSTM on Weibo (d) JL BiLSTM on Weibo

Figure 5: Histograms of F1 scores on extract-

ing keyphrases with various lengths. SL BiL-

STM: tagger based on single-layer BiLSTM. JL

BiLSTM: tagger based on joint-layer BiLSTM.

Length: count of words in keyphrases. For each

length range, histograms from left to right show

the results of No encoder, Avg Emb, LSTM, BiL-

STM, Att (LSTM), ATT (BiLSTM), and MemNN.

BiLSTM tagger with MemNN encoder mistak-

enly extracts “Hillary” as a keyphrase for “DOU-

BLE STANDARD: Obama DOJ Prosecuted Others

For Leaking FAR LESS Than Hillary Espionage

URL” whose keyphrase should be “Espionage”.

Because the corresponding conversation of this

post is centered around “Hillary” instead of “Espi-

onage”, such information is captured by the con-

text encoder, which leads to incorrect keyphrase

prediction. However, this type of error points

out the potential of extending our framework to

extracting keyphrases from conversations instead

of a post, which would be beneficial to gener-

ating summary-worthy content for conversations

(Fernández et al., 2008; Loza et al., 2014).

4.6 Ranking-based Models

Table 8 reports the results of ranking models on

Twitter and Weibo. We have the following ob-

servations. First, tagging-based models perform

much better than ranking-based ones in keyphrase

extraction. Comparing the results in Table 8 with

that in Table 4 and Table 5, all neural taggers

outperform non-neural ranking-based models by

a large margin. This fact, again, confirms that

keyphrase extraction is a challenging task on short

microblog messages. Compared to ranking-based

models, neural tagging models have the ability

1683

Twitter Weibo
Pre Rec F1 Pre Rec F1

w/o context
TF-IDF 6.3 48.8 11.1 1.9 7.3 3.0
TextRank 6.6 18.8 9.7 1.0 8.6 1.7
KEA 3.5 0.8 1.3 0.1 0.2 0.1

w/ context
TF-IDF 7.9 45.6 13.4 2.1 8.3 3.4
TextRank 4.8 20.8 7.8 1.0 9.5 1.8
KEA 15.4 12.9 14.0 2.2 12.3 3.7

Table 8: Precision, recall, and F1 scores of

ranking-based baselines (%). w/o context: each

target post is treated as a document; w/ con-

text: each conversation and its corresponding tar-

get post is treated as a document.

to capture indicative features. Second, conversa-

tion context improves ranking-based models by a

large margin. Simply by aggregating conversa-

tions to a pseudo-document, the F1 scores of TF-

IDF, TextRank, and KEA are generally better than

their counterparts that are only performed on tar-

get posts. For TF-IDF and TextRank, which are

unsupervised, context remarkably improves recall

by enriching more topic-related words. While for

supervised method KEA, context improves both

precision and recall, because supervision helps in

identifying good features from conversations.

5 Related Work

Previous work on extracting keyphrases mainly fo-

cuses on formal texts like news reports (Wan and

Xiao, 2008) and scientific articles (Nguyen and

Kan, 2007). Existing keyphrase extraction mod-

els can be categorized as ranking-based models

and tagging-based models. Ranking-based meth-

ods include models based on graph ranking (Mi-

halcea and Tarau, 2004; Wan and Xiao, 2008), text

clustering (Liu et al., 2009), TF-IDF (Jones, 2004;

Zhang et al., 2007; Lee and Kim, 2008; Kireyev,

2009; Wu and Giles, 2013), etc. The empirical

study provided by Hasan and Ng (2010) shows

that TF-IDF has robust performance and can serve

as a strong baseline. Tagging models focus on us-

ing manually-crafted features for binary classifiers

to predict keyphrases (Frank et al., 1999; Tang

et al., 2004; Medelyan and Witten, 2006). Our

models are in the line of tagging approaches, and

provide an alternative choice that incorporates ad-

ditionally knowledge from conversations.

