Encoding of Ca²⁺ signals by differential expression of IP₃ receptor subtypes

Tomoya Miyakawa, Akito Maeda¹, Toshiko Yamazawa, Kenzo Hirose, Tomohiro Kurosaki¹ and Masamitsu lino²

Department of Pharmacology, Faculty of Medicine, The University of Tokyo, CREST, Japan Science and Technology Corporation, Bunkyo-ku, Tokyo 113 and ¹Akito Maeda, Tomohiro Kurosaki, Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, Moriguchi 570, Japan

²Corresponding author e-mail: iino@m.u-tokyo.ac.jp

Inositol 1,4,5-trisphosphate (IP₃) plays a key role in Ca^{2+} signalling, which exhibits a variety of spatiotemporal patterns that control important cell functions. Multiple subtypes of IP₃ receptors (IP₃R-1, -2 and -3) are expressed in a tissue- and developmentspecific manner and form heterotetrameric channels through which stored Ca^{2+} is released, but the physiological significance of the differential expression of IP₃R subtypes is not known. We have studied the Ca²⁺-signalling mechanism in genetically engineered B cells that express either a single or a combination of IP₃R subtypes, and show that Ca²⁺-signalling patterns depend on the IP₃R subtypes, which differ significantly in their response to agonists, i.e. IP_3 , Ca^{2+} and ATP. IP₃R-2 is the most sensitive to IP₃ and is required for the long lasting, regular Ca²⁺ oscillations that occur upon activation of B-cell receptors. IP₃R-1 is highly sensitive to ATP and mediates less regular Ca²⁺ oscillations. IP₃R-3 is the least sensitive to IP₃ and Ca²⁺, and tends to generate monophasic Ca²⁺ transients. Furthermore, we show for the first time functional interactions between coexpressed subtypes. Our results demonstrate that differential expression of IP₃R subtypes helps to encode IP₃-mediated Ca^{2+} signalling. Keywords: calcium/calcium imaging/gene targeting/ inositol 1,4,5-trisphosphate/IP₃ receptor

Introduction

Inositol 1,4,5-trisphosphate (IP₃)-mediated Ca²⁺ signalling controls important cell functions, such as contraction, secretion, gene expression and synaptic plasticity (Berridge, 1993). It is remarkable that a molecule as simple as Ca²⁺ can control a multitude of cellular functions with specificity, and the variety of spatio-temporal patterns of Ca²⁺ signalling has been implicated in its versatility. Indeed, the frequency of periodic increases in intracellular Ca²⁺ concentration (Ca²⁺ oscillation) has been shown to be important for the efficiency and specificity of gene expression (Dolmetsch *et al.*, 1998; Li *et al.*, 1998), and protein kinase activation (De Koninck and Schulman, 1998). However, it is not known how cells generate

specific Ca²⁺-signalling patterns. Multiple subtypes of IP₃ receptors (IP₃R-1, -2 and -3) are expressed in a tissueand development-specific manner (Newton et al., 1994; Wojcikiewicz, 1995; Dent et al., 1996) and form heterotetrameric channels (Joseph et al., 1995; Monkawa et al., 1995). Therefore, the complex expression pattern of IP₃R subtypes may be responsible for the generation of cell typespecific Ca²⁺ signalling. Recent studies of individual IP₃R subtypes incorporated into lipid bilayers have suggested functional differences (Hagar et al., 1998; Ramos-Franco et al., 1998). However, the properties of IP₃R subtypes have not been systematically compared under equivalent cellular conditions and it has not been demonstrated whether or not there are IP_3R subtype-specific Ca^{2+} signalling patterns. We have studied the physiological significance of the differential expression of IP₃R subtypes in conjunction with Ca²⁺-signalling patterns, using genetically engineered B cells that express either a single or a combination of IP₃R subtypes. Our results show that temporal patterns of Ca^{2+} signals depend critically on the expressed set of IP₃R subtypes, which differ significantly in their response to intracellular agonists, i.e. IP_3 , Ca^{2+} and ATP. Furthermore, we present the first evidence that coexpressed IP₃R subtypes make functional interactions. Thus, Ca²⁺-signalling patterns can be encoded by differential expression of IP₃R subtypes.

