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Abstract

Recordings of local field potentials (LFPs) reveal that the sensory cortex displays rhythmic activity and fluctuations over a
wide range of frequencies and amplitudes. Yet, the role of this kind of activity in encoding sensory information remains
largely unknown. To understand the rules of translation between the structure of sensory stimuli and the fluctuations of
cortical responses, we simulated a sparsely connected network of excitatory and inhibitory neurons modeling a local cortical
population, and we determined how the LFPs generated by the network encode information about input stimuli. We first
considered simple static and periodic stimuli and then naturalistic input stimuli based on electrophysiological recordings
from the thalamus of anesthetized monkeys watching natural movie scenes. We found that the simulated network
produced stimulus-related LFP changes that were in striking agreement with the LFPs obtained from the primary visual
cortex. Moreover, our results demonstrate that the network encoded static input spike rates into gamma-range oscillations
generated by inhibitory–excitatory neural interactions and encoded slow dynamic features of the input into slow LFP
fluctuations mediated by stimulus–neural interactions. The model cortical network processed dynamic stimuli with
naturalistic temporal structure by using low and high response frequencies as independent communication channels, again
in agreement with recent reports from visual cortex responses to naturalistic movies. One potential function of this
frequency decomposition into independent information channels operated by the cortical network may be that of
enhancing the capacity of the cortical column to encode our complex sensory environment.
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Introduction

Oscillations are a common and prominent feature of cortical

sensory-evoked activity. Presentation of sensory stimuli elicits

oscillations in Electro-Encephalogram (EEG) and Local Field

Potential (LFP) recordings which span a very broad frequency

spectrum, ranging from a fraction of a Hz to well over 100 Hz.

Oscillations in the gamma band (30–100 Hz) have elicited a great

deal of attention because they are robustly triggered and

modulated by sensory stimuli in olfactory [1], auditory [2,3] and

visual cortices [4–9]. In addition, particular types of behaviorally

relevant stimuli (such as stimuli with either rhythmic, complex, or

naturalistic dynamics) elicit and modulate cortical oscillations at

specific frequencies within the low-frequency (,10–20 Hz) range

[10–16]. The prominent presence of oscillations in sensory systems

raises two sets of important questions: how are these oscillations

generated? and why are they generated? In other words, what is

the mechanism of the oscillations, and what is their function?

The first question has motivated many recent theoretical

studies. Theorists have proposed different mechanisms giving rise

to oscillatory activity in models of recurrent networks of spiking

neurons. In networks coupled through purely chemical synapses,

oscillatory synchrony might emerge through mutual inhibitory

interactions [17,18], or due to a feedback loop between excitatory

and inhibitory neurons [19,20]. Recent studies have focused on a

regime of high noise, due to the observed irregularity of firing of

neurons in cortex [21–24]. These studies have demonstrated the

existence of an oscillatory regime in which a population of cells fire

rhythmically at high frequencies, while single cells fire stochasti-

cally at a rate that is much lower than the population frequency.

The network frequency was shown to depend on synaptic time

scales [25,26], as well as on the balance between excitation and

inhibition [26,27]. In a large parameter range, the network

frequency is in the gamma range [26,27]. One of the interesting

features of this oscillatory regime is that it strongly depends on

external inputs. For weak external inputs, the network is typically

in an asynchronous state, with small damped oscillations due to

finite size effects [25]. As the inputs increase, the network becomes

more synchronized, and the amplitude of the oscillation increases.

In spite of the effort to understand the mechanism of generation

of network oscillations, the role of such oscillations in information

encoding has remained so far elusive, and several key questions

have yet to be addressed. First, there is currently no theoretical

framework that explains how, even in the same sensory area,
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different types of stimuli encode information in different frequency

bands [8,10,14]. Second, although there is evidence that external

stimuli with a rhythmic structure may entrain low frequency

cortical oscillations [10,16], it is not known how the combination

of fluctuations generated by stimulus-neural interactions and the

oscillations generated by neural-neural interactions shapes the

network dynamics and serves sensory information encoding.

Third, the potential computational advantages of the cortical

encoding of stimuli by a diverse and broad range of frequencies

have not been understood yet.

Here, we hypothesize that stimulus-related changes of low-

frequency cortical fluctuations originate directly from stimulus-

neural interaction and encode information about slowly varying

features in the sensory or thalamic input, whereas the stimulus-

related changes of high-frequency cortical oscillations are

mediated by neural-neural interactions and carry information

about sensory features that provoke thalamic responses that differ

only in terms of their total spike rate. We tested this hypothesis by

simulating a network of excitatory and inhibitory neurons

modeling a local population in primary visual cortex, and we

determined how the LFPs and spiking activity generated by the

network encode information about either simple or complex

inputs, the latter simulating sensory-related thalamic signals. We

found that the simulated network encodes dynamic stimulus

features according to the hypothesis described above, and in

particular encodes naturalistic stimuli by using low and high

response frequencies as independent communication channels, in

agreement with results from visual cortex [14].

