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A large body of recent work has begun to explore the potential of parametrized
quantum circuits (PQCs) as machine learning models, within the framework of hybrid
quantum-classical optimization. In particular, theoretical guarantees on the out-of-
sample performance of such models, in terms of generalization bounds, have emerged.
However, none of these generalization bounds depend explicitly on how the classical
input data is encoded into the PQC. We derive generalization bounds for PQC-based
models that depend explicitly on the strategy used for data-encoding. These imply
bounds on the performance of trained PQC-based models on unseen data. Moreover,
our results facilitate the selection of optimal data-encoding strategies via structural
risk minimization, a mathematically rigorous framework for model selection. We ob-
tain our generalization bounds by bounding the complexity of PQC-based models as
measured by the Rademacher complexity and the metric entropy, two complexity mea-
sures from statistical learning theory. To achieve this, we rely on a representation of
PQC-based models via trigonometric functions. Our generalization bounds emphasize
the importance of well-considered data-encoding strategies for PQC-based models.

1 Introduction

Recent years have witnessed a surge of interest in the question of whether and how quantum
computers can meaningfully address computational problems in machine learning [1, 2]. This
development has been largely driven by two factors. On the one hand, there is evidence that
some quantum machine learning algorithms may lead to an increased performance over classical
algorithms for the analysis of classical data with respect to important figures of merit [3–7]. On
the other hand, the increasing availability of quantum computational devices provides significant
stimulus. While these “noisy intermediate-scale quantum” (NISQ) devices are still a far cry from
full-scale fault-tolerant quantum computers, there exists growing evidence that they may be able to
out-perform classical computers on some highly-tailored tasks [8]. Given the inherent limitations
of NISQ devices, most current approaches to near-term quantum-enhanced machine learning fall
under the umbrella of hybrid quantum-classical algorithms [9]. Of particular prominence are
variational quantum algorithms in which a parametrized quantum circuit (PQC) is used to define
a machine learning model which is then updated via a classical optimizer [10–12].

There is a wealth of architectural choices for PQC-based machine learning models. These
include the width and depth of the quantum circuit, the precise layout and structure of trainable
gates, as well as the mechanism via which classical data is encoded into the quantum circuit. The
flexibility in design choices for PQCs is often only perceived strongly in terms of the structure
and layout of the trainable gates [13, 14]. However, when using a PQC to define a machine
learning model for classical data, the data-encoding strategy becomes a necessary architectural
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design choice, which has received comparably little attention. Despite this, it has recently been
shown that the data-encoding strategy is directly related to the expressive power of PQC-based
models [15–17]. In this work, we further the study of data-encoding strategies for PQC-based
supervised learning models by investigating the effect of data-encoding strategies on generalization
performance.

More specifically, we consider the following fundamental question: Given a PQC-based model
which has been trained on a specific data set, can we place any guarantees on its expected out-
of-sample performance, i.e., its expected accuracy on new data, drawn from the same distribution
as the training set? This question is motivated by the key insight that one should not choose the
model or architecture which performs best on the available training data, but rather the model
for which one expects the best out-of-sample performance. Typically, one refers to the difference
between the accuracy of a model on a given training set and its expected out-of-sample accuracy
as the generalization gap. We call a (probabilistic) upper bound on this generalization gap a
generalization bound. Historically, techniques for both proving generalization bounds and for using
generalization bounds for principled model selection have been developed under the umbrella of
statistical learning theory [18–20].

We start by presenting a selection of central notions in statistical learning theory. Of particular
interest is the relation between generalization bounds and complexity measures of different types.
Indeed, due to a large body of existing literature, bounding the generalization gap of a learning
model typically reduces to bounding some quantifiable property of the hypothesis class used for
learning. There are many examples of such complexity measures (also known as capacity metrics
or just expressivity measures), and based on their specifics they are used for different learning
models, either quantum or not. In this work, we employ generalization bounds based on the
Rademacher complexity and the metric entropy. However, we want to mention that there are also
other important approaches to generalization not taken here, such as stability [21], compression [22],
or the PAC-Bayesian framework [23].

Given the fundamental role of generalization bounds, there has recently been a strong and
steady stream of works contributing to the derivation of generalization bounds for PQC-based
models [24–32]. However, as discussed in detail in Section 4, these prior works all differ from our
results in a variety of ways. Firstly, they considered only “encoding-first” PQC architectures, in
which the PQC-based models are assumed to consist of an initial data-encoding block, mapping a
classical input to a data-dependent quantum state, followed by a circuit consisting only of fixed and
trainable gates. In contrast, we consider PQC-based models incorporating data re-uploading [17], in
which trainable circuit blocks are interleaved with data-encoding circuit blocks. This is particularly
relevant given the results of Refs. [15, 33], which have illuminated the significant effects of data
re-uploading on the expressive power of PQC-based models.

Additionally, our work is the first to provide a generalization bound from which it is immediately
clear how altering the data-encoding strategy influences the generalization performance of the
model. This is possible because our bound depends explicitly on architectural hyper-parameters
associated with the data-encoding strategy. This sets our results apart from prior art where the
data-encoding figured only implicitly, if at all. We discuss this difference between implicitly and
explicitly encoding-dependent generalization bounds more concretely in Section 4.

In order to obtain our generalization bounds, we rely strongly on a representation of PQC-based
models via generalized trigonometric polynomials (GTPs), which has been previously derived in
Refs. [15, 33]. In particular, we exploit the fact that the data-encoding strategy of the PQC-
based model directly determines the frequency spectrum of the corresponding GTPs. As such,
the number of accessible frequencies in the GTP representation provides a natural measure of the
complexity of a particular data-encoding strategy. Given this, we first derive generalization bounds
for GTPs, which exhibit a dependence on the square root of the number of accessible frequencies.
We then proceed to determine, for different data-encoding strategies, upper bounds on the number
of accessible frequencies in the GTP representation. We use these results to identify a variety
of natural data-encoding strategies for which the number of accessible frequencies, and therefore
the associated generalization bounds, scale polynomially with the number of data-encoding gates.
While one cannot use generalization bounds alone to recommend an optimal data-encoding strat-
egy, we discuss how these generalization bounds can be combined with empirical risk estimates,
via structural risk minimization, to facilitate the selection of an optimal data-encoding strategy
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Figure 1: A flowchart of the argument presented in this work.

for a given problem.

1.1 Structure of this work

This work is structured as follows: Section 2 gives a pedagogical introduction to statistical learning
theory, explains the importance of generalization bounds, and discusses the structural risk mini-
mization principle. After establishing these concepts, we formulate the main questions addressed
in this work. In Section 3, we begin by introducing the PQC-based learning models used in this
work. We then present a detailed discussion of the approach of Ref. [33], which demonstrates how
the functions implemented by a PQC-based model can be represented by generalized trigonometric
polynomials. In particular, we emphasize how the data encoding strategy of the PQC-based model
translates to the accessible frequencies of the generalized trigonometric polynomials. Section 4
then provides a detailed review of prior work on generalization in quantum machine learning. In
Section 5, we establish generalization bounds for classes of generalized trigonometric polynomials
in terms of the number of accessible frequencies. We present one approach via the Rademacher
complexity (Section 5.1) and another via covering numbers (Section 5.2). Section 6 then expands
upon Section 3 by deriving upper bounds on the number of accessible frequencies, in the general-
ized trigonometric polynomial representation of the PQC-based models associated with different
data-encoding strategies. This analysis allows us to use the results from Section 5 to state explic-
itly encoding-dependent generalization bounds for PQC-based models, and to compare different
encoding strategies from a generalization perspective. We discuss the implications of our results
in Section 7. In particular, we emphasize how our results are complementary to many prior works,
but also describe how the different approaches can be combined. Additionally, we sketch some
directions for future research. Section 8 contains a short summary of our work. The logical flow
of this manuscript is visualized in Figure 1.

2 Motivation: Generalization bounds, sample complexities and model

selection

To motivate the content of this work and to define the setting, we start with a brief and select
introduction to the framework of statistical learning theory. Interested readers are referred to
Refs. [20] and [34] for a more detailed presentation. Within this framework, any supervised learning
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problem is defined by a domain X , a co-domain Y, a probability distribution P over X × Y and a
loss function ℓ : Y × Y → R. We assume that X , Y and ℓ are known, while P is unknown. We will
denote the set of all functions from X to Y as YX . To gain intuition, it is useful to think of the
situation in which there exists a deterministic rule for assigning predictions to domain elements.
We can model this in the framework outlined above with an unknown target function f ∈ YX , as
well as some unknown probability distribution PX over X , such that samples from P are obtained
by first drawing a domain element x ∈ X from PX , and then outputting the tuple (x, f(x)), i.e.

P (x, y) =

{

PX (x) if y = f(x),

0 if y 6= f(x).
(1)

In general, however, it may be the case that there exists y1 6= y2 for which both P (x, y1) > 0 and
P (x, y2) > 0, i.e., that the underlying process for labeling data points is not deterministic.

Additionally, we are given a training data set

S = {(xi, yi) ∼ P | i ∈ {1, . . . , m}} (2)

of m tuples drawn independently from (the unknown distribution) P , and our goal is to design
a learning algorithm A which, given S as input, outputs a hypothesis h ∈ YX that achieves a
sufficiently small risk

R(h) =

∫

X ×Y
ℓ(y, h(x)) dP (x, y). (3)

Informally, we often refer to the risk R(h) as characterizing the out-of-sample performance of the
hypothesis h, as it is this quantity which tells us how well we can expect the hypothesis h to
perform on (possibly previously unseen) future data drawn from P . It is critical to note, however,
that as the underlying probability distribution P is unknown, given a hypothesis h ∈ YX , one
cannot directly evaluate R(h). In light of this, a natural alternative is to evaluate the empirical
risk of h with respect to S, which is defined as the average loss over the training samples

R̂S(h) =
1

|S|
∑

(xi,yi)∈S

ℓ(yi, h(xi)). (4)

In contrast to the risk R(h), the empirical risk R̂(h) characterizes the in-sample performance of h
with respect to the data set S, which has been sampled from P .

Naively, one might hope to be able to construct learning algorithms which could in principle
output any h ∈ YX . However, the “no-free-lunch” theorem rules out the possibility of meaningful
learning in this case [35], and therefore we typically consider learning algorithms whose range is
some subset F ⊆ YX . We then refer to F as the hypothesis class associated with the learning
algorithm which is, by assumption, also known to the learning algorithm. To gain some intuition,
one could think of F as the set of all functions realizable by neural networks of some fixed width
and depth, or, as we describe in Section 3, as the set of all functions realizable by a parametrized
quantum circuit model with some fixed architecture. With respect to this setting, the following
natural question arises: Suppose we have a learning algorithm A with hypothesis class F , which
has been run on a randomly drawn data set of m samples S ∼ P m and outputs some hypothesis
h ∈ F , as well as some “training log” which we denote by hist(A, S)1. Given the achieved empirical
risk R̂S(h), can we put an upper bound on the true risk R(h), which holds with high probability
over the randomly drawn data set S? More specifically, can we make a statement of the form: For
all δ ∈ (0, 1), with probability 1 − δ over S ∼ P m, for all h ∈ F we have that

R(h) ≤ R̂S(h) + g(F , h, m, S, A, hist(A, S), δ). (5)

We refer to such a statement as a generalization bound, and note that the function g appearing
in Eq. (5) provides a (probabilistic) upper bound on the quantity R(h) − R̂S(h), which we call
generalization gap (of h with respect to S). Such bounds are desirable because they allow us to

1Such a training log could for example record the value of the empirical risk, or properties of the trial hypotheses
(such as weight matrices for neural networks), at each stage of an iterative optimization procedure.
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leverage the information we have access to – i.e., the empirical risk, and properties of the learning
algorithm, data set and optimization procedure – to upper bound R(h), which is the quantity
we do not have access to, but are ultimately interested in. In general, as indicated explicitly in
Eq. (5), the upper bound g on the generalization gap could depend on properties of the achieved
hypothesis h, properties of the data set S, properties of the learning algorithm A, and details of
the optimization that led to h. However, in this work we will focus on uniform generalization
bounds of the form: for all δ ∈ (0, 1), with probability 1 − δ over S ∼ P m, we have for all h ∈ F
that

R(h) ≤ R̂S(h) + g(F , m, δ). (6)

To be specific, we focus on generalization bounds for which the upper bound on the generalization
gap – i.e., the function g – depends only on properties of the hypothesis class F , the data set size
m and the desired probability δ. We note that the term “uniform” is used when describing such
generalization bounds to indicate that, with respect to a fixed data set size m and probability
threshold δ, the upper bound on the generalization gap will be the same – i.e., uniform – for all
h ∈ F . While it is known that there exist scenarios in which uniform generalization bounds are
not tight [36, 37], we postpone a discussion of these issues to Section 7.

As motivated above, given a uniform generalization bound for a hypothesis class F , one typical
application is as follows: Given a data set S sampled from P , with |S| = m, run some learning
algorithm to obtain a hypothesis h ∈ F , evaluate its empirical risk R̂S(h), and then use the
generalization bound to place a (probabilistic) upper bound on the true risk R(h). However, we
can also often straightforwardly use such a generalization bound to answer the following natural
question: Given some ǫ > 0 and some δ ∈ (0, 1), what is the minimum size of S sufficient to ensure
that, with probability 1 − δ, for all h ∈ F , the generalization gap satisfies R(h) − R̂S(h) ≤ ǫ? To
see this, note that if we have a uniform generalization bound, then by setting

g(F , m, δ) ≤ ǫ (7)

and solving for m, it is often possible to find some function f(ǫ, δ, F) such that, with probability
1 − δ over S ∼ P m,

m ≥ f(ǫ, δ, F) ⇒ ∀h ∈ F : R(h) − R̂S(h) ≤ g(F , m, δ) ≤ ǫ. (8)

As the generalization bound may not be tight, we therefore see that f(ǫ, δ, F) provides an upper
bound on the minimum size of S sufficient to probabilistically guarantee a generalization gap less
than ǫ for all h ∈ F .