Results and discussion

Ca^{2+} signalling in cells expressing a single IP₃R subtype

Three subtypes of IP₃Rs are expressed in DT40 B cells (Sugawara *et al.*, 1997). Using an homologous recombination technique, we disrupted either one, two or all three IP₃R subtype genes (Sugawara *et al.*, 1997) (Figure 1A). The loss of protein expression of IP₃R-1 and IP₃R-2 was confirmed in the cells with the respective gene disruption using antibodies specific to each IP₃R subtype (Figure 1B).

Ligation of the B-cell receptor (BCR) with an anti-BCR antibody induces the production of IP₃ via phosphorylation of phospholipase Cy, resulting in mobilization of the Ca²⁺ stores in DT40 B cells (Kurosaki, 1997). We studied the changes in intracellular Ca2+ concentration ([Ca²⁺]_i) upon activation of BCR in Fura-2-loaded DT40 cells with various combinations of IP₃R subtype expression. Ca²⁺ oscillations were observed in wild-type cells, which decayed in $\sim 2-3$ min and resumed thereafter, lasting for 1 h or longer (Figure 2A). Strikingly, mutant cells expressing only IP₃R-2 showed Ca²⁺ oscillations which were more regular and robust than those observed in wildtype cells (Figure 2C). On the other hand, mutant cells expressing either IP₃R-1 or IP₃R-3 showed only monophasic Ca²⁺ transient or very rapidly damped Ca²⁺ oscillations (Figure 2B, D and E). In ~75% of the mutant Α

в

disrupted.

2/3-1/2-

Probe Type 1

ori

-28 S

actin

anti-IP₃R-1 antibody

cells expressing IP₃R-1, irregular Ca²⁺ oscillations with attenuated amplitude resumed subsequently (Figure 2B, lower panel). A delayed Ca²⁺ response was rarely observed (<1/h) in cells expressing IP₃R-3. Mutant cells expressing IP₃R-2 along with either IP₃R-1 or -3 also showed robust Ca²⁺ oscillations, while those expressing both IP₃R-1 and -3 but not IP₃R-2 showed a Ca²⁺ response similar to that of cells expressing only IP₃R-1 (data not shown). Thus, expression of IP₃R-2 is required for efficient generation of Ca²⁺ oscillations in DT40 cells. Disruption of IP₃R genes did not significantly affect cell-surface expression of the BCR (Sugawara *et al.*, 1997). Furthermore, the subtype-

5 2 2 2

Probe Type 2

- 28 S

actin

anti-IP3R-2 antibody

1/3-

Probe Type 3

kDa

200

116

ori

28 S

actin

 Fig. 1. Generation of DT40 cells expressing a single IP₃R subtype.

 (A) Northern analysis of wild-type (WT) and mutant DT40 cells with disruption of two of the three IP₃R genes (e.g. IP₃R-2 and -3 genes were disrupted in cells marked with 2/³). (B) Western blot analysis after immunoprecipitation confirming the loss of expression of IP₃R-1 and -2 when the respective genes were disrupted using a polyclonal antibody against either IP₃R-1 or IP₃R-2 (see Materials and methods).

In cells marked with $1/2/3^{-}$, all three IP₃R subtype genes were

specific Ca²⁺-signalling patterns were not altered when the antibody concentration was varied between 0.01 and 10 µg/ml, although the fraction of cells responding changed (data not shown). These results indicate that the characteristic Ca²⁺-signalling patterns were determined not by the stimulus intensity but by the expressed subtypes of IP₃Rs.

Luminal Ca²⁺ monitoring to study IP₃R functions

To investigate further the subtype-specific Ca^{2+} -signalling mechanism, we examined the functional differences between the subtypes using luminal Ca²⁺ monitoring (Hofer and Machen, 1993; Hirose and Iino, 1994; Hajnóczky and Thomas, 1997). Cells were loaded with Furaptra, a low-affinity fluorescent Ca²⁺ indicator (Raju et al., 1989) (Figure 3A and B). The fluorescence remaining after permeabilization of the cell membrane with β -escin was distributed in the extranuclear region in accordance with its localization within the endoplasmic reticulum (Figure 3C). Indeed, the luminal Ca^{2+} concentration increased with activation of the Ca²⁺ pump and declined upon application of IP₃ (Figure 3D). Thus, we measured the unidirectional flux of Ca²⁺ through the IP₃Rs by continuous monitoring of luminal Ca²⁺ concentration after withdrawing Mg²⁺-ATP to disable Ca²⁺pump activity. No Ca²⁺ release was observed upon application of caffeine, an activator of the ryanodine receptor (Figure 3E); nor was IP_3 -induced Ca^{2+} release observed in cells in which all the three IP₃R genes were disrupted (Sugawara et al., 1997) (Figure 3F). Therefore, the three IP₃R subtypes account for all the Ca²⁺-release channels expressed in this cell line.

