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Abstract We address the issue of how to associate frequency information with lexical-
ized grammar formalisms, using Lexicalized Tree Adjoining Grammar as a
representative framework. We consider systematically a number of alternative
probabilistic frameworks, evaluating their adequacy from both a theoretical and
empirical perspective using data from existing large treebanks. We also propose
three orthogonal approaches for backing off probability estimates to cope with
the large number of parameters involved.
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1. INTRODUCTION

When performing a derivation with a grammar it is usually the case that,
at certain points in the derivation process, the grammar licenses several
alternative ways of continuing with the derivation. In the case of context-free
grammar (CFG) such nondeterminism arises when there are several productions
for the nonterminal that is being rewritten. Frequency information associated
with the grammar may be used to assign a probability to each of the alternatives.
In general, it must always be the case that at every point where a choice is
available the probabilities of all the alternatives sum to 1. This frequency
information provides a parser with a way of dealing with the problem of
ambiguity: the parser can use the information either to preferentially explore
possibilities that are more likely, or to assign probabilities to the alternative
parses.

There can be many ways of associating frequency information with the
components making up a grammar formalism. For example, just two of
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the options in the case of CFG are: (1) associating a single probability
with each production that determines the probability of its use wherever it
is applicable (i.e. Stochastic CFG; SCFG (Booth and Thompson, 1973)); or
(2) associating different probabilities with a production depending on the
particular nonterminal occurrence (on the RHS of a production) that is being
rewritten (Chitrao and Grishman, 1990). In the latter case probabilities depend
on the context (within a production) of the nonterminal being rewritten.
In general, while there may be alternative ways of associating frequency
information with grammars, the aim is always to provide a way of associating
probabilities with alternatives that arise during derivations.

This paper is concerned with how the kind of frequency information that
would be useful to a parser can be associated with lexicalized grammar
formalisms. To properly ground the discussion we will use Lexicalized Tree
Adjoining Grammar (LTAG) as a representative framework, although our
remarks can be applied to lexicalized grammar formalisms more generally. We
begin by considering the derivation process, and, in particular, the nature of
derivation steps. At the heart of a LTAG is a finite set of trees (the elementary
trees of the grammar). In an LTAG these trees are ‘anchored’ with lexical items
and the tree gives a possible context for its anchor by providing a structure into
which its complements and modifiers can be attached. For example, Figure 2.1
shows four elementary trees---one auxiliary tree β and three initial trees α1,
α2 and α3. Nodes marked with asterisks, downward arrows and diamonds are
foot, substitution and anchor nodes, respectively. In a derivation these trees
are combined using the operations of substitution and adjunction to produce a
derived tree for a complete sentence. Figure 2.2 shows a single derivation step
in which α2 and α3 are substituted at frontier nodes (with addresses 1 and 2 · 2,
respectively) of α1, and β is adjoined at an internal node of α1 (with address
2)1.

When formalizing LTAG derivations, a distinction must be made between
the (object-level) trees that are derived in a derivation and the (meta-level)
trees that are used to fully encode what happens in derivations. These trees are
referred to as derived and derivation trees, respectively. A scheme for encoding
LTAG derivations was proposed by Vijay-Shanker (1987) and later modified
by Schabes and Shieber (1994). Derivation trees show, in a very direct way,
how the elementary trees are combined in derivations. Nodes of the derivation
trees are labeled by the names of elementary trees, and edge labels identify
tree addresses (i.e. node locations) in elementary trees. Figure 2.3 shows the
derivation tree resulting from the derivation step in Figure 2.2.

The nodes identified in the derivation tree encode that when the elementary
tree α1 was used, the elementary trees β, α2, α3 were chosen to fit into the
various complement and modifier positions. These positions are identified by
the tree addresses i1, i2, i3 labeling the respective edges, where in this example
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Figure 2.3 A Derivation Tree

i1 = 2, i2 = 1 and i3 = 2 · 22. In other words, this derivation tree indicates
which choice was made as to how the node α1 should be expanded. In general,
there may have been many alternatives since modification is usually optional
and different complements can be selected.