Finally, apart from the fundamental applications of allowing us to bound the out-of-sample
performance of a hypothesis, or upper bound the minimum sample-size sufficient to guarantee
a certain generalization gap, generalization bounds also allow us to address the issue of model
selection, via the framework of structural risk minimization [20]. Importantly, we note that one
cannot simply use only the function g(k, m, δ) for model selection: A trivial learning model, which
outputs the same hypothesis independently of the input data, has g(k, m, δ) = 0, but cannot achieve
good prediction performance on interesting tasks. Structural risk minimization thus suggests
combining a generalization bound with an empirical risk evaluation on a specific data-set to choose
the model with the smallest upper-bound on the true risk. More specifically, let us assume that our
hypothesis class depends on some “architectural hyper-parameter” k, with some notion of ordering
such that

k1 ≤ k2 =⇒ Fk1 ⊆ Fk2 . (9)

For example, Fk could be the set of all neural networks of fixed width and depth k. Given this,
how should we choose the hypothesis class – or model complexity – that we use for a given learning
problem? As illustrated in Figure 2, generalization bounds, when combined with empirical risk
evaluations, can allow us to answer this question. In particular, assume that we have a uniform
generalization bound of the form: For all δ ∈ (0, 1), with probability 1 − δ over S ∼ P m, for all
h ∈ Fk,

R(h) ≤ R̂S(h) + g(k, m, δ), (10)

where g(k, m, δ) is non-decreasing with respect to k. Here, we have written g(k, m, δ) rather than
g(Fk, m, δ) to emphasize the assumption that the hyper-parameter k is the only property of Fk on
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Figure 2: Illustration of structural risk minimization (adapted from Ref. [20]). Increasing the complexity of a
hypothesis class typically allows one to obtain hypotheses with decreasing empirical risk. However, in many
cases increasing the complexity of a hypothesis class also leads to a larger upper bound on the generalization
gap. Structural risk minimization aims to identify a hypothesis with the smallest upper bound on the true risk
that quantifies the out-of-sample performance by combining an evaluation of the empirical risk of candidate
hypotheses with an upper bound on the generalization gap of the relevant hypothesis class.

which the generalization bound depends explicitly. While increasing k increases the expressivity
of the hypothesis class and therefore typically leads to smaller empirical risk, it also increases the
upper bound g(k, m, δ) on the generalization gap and may therefore lead to hypotheses with worse
out-of-sample performance. As such, a natural strategy to find an optimal hypothesis – in the
sense of having the smallest probabilistic upper bound on the true risk – is as follows:

1. For k in {k1, . . . , kn}, run the learning algorithm Ak, with hypothesis class Fk, and obtain
the hypothesis hk.

2. Calculate kopt = argmink[R̂S(hk) + g(k, m, δ)].

3. Output hkopt
.

We refer to such a procedure as structural risk minimization2, and contrast this with empirical
risk minimization, which simply outputs the hypothesis minimizing the empirical risk. In light of
the above discussion, we note that, given a family of hypothesis classes {Fk}, each specified by
some architectural hyper-parameter k and satisfying the condition of Eq. (9), we would ideally like
to obtain an upper bound on the generalization gap g(k, m, δ) which grows slowly with respect to
k. In particular, we can now understand this from two different but complementary perspectives:

Firstly, from the structural risk minimization (or model selection) perspective, we see from
Figure 2 that slow growth of g(k, m, δ) is indicative of our ability to exploit the expressivity of more
complex hypothesis classes, i.e. those with larger k, without risking poor generalization performance
due to overfitting. More specifically, under the assumption of monotonically decreasing empirical
risk, the slower g(k, m, δ) grows, the longer we can expect the quantity R̂S(hk) + g(k, m, δ) to
decrease before reaching a minimum, and therefore the smaller we can expect our ultimate upper
bound on the true risk of the optimal hypothesis hkopt to be. In contrast, if g(k, m, δ) grows too
fast with respect to k, then even if we can achieve very small empirical risk by increasing model
complexity, we do not expect to be able to achieve a sufficiently small upper bound on the true
risk of the optimal hypothesis hkopt

.
Secondly, from the sample complexity perspective, let us denote by f(ǫ, δ, k) the complemen-

tary upper bound on the minimum sample sample size m sufficient to probabilistically ensure a
generalization gap less than ǫ > 0, which typically follows from g(k, m, δ) (as we recall from the
discussion around Eqs. (7) and (8)). As we naturally expect g(k, m, δ) to be decreasing with in-
creasing m, slow growth of g(k, m, δ) with respect to k typically implies slow growth of f(ǫ, δ, k)

2We note that the term “structural risk minimization” is sometimes used to refer to the strategy of minimizing
a regularized empirical risk, with an additive regularization term which penalizes high model complexity. However,
we follow Ref. [20] in our definition and presentation.
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with respect to k. In other words, slow growth of g(k, m, δ) typically implies slow growth, with
respect to model complexity, of the minimum amount of data one has to use before being able to
probabilistically guarantee a certain generalization gap for all output hypotheses. As generating
data (i.e., sampling from the distribution P ) may be expensive or difficult, and as the run-time
of learning algorithms typically scales with respect to the data set size, slow growth of g(k, m, δ)
therefore facilitates the process of learning with models of higher complexity.

Given the above observations, we can finally understand the motivation of this work in an
informal way. In particular, in the following section we will see that parametrized quantum circuits
(PQCs) naturally give rise to hypothesis classes with multiple architectural hyper-parameters, each
reflecting a different aspect of the circuit architecture, such as circuit depth, circuit width, the total
number of gates or the total number of data-encoding gates of a particular type. In Section 4 we
will then see that a body of previous work has resulted in a collection of generalization bounds
for PQC-based models, each of which depend explicitly on some subset of architectural hyper-
parameters, but not on others. As of yet, however, there exist no generalization bounds which
depend explicitly on hyper-parameters associated with the data-encoding strategy, despite the
important role such strategies play in determining the expressive power of PQC-based hypothesis
classes [33]. As such, the questions which we address in this work are as follows:

(a) Can we derive generalization bounds for PQC-based hypothesis classes which depend explicitly
on hyper-parameters associated with the data-encoding strategy?

(b) Can we use such bounds to identify data-encoding strategies for which the upper bounds on
the generalization gap grow polynomially with respect to the architectural hyper-parameter
relevant to the encoding strategy?

As will be discussed in Section 7, apart from filling a gap in our understanding of the manner
in which the data-encoding influences generalization, such bounds would also complement existing
works, in that they would allow one to perform structural risk minimization with respect to multiple
architectural hyper-parameters simultaneously. With this motivation in mind, before proceeding it
is worth briefly mentioning how (uniform) generalization bounds are typically obtained. Intuitively,
one might expect that the generalization performance of a hypothesis class is related to how
complex (or how expressive) the hypothesis class is, and thus one might hope for the existence
of a complexity measure for hypothesis classes from which generalization bounds follow. This
intuition is indeed correct, and in fact a large amount of work in statistical learning theory has
resulted in a variety of suitable complexity measures – such as the VC dimension [38], Rademacher
complexity [39], pseudo-dimension [40] and metric-entropy amongst others – all of which directly
give rise to generalization bounds [20, 34, 35]. As a result, given a hypothesis class Fk, one typically
proves a uniform generalization bound for Fk, which depends explicitly on the architectural hyper-
parameter k, by first characterizing the dependence of a suitable complexity measure C on k
(i.e., by writing/bounding C(Fk) explicitly in terms of k), and then writing down the known
generalization bound which follows from C(Fk). We also follow such a strategy in this work by
first characterizing both the Rademacher complexity and metric-entropy of PQC-based models in
terms of architectural hyper-parameters related to the data-encoding strategy and then presenting
generalization bounds in terms of these complexity measures. At this stage it is hopefully clear,
both why generalization bounds are desirable, and how (at least intuitively) one might obtain such
bounds. Given this, we proceed in the following section to define more precisely the PQC-based
hypothesis classes considered in this work.

3 Parametrized quantum circuit based model classes

Parametrized quantum circuits (PQCs) are ubiquitous in the field of near-term quantum comput-
ing [9–11] and can be used to construct quantum machine learning models [12]. We will consider
qubit-based quantum systems. The focus of this work lies on variational quantum machine learning
models that are constructed from a PQC Uθ(x) that depends on trainable parameters θ ∈ Θ and
on data inputs x ∈ X . A prediction in the co-domain Y = R is then obtained by evaluating the
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Figure 3: Circuit model considered in this work. We assume that the circuit consists of gates which are
parametrized either by the data x (data-encoding gates), or the trainable parameters θ (trainable gates).
The data encoding gates are assumed to implement the time evolution of a data-encoding Hamiltonian, with
evolution time given by some data coordinate x

(i)
= e(i)x. The model output is then given by the expectation

value of an observable M .

expectation value of a fixed observable M , which can be efficiently evaluated, as

fθ(x) = 〈0|U†
θ
(x)MUθ(x)|0〉. (11)

In the following, we assume that the data inputs are d-dimensional real-valued vectors with entries
in the interval [0, 2π), i.e., X = [0, 2π)d. This choice is somewhat arbitrary, as data can always be
rescaled to fit into a particular interval. However, [0, 2π) is a natural choice because quantum gates
available on actual hardware are usually parametrized in terms of angles. As will become apparent
later, we need not make any assumptions on the nature of the trainable parameters, but in most
cases they will also be angles, i.e., Θ = [0, 2π)p, where p is the number of trainable parameters.

We also make some assumptions on the structure of the circuit Uθ(x). Our model is motivated
by the actual quantum circuits that can be executed on NISQ devices. These devices usually only
allow fixed gates and parametrized evolutions under device-specific Hamiltonians [41–43]. In our
model, the data inputs x and the trainable parameters θ enter the circuit through different gates.
The unitaries parametrized by θ, denoted by {Wi(θ)}, constitute the trainable part of the model.
Fixed unitaries can be absorbed into the trainable unitaries.

We assume that the gates through which the data enters the circuit are time evolutions under
some Hamiltonian, where the “evolution time” is given by one of the data coordinates x(i). We
denote the j-th gate that encodes the data coordinate x(i) as

S
(i)
j (x) = exp

(

−ix(i)H
(i)
j

)

= exp
(

−ie(i)xH
(i)
j

)

, (12)

where we rewrote the encoding gate in terms of the input data vectors by recognizing that
x(i) = e(i)x, where e(i) is a standard basis vector. It is of course possible to consider more gen-
eral dependencies of the evolution time on the input data, i.e. in terms of linear combinations
or even non-linear functions of the data coordinates. However, we choose not to include models
with such classical pre-processing of the data, in order to isolate the part of the model which is
truly quantum. Indeed, if one allowed for arbitrary pre-processing, then one could just use a very
complicated neural network to find suitable evolution times for good predictions, but that would
miss the point of using a quantum learning model at all. We note though that our definition still
encompasses such approaches after a suitable reparametrization of the inputs, which will usually
result in a larger number of input coordinates.

For our analysis, no restriction on the placement of the trainable gates and the data-encoding
gates in the circuit is necessary. Thus, we assume that they can be arranged arbitrarily, as depicted
in Figure 3. However, we will refer to the choice of data-encoding Hamiltonians per data coordinate
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as D(i) = {H
(i)
j } and call the union of these sets over all data coordinates the data-encoding strategy

D =
(

D(1), D(2), . . . , D(d)
)

. (13)

The total number of encoding gates per data coordinate is N (i) = |D(i)| and the total number of

data-encoding gates is N =
∑d

i=1 N (i).
A data-encoding strategy D together with a fixed circuit structure and a choice of trainable

gates defines a parametrized quantum circuit Uθ(x). We denote the fact that this circuit uses the
encoding strategy D as Uθ(x) ∼ D. When we fix an observable M to generate the predictions,
this defines a function class

FΘ,D,M := {[0, 2π)d ∋ x 7→ 〈0|U†
θ
(x)MUθ(x)|0〉 | θ ∈ Θ, Uθ(x) ∼ D}, (14)

which is obtained by considering all possible parametrizations θ ∈ Θ of the trainable gates. This
function class depends explicitly on the parametrization of the trainable parts of the circuit and on
the data-encoding strategy. As we ultimately want to obtain generalization bounds that depend
on the hyper-parameters associated with the encoding strategy – such as the number of encoding
gates N – it will be helpful for us to reformulate the function class in a way that makes it more
amenable to the analyses in the following sections. To this end, we draw on the results of Refs. [15,
33], which show that the nature of the data encoding gates as Hamiltonian evolutions allows us to
expand the model output as a generalized trigonometric polynomial (GTP). A GTP “generalizes”
the notion of a trigonometric polynomial by allowing arbitrary frequencies as in

fθ(x) =
∑

ω∈Ω(D)

cω(θ, M)e−iωx. (15)

While the GTP’s coefficients {cω} depend on the particular parametrization and observable, the
set of frequencies Ω(D) depends solely on the chosen data-encoding strategy D, in particular on the
spectra of the Hamiltonians {H

(i)
j } that yield the data encoding evolutions {S

(i)
j (x)}. We describe

the procedure for obtaining such a GTP representation in more detail below. The fact that the
expectation value is always real is reflected by cω = c∗

−ω and by the observation that ω ∈ Ω(D)
implies that also −ω ∈ Ω(D). Additionally, we note that the absolute value of any expectation
value obtained from measuring M is upper bounded by its operator norm ‖M‖∞, and therefore,
if we assume that ‖M‖∞ ≤ B, then

FΘ,D,M ⊆ FB
Ω :=

{

[0, 2π)d ∋ x 7→ f(x) =
∑

ω∈Ω

cω exp(−iωx)
∣

∣

∣ (cω)ω∈Ω such that ‖f‖∞ ≤ B

}

,

(16)

where Ω = Ω(D). We have thus defined a function class that solely depends on the data-encoding
strategy. We stress that this function class subsumes all possible ways to parametrize the trainable
parts of a circuit with fixed data-encoding strategy D and fixed observable M , but also goes beyond
this by allowing all possible choices of observable M such that ‖M‖∞ ≤ B. Therefore, it also
contains models where not only the parameters of the trainable gates, but also the measurement
itself is subject to optimization. In going from FΘ,D,M to FB

Ω , we effectively allow for a universal
trainable part and observable, which enables us to focus on the encoding strategy. Studying
intermediate classes between FΘ,D,M and FB

Ω could constitute a path towards tighter generalization
bounds that depend on both the data-encoding and the trainable part of the PQC-based model.