The time course of Ca^{2+} release did not follow a single exponential as reported in many other cell types (Figure 3G). However, as was the case in smooth muscle cells (Hirose and Iino, 1994), the time course of Ca^{2+} release at lower IP₃ concentrations became superimposable with that at 10 µM IP₃ if normalized to the half time ($t_{1/2}$). This indicates that the level of activation of the IP₃Rs can be quantitatively compared by the initial rate of Ca^{2+} release, which we estimated by fitting an exponential curve to the initial part of the Ca^{2+} decay signal. Thus, the

Fig. 2. Ca^{2+} signalling in DT40 cells expressing a single IP₃R subtype upon BCR stimulation. (**A**–**D**) Ca^{2+} response in single cells upon ligation of BCR with anti-BCR antibody (1 µg/ml). Wild-type cells (A) and mutant cells expressing either IP₃R-1 (B), -2 (C) or -3 (D). At the antibody concentration used, 95% of the cells exhibited at least one Ca^{2+} transient within 220 s in all cell types. Upper and lower traces show representative traces of the early and late responses, respectively. Antibody was applied as indicated by the horizontal bars below the traces. (**E**) Histogram for the number of Ca^{2+} oscillations within 220 s of BCR stimulation (100 cells from three cultures in each cell type).

combined use of luminal Ca^{2+} monitoring and genetically engineered cells provided us with a unique system to study quantitatively the properties of IP_3R subtypes expressed individually or along with other subtypes in an identical cellular context.

Agonist sensitivities of individual IP₃R subtypes

We first analysed the IP₃-induced Ca²⁺ release in cells expressing a single IP₃R subtype. Although IP₃ (10 μ M) induced rapid Ca²⁺ release in wild-type cells in the absence of ATP, the rate of Ca²⁺ release was extremely low in IP₃R-1-expressing cells (Figure 4A). It has been shown that IP₃R activity is enhanced by ATP in a hydrolysis-independent manner in smooth muscle and cerebellar preparations (Iino, 1991; Bezprozvanny and Ehrlich, 1993; Missiaen *et al.*, 1998) in which the dominant IP₃R subtype is IP₃R-1 (Newton *et al.*, 1994; Wojcikiewicz, 1995). Indeed, the rate of Ca²⁺ release was enhanced by ATP (in the absence of Mg²⁺) in IP₃R-1-

Fig. 3. Luminal Ca²⁺ measurement in single cells. Single DT40 cells under transmitted light (A), fluorescence intensity at 380 nm after loading with Furaptra (B) and after subsequent permeabilization with β -escin (C). The central region of the cells is occupied by the nucleus. Scale bar, 10 μ m. (**D**) Change in fluorescence intensity ratio (*R*) normalized by R_0 in the Ca²⁺-depleted state during Ca²⁺ loading (400 nM Ca²⁺ plus 0.5 mM Mg²⁺-ATP), washout of Mg²⁺-ATP and Ca^{2+} release (3 μ M IP₃ at 100 nM Ca^{2+}). The Ca^{2+} loading-release cycles could be repeated several times in the same cells. (E) Caffeine (Caf; 20 mM) failed to induce Ca²⁺ release, but subsequent application of IP₃ (10 μ M) released Ca²⁺. (F) IP₃ (10 μ M) failed to induce Ca²⁺ release in cells in which all three IP₃R subtype genes were disrupted, although subsequent application of ionomycin (IO; 1 μ M) induced Ca²⁺ release. (G) Normalized time course of Ca² release at different IP3 concentrations. Continuous lines, time courses of Ca^{2+} release at 0.1, 1 and 10 μM IP_3 (lower abscissa). Time course at 0.1 μ M (\Box), 1 μ M (\bigcirc) and 10 μ M (continuous line) was normalized to the half-time $(t_{1/2})$ of Ca²⁺ release for each IP₃ concentration (upper abscissa).

expressing cells with an EC₅₀ of 0.39 mM, while no effect was observed in wild-type cells (Figure 4A and B). The effect of ATP on IP₃R-1 was mimicked by β , γ -methylene ATP, a nonhydrolysable ATP analogue (data not shown). A less significant effect of ATP on IP₃R-3 was observed, whereas Ca²⁺ release via IP₃R-2 was insensitive to ATP (Figure 4C).