Results

We used a model of cortical network composed of leaky

integrate-and-fire neurons, similar to the one used in [26]

(Figure 1A). In brief (see Methods for full details), the model

network represents in a simplified way a local circuit in primary

visual cortex, and was composed of two neuronal populations:

1000 inhibitory interneurons and 4000 pyramidal neurons. The

network connectivity was random and sparse with a 0.2

probability of directed connection between any pair of neurons.

Synaptic currents represented fast synaptic interactions, with time

courses resembling experimentally measured AMPA currents (for

excitatory currents) and GABA currents (for inhibitory currents).

The strength of GABAergic connections was sufficient to ensure

stable activity at low firing rates in the network. Both populations

received a noisy excitatory external input taken to represent the

activity from thalamocortical afferents, with interneurons receiving

stronger inputs than pyramidal neurons [28].

We quantified the network activity by monitoring the individual

spike times of each neuron, the instantaneous population firing

rate (obtained counting the number of spikes fired by neurons in a

given population in a 1 ms bin), the average membrane potential

of each population, and the average synaptic currents. Since the

spiking activity of individual cortical neurons is irregular,

oscillations are often monitored experimentally by recording

LFPs. Thus, to better compare the oscillations of our model to

those recorded in cortex, we computed a simulated LFP from our

network (see Methods for a complete description).

LFPs are experimentally obtained by low pass filtering the

extracellularly recorded neural signal, and are thought to reflect

primarily the current flow due to synaptic activity around the tip of

the recording electrode [29], as well as some other type of slow

activity such as voltage-dependent membrane oscillations [30] and

spike afterpotentials [31]. Thus, we computed the LFP as the sum

of the absolute values of AMPA currents and of GABA currents.

Since pyramidal neurons contribute maximally to generation of

LFPs in cortex because their apical dendrites are organized in an

approximate open field configuration, we summed only currents

from synapses of the pyramidal neurons population. This model,

though much simpler than some previous models [32], proved to

be an effective way to generate a realistic LFP signal that match

many characteristics of LFPs in sensory cortex, as shown below.

As a consequence of strong recurrent inhibition, single neurons

fire in an irregular fashion at low rates [25,33–37]; however

population oscillations are clearly visible at the network level

[25,26] (as shown in Figure 2). Since they were present when the

input to the network was constant in time, these oscillations must

be generated within the network. As demonstrated previously, two

features of the recurrent connectivity contribute to the generation

of network oscillations: delayed interactions between interneurons,

which tend to favor high frequency oscillations [25,26], and the

excitatory-inhibitory feedback loops, that tend to promote lower

frequency oscillations [26]. The oscillation frequency depends on

delays, synaptic time constants and the balance between excitation

and inhbition [26]. For the model parameters chosen here (see

Methods), the frequency of the oscillation was in the 30–100 Hz

range, similar to experimental observations [14].

One crucial property of such excitatory-inhibitory recurrent

networks is that the strength of the population oscillation strongly

depends on external inputs to the network. Typically, for low

enough external inputs, the network is in an asynchronous state,

with weak and strongly damped oscillations in the population

activity due to finite size effects, while for strong external inputs,

the network tends to settle in a pronounced oscillatory state

[25,26,37]. The goal of the present paper is to analyze how the

modulation of this internally generated oscillatory synchrony and

the interaction between stimulus oscillations and neural oscilla-

tions allow the population activity to transmit information about

the signals received by the network, and to compare the results

with available experimental data [8,14] in order to better

understand the transformation between stimuli and cortical

oscillatory activity. To study how stimuli modulate the activity of

the model cortical network, we injected to the network three

classes of inputs of increasing complexity (Figure 1B–D), composed

by different kinds of signals to which we superimposed a noise (see

Methods) that was different from simulated trial to simulated trial.

We first considered inputs that are constant in time and vary only

in rate; we then considered periodic inputs of different frequency

Author Summary

The brain displays rhythmic activity in almost all areas and
over a wide range of frequencies and amplitudes. However,
the role of these rhythms in the processing of sensory
information is still unclear. To study the interplay between
visual stimuli and ongoing oscillations in the brain, we
developed a model of a local circuit of the visual cortex. We
injected into the network the signal recorded in the
thalamus of an anesthetized monkey watching a movie,
to mimic the effect of a naturalistic stimulus arriving at the
visual cortex. Our results are in striking agreement with
recordings from the visual cortex. Furthermore, through
manipulations of the signal and information analysis, we
found that two specific frequency bands of the neurons’
activity are used to encode independent stimuli features.
These results describe how sensory stimuli can modulate
frequency and amplitude of ongoing neural activity and
how these modulations can be used to convey sensory
information through the different layers of the brain.

Model of LFP coding
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and amplitude, and we finally considered complex broadband

inputs with a statistics similar to that of geniculate neurons

responding to naturalistic movies.