In Section 5, we will first prove generalization bounds for FB
Ω , which depend explicitly on

properties of Ω, before exploring in detail in Section 6 how these relevant properties of Ω depend
on the data-encoding strategy D. Exploiting the fact that, for a given B ≥ ‖M‖∞, FΘ,D,M ⊆ FB

Ω(D)

then automatically yields explicitly encoding-dependent generalization bounds for FΘ,D,M .
As the connection between the data-encoding strategy D and the set Ω(D) plays a crucial role,

we illustrate this connection for a generic data-encoding strategy here. We first consider the action
of a single encoding evolution S(x) in the density matrix picture, where it acts via the quantum
channel

S(x)[ρ] = exp (−iexH) ρ exp (iexH) , (17)
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where the Hamiltonian H takes the role of any of the above Hamiltonian terms H
(i)
j and e can

be any basis vector. We can expand ρ in the eigenbasis of the Hamiltonian H|λk〉 = λk|λk〉 and
obtain

S(x)[ρ] = S(x)





∑

k,l

ρk,l |λk〉〈λl|



 (18)

=
∑

k,l

ρk,l S(x) [|λk〉〈λl|] (19)

=
∑

k,l

ρk,l exp(−i(λk − λl)ex)|λk〉〈λl|. (20)

We see that the differences of the eigenvalues λk of the Hamiltonian H determine the frequencies
with which the different elements of the expansion of ρ are multiplied. We can combine the different
frequencies with the weight vector e to obtain the set of all available frequencies

Ω(H) = {ωk,l = (λk − λl)e | λk, λl ∈ spec(H)}. (21)

With this notation, we can simplify our expression for S(x)[ρ] to obtain

S(x)[ρ] =
∑

ω∈Ω(H)

exp(−iωx)ρω, (22)

where the operators ρω are given by collecting the terms in the above sum for which the frequency
differences are the same, i.e.

ρω =
∑

(k,l)∈I(ω)

ρk,l|λk〉〈λl|, where I(ω) = {(k, l) | (λk − λl)e = ω}. (23)

As ρ is Hermitian, we have that ρω = ρ∗
−ω. The frequency structure carries over if we measure the

expectation value of an arbitrary observable M for the state S(x)[ρ] to obtain a prediction

f(x) = Tr{S(x)[ρ]M} =
∑

ω∈Ω(H)

exp(−iωx) Tr{ρωM} =
∑

ω∈Ω(H)

cω exp(−iωx). (24)

As a result, we obtain a GTP with coefficients cω = Tr{ρωM}. Note that, as ρω = ρ∗
−ω, we have

that cω = c∗
−ω, which ensures that f(x) is real-valued as expected. The coefficients of this series

could depend intricately on the circuit that was used to construct ρ and on the specific observable
M , but a profound understanding of this relation is an open question. However, this does not pose
an obstacle for us, as only the set Ω is relevant for our study.

We have just derived the frequency structure for one encoding gate, but for more complicated
circuits we have to understand the action of multiple encoding gates, potentially interleaved with
some trainable unitaries. The intermediary unitaries, however, will only result in a basis change,
not affecting the set of combined frequencies. We can therefore ignore them and just consider the
repeated action of two distinct encoding gates with Hamiltonians H1 and H2, resulting in

S2(x)[S1(x)[ρ]] = S2(x)





∑

ω1∈Ω(H1)

exp(−iω1x)ρω1



 (25)

=
∑

ω1∈Ω(H1)

exp(−iω1x)
∑

ω2∈Ω(H2)

exp(−iω2x)ρω1,ω2
(26)

=
∑

ω1∈Ω(H1)

∑

ω2∈Ω(H2)

exp(−i[ω1 + ω2]x)ρω1,ω2
. (27)

At this point, we precisely understand that the application of the second gate results in new
frequencies that encompass all possible sums of the different frequencies. We can again consolidate
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this if we consider the sumset (or Minkowski sum) of the two sets of frequencies Ω(H1) and Ω(H2)
defined as

Ω({H1, H2}) := Ω(H1) + Ω(H2) := {ω1 + ω2 | ω1 ∈ Ω(H1), ω2 ∈ Ω(H2)}. (28)

With that we have

S2(x)[S1(x)[ρ]] =
∑

ω∈Ω(H1)+Ω(H2)

exp(−iωx)ρω. (29)

Note again that the values of specific components ρω depend on the specific initial state ρ and
possible intermediate unitaries, but, in this work, we are only interested in Ω itself. We can apply
the same logic recursively to see that the set of accessible frequencies for any encoding strategy D
is given by the sumset of all the individual sets of frequencies Ω(H

(i)
j ) for each gate:

Ω(D) =
∑

D(i)∈D

∑

H∈D(i)

Ω(H) =

d
∑

i=1

N(i)
∑

j=1

{(λk − λl)e
(i) | λk, λl ∈ spec(H

(i)
j )}. (30)

4 Prior and related work

Before presenting our explicitly encoding-dependent generalization bounds for PQC-based models
in the next two sections, we discuss how our results compare to prior work. While there is a
massive amount of prior and ongoing work on the generalization capacity of classical models, see
for example the survey in Ref. [37], such results have only recently begun to emerge for PQC-
based models. Here, we focus on a comparison with these latter results. Additionally, while the
following paragraphs constitute a detailed review of existing generalization bounds for PQC-based
models, we stress that no knowledge of these prior works is necessary to understand our proofs
and results. In particular, the presentation here is intended to establish context for our work and
to place prior works in relation to each other, but the remainder of this manuscript can safely be
read independently of the review presented here.

Given the discussions in the previous two sections, we note that, at a high level, all prior work
on generalization bounds for PQC-based models can be classified via the following three criteria:

1. Which restrictions – if any – are placed on the architecture/structure of the PQCs generating
the model class considered?

2. In terms of which architectural hyper-parameters, or experimentally accessible quantities,
are the generalization bounds expressed?

3. Via which complexity measure are the generalization bounds derived?

Given this, we will use the above questions as guidelines for understanding and relating existing
results. Throughout this discussion, keep in mind that, as explained in Section 1, all prior works
are restricted to encoding-first models, whereas we allow for data re-uploading.

Additionally, while some of the following works study the same complexity measures as the
ones examined here – namely, Rademacher complexity and covering numbers – all of them differ
from ours in both the restriction to encoding-first PQC-based models and in a lack of explicit
dependence on the data-encoding strategy. Given this, we split our survey into two parts. First, in
Section 4.1, we discuss those prior works which derive encoding-independent generalization bounds.
In Section 4.2, we then discuss existing works deriving generalization bounds which depend on the
data-encoding strategy, but with a dependence which is implicit, and not necessarily clear a priori.

4.1 Encoding-independent complexity and generalization bounds

Ref. [24] is an early study of the complexity and generalization capacity of quantum circuit based
models, which presents encoding-independent bounds on the pseudo-dimension of function classes
associated with encoding-first 2-local (unitary or CPTP) PQCs, polynomial in the size (number of
gates) and depth of the trainable part of the circuit (in which all gates were considered trainable).
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Such pseudo-dimension bounds then yield generalization bounds, which also depend polynomially
on the size and depth of the trainable circuit. Ref. [44] has extended the generalization bounds
of Ref. [24] to the agnostic setting. In a similar vein, Ref. [29] has recently derived encoding-
independent covering number bounds for encoding-first PQC-based models, which depend explic-
itly on the number of gates in the PQC, and the operator norm of the measured observable. Once
again, using standard tools from statistical learning theory, the authors of Ref. [29] are then able
to use these covering number bounds to provide an encoding-independent generalization bound.

Working from the perspective of kernel methods, Ref. [32] has recently investigated the com-
plexity of encoding-first PQC-based models in terms of properties of the parametrized measure-
ment which follows data-encoding. More specifically, they interpret the entire parametrized circuit
following the data-encoding as a parametrized measurement, and provide bounds for the VC-
dimension of the model class in terms of the rank of the parametrized observable, and for the
fat-shattering dimension in terms of the Frobenius norm of the parametrized observable. These
bounds on standard complexity measures then allow them to prove generalization bounds which
depend explicitly on either the rank or the Frobenius norm of the accessible observables. However,
similarly the perspective we advocate in this work, the authors of Ref. [32] stress the application
of generalization bounds for model selection, via structural risk minimization.

Finally, Ref. [27] has recently initiated a resource-theoretic approach by providing encoding-
independent bounds on both the Rademacher and Gaussian complexity of encoding-first PQC-
based models, in terms of the number of repetitions of resource channels allowed in the PQC.
These Rademacher and Gaussian complexity bounds have then been used to derive generalization
bounds, which depend on the same quantities, and therefore provide an encoding-independent
resource-theoretic perspective on generalization in encoding-first PQC-based models.

4.2 Encoding-dependent complexity and generalization bounds

We proceed by discussing prior work deriving generalization bounds which do depend on the data-
encoding strategy. While the dependence on the data-encoding could take various forms, in this
manuscript we aim to derive generalization bounds which depend explicitly on architectural hyper-
parameters related to the data-encoding strategy (such as the number of encoding gates of a specific
type), and therefore facilitate the straightforward implementation of model selection via structural
risk minimization. This is in contrast to all of the prior encoding-dependent generalization bounds,
which are written in terms of some quantity which depends on the data-encoding strategy, but with
an implicit dependence which is not a priori clear, and needs to be assessed experimentally. Given
this fundamental difference between our generalization bounds and those of the prior works we
discuss here, a natural open question is whether the implicitly encoding-dependent quantities used
in the following works can be written explicitly in terms of architectural hyper-parameters related
to the data-encoding strategy. If possible, this would immediately provide explicitly encoding-
dependent generalization bounds comparable to those we derive in this work.

With this in mind, we begin our survey of implicitly encoding-dependent generalization bounds
with Ref. [25], which has suggested a complexity measure based on the classical Fisher information,
called the effective dimension, and demonstrated that one can indeed state generalization bounds
in terms of the effective dimension. Utilizing the empirical Fisher information as a tool for approx-
imating the effective dimension, Ref. [25] presented numerical experiments which demonstrate a
clear dependence of the effective dimension on the encoding-strategy. However, the explicit depen-
dence of the effective dimension on the encoding strategy is not clear and needs to be evaluated
experimentally. Additionally, Ref. [25] also provided a comparison between the effective dimension
of PQC-based models and comparable classical models, and demonstrated that PQC-based models
can exhibit a higher effective dimension. While not discussed explicitly in Ref. [25], we stress, how-
ever, that one should not use model complexity (e.g., effective dimension) as the sole criterion for
model selection, since model classes with higher effective dimension may have worse generalization
behavior than models with a lower effective dimension. Instead, as we advocate in this work, one
should ideally use a framework such as structural risk minimization to select a model with the
smallest upper bound on out-of-sample performance.

Also working from an information theoretic perspective, and with a focus on the role of data-
encoding, Ref. [31] has recently presented generalization bounds for PQC-based models in terms
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of information-theoretic quantities describing a notion of mutual information between the post-
encoding quantum state ρ(x) and the classical data. While these generalization bounds have a
strong implicit dependence on the data-encoding strategy, it is once again not immediately clear,
apart from in a few special cases, how to explicitly express the suggested complexity measure in
terms of architectural hyper-parameters related to the data-encoding strategy.

From a resource theoretic perspective, and complementing Ref. [27], the series of works [26, 28]
have further studied the Rademacher complexity of encoding-first PQC-based models. However,
unlike in Ref. [27], the Rademacher complexity bounds of Refs. [26, 28] are given in terms of
quantities that exhibit an implicit dependence on the data-encoding strategy. More specifically,
Ref. [28] provides Rademacher complexity bounds in terms of the size, depth and amount of magic
available as a resource. Additionally, Ref. [26] also studies noisy PQC-based models and provides
Rademacher complexity bounds in terms of either the Rademacher complexity of the associated
noiseless circuit or the free-robustness of the model.

Recently, Ref. [45] has studied generalization for PQC-based models using a hardware effi-
cient ansatz with a specific choice of data-encoding. For this setting, they proved VC-dimension
bounds that scale polynomially with the minimum of the number of qubits and the number of
trainable layers. In their proofs, they combine light cone arguments with a trigonometric function
representation for functions implemented by their ansatz.

Finally, we mention Ref. [30] which has developed techniques for evaluating the potential ad-
vantages of quantum kernels over classical kernels. These results are of relevance to this work due
to the close relationship between PQC-based models and kernel methods [16]. In a first step, the
authors of Ref. [30] suggest the evaluation of a geometric quantity which depends on the chosen
quantum feature map and the available training data instances. If the quantum machine learning
model passes this first test, a model complexity parameter, which now depends on the quantum
encoding and the training data (both instances and labels), should be computed. While these
complexity measures can be classically computed in time polynomial in the training data size,
analytically determining their exact dependence on the data-encoding can be challenging. This is
in contrast to our model complexity bounds, which depend straightforwardly on hyper-parameters
associated with the data-encoding strategy, such as the number of encoding gates of a specific type.