By identifying the nature of nondeterminism in LTAG derivations we have
determined the role that frequency information plays. For each elementary
tree of the grammar, frequency information must somehow determine how
the probability mass is to be distributed among all the alternative ways of
expanding that tree. In section 2. we consider a number of ways in which
this frequency information can be associated with a grammar. We then go
on to evaluate the degree to which each scheme can, in principle, distinguish
the probability of certain kinds of derivational phenomena, using data from
existing large treebanks (section 3.). We discuss in section 4. how to estimate
the large number of probabilistic parameters involved, and propose three
orthogonal approaches for smoothing the probability estimates obtained. The
paper concludes (section 5.) with comparisons with other related work.

2. FREQUENCY INFORMATION IN LEXICALIZED
GRAMMARS

In this section we consider four ways of associating frequency information
with lexicalized grammars. Using the LTAG framework outlined in section 1.
as a basis we define four Stochastic Lexicalized Grammar formalisms which
we will refer to as SLG(1), SLG(2), SLG(3) and SLG(4). The differences
between them lie in how fine-grained the frequency information is, which in
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turn determines the extent to which the resulting probabilities can be dependent
on derivational context.

2.1 CONTEXT-FREE FREQUENCIES

The first approach we consider is the simplest and will be referred to as
SLG(1). A single probability is associated with each elementary tree. This is
the probability that that tree is used in a derivation in preference to another
tree with the same nonterminal at its root. A grammar is therefore well-formed
if, for each nonterminal symbol that can be at the root of a substitutable
(adjoinable) tree, the sum of probabilities associated with all substitutable
(adjoinable) trees with the same root nonterminal is 1. When nondeterminism
arises in a derivation nothing about the derivational context can influence the
way that a tree is expanded, since the probability that the various possible trees
are adjoined or substituted at each node depends only on the identity of the
nonterminal at that node. As a result we say the frequency information in an
SLG(1) is context-free.

2.2 NODE-DEPENDENT FREQUENCIES

The second approach considered here, which we will call SLG(2), has
been described before by both Schabes (1992) and Resnik (1992). We
describe the scheme of Schabes here, though the approach taken by Resnik
is equivalent. In defining his scheme Schabes uses a stochastic version of a
context-free-like grammar formalism called Linear Indexed Grammar (LIG).
Based on the construction used to show the weak equivalence of LTAG and
LIG (Vijay-Shanker and Weir, 1994), a LIG is constructed from a given
LTAG such that derivation trees of the LIG encode the derived trees of
the associated LTAG. Compiling LTAG to LIG involves decomposing the
elementary trees into single-level trees and introducing additional productions
explicitly encoding every possible adjunction and substitution possibility3. It is
the LIG productions encoding adjunction and substitution possibilities that are
assigned probabilities4. The probabilities associated with all the productions
that encode possible adjunctions (substitutions) at a node must sum to 1. The
key feature of these probability-bearing LIG productions, in the context of
the current discussion, is that they encode the adjunction or substitution of a
specific elementary tree at a specific place in another elementary tree. This
means that the frequency information can to some extent be dependent on
context. In particular, when faced with nondeterminism in the way that some
elementary tree is expanded during a derivation, the probability distribution
associated with the alternative adjunctions or substitutions at a given node can
depend on which elementary tree that node comes from. As a result we call the
frequency information in SLG(2) node-dependent. This makes SLG(2) more
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expressive than SLG(1). As both Schabes and Resnik point out, by leveraging
LTAG’s extended domain of locality this approach allows probabilities to
model both lexical and structural co-occurrence preferences.

The head automata of Alshawi (1996) also fit into the SLG(2) formalism
since they involve a dependency parameter which gives the probability that a
head has a given word as a particular dependent.