We then studied the IP₃ concentration dependence of Ca^{2+} release (Figure 5A). The IP₃ sensitivity was in the order of IP₃R-2 > IP₃R-1 > IP₃R-3; the EC₅₀ obtained by hyperbolic fitting (see the legend to Figure 5) being 0.35, 4.7 and 18.6 μ M, respectively. The extrapolated values of the maximal rate of Ca²⁺ release (r_{max}) were 0.063, 0.129 and 0.108 s⁻¹ in cells expressing IP₃R-1, -2 and -3, respectively. Thus r_{max} was comparable within a factor of two among DT40 clones expressing different IP₃R subtypes.

IP₃R activity has been shown to be dependent on the cytoplasmic Ca²⁺ concentration in a biphasic manner in many cell types (Iino, 1990; Bezprozvanny *et al.*, 1991; Finch *et al.*, 1991). This property has been thought to

Fig. 4. ATP dependence of IP₃-induced Ca²⁺ release. (**A**) ATP (5 mM) had virtually no effect in wild-type cells, but greatly enhanced IP₃-induced Ca²⁺ release in IP₃R-1 expressing cells. (**B**) ATP dependence of the rate of IP₃-induced Ca²⁺ release in IP₃R-1- expressing cells. (**C**) Percentage of the rate of Ca²⁺ release (10 μ M IP₃, 300 nM Ca²⁺) in the absence of ATP compared with that in the presence of 10 mM ATP in cells expressing various IP₃R subtypes. Results are the mean \pm SEM for four experiments.

Fig. 5. IP₃-concentration dependence of Ca²⁺ release. (**A**) Ca²⁺ release in cells expressing a single IP₃R subtype. Continuous curves represent the best fit hyperbolic equations, $r_{max,i}/(1 + EC_{50,i}/[IP_3])$ for subtype *i*. For IP₃R-1 and -3, the fitted curves were scaled upward (dashed curves) so that r_{max} was the same as that of IP₃R-2 for the ease of comparison of EC₅₀₈. (**B**) Ca²⁺ release rate in cells expressing multiple IP₃R subtypes. Dashed curve shows the fitted curve for IP₃R-2 in (A). Dotted curves show summation of the fitted equations, $\Sigma{\{f_i \cdot r_{max,i}/(1 + EC_{50,i}/[IP_3])\}}$, for *i* = 1, 2, 3. When subtype *i* was not expressed f_i was set to zero. Sets of (f₁, f₂, f₃) obtained by a least-squares method were as follows: (0.32, 0.60, 0), (0, 0.57, 0.82), (0.71, 0, 0.51), (0.37, 0.70, 0.31) for cells expressing IP₃R subtypes 1/2, 2/3, 1/3 and 1/2/3 (wild type), respectively. Ca²⁺ concentration was 100 nM. Ca²⁺ release via IP₃R-1 was studied in the presence of 5 mM ATP. Results are the mean ± SEM for 4–5 experiments.

Fig. 6. Ca^{2+} -concentration dependence of IP₃-induced Ca^{2+} release. (A) Ca^{2+} release in cells expressing a single IP₃R subtype. (B) Ca^{2+} release in cells expressing multiple IP₃R subtypes. (C) Ca^{2+} -mediated activation of IP₃-induced Ca^{2+} release. Percentage increase of the Ca^{2+} -release rate at 300 nM Ca^{2+} compared with that at 10 nM Ca^{2+} . IP₃ concentrations were 0.3 μ M for cells expressing subtype(s) 2, 1/2, 2/3, 1/2/3; 6 μ M for subtype(s) 1, 1/3; and 20 μ M for subtype 3. Ca^{2+} release via IP₃R-1 was studied in the presence of 5 mM ATP. Results are the mean \pm SEM for 3–5 experiments.

underlie the regenerative Ca^{2+} release during the Ca^{2+} wave and rapid upstroke of $[Ca^{2+}]_i$ increase (Iino and Endo, 1992; Lechleiter and Clapham, 1992; Iino *et al.*, 1993; Bootman *et al.*, 1997; Horne and Meyer, 1997). Ca^{2+} release via IP₃R-1 and IP₃R-2 exhibited clear biphasic Ca^{2+} dependence with a peak rate obtained near 300 nM (Figure 6A), whereas IP₃R-3-mediated Ca^{2+} release exhibited flatter Ca^{2+} dependence. Figure 6C plots the extent of Ca^{2+} -induced activation, or the percentage activation of the rate of Ca^{2+} release, when the cytoplasmic Ca^{2+} concentration was increased from 10 to 300 nM in cells containing the various IP₃R subtypes.