How Gamma Oscillations Are Modulated by the Firing
Rate of the Input Stimulus

We started by examining the network response to 2 seconds

long constant signals with different rates, superimposed to noise

(Figure 1B). Figure 2 illustrates the dynamics of the system for

different rates of the signal (1.2, 1.6 and 2.4 spikes/ms). Raster

plots in Figure 2A–C show that the neuronal firing was sparse in

all conditions: the average firing rate of individual pyramidal

neurons was 0.19, 0.45, 0.92 spikes/sec respectively, whereas the

average firing rate of individual interneurons was 0.75, 1.76 and

3.95 spikes/sec respectively. Though spiking activity of single cells

was seemingly random, inspection of the total firing rate from the

pyramidal and the interneuronal population (Figure 2D–F)

showed that increasing the signal rate led to an increased average

firing in the network and that population spikes occurred in a

synchronous fashion, due to pronounced population oscillations

[26] in the gamma band (30–100 Hz). The increase of gamma

oscillations with stimulus rate was also clearly visible in the

simulated LFPs displayed in Figure 2G–I.

The trial-averaged power spectra of LFPs measured in response to

a wide range of firing rate values of the signal are displayed in

Figure 3A. The simulated LFPs obtained in responses to such stimuli

are of interest because they can be compared directly to the cortical

LFPs recorded experimentally in V1 of anesthetized monkeys in

response to grating stimuli with different levels of contrast and

reported in Ref [8]. This is because the increase in contrast in visual

stimuli leads to an increase of average firing rate in LGN [38,39].

Consistent with the results of [8], we found that the spectra of the

simulated LFP showed the highest power at low frequencies, with a

local peak in the gamma range (30–100 Hz). The height and the

width of the gamma range spectral peak increased monotonically

with the signal firing rate. To better visualize how signal rate

modulates different frequency bands of the LFP, we defined (in

analogy with [8]) the power modulation at given frequency and

signal rate as the difference between the trial-averaged spectral

power at that frequency in response to the considered input rate and

the trial-averaged spectral power at that frequency in response to the

smallest input rate tested (1.2 spikes/ms), normalized to the latter

power. Modulation values are reported in Figure 3B. Frequencies

below 30 Hz in the simulated LFP spectra were only weakly

modulated. Frequencies that were more strongly modulated by the

stimulus were in the gamma band, with a peak at ,70 Hz. The

modulation reached a plateau at higher frequencies (.100 Hz). All

these results are fully consistent with the neurophysiological

experiments reported in [8] (see their Figures 2 and 4), which

report a strong modulation of the LFP power by visual contrast in

the gamma band (30–100 Hz), a smaller modulation at higher

frequencies, and very weak modulations at lower frequencies.

We next examined the behavior of the total firing rate.

Unsurprisingly, the power spectra of the instantaneous population

firing rate varied with signal rate in a way which was very similar

to the LFP (Figure 3C and 3D). The relative weight of gamma

oscillations was stronger in the interneuron population than in

pyramidal neurons; nonetheless the size of the modulation in the

gamma band was very similar (Figure 4B).

The above power modulation analysis reveals the frequencies at

which the trial-averaged power is most modulated by the stimulus,

but it does not tell how easy it is to gain information about the

stimulus by observing the LFP in a single trial. To address single-

trial discriminability, we used Shannon information (defined in

Methods and abbreviated as ‘‘information’’ in the following). We

delivered to the network constant signals with 8 different rates

ranging from 1.2 to 2.6 spikes/ms. Each stimulation lasted

2 seconds and was repeated for 20 trials, with noise generated

Figure 1. Network structure and inputs. (A) The network is
composed of two populations (1000 interneurons and 4000 pyramidal
neurons). The connectivity is random, a synapse being present between
any directed pair of neurons with probability 0.2. The size of the arrows
represents schematically the strength of single synapses: recurrent
interactions are dominated by inhibition. In addition to recurrent
interactions, both populations receive an external excitatory input. (B–
D) Three types of inputs are delivered to the network. The three panels
display (in black) the time-varying rate of Poissonian spike trains
representing external inputs to each neuron in the network in a
1 second long interval. All inputs are a superposition of a ‘signal’ and a
‘noise’ component. The ‘signal’ is shown in green. Average value of
input is 1.6 spikes/ms in all traces. The noise is modelled as an Ornstein-
Uhlenbeck process (see Methods) in all cases while the three signals are
different, (B) Signal: constant rate. (C) Signal: oscillatory rate (here
shown with 8 Hz frequency and 0.8 spikes/ms amplitude) (D) Signal:
taken from MUA recordings of LGN of anesthetized monkeys watching
natural movie scenes (see Methods).
doi:10.1371/journal.pcbi.1000239.g001

Model of LFP coding
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independently from trial to trial (see Methods). From these

simulated responses, we computed the information I(S; Rf) between

the LFP power Rf at a given frequency f and the stimulus input rate

S. The information I(S; Rf) is plotted as a function of frequency f in

Figure 4A and 4B. LFP information was very small at frequencies

below 30 Hz, and was high within the gamma range, where it

reached a peak of 1.32 bits at a frequency of 70 Hz (to be

compared with a stimulus entropy of 3 bits). Information then

decreased to an average value of 0.85 bits at higher LFP

frequencies (.100 Hz). It is interesting to note that the

information peak was reached at a higher frequency than the

one at which gamma-range oscillation power was highest. This is

consistent with the empirical observation of [7] and can be

explained by the fact that the power is maximally modulated by

the stimulus at frequencies higher than the peak, since when the

input rate is increased the gamma peak is at the same time

increasing in power and moving toward higher frequencies (see

Figure 3A and 3C).