2.3 LOCALLY-DEPENDENT FREQUENCIES

The third approach is SLG(3) which falls out quite naturally from consid-
eration of the LTAG derivation process. As we discussed in the introduction,
LTAG derivations can be encoded with derivation trees in which nodes are
labeled by the names of elementary trees and edges labeled by the addresses
of substitution and adjunction nodes. The tree addresses can be omitted from
derivation trees if a fixed linear order is established on all of the adjunction
and substitution nodes in each elementary tree and this ordering is used to
order siblings in the derivation tree. Given this possibility, Vijay-Shanker at
al. (1987) have shown that the set of derivation trees associated with a LTAG
forms a local set and can therefore be generated by a context-free grammar
(CFG)5. The productions of this meta-grammar encode possible derivation
steps of the grammar. In other words, each meta-production encodes one
way of (fully) expanding an elementary tree6. In SLG(3) a probability is
associated with each of these meta-productions. A SLG(3) is well-formed
if for each elementary tree the sum of the probabilities associated with the
meta-productions for that tree is 1.

In contrast to SLG(2)---which is limited to giving the probability that a tree
anchored with a given lexical item is substituted or adjoined into a tree anchored
with a second lexical item---SLG(3) specifies the probability that a particular
set of lexical items is combined in a derivation step. It is the elementary trees of
the underlying LTAG that determine the (extended local) domains over which
these dependencies can be expressed since it is the structure of an elementary
tree that determines the possible daughters in a meta-production. Although
the types of elementary tree structures licensed are specific to a particular
LTAG, it might be expected that a SLG(3) meta-grammar, for example, could
encode the probability that a given verb takes a particular (type of) subject
and combination of complements, including cases where the complements had
been moved from their canonical positions, for example by extraction. A
meta-grammar would also be likely to be able to differentiate the probabilities
of particular co-occurrences of adverbial and prepositional phrase modifiers,
and would moreover be able to distinguish between different orderings of the
modifiers.
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The approach described by Lafferty et al. (1992) of associating probabilities
with Link Grammars---taken to its logical conclusion---corresponds to SLG(3),
since in that approach separate probabilities are associated with each way of
linking a word up with a combination of other words7.

2.4 GLOBALLY-DEPENDENT FREQUENCIES

The fourth and final approach we consider is Bod’s Data-Oriented Parsing
(DOP) framework (Bod, 1998). In this paper we call it SLG(4) for uniformity
and ease of reference. Bod formalizes DOP in terms of a stochastic tree-
substitution grammar, which consists of a finite set of elementary trees, each
with an associated probability such that the probabilities of all the trees with
the same non-terminal symbol sum to 1, with an operation of substitution to
combine the trees. In DOP, or SLG(4), the elementary trees are arbitrarily
large subtrees anchored at terminal nodes by words/part-of-speech labels, and
acquired automatically from pre-parsed training data. This is in contrast to
SLG(3), in which the size of individual meta-productions is bounded, since
the structure of the meta-productions is wholly determined by the form of the
elementary trees in the grammar.

3. EMPIRICAL EVALUATION

We have described four ways in which frequency information can be
associated with a lexicalized grammar. Directly comparing the performance of
the alternative schemes by training a wide-coverage grammar on an appropriate
annotated corpus and then parsing further, unseen data using each scheme in
turn would be a large undertaking outside the scope of this paper. However,
each scheme varies in terms of the degree to which it can, in principle,
distinguish the probability of certain kinds of derivational phenomena. This
can be tested without the need to develop and run a parsing system, since
each scheme can be seen as making verifiable predictions about the absence of
certain dependencies in derivations of sentences in corpus data.

SLG(1), with only context-free frequency information, predicts that the
relative frequency of use of the trees for a given nonterminal is not sensitive
to where the trees are used in a derivation. For example, there should be no
significant difference between the likelihood that a given NP tree is chosen
for substitution at the subject position and the likelihood that it is chosen
for the object position. SLG(2) (using so-called node-dependent frequency
information) is able to cater for such differences but predicts that the likelihood
of substituting or adjoining a tree at a given node in another tree is not dependent
on what else is adjoined or substituted into that tree. With SLG(3) (which
uses what we call locally-dependent frequency information) it is possible to
encode such sensitivity, but more complex contextual dependencies cannot be
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expressed: for example, it is not possible for the probability associated with
the substitution or adjunction of a tree γ into another tree γ′ to be sensitive
to where the tree γ′ itself is adjoined or substituted. Only SLG(4) (in which
frequency information can be globally-dependent) can do this.