5 Generalization bounds for generalized trigonometric polynomials

We recall (from Section 3) that we can prove generalization bounds on FΘ,D,M , the hypothesis class
of interest for a given PQC-based model, by proving generalization bounds on FB

Ω . Recall that FB
Ω

has been defined as the class of generalized trigonometric polynomials (GTPs) with frequencies in
Ω and infinity-norm bounded by B as

FB
Ω =

{

[0, 2π)d ∋ x 7→ f(x) =
∑

ω∈Ω

cω exp(−iωx)
∣

∣

∣ (cω)ω∈Ω such that ‖f‖∞ ≤ B

}

. (31)

In order to prove generalization bounds for FB
Ω , it will be convenient to work with the cosine and

sine representation of the complex exponential, and with the norm of the vector of coefficients
instead of the norm of the function. Note that, since we have observed in Section 3 that c−ω = c∗

ω,
we can define, for every ω ∈ Ω

aω := cω + c−ω ∈ R, (32)

bω :=
1

i
(cω − c−ω) ∈ R. (33)

With these, it further follows that

cωe−iωx + c−ωeiωx = aω cos(ωx) + bω sin(ωx), (34)

which allows us to rewrite the sum in Eq. (31) as a sum of real terms only. If we were only
considering frequencies given by real numbers, then it would suffice to sum over the non-negative
frequencies in the real sum representation. However, we are dealing with frequency vectors. As this
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is the case, we start by removing the zero vector from the set of frequencies to obtain Ω∗ := Ω\{0}.
Note that this is meaningful as 0 ∈ Ω for any Ω of the form introduced in Section 3. Next, we
divide Ω∗ into two disjoint parts Ω∗ = Ω+ ∪ Ω−, with Ω+ ∩ Ω− = ∅, such that for every ω ∈ Ω+

we have that −ω ∈ Ω−. We again note that this is possible due to the specific form of the sets
Ω discussed in Section 3. In particular, we then have |Ω| = 2|Ω+| + 1. Additionally, we make
use of a shorthand notation for the vectors (aω)ω∈Ω+

and (bω)ω∈Ω+
: We keep the indices outside

of the parentheses, but remove the indexing set. Namely we write (a0, (aω)ω, (bω)ω) in place of
(a0, (aω)ω∈Ω+ , (bω)ω∈Ω+). We only explicitly write the indexing set at certain points to avoid
confusion.

With these notational points in mind,we can rewrite the hypothesis class FB
Ω as

FB
Ω =

{

[0, 2π)d ∋ x 7→ f(x) =
a0

2
+
∑

ω∈Ω+

(aω cos(ωx) + bω sin(ωx))

∣

∣

∣

∣

∣

(a0, (aω)ω, (bω)ω) such that ‖f‖∞ ≤ B

}

,

(35)

and we define the class HB
Ω via

HB
Ω :=

{

[0, 2π)d ∋ x 7→ a0

2
+
∑

ω∈Ω+

(aω cos(ωx) + bω sin(ωx))

∣

∣

∣

∣

∣

‖(a0, (aω)ω, (bω)ω)‖2 ≤ 2(2π)
d/2B

}

,

(36)

where the 2-norm is given by

‖(a0, (aω)ω, (bω)ω)‖2 :=

√

a2
0 +

∑

ω∈Ω+

(a2
ω + b2

ω). (37)

We note that, by construction, FB
Ω ⊆ HB

Ω holds true. To see this, note that for a function f ∈ FB
Ω

given by f(x) =
∑

ω∈Ω exp(−iωx)cω = a0/2 +
∑

ω∈Ω+
(aω cos(ωx) + bω sin(ωx)), we obtain

∥

∥(a0, (aω)ω∈Ω+ , (bω)ω∈Ω+)
∥

∥

2
≤ 2 ‖(c0, (cω)ω∈Ω)‖2 = 2 ‖f‖2 ≤ 2(2π)

d/2 ‖f‖∞ = 2(2π)
d/2B. (38)

As a consequence of the fact that FB
Ω ⊆ HB

Ω , generalization bounds uniform over HB
Ω imply

generalization bounds uniform over FB
Ω . Therefore, we focus on proving generalization bounds for

HB
Ω .
Our bounds focus on the dependence of generalization on the frequency spectrum Ω. We obtain

these bounds from bounds on the complexity of HB
Ω , measured in terms of two complexity measures

from classical learning theory, namely the Rademacher complexity and the metric entropy. We first
recall the definitions of these important quantities and then give an overview over our results and
proof strategy.

Definition 1 ((Empirical) Rademacher complexity). Let Z be some data space, F ⊆ R
Z a function

class, and S = (z1, . . . , zm) ∈ Zm. The empirical Rademacher complexity of F with respect to S
is defined as

R̂S(F) := E
σ∼U({−1,1}m)

[

sup
f∈F

1

m

m
∑

i=1

σif(zi)
]

, (39)

where U({−1, 1}m) denotes the uniform distribution on {−1, 1}m. The i.i.d. random variables
σ1, . . . , σm are often called Rademacher random variables.

For later use, we note that, if F ⊆ G ⊆ R
Z , then, for any S ∈ Zm we have R̂S(F) ≤ R̂S(G).

Next, we introduce our second complexity measure:
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Definition 2 (Covering nets, covering number, and metric entropy). Let (X, d) be a (pseudo-
)metric space. Let K ⊆ X and let ε > 0. We call N ⊆ K an (interior) ε-covering net of K if for
all x ∈ K there exists ay ∈ N such that d(x, y) ≤ ε. The covering number N (K, d, ε) is defined as
the smallest possible cardinality of an (interior) ε-covering net of K. Finally, we define the metric
entropy log2 N (K, d, ε) via a logarithm of the covering number.

For our purposes, the relevant covering numbers are those of HB
Ω with respect to the pseudo-

metrics induced by the data-dependent semi-norms ‖·‖2,S|x
, which, given training data S =

{(xi, yi)}m
i=1, are defined as

‖f‖2,S|x
:=

√

√

√

√

1

m

m
∑

i=1

|f(xi)|2. (40)

In Section 5.1, we prove Rademacher complexity bounds for HB
Ω . We do so by understanding

HB
Ω as (a subset of) a class of functions implemented by a simple classical neural network (NN)

with a single hidden layer and with sinusoidal activation functions in the hidden layer. For such
NN architectures, we can then apply already known Rademacher complexity bounds. This strategy
leads to

R̂S|x
(FB

Ω ) ≤ R̂S|x
(HB

Ω ) ≤ Õ
(
√

|Ω|
m

)

(41)

for a training data set S of size m, with data instances S|x = {xi}m
i=1. Here, the Õ refers to

the asymptotic behavior as |Ω|, m → ∞ and hides a logarithmic dependence on |Ω|. (As we are
most interested in the dependence on |Ω|, we also hide the dependence on B here.) With these
Rademacher complexity bounds at hand, we can then derive generalization guarantees for HB

Ω ,
and thus FB

Ω , using a standard generalization bound in terms of the Rademacher complexity. We
obtain that for a bounded Lipschitz loss function, with probability ≥ 1−δ, the generalization error
satisfies

R(f) − R̂S(f) ≤ Õ
(
√

|Ω|
m

+

√

log(1/δ)

m

)

, (42)

uniformly over f ∈ HB
Ω for training data S of size m. Again, we emphasize the leading-order

dependence on |Ω| and hide other parameters. We note that, without further assumptions, as in
classical agnostic learning scenarios, we do not expect a better scaling with respect to m than the
Hoeffding-like ∼ 1/

√
m.

In Section 5.2, we bound the covering number and metric entropy of HB
Ω ,and thus of FB

Ω .We
achieve this by constructing a covering net for HB

Ω from a suitable (finer-grained) covering net of
the allowed vectors of Fourier coefficients. Here, we crucially use that |Ω| determines the dimension
of the space in which we have to take these covering nets. With this reasoning, we obtain a metric
entropy bound of

log2 N (FB
Ω , ‖·‖∞ , ε) ≤ log2 N (HB

Ω , ‖·‖∞ ,
ε

2
) ≤ Õ (|Ω| log(1/ε)) , (43)

where the Õ hides logarithmic dependencies on B and |Ω|. Given these metric entropy bounds, we
then use the chaining method to derive empirical Rademacher complexity bounds. Again assuming
a bounded Lipschitz loss function, this method yields, with probability ≥ 1 − δ, a generalization
error bound of

R(f) − R̂S(f) ≤ Õ
(
√

|Ω|
m

+

√

log(1/δ)

m

)

, (44)

simultaneously for all f ∈ FB
Ω ⊆ HB

Ω , assuming training data of size m and hiding both logarithmic
terms and dependencies on B, the Lipschitz constant, and the bound on the loss. While we see that,
with the above definition of FB

Ω and HB
Ω , the strategies of Sections 5.1 and 5.2 lead to the same

generalization bound in leading order, we nevertheless present both approaches because they yield
different results if the assumption on the Fourier coefficients appearing in FB

Ω or HB
Ω is changed

from a 2-norm bound to a general p-norm bound.
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In the light of the discussion in Section 3, these generalization bounds for classes of generalized
trigonometric polynomials imply generalization bounds for PQCs. As we have focused on the
dependence on the frequency spectrum in the former, we obtain a focus on the encoding-dependence
in the latter. We provide and discuss these results in Section 6.

5.1 Generalization bounds for generalized trigonometric polynomials via Rademacher

complexity

We begin our analysis by stating our Rademacher complexity bound for HB
Ω . As we will see,

this bound is obtained by combining two partial results, and will lead directly to a generalization
bound. For ease of notation, we write Ki := maxω∈Ω+

{|ωi|} for i ∈ {1, . . . , d} and K :=
∑

i Ki.

Lemma 3 (Rademacher complexity bounds for GTPs). Let d, m ∈ N. Let S|x ∈ (Rd)m. Let
HB

Ω be as defined in Eq. (36). The empirical Rademacher complexity of HB
Ω with respect to S|x :=

(x1, . . . , xm) can be upper-bounded as

R̂S|x
(HB

Ω ) ≤ O





min
{

√

log(2d) max{K, (2π)
d
2 B
√

|Ω|}, (2π)
d
2 B
√

|Ω| log(|Ω|)
}

√
m



 . (45)

In order to prove Lemma 3 we state and show two partial results, namely Lemmas 4 and 5.
These two Lemmata have slightly different proof strategies, but both are motivated by thinking of
generalized trigonometric polynomials as being realized by certain neural network architectures.

Lemma 4 (Empirical Rademacher complexity of HB
Ω —Version 1). Let d, m, S|x, and HB

Ω be
as in Lemma 3. Then, the empirical Rademacher complexity of HB

Ω with respect to S|x can be
upper-bounded as

R̂S|x
(HB

Ω ) ≤ O
(

1√
m

max{K, (2π)
d
2 B
√

|Ω|}
√

log(2d)

)

. (46)

Proof. We prove this statement by constructing a function class that contains HB
Ω and whose

empirical Rademacher complexity we are able to upper bound by viewing it as arising from a
simple layered neural network (NN) architecture. More specifically, we consider the following class
of functions

GB
Ω :=

{

[0, 2π)d ∋ x 7→ d0

2
+
∑

ω∈Ω+

dω sin(αωx + γω)

∣

∣

∣

∣

∣

‖(d0, (dω)ω)‖2 ≤ 2(2π)
d
2 B, αω ∈

d
∏

i=1

[−Ki, Ki], γω ∈ [−π, π)

}

,

(47)

which can be realized by a NN with a single hidden layer of neurons with sine activation functions,
and a linear activation at the output neuron. Here, again (dω)ω stands for the vector (dω)ω∈Ω+ .
Also, note that for every ω ∈ Ω+, αω is a d-dimensional vector and γω a real number.

We claim that HB
Ω ⊆ GB

Ω . We can prove this inclusion directly by finding the corresponding
parameters (d0, (dω)ω), (γω)ω and (αω)ω for each element f ∈ HB

Ω , specified by the corresponding
(a0, (aω)ω, (bω)ω). We can find a valid assignment term by term. We start by noting d0 = a0.
Next, we spell out the term corresponding to the frequency vector ω with the well-known angle
sum trigonometric identity

dω sin(αωx + γω) = dω cos(γω) sin(αωx) + dω sin(γω) cos(αωx). (48)

Now, for any given (aω)ω and (bω)ω, we can set

dω :=
√

a2
ω + b2

ω, αω := ω, and γω := arctan(bω/aω). (49)

At this point, it is important to confirm that the assignment is valid within the restrictions imposed
in Eq. (47). To begin with, we note that the 2-norm bound from Eq. (38), i.e. ‖(a0, (aω)ω, (bω)ω)‖2 ≤
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2(2π)
d
2 B, translates directly into ‖(d0, (dω)ω)‖2 ≤ 2(2π)

d
2 B, since d2

ω = a2
ω + b2

ω for all ω. Addi-
tionally, one can also see that the components of αω are nothing but the frequencies ωi for each
data coordinate, which fall in the interval [−Ki, Ki] by construction. Finally, as a function arctan
can output any angle, choosing the branch [−π, π) is valid. With these, we reach

dω sin(αωx + γω) = aω sin(ωx) + bω cos(ωx), (50)

which has been our goal.
As GB

Ω arises from a NN whose activation functions are 1-Lipschitz, continuous and anti-
symmetric, we can use Lemma 16 (stated in the Appendix). For that, we require upper bounds for
the 1-norm of the weight vector going into each neuron and for the moduli of the biases. For every
neuron in the hidden layer, there are d incoming weights, one for each data dimension, correspond-
ing to the d input neurons. Each component of those weight vectors (αω in Eq. (47)) takes values
in ∈ [−Ki, Ki] for some i ∈ {1, . . . , d}, so the 1-norm of such a weight vector is upper bounded by
K.

At the output neuron, there are |Ω+| incoming weights (dω in Eq. (47)) and we have a bound
on the 2-norm of this weight vector. Therefore, Hölder’s inequality applied to the 2-norm gives the
1-norm bound

‖(dω)ω‖1 ≤ 2(2π)
d
2 B
√

|Ω+|. (51)

With that, we now know that the 1-norm of any weight vector in the NN is upper bounded by
max{K, 2(2π)

d
2 B
√

|Ω+|}.

Next, we note that the modulus of the biases is at most π in the hidden layer, and 2(2π)
d
2 B

in the output layer. As a result, we have that the moduli of the biases in the NN are upper
bounded by max{π, 2(2π)

d
2 B}. Now that we have collected all the ingredients, we can plug them

into Lemma 16 and obtain the bound

R̂S|x
(GB

Ω ) ≤ 1√
m

(

2π max{K, 2(2π)
d
2 B
√

|Ω+|}
√

2 log(2d) + max{π, 2(2π)
d
2 B}

)

(52)

≤ O
(

1√
m

max{K, (2π)
d
2 B
√

|Ω|}
√

log(2d)

)

, (53)

where the O notation refers to the scaling in |Ω|. As GB
Ω contains HB

Ω as a subset, this bound
directly implies

R̂S|x
(HB

Ω ) ≤ O
(

1√
m

max{K, (2π)
d
2 B
√

|Ω|}
√

log(2d)

)

, (54)

which completes the proof.