Recently, keyphrase extraction methods have

been extended to social media texts (Zhao et al.,

2011; Bellaachia and Al-Dhelaan, 2012; Marujo

et al., 2015; Zhang et al., 2016). These work suf-

fers from the data sparsity issue because social

media texts are normally short. Also, they only

use internal information in the input text and ig-

nore external knowledge in conversation context.

Thus our work provides an improved approach

that compensates their limitations.

6 Conclusion

This work presents a keyphrase extraction frame-

work for microblog posts with considering conver-

sation context to alleviate the data sparsity in short

and colloquial messages. The posts to be tagged

are enriched by conversation context through four

types of encoders based on averaged embedding,

RNN, attention, and memory networks, which are

effective in capturing salient content in conversa-

tions that is indicative for keyphrase identification.

Experimental results on Twitter and Weibo dataset

have shown that by effectively encoding conversa-

tion context, our proposed models outperform ex-

isting approaches by a large margin. Qualitative

analysis confirm that our context encoders capture

critical content in conversations.

Acknowledgments

We thank Shuming Shi, Haisong Zhang, Jialong

Han, and three anonymous reviewers for their

valuable suggestions on different aspects of this

work. Chengzhi Zhang was supported by National

Social Science Fund of China 17ZDA291.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv pre-print
arXiv/1409.0473.

Abdelghani Bellaachia and Mohammed Al-Dhelaan.
2012. NE-Rank: A novel graph-based keyphrase
extraction in Twitter. In Proceedings of the
IEEE/WIC/ACM International Conferences on Web
Intelligence, WI. pages 372–379.

Yi Chang, Xuanhui Wang, Qiaozhu Mei, and Yan Liu.
2013. Towards Twitter context summarization with
user influence models. In Proceedings of the Sixth
ACM International Conference on Web Search and
Data Mining, WSDM. pages 527–536.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gülçehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. 2014. Learning phrase representa-
tions using RNN encoder-decoder for statistical ma-
chine translation. arXiv pre-print arXiv/1406.1078.

1684

Jaeho Choi, W. Bruce Croft, and Jinyoung Kim. 2012.
Quality models for microblog retrieval. In Proceed-
ings of the 21st ACM International Conference on
Information and Knowledge Management, CIKM.
pages 1834–1838.

Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv pre-print arXiv/1412.3555.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: deep
neural networks with multitask learning. In Pro-
ceedings of the Twenty-Fifth International Confer-
ence Machine Learning, ICML. pages 160–167.

Raquel Fernández, Matthew Frampton, John Dowd-
ing, Anish Adukuzhiyil, Patrick Ehlen, and Stan-
ley Peters. 2008. Identifying relevant phrases to
summarize decisions in spoken meetings. In Pro-
ceedings of 9th Annual Conference of the Interna-
tional Speech Communication Association, INTER-
SPEECH. pages 78–81.

Eibe Frank, Gordon W. Paynter, Ian H. Witten,
Carl Gutwin, and Craig G. Nevill-manning. 1999.
Domain-specific keyphrase extraction. In Proceed-
ings of the Sixteenth International Joint Conference
on Artificial Intelligence, IJCAI. pages 668–673.

Debanjan Ghosh, Alexander Richard Fabbri, and
Smaranda Muresan. 2017. The role of conversation
context for sarcasm detection in online interactions.
In Proceedings of the 18th Annual SIGdial Meeting
on Discourse and Dialogue. pages 186–196.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein,
Michael Heilman, Dani Yogatama, Jeffrey Flanigan,
and Noah A. Smith. 2011. Part-of-speech tagging
for Twitter: annotation, features, and experiments.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies. pages 42–47.

Alex Graves. 2013. Generating sequences with
recurrent neural networks. arXiv pre-print
arXiv/1308.0850.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional
LSTM and other neural network architectures. Neu-
ral Networks 18(5-6):602–610.