In the remainder of this section we present a number of empirical phenomena
that support or refute predictions made by each of the versions of SLG.

3.1 SLG(1) VS. SLG(2--4)

Magerman and Marcus (1991) report that, empirically, a noun phrase is more
likely to be realized as a pronoun in subject position than elsewhere. To capture
this fact it is necessary to have two different sets of probabilities associated
with the different possible NP trees: one for substitution in subject position,
and another for substitution in other positions. This cannot be done in SLG(1)
since frequency information in SLG(1) is context-free. This phenomenon
therefore violates the predictions of SLG(1), but it can be captured by the other
SLG models.

Individual lexemes also exhibit these types of distributional irregularities.
For example, in the Wall Street Journal (WSJ) portion of the Penn Treebank 2
(Marcus et al., 1994), around 38% of subjects of verbs used intransitively
(i.e., without an object NP) in active, ungapped constructions are either
pronouns or proper name phrases8. However, for the verbs believe, agree, and
understand, there is a significantly higher proportion (in statistical terms) of
proper name/pronoun subjects (in the case of believe 57%; χ2, 40.53, 1 df ,
p < 0.001) 9. This bias would, in semantic terms, be accounted for by a
preference for subject types that can be coerced to human. SLG(2--4) can
capture this distinction whereas SLG(1) cannot since it is not sensitive to where
a given tree is used.

3.2 SLG(2) VS. SLG(3--4)

The Penn Treebank can also allow us to probe the differences between the
predictions made by SLG(2) and SLG(3--4). From an analysis of verb phrases
in active, ungapped constructions with only pronominal and/or proper name
subjects and NP direct objects, it is the case that there is a (statistically) highly
significant dependency between the type of the subject and the type of the
object (χ2, 29.79, 1 df , p < 0.001), the bias being towards the subject and
direct object being either (a) both pronouns, or (b) both proper names. Thus
the choice of which type of NP tree to fill subject position in a verbal tree can
be dependent on the choice of NP type for object position. Assuming that the
subject and object are substituted/adjoined into trees anchored by the verbs,
this phenomenon violates the predictions of SLG(2)---hence also SLG(1)---but
can still be modeled by SLG(3--4).
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A similar sort of asymmetry occurs when considering the distribution of
pronoun and proper name phrases against other NP types in subject and direct
object positions. There is again a significant bias towards the subject and
object either both being a pronoun/proper name phrase, or neither being of this
type (χ2, 8.77, 1 df , p = 0.3). This again violates the predictions of SLG(2),
but not SLG(3--4).

Moving on now to modifiers, specifically prepositional phrase (PP) modi-
fiers in verb phrases, the Penn Treebank distinguishes several kinds including
PPs expressing manner (PP-MNR), time (PP-TMP), and purpose (PP-PRP).
Where these occur in combination there is a significant ordering effect: PP-
MNR modifiers tend to precede PP-TMP (χ2, 4.12, 1 df , p = 4.2), and
PP-TMP modifiers in their turn have a very strong tendency to precede PP-
PRP (p < 0.001). Adopting Schabes and Shieber’s (1994) formulation of the
adjunction operation in LTAG, multiple PP modifier trees would be adjoined
independently at the same node in the parent VP tree, their surface order
being reflected by their ordering in the derivation tree. Therefore, in SLG(3)
multiple modifying PPs would appear within a single meta-production in the
order in which they occurred, and the particular ordering would be assigned
an appropriate probability by virtue of this. In contrast, SLG(2) treats mul-
tiple adjunctions separately and so would not be able to model the ordering
preference.

Significant effects involving multiple modification of particular lexical
items are also evident in the treebank. For example, the verb rise occurs 83
times with a single PP-TMP modifier---e.g. (1a)---and 12 times with two (1b),
accounting in total for 6% of all PPs annotated in this way as temporal.

(1) a Payouts on the S&P 500 stocks rose 10 % [PP-TMP in 1988] ,
according to Standard & Poor ’s Corp. ...

b It rose largely [PP-TMP throughout the session] [PP-TMP
after posting an intraday low of 2141.7 in the first 40 minutes
of trading] .