In the proof of Lemma 4, we do not bound the empirical Rademacher complexity of HB
Ω directly,

rather we embed it into a larger class GB
Ω whose complexity we then bound. However, whereas

only a discrete set of frequencies is used in HB
Ω , the class GB

Ω allows for a continuum of frequencies.
In Lemma 5, we modify the idea of the previous proof to avoid this overcounting of frequencies.

Lemma 5 (Empirical Rademacher complexity of HB
Ω —Version 2). Let d, m, S|x, and HB

Ω be
as in Lemma 3. Then, the empirical Rademacher complexity of HB

Ω with respect to S|x can be
upper-bounded as

R̂S|x
(HB

Ω ) ≤ O
(

(2π)
d
2 B√

m

√

|Ω| log(|Ω|)
)

. (55)

Proof. Analogously to the proof of Lemma 4, we provide an empirical Rademacher complexity
upper bound for a larger function class H̃B

Ω . Along the way, we see that the inclusion HB
Ω ⊆ H̃B

Ω

holds, so that the uniform bound we derive for the larger set is immediately inherited for the
smaller one. We start by defining an auxiliary set of functions: let MΩ be the set of generalized
trigonometric monomials over R

d with frequency values in Ω+, defined as

MΩ := {0} ∪
{

[0, 2π)d ∋ x 7→ cos(ωx) | ω ∈ Ω+

}

∪
{

[0, 2π)d ∋ x 7→ sin(ωx) | ω ∈ Ω+

}

. (56)
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Now, recalling that |Ω| = 2|Ω+| + 1, we can define the function class of our current interest as

H̃B
Ω :=

{

[0, 2π)d ∋ x 7→ b0 +
〈

w,~h(x)
〉

∣

∣

∣

∣

∣

~h ∈ (MΩ)|Ω|, and b0 ∈ R, w ∈ R
|Ω| such that ‖(b0, w)‖2 ≤ 2(2π)

d
2 B

}

,

(57)

where we use the notation 〈·, ·〉 for the standard inner product. Notice how H̃B
Ω can be seen as a

class of functions implemented by a single neuron with identity activation and 2-norm bounded
weights, where the input signals have been pre-processed by functions from the specified class MΩ.
With this, we note the inclusion HB

Ω ⊆ H̃B
Ω .

Next, we use Lemma 15 (stated in the Appendix). To use the result, we note that the activation
function of the neuron is the identity x 7→ x (which is a 1-Lipschitz, anti-symmetric function); that

MΩ contains the 0-function; that the modulus of the bias is upper bounded by 2(2π)
d
2 B; and

that we can again use Hölder’s inequality applied to the 2-norm to upper bound the 1-norm of the
weight vector as ‖(b0, w)‖1 ≤

√

|Ω|‖(b0, w)‖2 ≤ 2(2π)
d
2 B
√

|Ω|. With these, Lemma 15 gives us
the upper bound

R̂S|x
(H̃B

Ω ) ≤ 2(2π)
d
2 B√

m
+ 2 · 2(2π)

d
2 B
√

|Ω| R̂S|x
(MΩ). (58)

Hence, in order to proceed we need to find an upper bound for the empirical Rademacher complexity
of MΩ.

We apply Massart’s Lemma (which we recall as Lemma 17 in the Appendix for completeness)
for this last step. Let A be the set of generalized trigonometric monomials with frequencies in Ω+,
evaluated on every element of S|x = (x1, . . . , xm), i.e.,

A := {(0, . . . , 0)} ∪ {(cos(ωx1), . . . , cos(ωxm)) | ω ∈ Ω+} ∪ {(sin(ωx1), . . . , sin(ωxm)) | ω ∈ Ω+} ⊆ R
m.

(59)

Note that, by Hölder’s inequality, again applied to the 2-norm, and since sine and cosine take
values in [−1, 1], we have that A ⊆ B√

m(0), where Br(c) is the ball of radius r in 2-norm centered
at c. Now, we can rewrite the empirical Rademacher complexity and apply Massart’s lemma
(Lemma 17) to get

R̂S|x
(MΩ) := Eσ

[

sup
h∈MΩ

1

m

m
∑

i=1

σi h(xi)

]

(60)

= Eσ

[

sup
a∈A

1

m
σa

]

(61)

≤
√

m

m

√

2 log(|A|) (62)

≤ 1√
m

√

2 log(|Ω|). (63)

Plugging this into Eq. (58), we obtain

R̂S|x
(H̃B

Ω ) ≤ 2(2π)
d
2 B√

m
+ 2 · 2(2π)

d
2 B
√

|Ω| · 1√
m

√

2 log(|Ω|) (64)

≤ O
(

(2π)
d
2 B√

m

√

|Ω| log(|Ω|)
)

. (65)

Recalling again that HB
Ω ⊆ H̃B

Ω then yields the claimed bound.

Proof of Lemma 3. This follows directly from combining Lemmas 4 and 5.
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With this Rademacher complexity bound at hand, we can make use of standard tools from
classical statistical learning theory to derive a generalization bound.

Theorem 6 (Generalization bound for GTPs—Version 1). Let d, m ∈ N. Let HB
Ω be as defined in

Eq. (36). Let ℓ : R×R → [0, c] be a bounded loss function such that R ∋ z 7→ ℓ(y, z) is L-Lipschitz
for all y ∈ R. For any δ ∈ (0, 1) and for any probability measure P on [0, 2π)d ×R, with probability
≥ 1 − δ over the choice of i.i.d. training data S = {(xi, yi)}m

i=1 ∈ ([0, 2π)d × R)m of size m, for
every f ∈ HB

Ω , the generalization error can be upper-bounded as

R(f) − R̂S(f) ≤ O





L min
{

max{K, (2π)
d
2 B
√

|Ω|}
√

log(2d), (2π)
d
2 B
√

|Ω| log(|Ω|)
}

√
m

+

√

log(1/δ)√
m



 .

(66)

Proof. The proof of this theorem consists in combining the standard generalization bound in terms
of Rademacher complexity with the Rademacher complexity bounds from Lemma 3. More precisely,
we define G ⊆ [0, c][0,2π)d×R to be the class of functions that can be obtained by post-composing
elements of HB

Ω with the loss function ℓ – i.e. we define

G :=
{

[0, 2π)d × R ∋ (x, y) 7→ ℓ(y, f(x)) | f ∈ HB
Ω

}

. (67)

We then have the following generalization bound (see, e.g., Theorem 3.3 in Ref. [20] or Theorem
1.15 in Ref. [35]): For any probability measure P on [0, 2π)d ×R and for any δ > 0, with probability
≥ 1 − δ over the choice of an i.i.d. training data set S = {(xi, yi)}m

i=1 ∈ ([0, 2π)d × R)m of size m
drawn according to P , we have, for every g ∈ G,

E(x,y)∼P [g(x, y)] − 1

m

m
∑

i=1

g(xi, yi) ≤ 2R̂S(G) + 3c

√

log(2/δ)

2m
. (68)

Note that, when writing g ∈ G as g(x, y) = ℓ(y, f(x)) for some f ∈ HB
Ω , we directly have

E(x,y)∼P [g(x, y)] − 1

m

m
∑

i=1

g(xi, yi) = R(f) − R̂S(f). (69)

That is, Eq. (68) indeed provides a high-probability bound on the generalization error. Therefore,
we now upper-bound the empirical Rademacher complexity R̂S(G). To this end, we use Talagrand’s
Lemma (going back to Ref. [46]) and our bounds for the empirical Rademacher complexity of HB

Ω .
As we assume that R ∋ z 7→ ℓ(y, z) is L-Lipschitz for all y ∈ R, we can apply Talagrand’s Lemma
(Lemma 18) and Lemma 3 to obtain

R̂S(G) =
1

m
Eσ

[

sup
g∈G

m
∑

i=1

σig(xi, yi)

]

(70)

=
1

m
Eσ

[

sup
f∈HB

Ω

m
∑

i=1

σiℓ(yi, f(xi))

]

(71)

≤ L

m
Eσ

[

sup
f∈HB

Ω

m
∑

i=1

σif(xi)

]

(72)

= LR̂S|x
(HB

Ω ) (73)

≤ O



L
min

{

√

log(2d) max{K, (2π)
d
2 B
√

|Ω|}, (2π)
d
2 B
√

|Ω| log(|Ω|)
}

√
m



 , (74)

where we have denoted by S|x := {xi}m
i=1 the set of unlabeled training data points. Inserting this

bound into Eq. (68) now gives the stated generalization error bound.

The generalization bound of Theorem 6 can be rewritten as an upper bound on the number of
labeled training examples that suffice to guarantee small generalization error.
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Corollary 7 (Number of labeled training examples sufficient for a small generalization error—Ver-
sion 1). For any ε, δ ∈ (0, 1) and for any probability measure P on [0, 2π)d × R, a training data
size

m = m(ε, δ) ≤ O
(

L2 min
{

max{K2, (2π)dB2|Ω|} log(2d), (2π)dB2|Ω| log(|Ω|)
}

ε2
+

c2 log(1/δ)

ε2

)

(75)

suffices to guarantee that, with probability ≥ 1 − δ over the choice of i.i.d. training data S ∈
([0, 2π)d × R)m of size m, R(f) − R̂S(f) ≤ ε holds for every f ∈ HB

Ω .

Proof. We set the upper bound on the generalization error proven in Theorem 6 equal to ε and
solving for m.

Remark 8. The proof strategy for obtaining Rademacher complexity bounds of generalized
trigonometric polynomials presented here easily extends beyond the case in which the 2-norm of
the vector of Fourier coefficients is assumed to be bounded. Namely, if we consider, for 1 ≤ p ≤ ∞,
the class

HB̃,p
Ω :=







[0, 2π)d ∋ x 7→ a0

2
+
∑

ω∈Ω+

(aω cos(ωx) + bω sin(ωx))

∣

∣

∣

∣

∣

‖(a0, (aω)ω, (bω)ω)‖p ≤ B̃







,

(76)

with Fourier coefficients of a bounded p-norm, we obtain, with essentially the same proof, an
empirical Rademacher complexity bound of

R̂S|x
(HB̃,p

Ω ) ≤ Õ
(

B̃|Ω| 1
q

√
m

)

, (77)

where q ∈ [0, 1] is the Hölder conjugate of p, i.e., 1/p + 1/q = 1, and the Õ hides a logarithmic
dependence on |Ω|. This, in turn, leads (for c-bounded L-Lipschitz loss) to a generalization error
bound of

R(f) − R̂S(f) ≤ Õ
(

LB̃|Ω| 1
q + c

√

log(1/δ)√
m

)

, (78)

which holds with probability ≥ 1−δ uniformly over HB,p
Ω , for training data of size m. These bounds

based on p-norms might be of independent interest. For example, depending on the structure of
the trainable part of the PQC, a detailed analysis might lead to additional structural properties
(such as sparsity) of the set of admissible Fourier coefficients, which could then lend themselves to
an analysis in terms of p-norms for p 6= 2.

5.2 Generalization bounds for generalized trigonometric polynomials via covering num-

bers

Similarly to Section 5.1, we first prove a bound on a complexity measure for the hypothesisclass
FB

Ω and then derive a generalization bound from it. This subsection differs from the previous one
in that we discuss a different complexity measure, covering numbers, and that we do not need to
resort to the larger hypothesis class HB

Ω , but rather study FB
Ω directly.

Lemma 9 (Covering number bound for GTPs). Let d ∈ N and ε > 0. Let FB
Ω be as defined in

Eq. (16). The ε-covering number of FB
Ω with respect to ‖·‖∞ can be upper-bounded as

N (FB
Ω , ‖·‖∞ , ε) ≤ N (HB

Ω , ‖·‖∞ , ε/2) ≤
(

2 · 3 · 2(2π)
d
2 B
√

|Ω|
ε

)|Ω|

. (79)

Therefore, the corresponding metric entropy can be upper-bounded as

log2 N (FB
Ω , ‖·‖∞ , ε) ≤ O

(

|Ω|[log((2π)
d
2 B) + log(|Ω|) + log(1/ε)]

)

. (80)
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Proof. As discussed after introducing the class HB
Ω , we have FB

Ω ⊆ HB
Ω . Therefore, according to

the approximate monotonicity of covering numbers (see, e.g., Exercise 4.2.10 in [47]), we have, for
every ε > 0,

N (FB
Ω , ‖·‖∞ , ε) ≤ N (HB

Ω , ‖·‖∞ , ε/2). (81)

Thus, it remains to prove a covering number bound for HB
Ω .