After determining which LFP frequencies convey the most

information about the stimulus, the next step is to investigate

whether the information carried by different frequencies is

redundant or independent. This can be done by computing the

redundancy, defined as the difference between the sum of the

information provided by each individual frequency I(S; Rf1)+I(S;

Rf2) and the joint information I(S; Rf1Rf2) carried by the joint

observation of power at frequency f1 and f2 (see Equation 14).

Results are reported in Figure 4C and 4D. For any frequency

above 50 Hz, the joint information I(S; Rf1Rf2) is on average

0.51 bits less than I(S; Rf1)+I(S; Rf2), and redundancy is highly

positive: on average for this range the 60% of the information of

the less informative frequency in the pair. Thus, the gamma-range

representation of the input spike rate is highly redundant.

Information redundancy can happen because the two frequen-

cies are tuned in the same way to the stimulus features, or because

they share correlated sources of noise. The correlation of the mean

responses across different stimuli of two frequencies are called

‘‘signal correlations’’ [40,41] because they are entirely attributable

to stimulus selectivity. Correlations manifested as covariations of

the trial-by-trial fluctuation around the mean response to the

stimulus are traditionally called ‘‘noise correlations’’ [40,41]. Since

these noise covariations are measured at fixed stimulus, they

ignore covariations effects attributable only to shared stimulation.

Figure 2. Dynamics of the network receiving a constant signal, with three different rates (left, middle, right column: 1.2, 1.6, 2.4
spikes/ms), superimposed to noise. In each column, all panels show the same 250 ms interval (extracted from a 2 seconds simulation). (A–C)
Raster plot of the activity of 200 pyramidal neurons (those that had the highest firing rate during the simulation). (D–F) Average instantaneous firing
rate (computed on a 1 ms bin) of interneurons (blue, upper panels) and pyramidal neurons (red, lower panels). Notice the difference in scale. (G–I)
LFP of the network, modeled as the sum of the absolute values of AMPA and GABA currents on pyramidal neurons (see Methods). Notice that the
population oscillations become more pronounced as the rate of the signal increased, while oscillations are not detectable at the single neuron level.
doi:10.1371/journal.pcbi.1000239.g002

Model of LFP coding
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To understand better the causes of redundancy, we therefore

computed the amount of signal and noise correlation. Figure 4E

reports the amount of signal correlation between frequencies f1

and f2 (computed, for each frequency pair, as the Pearson

correlation across stimuli of the trial-averaged responses). Signal

correlation was very high across all gamma frequencies (mean in

the gamma range: 0.71), showing that all frequencies were tuned

to the same stimuli. This is consistent with the above finding

(Figure 3) that the height and the width of the gamma range

spectral peak increased monotonically with the input firing rate.

Since the presence of signal correlations always decreases the joint

information and leads to redundancy, this explains the redundan-

cy between frequencies. Figure 4F reports the amount of noise

correlation (computed as the Pearson correlation coefficient across

trials at fixed stimulus of the trial-average-subtracted powers at

frequency f1 and f2, averaged over all stimulus windows). There

was little noise correlation (mean in the gamma range: 0.05),

which means that redundancy is due to signal correlation.

In experimental conditions, it is typically possible to record

spikes from a limited set of neurons, and not from all neurons in a

local network. Since single neurons fire irregularly at rates which

are much lower than gamma frequencies, it is essentially

impossible to detect the gamma oscillation from single neuron

spike trains. What is the minimum amount of neurons necessary to

detect gamma band modulations driven by the stimulus rate? We

address this question in Figure 5, where we plot the power

spectrum of the average activity of ensembles of a small number of

neurons (from 1 to 10), for two different input signal rates. We

have considered only pyramidal neurons for this analysis because

they have a larger soma, so they are more likely to be recorded

extracellularly and offer hence a clearer comparison with

experimental results. Figure 5A shows the power spectrum of the

pyramidal neuron with highest average firing rate when the signal

rate was varied from 1.2 to 2.6 spikes/ms. In both cases the power

spectrum was flat, consistent with the neuron firing approximately

as a Poisson process in all stimuli conditions. The only effect of

changes in stimulus rate was to increase the power uniformly at all

frequencies, proportionally to the mean firing rate (maximum

firing rate of 10.6 spikes/sec). Pooling together the spikes of the 5

neurons with highest firing rates was still not enough to detect

gamma oscillations (Figure 5B). It was necessary to pool together

the 10 neurons with highest firing rates, to see a clear peak in the

gamma band for the highest rate stimulations (Figure 5C). In this

case, the compound firing rate of all pyramidal neurons in the set

reached 85 spikes/sec.