Functional interaction between IP₃R subtypes

It has been shown that the IP_3R subtypes form heterotetramers (Joseph *et al.*, 1995; Monkawa *et al.*, 1995), which were thought to create an additional degree of

variability with regard to the IP₃R function. However, functional interactions between the IP₃R subtypes have not previously been investigated. We studied IP₃-induced Ca^{2+} release in cells expressing multiple IP₃R subtypes. The IP₃ dependence of the Ca^{2+} release rate in cells with multiple IP₃R subtypes was closely fitted by the summation of the fits to the corresponding individual subtypes after reduction of the maximal rates to 31-82% of those in cells expressing a single subtype (Figure 5B, dotted curves). The downward scaling of the maximal release rate may reflect compensatory upregulation of IP₃Rs in cells expressing only a single subtype. This is consistent with the increased mRNA or protein levels observed in mutant cells (Figure 1). We also studied the ATP and Ca^{2+} dependence of Ca^{2+} release in cells expressing multiple subtypes (Figures 4C and 6B). When IP₃R-1 and IP₃R-3 were coexpressed, the ATP dependence was similar to that of IP₃R-3 but the Ca²⁺ dependence was similar to that of IP₃R-1. IP₃-induced Ca²⁺ release in cells expressing both IP₃R-1 and IP₃R-2 lost the prominent ATP dependence that was characteristic of IP₃R-1. Cells expressing both IP₃R-2 and IP₃R-3 showed ATP and Ca²⁺ sensitivities similar to those of IP₃R-2-expressing cells. In wild-type cells, the ATP sensitivity was similar to that of IP₃R-2expressing cells. Taken together, coexpression of multiple subtypes resulted in simple additive IP₃ sensitivity, whereas the property of either one of the subtypes became dominant in terms of ATP and Ca²⁺ sensitivity. The latter result indicates that there is indeed a molecular interaction between the different subtypes, probably within the heterotetrameric structure of the Ca²⁺ release channels.

*Ca*²⁺ signalling and *IP*₃*R* subtypes

The present results highlight the functional variations among IP₃R subtypes. IP₃R-1, when expressed singly, exhibited prominent ATP dependence and the potential to function as an ATP sensor just like the ATP-sensitive K⁺ channels in pancreatic β cells. IP₃R-3 has the lowest IP₃ and Ca²⁺ sensitivities, while IP₃R-2 has the highest sensitivity to IP₃. The order of IP₃ sensitivity is in general agreement with that of the IP₃-binding affinity of the IP₃R subtypes (Newton et al., 1994). Furthermore, BCRmediated Ca²⁺-signalling patterns differed significantly among cells expressing different IP₃R subtypes: Ca²⁺ oscillations were found in IP3R-1 and -2 expressing cells, while monophasic Ca2+ transients were observed in IP₃R-3-expressing cells. Although difference in the level of expression of various IP₃R subtypes may affect the Ca^{2+} -signalling patterns, the following considerations make it unlikely to be a major determinant in the present study. The expression levels of IP₃R subtypes can be estimated from r_{max} , i.e. the maximum rate of Ca²⁺ release, and the values were comparable within a factor of two among DT40 clones expressing different IP₃R subtypes (Figure 5A). If we take ATP dependence of IP_3R-3 into consideration (see Figure 4C), difference in r_{max} values between IP₃R-2- and IP₃R-3-expressing cells is probably minimal under physiological intracellular conditions, where ATP is present at millimolar levels. Moreover, the $r_{\rm max}$ value of IP₃R-3-expressing cells was greater than that of IP₃R-1-expressing cells even in the presence of ATP. Thus there is no correlation between the Ca^{2+} -oscillation pattern in intact cells and the level of functional expression of IP₃Rs.