Let Nε̃ be an ε̃-covering net of the ball

B :=
{

ξ = (a0, (aω)ω∈Ω+
, (bω)ω∈Ω+

) ∈ R
|Ω|
∣

∣

∣ ‖ξ‖2 ≤ 2(2π)
d
2 B
}

(82)

with respect to the metric induced by ‖·‖2 on R
|Ω|. By definition of HB

Ω , to every f ∈ HB
Ω we can

associate a point (a0, (aω)ω∈Ω+
, (bω)ω∈Ω+

) ∈ B such that

f(x) =
a0

2
+
∑

ω∈Ω+

(aω cos(ωx) + bω sin(ωx)) . (83)

Given such a vector of coefficients (a0, (aω)ω∈Ω+ , (bω)ω∈Ω+) ∈ B – which, again, for the sake of
notational ease, we write as (a0, (aω)ω, (bω)ω)), omitting the Ω+ everywhere – we can find an
element (ã0, (ãω)ω∈Ω+

, (b̃ω)ω∈Ω+
) ∈ Nε̃ of the cover that is ε̃ close in 2-norm to the coefficients of

f , i.e., such that
∥

∥(a0, (aω)ω, (bω)ω) − (ã0, (ãω)ω, (b̃ω)ω)
∥

∥

2
≤ ε̃. (84)

Define f̃ as the function specified by these new coefficients,

f̃(x) =
ã0

2
+
∑

ω∈Ω+

(

ãω cos(ωx) + b̃ω sin(ωx)
)

. (85)

We now bound the infinity norm distance between f and f̃ in terms of the 2-norm distance between
the corresponding coefficients as

∥

∥f − f̃
∥

∥

∞ := sup
x∈[0,2π)

∣

∣f(x) − f̃(x)
∣

∣ (86)

≤
∣

∣

∣

∣

a0

2
− ã0

2

∣

∣

∣

∣

+ sup
x

∑

ω∈Ω+

∣

∣(aω − ãω) cos(ωx) + (bω − b̃ω) sin(ωx)
∣

∣ (87)

≤ |a0 − ã0| +
∑

ω∈Ω+

(

|aω − ãω| + |bω − b̃ω|
)

(88)

=
∥

∥(a0, (aω)ω, (bω)ω) − (ã0, (ãω)ω, (b̃ω)ω)
∥

∥

1
(89)

≤
√

|Ω| ε̃. (90)

Here, we have used the triangle inequality and the fact that sine and cosine can only take values
in [−1, 1], as well as (in the last step) Hölder’s inequality with respect to the 2-norm. That means,
if we denote by NF the set of GTPs whose coefficients come from the cover Nε̃, i.e.,

NF :=

{

[0, 2π)d ∋ x 7→ ã0

2
+
∑

ω∈Ω+

(aω cos(ωx) + bω sin(ωx))

∣

∣

∣

∣

∣

(ã0, (ãω)ω, (b̃ω)ω) ∈ Nε̃

}

, (91)

and if we fix ε̃ to be ε̃ = ε/
√

|Ω|, then NF is an ε-covering net of HB
Ω with respect to ‖·‖∞.

Thus, to finish the proof, it remains to upper bound the cardinality |NF | ≤ |Nε̃|. To obtain such

a bound, we recall that we only require Nε̃ to be an ε̃-cover of a 2-norm ball of radius 2(2π)
d
2 B

in R
|Ω| with respect to the 2-norm. A simple volumetric argument (presented, e.g., in section 4 of

Ref. [47]) shows that there exists such a ε̃-cover Nε̃ of B with cardinality

|Nε̃| ≤
(

3 · 2(2π)
d
2 B

ε̃

)|Ω|

=

(

3 · 2(2π)
d
2 B
√

|Ω|
ε

)|Ω|

. (92)
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All in all, we have proven that there exists an ε-covering net of HB
Ω with respect to ‖·‖∞ whose

cardinality is bounded by

(

3 · 2(2π)
d
2 B
√

|Ω|
ε

)|Ω|

. (93)

This is exactly the claimed upper bound on the ε-covering number of HB
Ω , thus completing the

proof.

The covering number bound just established implies a generalization bound for GTPs.

Theorem 10 (Generalization bound for generalized trigonometric polynomials—Version 2). Let
d, m ∈ N. Let FB

Ω be as defined in Eq. (16). Let ℓ : R × R → [0, c] be a bounded loss function such
that R ∋ z 7→ ℓ(y, z) is L-Lipschitz for all y ∈ R. For any δ ∈ (0, 1) and for any probability measure
P on [0, 2π)d ×R, with probability ≥ 1−δ over the choice of i.i.d. training data S ∈ ([0, 2π)d ×R)m

of size m, for every f ∈ FB
Ω , the generalization error can be upper-bounded as

R(f) − R̂S(f) ≤ O



BL

√

|Ω|(log(|Ω|) + log((2π)
d
2 B))

m
+ c

√

log(1/δ)

m



 (94)

Proof. The proof consists of three steps. First, we use the chaining technique from random pro-
cess theory to upper bound the (empirical) Rademacher complexity in terms of an integral over
the square root of the uniform empirical metric entropy. Second, we show that the metric en-
tropy with respect to ‖·‖∞ upper-bounds the uniform empirical metric entropy, so we can use the
bound in Lemma 9 to upper-bound the (empirical) Rademacher complexity of generalized trigono-
metric polynomials. Third, we again use the standard generalization bound based on empirical
Rademacher complexities.

Similarly to the proof of Theorem 6, we define

G :=
{

[0, 2π)d × R ∋ (x, y) 7→ ℓ(y, f(x))
∣

∣ f ∈ FB
Ω

}

. (95)

Again, since we assume that R ∋ z 7→ ℓ(y, z) is L-Lipschitz for all y ∈ R, Talagrand’s Lemma
(Lemma 18 in the Appendix) tells us that

R̂S(G) ≤ LR̂S|x
(FB

Ω ), (96)

where we have denoted by S|x := {xi}m
i=1 the unlabeled training data points. Next, Dudley’s

Theorem (which we recall as Theorem 19 in the Appendix), yields

R̂S|x
(FB

Ω ) ≤ 12√
m

γ0
∫

0

√

log N (FB
Ω , ‖·‖2,S|x

, β) dβ, (97)

where ‖·‖2,S|x
is the (data-dependent) semi-norm on R

R
d

defined as ‖f‖2,S|x
:=
(

1
m

∑m
i=1|f(xi)|2

)1/2
,

and we have defined γ0 := supf∈FB
Ω

‖f‖2,S .

Now, we note that, for every f ∈ FB
Ω , ‖f‖2,S|x

≤ ‖f‖∞. Therefore, we have both that

γ0 ≤ supf∈FB
Ω

‖f‖∞ ≤ B and, that for every β > 0, N (FB
Ω , ‖·‖2,S|x

, β) ≤ N (FB
Ω , ‖·‖∞ , β). Hence,
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we can combine Eq. (97) with our covering number bound from Lemma 9 and further upper bound

R̂S|x
(FB

Ω ) ≤ 12√
m

γ0
∫

0

√

|Ω|
(

log(3 · 2(2π)
d
2 B) + log(

√

|Ω|) + log

(

2

β

))

dβ (98)

≤ 12√
m

√

|Ω|



γ0

√

log(3 · 2(2π)
d
2 B) +

1

2
log(|Ω|) +

γ0
∫

0

√

log

(

2

β

)

dβ



 (99)

≤ 12√
m

√

|Ω|
(

B

√

log(3 · 2(2π)
d
2 B) +

1

2
log(|Ω|) (100)

+ B

√

√

√

√log

(

1

2(2π)
d
2 B

)

−
√

π

2
erf





√

√

√

√log

(

1

2(2π)
d
2 B

)





)

(101)

≤ O



B

√

|Ω|(log((2π)
d
2 B) + log(|Ω|))
m



 , (102)

where we have used the integral

∫

√

log 1/x dx = x
√

log 1/x − (
√

π/2) · erf(
√

log 1/x), (103)

with the error function defined as

erf(x) :=
2√
π

∫ x

0

exp(−t2) dt. (104)

At this point, we again have a bound on the empirical Rademacher complexity at our disposal.
So, just like in the proof of Theorem 6, we can now apply the standard Rademacher complexity
generalization bound. This then tells us that, for any probability measure P on [0, 2π)d × R and
for any δ > 0, with probability ≥ 1 − δ over the choice of an i.i.d. training data set S of size m, we
have, for every f ∈ FB

Ω ,

R(f) − R̂S(f) ≤ 2R̂S(G) + 3c

√

log(2/δ)

2m
(105)

≤ O



BL

√

|Ω|(log(|Ω|) + log((2π)
d
2 B))

m
+ c

√

log(1/δ)

m



 , (106)

as claimed.

Also for this generalization bound, we provide the reformulation in terms of a bound on the
sample size sufficient to guarantee small generalization error.

Corollary 11 (Number of labeled training examples sufficient for a small generalization er-
ror—Version 2). Let d ∈ N. Let FB

Ω Eq. (16).Let ℓ : R×R → [0, c] be an L-Lipschitz loss function.
For any ε, δ ∈ (0, 1) and for any probability measure P on [0, 2π)d × R, a training data size

m = m(ε, δ) ≤ O
(

B2L2 |Ω|(log(|Ω|) + log((2π)
d
2 B))

ε2
+ c2 log(1/δ)

ε2

)

, (107)

suffices to guarantee that, with probability ≥ 1 − δ over the choice of i.i.d. training data S ∈
(Rd × R)m of size m, R(f) − R̂S(f) ≤ ε holds for every f ∈ FB

Ω .

Proof. We set the upper bound on the generalization error proven in Theorem 10 equal to ε and
solving for m.
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Remark 12. Our metric entropy bounds of trigonometric polynomials presented here again extend
beyond the case of bounded 2-norm of the vector of Fourier coefficients to a general bounded p-
norm. However, if we again consider, for 1 ≤ p ≤ ∞, the class HB,p

Ω defined in Remark 8, our
proof strategy here yields essentially – i.e., to leading order in |Ω| – the same metric entropy and
generalization bounds as for p = 2. The reason is that the dimension of the space in which we
take covering nets in the proof of Lemma 9 remains proportional to |Ω|, independently of p. We
only see improvements for 1 ≤ p < 2 in the terms depending logarithmically on |Ω|. Therefore,
while the proof strategies of Sections 5.1 and 5.2 give essentially the same generalization guarantees
for p = 2, the approach of Section 5.1 adapts nicely to the case p < 2, whereas the reasoning of
Section 5.2 is typically preferable for p > 2.

Remark 13. The proof of Theorem 10 extends beyond Lipschitz loss functions. For example,
suppose that R ∋ z 7→ ℓ(y, z) is α-Hölder continuous with Hölder coefficient A > 0 for all y ∈ R,
where α ∈ (0, 1). Then, with the notation of the above proof,

N (G, ‖·‖2,S , β) ≤ N
(

FB
Ω , ‖·‖2α,S|x

, (β/A)
1/α

)

. (108)

We can thus apply Dudley’s Theorem to upper bound

R̂S(G) ≤ 12√
m

γ̃0
∫

0

√

N
(

FB
Ω , ‖·‖2α,S|x

, (β/A)
1/α

)

dβ. (109)

Now, we again observe that ‖·‖2α,S|x
≤ ‖·‖∞ and upper bound the covering number integral, using

our result from Lemma 9. The parameters of the Hölder continuity enter the final Rademacher
complexity bound via a term scaling with

√

log(A)/α.

6 Encoding-dependent generalization bounds for parametrized quantum

circuits

We are finally in a position to answer the questions posed in Section 2. Recall that our first goal
was to derive generalization bounds for PQC-based models which depend explicitly on architectural
hyper-parameters related to the data-encoding strategy. We showed in Section 3 how PQC-based
model classes can be viewed as a subset of generalized trigonometric polynomials (GTPs), whose set
of frequencies Ω is determined solely by the data-encoding strategy D. We then derived complexity
and generalization bounds for GTPs in terms of the number of different frequencies |Ω(D)|. In
order to provide explicitly encoding-dependent generalization bounds for PQC-based models, it
remains to express |Ω(D)| in terms of the relevant architectural hyper-parameters associated with
different data-encoding strategies.

To do so, we recall that the data-encoding strategy of a PQC-based model class is defined as
a collection of lists of data-encoding Hamiltonians D(i) = {H

(i)
j } associated with each coordinate

x(i). We distinguish different data-encoding strategies according to the different assumptions made
on the structure of the data-encoding Hamiltonians H ∈ D(i). Given a particular assumption,
for example that all H are tensor products of Pauli operators or at most κ-local, the natural
hyper-parameter associated with the data encoding strategy is the number N =

∑d
i=1 |D(i)| of

data-encoding Hamiltonians of the assumed type. Hence, our goal in this section is to derive,
for different data-encoding strategies, upper bounds on |Ω(D)| that depend on N as well as as
on other relevant properties of the data-encoding Hamiltonians (such as, e.g., the locality κ).
By substituting these upper bounds on |Ω| into the GTP generalization bounds of the previous
section, we then obtain generalization bounds for PQC-based model classes which depend explicitly
on properties of the data-encoding strategy.

We first recall the definition of Ω from Eq. (30). If we denote the Hamiltonians of the data-
encoding strategy associated with x(i) as {H

(i)
j }, we can group the frequencies associated with

each data coordinate into a separate sumset Ω(i):

Ω(D) =

d
∑

i=1

N(i)
∑

j=1

Ω
(

H
(i)
j

)

=

d
∑

i=1

Ω(i). (110)
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The frequencies belonging to the different coordinates {x(i)} are linearly independent because
they were defined to be multiples of different standard basis vectors e(i). This implies that the
cardinality of the full set is equal to the product of the individual cardinalities,

|Ω| =

d
∏

i=1

|Ω(i)|, (111)

thus allowing us to multiply bounds on the cardinalities obtained for the separate data-encoding
strategies, |Ω(i)|, to obtain a bound on |Ω|.

As the underlying frequencies in Ω(i) are all scalar multiples of the same basis vector e(i), the
analysis of Ω(i) comes down to the different frequencies generated by the Hamiltonians that are
used to encode x(i). For a given single Hamiltonian H, we denote this set by

∆(H) := {λi − λj | λi, λj ∈ spec(H)} (112)

so that

Ω(H) = {δe | δ ∈ ∆ (H)} , (113)

where e is the basis vector associated to the respective coordinate. Next, we derive some bounds
on |Ω(i)| for different assumptions on the underlying Hamiltonians.

Worst case upper bounds. We first derive the worst-case limits of |Ω(i)| for κ-local encod-
ing Hamiltonians. A κ-local Hamiltonian H has local dimension 2κ and the number of possible
differences of eigenvalues in the spectrum is thus upper bounded as

|∆(H)| ≤ 2κ(2κ − 1)

2
+ 1 = O(22κ). (114)

One can in principle construct a Hamiltonian that saturates this bound by choosing spec(Hmax) =
{0, 3, 9, . . . , 32κ}, but this is a rather synthetic example that we do not expect to encounter on real
hardware. Eq. (114) implies that repeating N (i) κ-local Hamiltonians will, in the case where there
are no duplicates in the frequency set, imply a cardinality of at most

|Ω(i)| ≤
(

2κ(2κ − 1)

2
+ 1

)N(i)

= O(22κN(i)

). (115)

Again, this bound can be saturated by choosing Hamiltonians with ever-larger spectra, namely by

choosing H
(i)
1 = Hmax and spec(H

(i)
j+1) = max(spec(H

(i)
j )) · spec(Hmax).