Response of the Network to Low Frequency Oscillatory
Inputs

Most previous model studies of oscillations in cortical networks

consider, as we did above, the network dynamics in response to

time-independent input stimulation. However, naturalistic stimuli

are not static, but vary on time scales which are typically much

slower than the time scales of network oscillations discussed above

[42]. As a preliminary to the study of the network dynamics under

natural stimulation conditions, we thus next examine the network

dynamics in response to periodic input signals that oscillate at

frequencies below 20 Hz. We stimulated the network with periodic

signals (see Methods) characterized by their amplitude A (7

different amplitude values, ranging from 0.4 to 1.6 spikes/ms in

0.2 spikes/ms steps), and their frequency v (7 different frequency

values, ranging from 4 to 16 Hz in 2 Hz steps). Each signal was

Figure 3. LFP and firing rate power spectrum as a function of signal rate. Each stimulus was composed of a constant signal with a given rate
(indicated in the legend) plus noise. Power spectra are averaged from 20 trials of 2 seconds each with different noise realizations. Color code is the
same for all panels. (A) LFP power spectrum for various signal rates. (B) Modulation of LFP spectrum for various signal rates. Modulation is defined as
the difference of the power of a frequency at a given signal rate and its power at 1.2 spikes/ms signal rate, normalized to the latter power. Compare
with Figures 2 and 4 of [8] (C–D) Same as (A–B) for firing rate spectrum. Notice the difference in scale between (A) and (C).
doi:10.1371/journal.pcbi.1000239.g003

Model of LFP coding
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presented to the network superimposed to noise (Figure 1C) in 20

different trials, each one lasting for 2 seconds. Figure 6A shows the

trial-averaged LFP spectra for different frequencies v of the input

signal, averaged over all presented amplitudes A. Input oscillations

in this low frequency range are reproduced in the LFP, causing a

peak in the spectrum at exactly the input frequency, with little

effect on the rest of the spectrum, apart from a very small

modulation of the power of the gamma range. This suggests that

different low frequencies in the stimulus are represented by the

LFP independently from each other and are almost entirely

encoded as entrainment of the corresponding low-frequency LFP

band. Figure 6B reports the trial-averaged LFP spectra for

different signal amplitudes, averaged over all presented frequen-

cies. The LFP spectral peaks originated by the different low

frequencies in the input did not shift place when the amplitude was

increased and only increased the height of their peak, again

compatibly with an entrainment with the stimulus. When the

amplitude of the oscillation was increased from 0.4 to 1.6 spikes/

ms, the peak power corresponding to the input frequency

increased linearly of a factor 4.760.4 for all considered

frequencies. Very similar results were obtained analyzing the

power spectrum of the total firing rate (data not shown).

To investigate whether the low frequency band was more

sensitive to amplitude or frequency modulations, we used again

information theory. Figure 6C plots (blue line) the information that

the LFP power at frequency f conveyed about both the frequency

v and the amplitude A of the input spike rate. The information

contained in the peaks in the signal frequencies range was in

between 0.55 and 0.71 bits for a total stimuli entropy of 5.6 bits.

The information about v and A was significant (p,0.05; bootstrap

test) only at the LFP frequencies corresponding to the input ones

(with smaller peaks at their first harmonics). However, the LFP at a

given frequency may actually represent only a smaller subset of

stimulus parameters; for example, either A alone or v alone. To

reveal which parameter is encoded at each frequency, we used the

stimulus grouping approach of [43]. In this approach, stimuli were

grouped into classes of frequency or of amplitude. When this was

done, the number of unique stimuli in the set was reduced. For

frequency grouping, the 49 stimuli defined by joint values of v and

A were reduced to seven groups in which all stimuli within a group

had the identical value of v. Likewise, amplitude grouping yielded

seven groups defined by identical values of A. Applying the ‘‘data

processing inequality’’ [44], it follows that the information about

the frequency or amplitude-grouped stimuli must be less than or

equal to the information about the full, ungrouped stimulus set

made of amplitude and frequencies. Grouped and ungrouped

information can be equal if, and only if, the LFP power responds

only to the stimulus feature that characterizes the grouped

responses [44]. We computed the grouped information carried

by the LFP at frequency f about either A only (green line) or v only

(black line). The information about v conveyed by low frequency

LFPs was larger than the one conveyed about A. This means that

low LFP frequencies are more sensitive to modulations in the

signal frequency than in the signal amplitude.