Aria Haghighi and Lucy Vanderwende. 2009. Explor-
ing content models for multi-document summariza-
tion. In Proceedings of the Conference of the North
American Chapter of the Association of Computa-
tional Linguistics, NAACL. pages 362–370.

Kazi Saidul Hasan and Vincent Ng. 2010. Conun-
drums in unsupervised keyphrase extraction: mak-
ing sense of the state-of-the-Art. In Proceedings
of the 23rd International Conference on Computa-
tional Linguistics, COLING. pages 365–373.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation
9(8):1735–1780.

Haoran Huang, Qi Zhang, Yeyun Gong, and Xuanjing
Huang. 2016. Hashtag recommendation using end-
to-end memory networks with hierarchical attention.
In Proceedings of the 26th International Conference
on Computational Linguistics, COLING. pages 943–
952.

Karen Spärck Jones. 2004. A statistical interpretation
of term specificity and its application in retrieval.
Journal of Documentation 60(5):493–502.

Kirill Kireyev. 2009. Semantic-based estimation of
term informativeness. In Proceedings of the Human
Language Technologies: Conference of the North
American Chapter of the Association of Computa-
tional Linguistics, NAACL. pages 530–538.

Sungjick Lee and Han-Joon Kim. 2008. News key-
word extraction for topic tracking. In Proceed-
ings of the Fourth International Conference on Net-
worked Computing and Advanced Information Man-
agement, NCM. pages 554–559.

Jing Li, Wei Gao, Zhongyu Wei, Baolin Peng, and
Kam-Fai Wong. 2015. Using content-level struc-
tures for summarizing microblog repost trees. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, EMNLP.
pages 2168–2178.

Jing Li, Ming Liao, Wei Gao, Yulan He, and Kam-Fai
Wong. 2016. Topic extraction from microblog posts
using conversation structures. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics, ACL. pages 2114–2123.

Zhiyuan Liu, Peng Li, Yabin Zheng, and Maosong
Sun. 2009. Clustering to find exemplar terms for
keyphrase extraction. In Proceedings of the 2009
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP, August, A meeting of
SIGDAT, a Special Interest Group of the ACL. pages
257–266.

Vanessa Loza, Shibamouli Lahiri, Rada Mihalcea, and
Po-Hsiang Lai. 2014. Building a dataset for sum-
marization and keyword extraction from emails. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation, LREC.
pages 2441–2446.

Luı́s Marujo, Wang Ling, Isabel Trancoso, Chris Dyer,
Alan W. Black, Anatole Gershman, David Martins
de Matos, João Paulo da Silva Neto, and Jaime G.
Carbonell. 2015. Automatic keyword extraction on
Twitter. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing of the Asian Federation of
Natural Language Processing, ACL. pages 637–643.

1685

Olena Medelyan and Ian H. Witten. 2006. Thesaurus
based automatic keyphrase indexing. In Proceed-
ings of the ACM/IEEE Joint Conference on Digital
Libraries, JCDL. pages 296–297.

Rada Mihalcea and Paul Tarau. 2004. TextRank:
Bringing order into text. In Proceedings of the 2004
Conference on Empirical Methods in Natural Lan-
guage Processing , EMNLP, A meeting of SIGDAT,
a Special Interest Group of the ACL, held in con-
junction with ACL. pages 404–411.

Thuy Dung Nguyen and Min-Yen Kan. 2007.
Keyphrase extraction in scientific publications. In
Proceedings of the Asian Digital Libraries. Looking
Back 10 Years and Forging New Frontiers, 10th In-
ternational Conference on Asian Digital Libraries,
ICADL. pages 317–326.

Yuanping Nie, Yi Han, Jiuming Huang, Bo Jiao, and
Aiping Li. 2017. Attention-based encoder-decoder
model for answer selection in question answering.
Frontiers of IT & EE 18(4):535–544.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer,
Kevin Gimpel, Nathan Schneider, and Noah A.
Smith. 2013. Improved part-of-speech tagging for
online conversational text with word clusters. In
Proceedings of the Human Language Technologies:
Conference of the North American Chapter of the
Association of Computational Linguistics, NAACL.
pages 380–390.