Repeated Hamiltonians. We now consider the case where the same Hamiltonian H(i) is used
N (i) times to encode the coordinate x(i). Due to the underlying symmetry of the definition of
∆(H(i)), we have that

∆(H(i)) = {0, ±δ1, . . . , ±δT } (116)

for some T , and therefore |∆(H(i))| = 2T +1 = |Ω(i)
j | = |Ω(i)

0 |, where we have denoted the repeated

set of frequencies common to all encoding gates as Ω
(i)
0 . Using the results on the maximum size

of the spectrum of a κ-local Hamiltonian in Eq. (114), we can deduce that T ≤ 2κ−2(2κ − 1).
We now quantify the number of different frequencies in Ω(i) in terms of T . N (i) repetitions of

the fixed Hamiltonian with frequencies Ω
(i)
0 result in a set of frequencies that contains all possible

combinations of N (i) vectors ωj from Ω
(i)
0 :

Ω(i) =







N(i)
∑

j=1

ωj

∣

∣

∣

∣

∣

∣

ωj ∈ Ω
(i)
0 for all j







(117)

We can reformulate this by counting how often the 2T + 1 different elements of Ω
(i)
0 are present in

a particular instance of the above sum, and get

Ω(i) =











∑

ω∈Ω
(i)
0

Nωω

∣

∣

∣

∣

∣

∣

∣

Nω ≥ 0,
∑

ω∈Ω
(i)
0

Nω = N (i)











. (118)
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To bound the size of this set, we exploit the symmetry of the underlying frequencies δj ∈ ∆(H(i)).
Let us outline the idea: We will first count how we can distribute the number N (i) of repetitions
over the different non-negative frequencies δj and then multiply this with the number of different
frequencies that can be created by repeating δj and −δj . To improve the scaling we get at the
end, we will resort to a small trick and actually group the frequency 0, which we know to always
be present in the spectrum, with the first other frequency, therefore considering the combinatoric
problem of distributing N (i) “balls” over T distinguishable “bins” where some bins can be empty.
The different possible ways to achieve this task are given by counting the weak compositions of
N (i) into T parts, C(N (i), T ). The number of such weak compositions is

|C(N (i), T )| =

(

N (i) + T − 1
N (i)

)

(119)

=
(N (i) + T − 1)!

N (i)!(T − 1)!
(120)

=
(N (i) + T − 1)(N (i) + T − 2) . . . (N (i) + 1)

(T − 1)!
(121)

= O((N (i))T −1). (122)

We will denote such a composition as (N
(i)
j )T

j=1 ∈ C(N (i), T ). A simple counting argument reveals

that there are 2N
(i)
1 + 1 possible sums with N

(i)
1 elements from the set {0, δ1, −δ1} and N

(i)
j + 1 ≤

2N
(i)
j + 1 possible sums with N

(i)
j elements from the set {δj , −δj}. We can therefore bound

|Ω(i)| ≤
∑

(N
(i)

k
)∈C(N(i),T )

T
∏

k=1

(

2N
(i)
k + 1

)

(123)

≤
∑

(N
(i)

k
)∈C(N(i),T )

(

2
∑T

k=1 N
(i)
k

T
+ 1

)T

(124)

≤
∑

(N
(i)

k
)∈C(N(i),T )

(

2N (i)

T
+ 1

)T

(125)

= |C(N (i), T )|
(

2N (i)

T
+ 1

)T

(126)

= O((N (i))2T −1), (127)

where we have used the arithmetic-geometric mean inequality to obtain the second inequality.
From this inequality, we see that by repeating the same Hamiltonian for an encoding, we obtain a
polynomial scaling in the number of repetitions whose exponent depends on the number of different
frequencies generated by the repeated Hamiltonian.

Pauli encodings. Encodings performed with Hamiltonians that are a tensor product of Pauli
operators, H =

⊗n
k=1 P (k) where P (k) ∈ {I, X, Y, Z}, have been analyzed in Ref. [33]. Therein,

it was shown that N (i) repetitions of such encodings of arbitrary dimension will result in |Ω(i)| =
2N (i) + 1.

Summary. We can easily connect the different upper bounds on |Ω(i)| to upper bounds on |Ω|
via the arithmetic-geometric mean inequality, i.e.,

d
∏

i=1

|Ω(i)| ≤
(

d
∑

i=1

|Ω(i)|
d

)d

, (128)

and by noting that, for q ≥ 1,

d
∑

i=1

(N (i))q

d
≤

(

∑d
i=1 N (i)

)q

d
=

Nq

d
. (129)
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Table 1: Scaling of the different upper bounds for the number of different frequencies for the encoding of a
single parameter |Ω(i)|, as well as the associated bounds for the scaling of the number of different frequencies
for the total data-encoding strategy, |Ω|. N

(i) denotes the number of gates used for encoding the input x
(i),

N denotes the total number of gates for all inputs.

Encoding strategy Upper bound on |Ω(i)| Upper bound on |Ω|

Repetition of arbitrary Pauli encodings O
(

N (i)
)

O
(

(

N

d

)d
)

Repetition of the same encoding
with 2T + 1 frequencies

O
(

(N (i))2T −1
)

O
(

(

N2T −1

d

)d
)

Repetition of the same κ-local encoding O
(

(N (i))2κ+1−1
)

O





(

N2κ+1−1

d

)d




Different κ-local encodings O
(

22κN(i)
)

O
(

22κN
)

Table 1 summarizes the different upper bounds on |Ω(i)| for individual parameters x(i) derived in
this section as well as the associated bounds on |Ω|.

Given these results, we are finally in a position to provide a concrete answer to the first question
posed in Section 2. More specifically, by substituting the upper bounds on |Ω| given in Table 1 into
the generalization bounds for GTPs given in Section 5, we can obtain generalization bounds for
PQC-based model classes which depend explicitly on architectural hyper-parameters associated
with the data-encoding strategy. Recall that we denoted the function class associated with a
particular set of parameters Θ, an encoding strategy D and an observable M , as FΘ,D,M . We then
obtain from Theorems 6 and 10 the following Corollary:

Corollary 14 (Generalization bound for PQCs—From Theorems 6 and 10). Let d, m ∈ N. Let
ℓ : R×R → [0, c] be a bounded loss function such that R ∋ z 7→ ℓ(y, z) is L-Lipschitz for all y ∈ R.
For any δ ∈ (0, 1) and for any probability measure P on [0, 2π)d × R, with probability ≥ 1 − δ
over the choice of i.i.d. training data S = {(xi, yi)}m

i=1 ∈ ([0, 2π)d × R)m of size m and every
f ∈ FΘ,D,M , where D is an encoding strategy with N gates in total, we have that,

(a) if D denotes any data-encoding strategy consisting of Hamiltonians that are tensor products
of Pauli operators,

R(f) − R̂S(f) ≤ Õ
(

L‖M‖∞√
m

(

N

d

)
d
2

+ c

√

log 1/δ

m

)

, (130)

(b) if D denotes any data-encoding strategy consisting of the same single Hamiltonian per data
coordinate with T frequencies,

R(f) − R̂S(f) ≤ Õ
(

L‖M‖∞√
m

(

N2T −1

d

)

d
2

+ c

√

log 1/δ

m

)

, (131)

(c) if D denotes any data-encoding strategy consisting of the same single κ-local Hamiltonian per
data coordinate,

R(f) − R̂S(f) ≤ Õ





L‖M‖∞√
m

(

N2κ+1−1

d

)
d
2

+ c

√

log 1/δ

m



 , (132)

(d) if D denotes any data-encoding strategy consisting of possibly different κ-local Hamiltonians
per data coordinate,

R(f) − R̂S(f) ≤ Õ
(

L‖M‖∞√
m

2κN + c

√

log 1/δ

m

)

. (133)
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While we consider only four specific data-encoding strategies in this corollary, the generalization
bounds from Theorems 6 and 10 can in principle be applied to PQC-based models with any data-
encoding strategy. To use the bounds, the corresponding |Ω(D)| has to be identified, which can
then be readily combined with our generalization bounds for GTPs.

6.1 Comparison of data-encoding strategies from a generalization perspective

The results of the previous subsection give a concrete answer to the first question posed in Section 2,
namely explicitly encoding-dependent generalization bounds for PQC-based models. However,
recall from Section 2 that we also aimed to use such bounds to identify data-encoding strategies
which give rise to a slow (polynomial) growth of model complexity with respect to increasingly
complex data-encoding strategies, and therefore facilitate meaningful model selection via structural
risk minimization. The results of the previous section now allow us to address this additional goal.

Given an assumption or constraint on the structure of the data-encoding Hamiltonians in a
possible data-encoding strategy, the most natural data-encoding hyper-parameter for structural
risk minimization is the number N of encoding Hamiltonians. We see that using either repeated
Pauli Hamiltonians, a repeated (but fixed) κ-local Hamiltonian, or the repetition of a fixed Hamil-
tonian with 2T + 1 frequencies, leads to a complexity bound and generalization bound that scale
polynomially with N . However, using N different κ-local data-encoding Hamiltonians can lead, in
the worst case, to complexity upper bounds which scale exponentially with respect to N . In the
latter case we stress, however, that these worst-case bounds are constructed using Hamiltonians
designed to saturate the maximum possible number of frequency differences, and in many cases
the complexity scaling with respect to N may be much slower. Additionally, while the polynomial
generalization bounds we obtain for the first three data-encoding strategies give us hope in the
possibility of meaningful structural risk minimization with respect to the number of data-encoding
gates, our upper bounds on the generalization gap are not necessarily tight. Hence, we cannot rule
out the possibility of better bounds for strategies consisting of many different Hamiltonians, which
would facilitate the use of strucural risk minimization.

Additionally, while increasing the complexity of a data-encoding strategy by increasing N is
a natural (and experimentally feasible) strategy, in principle one might also consider increasing
either the locality κ or the number of frequencies T of the repeated data-encoding Hamiltonian.
This would be particularly relevant in the realistic scenario where experimental constraints severely
limit the number of data-encoding gates which can be used. However, apart from the potential
experimental obstacles one would face in doing so, we note that while our complexity bounds are
polynomial with respect to N (when keeping κ and T fixed), they are exponential (or doubly-
exponential) with respect to κ and T respectively (when keeping N fixed). As such, given the
generalization bounds we have obtained in this work, from the generalization and structural risk
minimization perspective it makes the most sense to systematically increase the complexity of
the data-encoding strategy by keeping κ and/or T constant, and increasing the number of data-
encoding gates.

7 Discussion

As discussed in Section 2, the results from the previous section can be applied in a variety of
ways. In particular, apart from the straightforward application of (probabilistically) bounding
the generalization gap of an output hypothesis, or bounding the number of data samples required
to guarantee an output hypothesis with a sufficiently small generalization gap, our results also
facilitate the use of structural risk minimization with respect to architectural hyper-parameters
related to the data-encoding strategy. We reiterate that the results obtained here should be
viewed as complementary to many of the prior results discussed in Section 4. In particular, our
results complement those which derive generalization bounds applicable to the same PQC-based
hypothesis classes, but with explicit dependencies on architectural hyper-parameters which do not
appear in our generalization bounds, such as depth, width, and total number of trainable gates.

More specifically, the generalization bounds of Section 6 allow one to use structural risk mini-
mization to find the optimal setting for data-encoding hyper-parameters (in the sense of yielding an
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output hypothesis with the smallest upper bound on true risk). However, they do not give any guid-
ance as to how one should choose the remaining architectural hyper-parameters, and in particular
those related to the trainable parts of the PQC. As such, a natural (and recommended) strategy
is to use different available and applicable generalization bounds to perform “multi-dimensional
structural risk minimization:” One can vary all architectural hyper-parameters for which one has a
generalization bound, and evaluate each hyper-parameter setting with respect to an upper bound
on the true risk obtained from a union bound over all existing applicable bounds. To make this
more concrete, assume that we have a family of hypothesis classes {F(k1,k2)}, parametrized by
two architectural hyper-parameters k1 and k2 (for example k1 could be the number of encoding
gates, and k2 could be the number of trainable gates in a PQC based model). Additionally, let us
assume that we have derived two different generalization bounds, one depending on k1, the other
depending on k2. More concretely, assume that we have a function g1(k1, m, δ) and a function
g2(k2, m, δ) such that, for all i ∈ {1, 2}, for all δ ∈ (0, 1), with probability 1 − δ over S ∼ P m, for
all h ∈ F(k1,k2) we have that

R(h) ≤ R̂S(h) + gi(ki, m, δ). (134)

Using a union bound, we can then straightforwardly combine these two results to obtain the
following generalization bound: For all δ ∈ (0, 1), with probability 1 − δ over S ∼ P m, for all
h ∈ F(k1,k2) we have that

R(h) ≤ R̂S(h) + min
i

[gi(ki, m, δ/2)] . (135)

We see that we can perform structural risk minimization by varying both k1 and k2 and us-
ing mini [gi(ki, m, δ/2)] to calculate an upper bound on the true risk of the candidate hypoth-
esis. The above argument can clearly be generalized to an arbitrary number of architectural
hyper-parameters, and thereby yields a methodology for exploiting multiple existing generaliza-
tion bounds for “multi-dimensional structural risk minimization.”