To characterize entrainment of network activity by the input

signal, we measured the circular variance of the phase difference

between the signals and the band-passed LFP (see Methods). The

value of this measure ranges from zero (signal and LFP are

Figure 4. Information content of LFP and firing rate power spectrum relative to constant stimuli with different rates. Each stimulus
was composed by noise plus a constant signal with a rate ranging from 1.2 to 2.6 spikes/ms, and presented 20 times for 2 seconds with different
noise realizations. (A) Information content of LFP spectrum (in black). The power spectrum averaged over all signals and trials is displayed in a linear
scale with arbitrary units for comparison (in green). Red dashed line corresponds to significance threshold (p,0.05; bootstrap test) for information. (B)
Information content of the spectrum of the pyramidal (black) and interneurons (blue) population firing rates. Power spectra are displayed with
dashed and continuous green line, respectively. Red dashed line as in (A). (C–F) Analysis of LFP frequency pairs: (C) joint information, i.e. information
obtained by considering the two frequencies of the pair (see Equation 13). The gray arrow in the color scale indicates significance threshold (p,0.05,
bootstrap test). (D) Redundancy, i.e. the difference between the sum of the two information contents and the joint information. (E) Signal correlation,
i.e. the correlation across stimuli of trial averaged responses. (F) Noise correlation, i.e. the correlation for fixed stimulus of fluctuations across trials.
doi:10.1371/journal.pcbi.1000239.g004

Model of LFP coding
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perfectly phase locked for a given frequency window), to one (the

phase difference changes randomly). Figure 6D displays the

average of the circular variance over all trials and amplitudes and

shows that periodic stimuli were able to entrain the LFP at the

corresponding frequency. The effect was stronger for lower

frequencies and for larger signal amplitudes (Figure S1).

LFP Responses to Complex Input Stimuli with Naturalistic
Dynamics

The results obtained so far with constant and periodic input

signals suggest that low LFP frequencies contain information about

the corresponding low frequencies in the input signal, while

gamma LFP frequencies contain information mostly about the

spike rate of the input stimulation. To understand the implications

of these coding rules, we now turn to the study of the LFP

responses to inputs with a broadband naturalistic temporal

structure.

We aimed at simulating responses of visual cortex dynamics

during the viewing of naturalistic movie stimuli, for which detailed

neurophysiological data of LFP cortical responses are available

[14,15]. We thus built a naturalistic input that closely matched the

time course of multiple-unit activity (MUA) recorded from LGN of

anesthetized monkeys that were presented with natural color

movies (see Methods for details).

We started by analyzing how different frequencies of the LGN

MUA signal encode information about which scene of the movie

was presented to the animal. This analysis documents the

characteristics of the information injected to the network.

Figure 7A reports the information that the power of LGN MUA

signal described above encodes about the movie scenes; the total

entropy of the movie scene characterization was 4.3 bits. Almost

all the information in the LGN MUA (which provided the

naturalistic input to the simulated network) was carried by the

power at frequencies below 5 Hz (peak at 1 Hz with a value

0.24 bits) and in the average spike rate (the DC component of the

LGN MUA), carrying 1.27 bits of information. Interestingly,

different low frequencies of the LGN MUA signal carried

independent information about the visual stimulus: their informa-

tion redundancy, as well as any noise or signal correlation, was

very small: the mean redundancy between frequencies carrying

significant information was 0.008 bits (see Figure S2). The average

spike rate too conveyed independent information from that carried

by modulations at low frequencies: the mean redundancy between

frequencies carrying significant information and the spike rate was

0.007 bits.

Once we documented the properties of the naturalistic input, we

injected it in the network and we measured the information about

the stimuli that was carried by the power of the simulated cortical

LFP at each frequency f (Figure 7B). There were two frequency

regions in which the simulated network LFP was highly

informative about the stimuli. The first informative LFP region

was in the range 1–5 Hz. The peak information value in this

region was 0.21 bits, and was reached for the 3 Hz frequency

(Figure 7B). The amount of information contained in the low

frequencies of the LFP was similar to the one contained in the

same band of the naturalistic input. The second highly informative

LFP frequency range was inside the gamma band, in the range of

50–80 Hz (Figure 7B). The peak information value at high

frequencies was 0.23 bits. Intermediate simulated LFP frequencies

(in the range 6–30 Hz) carried no significant information about

the naturalistic input (p.0.05; bootstrap test). It is interesting to

compare the information carried by the power of the simulated

LFPs to the information carried by real visual cortical LFPs during

stimulation with a color movie [14]. Figure 7B compares the

information carried by the simulated LFPs with the information

carried by real LFPs obtained from seven different electrodes from

monkey V1 [14], which were recorded simultaneously with the

very same LGN MUA data used to construct the input to the

simulated network. The information about the stimuli were

computed with exactly the same procedures on both simulated

and real data, and are thus directly comparable. Figure 7B shows a

very close agreement between simulated and real V1 LFPs.