We have obtained evidence for the first time that coexpressed IP₃R subtypes interact functionally. Coexpression of subtypes with different affinities for IP₃ widens the range of IP₃ sensitivity of intracellular Ca^{2+} stores. Furthermore, expression of IP₃R-2, with or without other subtypes, facilitates Ca²⁺ oscillations in DT40 cells. It is of interest to note that IP₃R-2 is the dominantly expressed IP₃R in hepatocytes (Wojcikiewicz et al., 1994), in which Ca²⁺ oscillations were first observed (Woods et al., 1986). The high IP3 sensitivity of IP3R-2 may underlie the long-lasting Ca²⁺ oscillations, but other possibilities, such as preferential modification of IP₃R-2 during Ca²⁺ oscillations, cannot be excluded. The expression patterns of IP₃R subtypes differ among different tissues (Newton et al., 1994; Wojcikiewicz et al., 1994), during development (Dent et al., 1996), and in subcellular localization (Lee *et al.*, 1997). Our results provide a clear functional basis for the physiological significance of the differential expression of IP₃R subtypes in cell-type-specific encoding of Ca^{2+} signalling.

Materials and methods

Cell culture and generation of DT40 B cells expressing only $IP_3R\mathcal{-}1$ or $IP_3R\mathcal{-}2$

DT40 chicken B lymphoma cells were cultured in RPMI1640 supplemented with 10% fetal calf serum (FCS), 1% chicken serum, penicillin, streptomycin and glutamine. To inactivate the IP₃R-3 gene, two targeting vectors, pIP₃R type 3-*bleo* and pIP₃R type 3-*bsr*, were used. The latter was constructed by replacing the *bleo* cassette of pIP₃R type 3-*bleo* (Sugawara *et al.*, 1997) with the *bsr* cassette. For disruption of both alleles of the IP₃R-3 gene, these two targeting vectors were transfected sequentially into DT40 cells expressing a combination of DT40 cells expressing only IP₃R-1/IP₃R-2 respectively. Other IP₃R gene-targeted DT40 cells had been established previously (Sugawara *et al.*, 1997).

Northern analysis

RNA was prepared from wild-type and mutant DT40 cells using the guanidium thiocyanate method. Total RNA (20 μ g) was separated in a 1.2% formaldehyde gel, transferred onto a Hybond-N membrane and probed with ³²P-labelled cDNA fragments specific for each type of chicken IP₃R gene (Sugawara *et al.*, 1997) and the chicken β -actin gene (Kost *et al.*, 1983).

Immunoprecipitation and immunoblotting

Cells were lysed in a solution containing 30 mM Tris-HCl pH 8.0, 10 mM EDTA, 0.1% SDS, 0.5% sodium deoxycholate, 1% NP-40, 1 mM Na₃VO₄, 30 mM NaF, 1 mM PMSF, 10 µg/ml leupeptin, 10 µg/ml aprotinin and 0.1% bovine serum albumen (BSA) (lysis buffer). Lysates were clarified by centrifugation at 15 000 g for 10 min at 4° C. Immunoprecipitation was performed at 4°C using a rabbit polyclonal anti-IP₃R antibody (raised against a synthetic peptide within the C-terminal cytoplasmic domain of either chicken IP3R-1, LGHPPPMNVPQPA, or IP₃R-2, LGSHTPHVNHHMPPP) for >1 h, and then with addition of protein G-Sepharose for >1 h. The immune complexes were washed and heated at 100°C in SDS sample buffer. Solubilized proteins were separated by SDS-PAGE and transferred electrophoretically to a PVDF membrane. After blocking in 5% fatty acid-free BSA, the blot was incubated with the same anti-IP3R antibody and then incubated with [125I]protein G. The associated radioactivity was visualized using a Fuji BAS2000 Bio Imaging Analyzer.

Ca²⁺ imaging

Cells were attached to poly-L-lysine and collagen-coated coverslips, and loaded with either 1 µM Fura-2AM for 20-30 min or 20 µM FuraptraAM for 60 min in a physiological salt solution: 150 mM NaCl, 4 mM KCl, 2 mM CaCl₂, 1 mM MgCl₂, 5 mM HEPES, 5.6 mM glucose, pH 7.4. The Furaptra-loaded cells were then permeabilized by incubation with 40 μ M β -escin for 2–4 min in an internal solution (Hirose *et al.*, 1998) to wash out the Furaptra in the cytoplasm, which enabled measurement of the Ca²⁺ concentration within the organelles. An Olympus IX70 inverted microscope, equipped with a cooled CCD camera (Photometrics, USA) and a polychromatic illumination system (T.I.L.L. Photonics, Germany), was used to capture the fluorescence images at a rate of one pair of frames with excitations at 340 and 380 nm per 1, 2, 5 or 10 s. The ratio of the fluorescence intensity between the pair of frames was then calculated after subtraction of the baseline fluorescence. Cells were viewed under an oil-immersion objective (100×, NA 1.35). Experiments were carried out at room temperature (22-24°C), and solutions were applied to the cells through an electrically controlled puffing pipette. Solutions containing various concentrations of Ca²⁺ were prepared by mixing CaEGTA and EGTA solutions at appropriate ratios (Hirose et al., 1998).