Barak A. Pearlmutter. 1989. Learning state space tra-
jectories in recurrent neural networks. Neural Com-
putation 1(2):263–269.

Colin Raffel and Daniel P. W. Ellis. 2015. Feed-
forward networks with attention Can solve some
long-term memory problems. arXiv pre-print
arXiv/1512.08756.

Kenneth Rapoza. 2011. China’s Weibos vs US’s Twit-
ter: And the winner is? Forbes .

Yafeng Ren, Yue Zhang, Meishan Zhang, and
Donghong Ji. 2016. Context-sensitive Twitter sen-
timent classification using neural network. In Pro-
ceedings of the Thirtieth AAAI Conference on Artifi-
cial Intelligence. pages 215–221.

Ricardo Ribeiro, Anatole Gershman, David Martins
de Matos, João Paulo Neto, and Jaime G. Car-
bonell. 2017. Event-based summarization using a
centrality-as-relevance model. Knowledge & Infor-
mation Systems 50(3):945–968.

Gerard Salton and Chris Buckley. 1988. Term-
weighting approaches in automatic text retrieval. In-
formation Processing & Management 24(5):513–
523.

SØren Kaae SØnderby, Casper Kaae SØnderby, Hen-
rik Nielsen, and Ole Winther. 2015. Convolutional
LSTM networks for subcellular localization of pro-
teins. In Proceedings of the Second International

Conference on Algorithms for Computational Biol-
ogy. pages 68–80.

Jie Tang, Juan-Zi Li, Kehong Wang, and Yue-Ru Cai.
2004. Loss minimization based keyword distilla-
tion. In Proceedings of the Advanced Web Technolo-
gies and Applications, 6th Asia-Pacific Web Confer-
ence, APWeb. pages 572–577.

Peter D. Turney. 2000. Learning algorithms
for keyphrase extraction. Information Retrieval
2(4):303–336.

Xiaojun Wan and Jianguo Xiao. 2008. Single doc-
ument keyphrase extraction using neighborhood
knowledge. In Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence, AAAI.
pages 855–860.

Jason Weston, Sumit Chopra, and Antoine Bordes.
2015. Memory networks. In Proceedings of the
International Conference on Learning Representa-
tions, ICLR.

Ian H. Witten, Gordon W. Paynter, Eibe Frank, Carl
Gutwin, and Craig G. Nevill-Manning. 1999. KEA:
Practical automatic keyphrase extraction. In Pro-
ceedings of the Fourth ACM conference on Digital
Libraries. pages 254–255.

Zhaohui Wu and C. Lee Giles. 2013. Measuring term
informativeness in context. In Proceedings of the
Human Language Technologies: Conference of the
North American Chapter of the Association of Com-
putational Linguistics, NAACL. pages 259–269.

Hua-Ping Zhang, Hong-Kui Yu, De-Yi Xiong, and Qun
Liu. 2003. HHMM-based chinese lexical analyzer
ICTCLAS. In Proceedings of the Second SIGHAN
Workshop on Chinese Language Processing. pages
184–187.

Qi Zhang, Yang Wang, Yeyun Gong, and Xuanjing
Huang. 2016. Keyphrase extraction using deep re-
current neural networks on Twitter. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, EMNLP. pages 836–
845.

Yongzheng Zhang, Evangelos E. Milios, and A. Nur
Zincir-Heywood. 2007. A comparative study on
key phrase extraction methods in automatic web
site summarization. Journal of Digital Information
Management 5(5):323–332.

Wayne Xin Zhao, Jing Jiang, Jing He, Yang Song,
Palakorn Achananuparp, Ee-Peng Lim, and Xiaom-
ing Li. 2011. Topical keyphrase extraction from
Twitter. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics:
Human Language Technologies. pages 379–388.

1686