The agreement between model and data was measured with the

reduced x2 (see Methods). The model described correctly both the

shape and the information content of the spectrum of the recorded

LFP (Table 1). The only appreciable difference between simulated

and real data is that the low frequency peak of simulated data

decays to a non-significant value at lower frequency (5 Hz) than

that of V1 LFPs (whose information drops to a non-significant

Figure 5. Spectral modulations associated to changes in
stimulus rate in ensembles of a small number of neurons. (A)
Power spectrum of firing of pyramidal neuron with highest firing rate
when the signal rate is 1.2 and 2.6 spikes/ms. Averages over 20 trials
displayed in black and gray, respectively. (B–C) Same as (A) for the total
firing rate of the 5 and 10 pyramidal neurons with highest firing rates,
respectively. Notice the difference in the power scale.
doi:10.1371/journal.pcbi.1000239.g005
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value at 10 Hz). One potential explanation for this discrepancy is

that the input information to our cortical network decayed to zero

within 5 Hz, and that low frequency LFPs just follow this trend

(see below for an explicit demonstration). However, the LGN

MUA signal that we used as input represents only a part of the real

inputs to V1, which may receive additional information in the 5–

10 Hz frequency range from other sources.

Simulations with periodic and constant signals suggest that the

information contained in the low frequency and gamma peaks of

Figure 7B corresponds respectively to information about the low

frequency modulations of the signal and its rate. To evaluate in

detail this hypothesis, we calculated the correlation across all

stimuli and trials between the power of each frequency in the LFP

spectrum and the average rate of the signal (Figure 7C). As

expected, frequencies below 5 Hz are not significantly correlated

with the signal rate, while LFP frequencies above 50 Hz are

strongly correlated with it (with a peak at 70 Hz). We then

calculated the correlation across all stimuli and trials between the

power of each frequency in the LFP spectrum and the power

associated to the same frequency in the signal spectrum

(Figure 7D). Low-frequency LFPs up to 8 Hz were significantly

correlated to the signal frequency modulations, while LFP

frequencies above 50 Hz were not. Again, very similar results

were obtained analyzing the power spectrum of the total firing rate

(data not shown).

The entrainment between signal and LFP was measured band-

passing both for frequencies ranging from 2 to 15 Hz and then

computing for all pairs of signal and LFP frequencies the circular

variance of the phase difference (see Methods). The average over

all trials and scenes of the phase circular variance was 0.12

between the signal and LFP when they were both bandpassed at

frequencies below 4 Hz. It was larger than 0.5 for every other

combination of frequencies. Hence, entrainment is restricted to

very low frequencies. This could be due to the fact that only low

frequency oscillations in the signal are strong enough to override

the noise and that entrainment is stronger for low frequency

oscillations (see Figure 6D).

Therefore, results obtained with simple stimuli are still valid

when stimuli are realistic, suggesting that the two ‘‘information

channels’’ (low frequencies and gamma band) could represent the

sensory stimuli in a largely independent way.

As a step toward gaining a more quantitative insight on how

different LFP frequencies encode information about the natural-

istic stimulation, we next considered the information I S; Rf1
Rf2

� �
about the stimuli that can be extracted from the joint observation

of the powers of two LFP frequencies f1 and f2. Figure 8A shows

Figure 6. Modulations in the power spectrum of LFP due to changes in the spectral content of the input. Each stimulus was composed
by noise plus a periodic signal. Signal amplitude A varied from 0.4 to 1.6 spikes/ms and signal frequency v from 4 to 16 Hz. Modulations were studied
(i) across the whole range of stimuli, (ii) pooling together all the responses to stimuli with the same frequency, (iii) pooling together all the responses
to stimuli with the same amplitude. (A) LFP power spectra across set (ii). Data are averaged over 20 trials and over the set of amplitudes. (B) LFP
power spectra across set iii). Data shown are averaged over 20 trials and over the set of frequencies. (C) Information associated to changes in stimulus
spectral content. Information relative to set (i), (ii) and (iii) is respectively displayed in blue, black and green. Red dashed line corresponds to
significance threshold (p,0.05; bootstrap test) for information. (D) Circular variance of phase difference between the input signal and the LFP
bandpassed at different frequencies (with a 2 Hz range). The circular variance was averaged over all trials and amplitudes.
doi:10.1371/journal.pcbi.1000239.g006
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that the highest peak in joint information (0.43 bits) was reached

when combining one low frequency (3 Hz) and one gamma range

frequency (70 Hz), in nice agreement with results obtained from

real V1 LFPs during movie stimulation [14]. The information

I S; Rf1
Rf2

� �
was smaller when both f1 and f2 were in the gamma

range (,0.4 bits; Figure 8A).

Why is it more convenient to extract information about the

naturalistic stimulus by considering one low and one high gamma

frequency LFP? Figure 8B explains this finding by considering the

redundancy of the information about the stimuli obtained from

two different LFP frequencies. Gamma frequencies were all very

redundant to each other: frequencies in the 50–80 Hz range

shared on average 0.08 bits of redundancy. In contrast, low and

high frequencies shared an information redundancy which was

close to zero, again in agrement with [14]. This suggests that

gamma and low frequencies band contained information about

largely independent stimulus features. Also the redundancy

between pairs of frequencies below 5 Hz was close to zero,

suggesting that each frequency in this range was modulated

independently across signals.

Figure 8C reports the signal correlation between pairs of LFP

frequencies, which quantifies the similarity in stimulus tuning of

the power of LFPs at different frequencies. Signal correlation was

very high (up to 0.8) among frequencies in the gamma range,

which means that they are all modulated in a similar way by the

naturalistic stimuli, and explains why gamma range LFPs convey

mutually redundant information about them. However, the signal

correlation between the informative low frequency LFPs and the

gamma LFPs was negligible, which means that these two

frequency ranges are tuned to very different stimulus features.