The proportion of instances of two PP-TMP modifiers with rise is significantly
more than would be expected given the total number of instances occurring
in the treebank (χ2, 25.99, 1 df , p < 0.001). The verb jump follows the
same pattern (p = 1.0), but other synonyms and antonyms of rise (e.g. fall)
do not. This idiosyncratic behavior of rise and jump cannot be captured
by SLG(2), since each adjunction is effectively considered to be a separate
independent event. In SLG(3), though, the two-adjunction case would appear
in a single meta-production associated with rise/jump and be accorded a higher
probability than similar meta-productions associated with other lexical items.

There is another, more direct but somewhat less extensive, source of
evidence that we can use to investigate the differences between SLG(2) and
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(3--4). B. Srinivas at the University of Pennsylvania has recently created a
substantial parsed corpus10 by analyzing text from the Penn Treebank using
the XTAG system (XTAG-Group, 1999). Some of the text has been manually
disambiguated, although we focus here on the most substantial set---of some
9900 sentences from the WSJ portion---which has not been disambiguated,
as yet. For each sentence we extracted the set of meta-level productions
that would generate the XTAG derivation. To obtain reliable data from
ambiguous sentences, we retained only the (approximately 37500) productions
that were common across all derivations. In this set of productions we have
found that with the elementary tree licensing subject--transitive-verb--object
constructions, the likelihood that the object NP is expanded with a tree anchored
in shares is much higher if the subject is expanded with with a tree anchored
in volume, corresponding to sentences such as (2a) and (2b).

(2) a Volume totaled 14,890,000 shares .
b Overall Nasdaq volume was 151,197,400 shares .

Indeed, in all 11 cases where volume is the anchor of the subject, an NP
anchored in shares is analyzed as the object, whereas more generally shares
is object in only 18 of the 1079 applications of the tree. This difference in
proportions is statistically highly significant (p < 0.001). Correlation between
each of volume and shares and the verbs that appear is much weaker. There
is of course potential for bias in the frequencies since this data is based purely
on unambiguous productions. We therefore computed the same proportions
from productions derived from all sentences in the XTAG WSJ data; this also
resulted in a highly significant difference. SLG(2) models the substitution of
the subject and of the object as two independent events, whereas the data show
that they can exhibit a strong inter-dependency.

3.3 SLG(3) VS. SLG(4)

Bod (1998) observes that there can be significant inter-dependencies between
two or more linguistic units, for example words or phrases, that cut across the
standard structural organization of a grammar. For example, in the Air Travel
Information System (ATIS) corpus (Hemphill et al., 1990) the generic noun
phrase (NP) flights from X to Y (as in sentences like Show me flights from
Dallas to Atlanta) occurs very frequently. In this domain the dependencies
between the words in the NP---but without X and Y filled in---are so strong
that in ambiguity resolution it should arguably form a single statistical unit.
Bod argues that Resnik and Schabes’ schemes (i.e. SLG(2)) cannot model this;
however it appears that SLG(3) can since the NP would give rise to a single
meta-production (under the reasonable assumption that the from and to PPs
would be adjoined into the NP tree anchored by flights).
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An example given by Bod that does demonstrate the difference between
SLG(3) and SLG(4) concerns sentences like the emaciated man starved. Bod
argues that there is a strong (semantic) dependence between emaciated and
starved, which would be captured in DOP---or SLG(4)---in the form of a single
elementary tree in which emaciated and starved were the only lexical items.
This dependence cannot be captured by SLG(3) since emaciated and starved
would anchor separate elementary trees, and the associations made would
merely be between (1) the S tree anchored by starved and the substitution of
the NP anchored by man in subject position, and (2) the modification of man
by emaciated.

3.4 DISCUSSION

The empirical phenomena discussed above mainly concern interdepen-
dencies within specific constructions between the types or heads of either
complements or modifiers. The phenomena fall clearly into two groups:

ones relating to distributional biases that are independent of particular
lexical items, and

others that are associated with specific open class vocabulary.