While the approach we have just discussed certainly allows us to exploit existing complementary
generalization bounds depending on different architectural hyperparameters, it is an interesting
open question whether one can derive generalization bounds which depend simultaneously on mul-
tiple architectural hyper-parameters. In particular, it is of interest to understand whether one can
in this way obtain generalization bounds, depending on multiple architectural hyper-parameters,
which are tighter than the bounds obtained by taking a union bound over existing bounds, each of
which depends only on a single hyper-parameter. A potential strategy for obtaining such bounds
would be to better understand the effect of structural assumptions on the trainable part of a PQC
architecture on the structure of the coefficients of the associated GTP representation. More con-
cretely, while in this work we have focused on the frequency spectra of the GTPs, which are fully
determined by the data-encoding strategy, the coefficients of the GTPs are determined by both
the data-encoding strategy and the trainable part of the circuit. If one can characterize the impli-
cations of different circuit architectures on the structure of GTP coefficients, one could plausibly
use refinements of the techniques presented in Section 5 to derive generalization bounds for the
relevant GTPs that depend simultaneously on both the data-encoding strategy and complementary
parameters of the circuit architecture. For example, certain PQC architectures may lead to GTP
coefficients with a specific sparsity structure, or a constrained upper bound on a specific norm.
Such a norm-specific bound may allow us to exploit the general p-norm extensions of our GTP
bounds, mentioned in Remarks 8 and 12, to derive generalization bounds which also depend on
the trainable circuit architecture.

Finally, we recall the potential shortcomings of uniform generalization bounds. In particular,
in Ref. [36], the authors have shown both experimentally and analytically that sufficiently complex
neural networks can achieve zero empirical risk for classification tasks with randomly assigned
labels. As the true risk for such a learning problem can be no better than what would be achieved
by random guessing, any uniform generalization bound for such a hypothesis class cannot offer
any meaningful information in this complexity regime. More specifically, as uniform generalization
bounds hold, by definition, for all hypotheses in the hypothesis class, and as there exist hypotheses
which can achieve zero empirical risk even when generalization is not possible (i.e., when labels
are selected randomly), such uniform bounds must be trivial.
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It is, however, critical to emphasize that this finding applies only to sufficiently complex hypoth-
esis classes. More specifically, they apply to models capable of achieving zero empirical risk even
for completely unstructured data, which typically requires that the number of model parameters is
at least as large as the number of elements in the training data set. As the number of parameters
in a NISQ-regime PQC-based model is typically orders of magnitude less than the size of training
data sets associated with “real-world” learning problems, it is unlikely that these known issues
with uniform generalization bounds hinder the application of our uniform bounds to the analysis
of currently available and near-term PQC-based hypothesis classes.

Despite this, it is important to keep these concerns in mind as the complexity of available
PQC-based models increases. Consequently, there are a variety of natural open questions for
future research: Firstly, can one replicate both the experimental and analytical aspects of Ref. [36]
for PQC-based model classes? This would help to determine whether (or when) it is necessary
to move beyond uniform generalization bounds for PQC-based models. In particular, from an
experimental perspective, can one demonstrate the ability of a (sufficiently complex) PQC-based
model class to achieve zero risk for a randomly-relabeled real-world classification task? Secondly,
can one put an analytical bound on what is “sufficiently complex”, i.e., how many model parameters
are sufficient to ensure that for any training data set of size m, there always exists a hypothesis
in the hypothesis class which can achieve zero empirical risk? Additionally, the shortcomings of
uniform generalization bounds exposed in Ref. [36] have stimulated an explosion of research on
non-uniform generalization bounds for highly complex neural network models [37]. It would be
of interest to understand whether or how one can obtain non-uniform generalization bounds for
PQC-based models, which would tighten the bounds obtained in this work in the future regime of
high complexity.

8 Conclusion

In this work, we have derived Rademacher complexity and metric entropy bounds for PQC-based
model classes. These depend explicitly on architectural hyper-parameters associated with the data-
encoding strategy and are applicable to PQC-based models incorporating data re-uploading. By
exploiting tools and techniques from statistical learning theory, we have then used these complexity
bounds to obtain uniform generalization bounds, which allow to place a probabilistic upper-bound
on the out-of-sample performance of any hypothesis, given its performance on the data. Addi-
tionally, we have used the obtained generalization bounds to compare data-encoding strategies
from a generalization perspective and have discussed how, for certain data-encoding strategies,
our generalization bounds may be used for model selection via structural risk minimization. We
have stressed how the encoding-dependent generalization bounds obtained in this work should be
viewed as complementary to existing complexity and generalization bounds for PQC-based mod-
els, which depend explicitly on architectural hyper-parameters to which our bounds are insensitive.
More specifically, we have sketched in Section 7 how the combination of our bounds with existing
works facilitates model selection via multi-dimensional structural risk minimization. Finally, as
discussed in Section 7, it is important to acknowledge that the bounds we have obtained here are
expected to be useful for PQC-based models in the “moderate-complexity” regime, i.e., for models
parametrized by fewer parameters than the number of available data samples. However, in analogy
with known results for classical model classes, these bounds may cease to be meaningful as the
complexity of PQC-based models increases into an over-parametrized regime. Given this, we have
also sketched in Section 7 a variety of open questions and directions for future research.
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A Auxiliary results from statistical learning theory

In this appendix, we collect some well known results from classical statistical learning theory that
we make use of in our proofs.

Lemma 15 (Rademacher complexity progression (Theorem 2.15 in Ref. [35])). Let a, b ∈ R and
σ̃ : R → R an L-Lipschitz function and assume F0 ⊆ R

X is a set of functions that includes the 0
function. Also, let F be the following function class

F :=

{

x 7→ σ̃



v +
m
∑

j=1

ωjfj(x)





∣

∣

∣

∣

∣

|v| ≤ a, ‖ω‖1 ≤ b, and fj ∈ F0

}

. (136)

Then, the empirical Rademacher complexity of F with respect to any point ~x ∈ X m can be bounded
in terms of the one of F0

R̂~x(F) ≤ L

(

a√
m

+ 2bR̂(F0)

)

. (137)

The 2 factor can be dropped if F0 = −F0.

Lemma 16 (Rademacher complexity of layered network (Corollary 2.11 in Ref. [35])). Let a, b > 0
and X :=

{

x ∈ R
d | ‖x‖∞ ≤ C

}

. Consider a neural network architecture with δ hidden layers that
implements F ⊆ R

X , and such that

1. The activation function σ : R → R is L-Lipschitz and anti-symmetric.

2. For every neuron, the vector of weights ω satisfies ‖ω‖1 ≤ b.

3. For every neuron, the modulus of the bias is upper-bounded by a.

Then, the empirical Rademacher complexity of F with respect to any point ~x ∈ X m can be upper-
bounded as

R̂~x(F) ≤ 1√
m

(

Cbδ
√

2 log(2d) + a

δ−1
∑

i=0

bi

)

. (138)

Lemma 17 (Massart’s Lemma [48]). Let N ∈ N. Let A ⊂ R
N be a finite set contained in a

Euclidean ball of radius r > 0. Then

Eσ

[

sup
a∈A

1

n

N
∑

i=1

σiai

]

≤ r
√

2 log|A|
N

, (139)

where the expectation is with respect to i.i.d. Rademacher random variables σ1, . . . , σN .

Lemma 18 (Talagrand’s Lemma (going back to [46]; see also Lemma 5.7 in Ref. [20])). Let
ℓ1, . . . , ℓm : R → R be L-Lipschitz functions. Let F ⊂ R

Z be a class of real-valued functions on
some data space Z. Then, for any z1, . . . , zm ∈ Z,

1

m
Eσ

[

sup
f∈F

m
∑

i=1

σiℓ ◦ f(zi)

]

≤ L

m
Eσ

[

sup
f∈FB

Ω

m
∑

i=1

σif(zi)

]

, (140)

where the expectations are over i.i.d. Rademacher random variables σ1, . . . , σm.
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Theorem 19 (Dudley’s Theorem ([49]; see also Theorem 8.1.2 in Ref. [47] or Theorem 1.19 in
Ref. [35])). For a fixed vector z ∈ Zm let G be a subset of the pseudo-metric space (RZ , ‖·‖2,z) and

let γ0 := supg∈G ‖g‖2,z. Then the empirical Rademacher complexity R̂z(G) of G with respect to z
can be upper-bounded as

R̂z(G) ≤ inf
ε∈[0,

γ0
2 )







4ε +
12√
m

γ0
∫

ε

√

log N (G, ‖·‖2,z , β) dβ







. (141)
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[17] A. Pérez-Salinas, A. Cervera-Lierta, E. Gil-Fuster, and J. I. Latorre, “Data re-uploading for
a universal quantum classifier”, Quantum 4, 226 (2020) doi: 10.22331/q-2020-02-06-226.

[18] C. Bishop, Pattern recognition and machine learning (Springer, Berlin, 2006).

[19] B. Schölkopf and A. J. Smola, Learning with kernels: support vector machines, regulariza-
tion, optimization, and beyond, Adaptive computation and machine learning (MIT Press,
Cambridge, MA, 2002), 626 pp.

[20] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of machine learning, 2nd ed.,
Adaptive Computation and Machine Learning (MIT Press, Cambridge, MA, 2018), 504 pp.

[21] O. Bousquet and A. Elisseeff, “Stability and generalization”, J. Mach. Learn. Res. 2, 499–526
(2002) doi: 10.1162/153244302760200704.

[22] N. Littlestone and M. Warmuth, “Relating data compression and learnability”, Technical
report, University of California Santa Cruz (1986).

[23] D. A. McAllester, “Some pac-bayesian theorems”, Machine Learning 37, 355–363 (1999) doi:
10.1023/A:1007618624809.

[24] M. C. Caro and I. Datta, “Pseudo-dimension of quantum circuits”, Quant. Mach. Int. 2, 172
(2020) doi: 10.1007/s42484-020-00027-5.

[25] A. Abbas, D. Sutter, C. Zoufal, A. Lucchi, A. Figalli, and S. Woerner, “The power of quantum
neural networks”, Nature Computational Science 1, 403–409 (2021) doi: 10.1038/s43588-021-
00084-1.

[26] K. Bu, D. E. Koh, L. Li, Q. Luo, and Y. Zhang, “On the statistical complexity of quantum
circuits”, arXiv:2101.06154 (2021).

[27] K. Bu, D. E. Koh, L. Li, Q. Luo, and Y. Zhang, “Effects of quantum resources on the
statistical complexity of quantum circuits”, arXiv:2102.03282 (2021).

[28] K. Bu, D. E. Koh, L. L., Q. Luo, and Y. Zhang, “Rademacher complexity of noisy quantum
circuits”, arXiv:2103.03139 (2021).

[29] Y. Du, Z. Tu, X. Yuan, and D. Tao, “An efficient measure for the expressivity of variational
quantum algorithms”, arXiv:2104.09961 (2021).

[30] H.-Y. Huang, M. Broughton, M. Mohseni, R. Babbush, S. Boixo, H. Neven, and J. R. Mc-
Clean, “Power of data in quantum machine learning”, Nature Comm. 12, 1–9 (2021) doi:
10.1038/s41467-021-22539-9.

[31] L. Banchi, J. Pereira, and S. Pirandola, “Generalization in quantum machine learning: A
quantum information perspective”, arXiv:2102.08991 (2021).

[32] C. Gyurik, D. van Vreumingen, and V. Dunjko, “Structural risk minimization for quantum
linear classifiers”, arXiv:2105.05566 (2021).

[33] M. Schuld, R. Sweke, and J. J. Meyer, “Effect of data encoding on the expressive power
of variational quantum-machine-learning models”, Phys. Rev. A 103, 032430 (2021) doi:
10.1103/PhysRevA.103.032430.

[34] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: from theory to algo-
rithms (Cambridge University Press, 2014), doi: 10.1017/CBO9781107298019.

[35] M. M Wolf, Mathematical foundations of machine learning, 2020.

[36] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep learning
requires rethinking generalization”, arXiv:1611.03530 (2016).

[37] Y. Jiang, B. Neyshabur, H. Mobahi, D. Krishnan, and S. Bengio, “Fantastic generalization
measures and where to find them”, arXiv:1912.02178 (2019).

[38] V. N. Vapnik and A. Y. Chervonenkis, “On the uniform convergence of relative frequencies
of events to their probabilities”, Th. Prob. App. 16, 264–280 (1971) doi: 10.1137/1116025.

[39] P. L. Bartlett and S. Mendelson, “Rademacher and Gaussian complexities: Risk bounds and
structural results”, J. Mach. Learn. Res. 3, 463–482 (2002) doi: 10.5555/944919.944944.

Accepted in Quantum 2021-10-21, click title to verify. Published under CC-BY 4.0. 33

https://doi.org/10.22331/q-2020-02-06-226
https://doi.org/10.22331/q-2020-02-06-226
https://doi.org/10.1162/153244302760200704
https://doi.org/10.1162/153244302760200704
https://doi.org/10.1162/153244302760200704
https://doi.org/10.1023/A:1007618624809
https://doi.org/10.1023/A:1007618624809
https://doi.org/10.1007/s42484-020-00027-5
https://doi.org/10.1007/s42484-020-00027-5
https://doi.org/10.1007/s42484-020-00027-5
https://doi.org/10.1038/s43588-021-00084-1
https://doi.org/10.1038/s43588-021-00084-1
https://doi.org/10.1038/s43588-021-00084-1
https://doi.org/10.1038/s41467-021-22539-9
https://doi.org/10.1038/s41467-021-22539-9
https://doi.org/10.1103/PhysRevA.103.032430
https://doi.org/10.1103/PhysRevA.103.032430
https://doi.org/10.1017/CBO9781107298019
https://doi.org/10.1137/1116025
https://doi.org/10.1137/1116025
https://doi.org/10.5555/944919.944944
https://doi.org/10.5555/944919.944944


[40] D. Pollard, Convergence of stochastic processes, Springer Series in Statistics (Springer, New
York, NY, 1984), doi: 10.1007/978-1-4612-5254-2.

[41] H. Abraham et al., Qiskit: an open-source framework for quantum computing, 2019, doi:
10.5281/zenodo.2562110.

[42] Cirq Developers, Cirq, Mar. 5, 2021, doi: 10.5281/zenodo.4586899.

[43] V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, M. S. Alam, S. Ahmed, J. M. Arrazola,
C. Blank, A. Delgado, S. Jahangiri, K. McKiernan, J. J. Meyer, Z. Niu, A. Száva, and N.
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