Evaluation of IP₃R activity

The IP₃R activity was evaluated in terms of the initial Ca²⁺ release rate as described previously (Hirose and Iino, 1994). Briefly, the observed change in the ratio of fluorescence intensities of 30–40 cells within a frame were normalized so that 1 and 0 corresponded, respectively, to the values just before the application of IP₃ and after complete depletion

by 10 μ M IP₃ at 300 nM Ca²⁺. The initial 20 s period of the normalized time course was fitted by a single exponential function, e^{-rt} . The rate constant, r (s⁻¹), thus estimated was used as an index of the IP₃R activity.

Acknowledgements

The authors thank Dr Mari Kurosaki for help at various stages of the work and Izumi Shibata for technical assistance. This work was partly supported by grants from the Ministry of Education, Science, Sport and Culture of Japan.

References

- Berridge, M.J. (1993) Inositol trisphosphate and calcium signalling. *Nature*, 361, 315–325.
- Bezprozvanny,I. and Ehrlich,B. (1993) ATP modulates the function of inositol 1,4,5-trisphosphate-gated channels at two sites. *Neuron*, 10, 1175–1184.
- Bezprozvanny, I., Watras, J. and Ehrlich, B.E. (1991) Bell-shaped calciumresponse curve of Ins (1,4,5)P₃- and calcium-gated channels from endoplasmic reticulum of cerebellum. *Nature*, **351**, 751–754.
- Bootman, M.D., Berridge, M.J. and Lipp, P. (1997) Cooking with calcium: the recipes for composing global signals from elementary events. *Cell*, 91, 367–373.
- De Koninck,P. and Schulman,H. (1998) Sensitivity of CaM kinase II to the frequency of Ca²⁺ oscillations. *Science*, **279**, 227–230.
- Dent,M.A., Raisman,G. and Lai,F.A. (1996) Expression of type 1 inositol 1,4,5-trisphosphate receptor during axogenesis and synaptic contact in the central and peripheral nervous system of developing rat. *Development*, **122**, 1029–1039.
- Dolmetsch,R.E., Xu,K. and Lewis,R.S. (1998) Calcium oscillations increase the efficiency and specificity of gene expression. *Nature*, **392**, 933–936.
- Finch,E.A., Turner,T.J. and Goldin,S.M. (1991) Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release. *Science*, **252**, 443–446.
- Hagar, R.E., Burgstahler, A.D., Natanson, M.H. and Ehrlich, B.E. (1998) Type III InsP₃ receptor channel stays open in the presence of increased calcium. *Nature*, **396**, 81–84.
- Hajnóczky,G. and Thomas,A.P. (1997) Minimal requirements for calcium oscillations driven by the IP₃ receptor. *EMBO J.*, 16, 3533–3543.
- Hirose, K. and Iino, M. (1994) Heterogeneity of channel density in inositol 1,4,5-trisphosphate-sensitive Ca²⁺ stores. *Nature*, **372**, 791–794.
- Hirose, K., Kadowaki, S. and Iino, M. (1998) Allosteric regulation by cytoplasmic Ca²⁺ and IP₃ of the gating of IP₃ receptors in permeabilized guinea-pig vascular smooth muscle cells. *J. Physiol.*, **506**, 407–414.
- Hofer,A.M. and Machen,T.E. (1993) Technique for *in situ* measurement of calcium in intracellular inositol 1,4,5-trisphosphate-sensitive stores using the fluorescent indicator mag-fura-2. *Proc. Natl Acad. Sci. USA*, **90**, 2598–2602.
- Horne, J.H. and Meyer, T. (1997) Elementary calcium-release units induced by inositol trisphosphate. *Science*, 276, 1690–1693.
- Iino,M. (1990) Biphasic Ca²⁺ dependence of inositol 1,4,5-trisphosphateinduced Ca release in smooth muscle cells of the guinea pig taenia caeci. J. Gen. Physiol., 95, 1103–1122.
- Iino,M. (1991) Effects of adenine nucleotides on inositol 1,4,5trisphosphate-induced calcium release in vascular smooth muscle cells. J. Gen. Physiol., 98, 681–698.
- Iino,M. and Endo,M. (1992) Calcium-dependent immediate feedback control of inositol 1,4,5-trisphosphate-induced Ca²⁺ release. *Nature*, 360, 76–78.
- lino,M., Yamazawa,T., Miyashita,Y., Endo,M. and Kasai,H. (1993) Critical intracellular Ca^{2+} concentration for all-or-none Ca^{2+} spiking in single smooth muscle cells. *EMBO J.*, **12**, 5287–5291.
- Joseph, S.K., Lin, C., Pierson, S., Thomas, A.P. and Maranto, A.R. (1995) Heteroligomers of type-I and type-III inositol trisphosphate receptors in WB rat liver epithelial cells. J. Biol. Chem., 270, 23310–23316.
- Kost,T.A., Theodorakis,N. and Hughes,S.H. (1983) The nucleotide sequence of the chick cytoplasmic β-actin gene. *Nucleic Acids Res.*, 11, 8287–8301.
- Kurosaki,T. (1997) Molecular mechanisms in B cell antigen receptor signaling. *Curr. Opin. Immunol.*, 9, 309–318.
- Lechleiter, J.D. and Clapham, D.E. (1992) Molecular mechanisms of intracellular calcium excitability in *X. laevis* oocytes. *Cell*, **69**, 283–294.