Token frequencies---with respect to treebank data---of phenomena in the
former group are relatively high, partly because they are not keyed off the
presence of a particular lexical item: for example in the case study into
the complement distributions of pronoun/proper name phrases versus other
NP types (section 3.2) there are 13800 data items (averaging one for every
four treebank sentences). However, there appears to be a tendency for the
phenomena in this group to exhibit smaller statistical biases than are evident
in the latter, lexically-dependent group (although all biases reported here are
significant at least to the 95% confidence level). In the latter group, although
token frequencies for each lexical item are not large (for example, the forms
of rise under consideration make up only 1% of comparable verbs in the
treebank), the biases are in general very strong, in what are otherwise an
unremarkable set of verbs and nouns (believe, agree, understand, rise, jump,
volume, and shares). We might therefore infer that although individually token
frequencies are not great, type frequencies are (i.e. there are a large number of
lexical items that display idiosyncratic behavior of some form or other), and
so lexicalized interdependencies are as widespread as non-lexical ones.
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4. PARAMETER ESTIMATION

4.1 TRAINING REGIME

Schabes (1992) describes an iterative re-estimation procedure (based on
the Inside-Outside Algorithm (Baker, 1979)) for refining the parameters of
an SLG(2) grammar given a corpus of in-coverage sentences; the algorithm
is also able to simultaneously acquire the grammar itself. The aim of the
algorithm is to distribute the probability mass within the grammar in such a
way that the probability of the training corpus is maximized, i.e. to model
as closely as possible the language in that corpus. However, when the goal
is to return as accurately as possible the correct analysis for each sentence
using a pre-existing grammar, estimating grammar probabilities directly from
normalized frequency counts derived from a pre-parsed training corpus can
result in accuracy that is comparable or better to that obtained using re-
estimation (Charniak, 1996). Direct estimation would mesh well with the SLG
formalisms described in this paper.

4.2 SMOOTHING

The huge number of parameters required for a wide-coverage SLG(2)
(and even more so for SLG(3--4)) means that not only would the amount
of frequency information be unmanageable, but data sparseness would make
useful probabilities hard to obtain. We briefly present three (essentially
orthogonal and independent) backing-off techniques that could be used to
address this problem.

4.2.1 Unanchored Trees. It is the size of a wide-coverage lexicon that
makes pure SLG(2--4) unmanageable. However, without lexical anchors
a wide-coverage SLG would have only a few hundred trees (XTAG-Group,
1995). Backup frequency values could therefore be associated with unanchored
trees and used when data for the anchored case was absent.

4.2.2 Lexical Rules. In a lexicalized grammar, elementary trees may be
grouped into families which are related by lexical rules---such as wh extraction,
and passivization. (For example, the XTAG grammar contains of the order
of 500 rules grouped into around 20 families). In the absence of specific
frequency values, approximate (backup) values could be obtained from a tree
that was related by some lexical rule.

4.2.3 SLG(i) to SLG(i−1). Section 3. indicated informally how, when
moving from SLG(1) through to SLG(4), the statistical model becomes
successively more fine-grained, with each SLG(i) model subsuming the
previous ones, in the sense that SLG(i) is able to differentiate probabilistically
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all structures that previous ones can. Thus, when there is insufficient training
data, sub-parts of a finer-grained SLG model could be backed off to a model
that is less detailed. For example, within a SLG(3) model, in cases where
a particular set of meta-productions all with the same mother had a low
collective probability, the set could be reduced to a single meta-production
with unspecified daughters (i.e. giving the effect of SLG(1)).

5. COMPARISON WITH OTHER WORK

The treatment of stochastic lexicalized grammar in this paper has much
in common with recent approaches to statistical language modeling outside
the LTAG tradition. Firstly, SLG integrates statistical preferences acquired
from training data with an underlying wide-coverage grammar, following an
established line of research, for example (Chitrao and Grishman, 1990; Char-
niak and Carroll, 1994; Briscoe and Carroll, 1995). The paper discusses
techniques for making preferences sensitive to context to avoid known short-
comings of the context-independent probabilities of SCFG (see e.g. Briscoe
and Carroll (1993)).

Secondly, SLG is lexical, since elementary trees specify lexical anchors.
Considering the anchor of each elementary tree as the head of the con-
struction analyzed, successive daughters for example of a single SLG(3)
meta-grammar production can in many cases correspond to a combination
of Magerman’s (1995) mother/daughter and daughter/daughter head statis-
tics (although it would appear that Collins’ (1996) head-modifier configuration
statistics are equivalent only to SLG(2) in power). However, due to its extended
domain of locality, SLG(3) is not limited to modeling local dependencies such
as these, and it can express dependencies between heads separated by other,
intervening material. For example, it can deal directly and naturally with
dependencies between subject and any verbal complement without requiring
mediation via the verb itself: c.f. the example of section 3.2.

Thirdly, the SLG family has the ability to model explicitly syntactic
structural phenomena, in the sense that the atomic structures to which statistical
measures are attached can span multiple levels of derived parse tree structure,
thus relating constituents that are widely-separated---structurally as well as
sequentially---in a sentence. Bod’s DOP model (Bod, 1998) shares this
characteristic, and indeed (as discussed in section 2.4) it fits naturally into this
family, as what we have called SLG(4).

Srinivas et al. (1996) (see also Joshi and Srinivas (1994)) have described
a novel approach to parsing with LTAG, in which each word in a sentence
is first assigned the most probable elementary tree---or ‘supertag’---given the
context in which the word appears, according to a trigram model of supertags.
The rest of the parsing process then reduces to finding a way of combining the
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supertags to form a complete analysis. In this approach statistical information
is associated simply with linear sub-sequences of elementary trees, rather than
with trees within derivational contexts as in SLG(2--4). Although Srinivas’
approach is in principle efficient, mistaggings mean that it is not guaranteed to
return an analysis for every in-coverage sentence, in contrast to SLG. Also, its
relatively impoverished probabilistic model would not be able to capture many
of the phenomena reported in section 3..

Acknowledgments

This work was supported by UK EPSRC project GR/K97400 ‘Analysis of Naturally-

occurring English Text with Stochastic Lexicalized Grammars’ (<http://www.cogs.susx.ac.uk/
lab/nlp/dtg/index.html>), and by an EPSRC Advanced Fellowship to the first author. We

would like to thank Nicolas Nicolov and Miles Osborne for useful comments on previous drafts.

Notes

1. The root of a tree has the address ε. The ith daughter (where siblings are ordered from left to right)
of a node with address a has address a · i

2. As Schabes and Shieber (1994) point out matters are somewhat more complex that this. What we
describe here more closely follows the approach taken by Rambow et al. (1995) in connection with D-Tree
Grammar.

3. This scheme has proved useful in the study of LTAG parsing (Schabes, 1990; Vijay-Shanker and
Weir, 1993; Boullier, 1996) since this pre-compilation process alleviates the need to do what amounts to
the same decomposition process during parsing.

4. The other productions (that decompose the tree structure) are assigned a probability of 1 since they
are deterministic.

5. In such context-free grammars, the terminal and nonterminal alphabets are not necessarily disjoint,
and only the trees generated by the grammar (not their frontier strings) are of any interest.

6. In the formulation of LTAG derivations given by Schabes and Shieber (1994) an arbitrary number
of modifications can take place at a single node. This means that there are an infinite number of productions
in the meta-grammar, i.e., an infinite number of ways of expanding trees. This means that a pure version of
SLG(3) is not possible. See Section 4.2 for ways to deal with this issue.

7. Lafferty et al. (1992) appear to consider only cases where a word has at most one right and one left
link, i.e., probabilities are associated with at most triples. However, the formalism as defined by Sleator and
Temperley (1993) allows a more general case with multiple links in each direction, as would be required to
deal with, for example, modifiers.

8. Subjects were identified as the NP-SBJ immediately preceding a VP bracketing introduced by a
verb labeled VBD/VBP/VBZ; pronouns, words labeled PRP/PRP$; and proper noun phrases, sequences of
words all labeled NNP/NNPS.

9. A value for p of 5 corresponds to statistical significance at the standard 95% confidence level;
smaller values of p indicate higher confidence.

10. We wish to thank B. Srinivas for giving us access to this resource.
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