- Lee,M.G., Xu,X., Zeng,W., Diaz,J., Wojcikiewicz,R.J., Kuo,T.H., Wuytack,F., Racymaekers,L. and Muallem,S. (1997) Polarized expression of Ca²⁺ channels in pancreatic and salivary gland cells. Correlation with initiation and propagation of [Ca²⁺]_i waves. J. Biol. Chem., **272**, 15765–15770.
- Li,W., Llopis,J., Whitney,M., Zlokarnik,G. and Tsien,R.Y. (1998) Cellpermeant caged InsP₃ ester shows that Ca²⁺ spike frequency can optimize gene expression. *Nature*, **392**, 936–941.
- Missiaen,L., Parys,J.B., Sienaert,I., Maes,K., Kunzelmann,K., Takahashi,M., Tanzawa,K. and De Smedt,H. (1998) Functional properties of the type-3 InsP₃ receptor in 16HBE14o–bronchial mucosal cells. J. Biol. Chem., 273, 8983–8986.
- Monkawa,T., Miyawaki,A., Sugiyama,T., Yoneshima,H., Yamamoto-Hino,M., Furuichi,T., Saruta,T., Hasegawa,M. and Mikoshiba,K. (1995) Heterotetrameric complex formation of inositol 1,4,5trisphosphate receptor subunits. J. Biol. Chem., 270, 14700–14704.
- Newton,C.L., Mignery,G.A. and Südhof,T.C. (1994) Co-expression in vertebrate tissues and cell lines of multiple inositol 1,4,5-trisphosphate (InsP₃) receptors with distinct affinities for InsP₃. J. Biol. Chem., 269, 28613–28619.
- Raju,B., Murphy,E., Levy,L.A., Hall,R.D. and London,R.E. (1989) A fluorescent indicator for measuring cytosolic free magnesium. Am. J. Physiol., 256, C540–C548.
- Ramos-Franco, J., Fill, M. and Mignery, G.A. (1998) Isoform-specific function of single inositol 1,4,5-trisphosphate receptor channels. *Biophys. J.*, **75**, 834–839.
- Sugawara,H., Kurosaki,M., Takata,M. and Kurosaki,T. (1997) Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5trisphosphate receptors in signal transduction through the B-cell antigen receptor. *EMBO J.*, **16**, 3078–3088.
- Wojcikiewicz, R.J. (1995) Type I, II and III inositol 1,4,5-trisphosphate receptors are unequally susceptible to down-regulation and are expressed in markedly different proportions in different cell types. *J. Biol. Chem.*, **270**, 11678–11683.
- Wojcikiewicz,R.J., Furuichi,T., Nakade,S., Mikoshiba,K. and Nahorski,S.R. (1994) Muscarinic receptor activation down-regulates the type I inositol 1,4,5-trisphosphate receptor by accelerating its degradation. J. Biol. Chem., 269, 7963–7969.
- Woods,N.M., Cuthbertson,K.S.R. and Cobbold,P.H. (1986) Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes. *Nature*, **319**, 600–602.

Received July 2, 1998; revised December 12, 1998; accepted January 12, 1999