Figure 8D reports the noise correlation between any pair of

different LFP frequencies, which measure if trial-to-trial fluctua-

tions around the mean response are correlated. Noise correlation

was negligible in the entire frequency range, which implies that the

gamma-range redundancy is entirely attributable to signal

correlation. Since low and gamma frequency LFPs shared neither

noise nor signal correlation, it means that low frequency LFPs and

Figure 7. Information content relative to naturalistic stimuli, based on MUA recordings from LGN of an anesthetized monkey
watching natural movie scenes. Recording time (40 seconds) was divided into 20 intervals, considered as different signals. Each signal was
injected 20 times with different noise realizations (see Methods). Red dashed horizontal line indicates significance threshold (p,0.05; bootstrap test)
in all panels. (A) Information content of different frequencies and average rate of naturalistic input. (B) Information content, relative to naturalistic
inputs, of simulated LFP (in black) compared with the information content of LFP recorded in V1 in the same experiment from which LGN data were
taken. Gray area represents the mean6std range of information across 7 different electrodes recording synchronously from different sites. (C–D)
Correlation between LFP spectrum and signal features. (C) Correlation between stimulus rate and power of LFP frequencies in the response. (D)
Correlation between the power of each frequency in the stimulus spectrum, and its power in the corresponding LFP spectrum.
doi:10.1371/journal.pcbi.1000239.g007

Table 1. Goodness-of-fit with experimental data of model
LFP in presence of signal and synaptic modulations, measured
with x2

r (see Methods).

Spectrum Information
Content

Average
Spectrum

Model 0.7 1

Baseline 1 1.9 1.4

Baseline 3 2.1 1.2

Averaged signal 1.5 1.4

GABA 140 0.8 2.8

GABA 60 1.2 150

AMPA 80 8.1 11

AMPA 120 1.7 45

doi:10.1371/journal.pcbi.1000239.t001
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gamma LFPs are completely decoupled in natural stimulation

condition, and this is why they add independent information about

the stimulus. This result is again fully consistent with the

experimental finding of [14]. The only discrepancy between signal

and noise correlation in real data [14] and in the present model is

that real data presented strong noise correlation within the low

frequency LFP range (,24 Hz) [14]. The significance of this

discrepancy will be addressed in Discussion.

As a final step to understand the effect of the input

characteristics on the network dynamics, we selectively manipu-

lated different features of the signal and quantified the differential

effect of these manipulations on the low and high frequency

network LFPs.

First we changed the average rate of the signals leaving their

spectral content unchanged. We added a constant value to each

signal varying the parameter B in Equation 9. This corresponded

to an increase of the average rate of the signal equal to B times the

difference between its original average rate and the average rate

across all signals. We will refer to the parameter B as ‘Baseline

level’. In Figure 9A is shown the LFP spectrum for a single

stimulus, averaged over 20 trials. When the baseline level was

equal to 1, 2 and 3, the signal average value was 1.8, 1.9 and 2

spikes/ms, respectively. Low frequencies are not affected by

changes in the baseline level, while the average modulation of the

spectra in the 30–100 Hz range was 0.07, with a peak of 0.31 for

55 Hz. The average spectrum still resembled the one of the

recorded data (Table 1). In Figure 9B we report the information

about the naturalistic input carried by the LFP spectrum when the

baselines are changed. When the differences among the average

rates of the stimuli were increased, frequencies in the gamma band

and above contained 0.1 more bits of information, while changes

in the low frequency band were of 0.02 bits only. Both increasing

and decreasing the baseline decreased the agreement of the

information content of the spectrum of simulated and recorded

LFPs, as measured by the reduced x2 (Table 1).

Second, we did the opposite: we changed the spectral content of

the signals and left the average rate unchanged. Each signal was

replaced with a constant function with a value equal to the average

rate of the signal, therefore erasing all fluctuations. When this

input was injected int the network, there was a decrease in the LFP

power associated to low frequencies, but the rest of the spectrum

did not display significant changes (Figure 9C), showing that signal

oscillations determine only a narrow band of the signal output,

while the rest is determined by noise and internal dynamics. The

average information contained in the low frequency peak

decreased from 0.11 from 0.02, below the significance level, while

the one contained in the gamma band was left unchanged

(Figure 9D).

Effects of Changing Synaptic Strengths on Information
Transfer

Finally, we investigated the effects of varying model parameters

on the encoding properties of the network, by changing the values

of the GABA and AMPA synaptic strength in equations 2–5.

Default values used in the previous sections are displayed in

Table 2 and new values are expressed as percentage of the default

ones. GABA strength was modulated in the same way both in

synapses projecting to interneurons and in those projecting to

Figure 8. Frequency correlations in LFP when network was presented with naturalistic stimuli. (A) Joint information for frequency pairs.
The ellipse indicates the maximum value, obtained for pairs composed by a frequency ,5 Hz and gamma band frequencies. The arrow indicates
significance threshold (p,0.05, bootstrap test). (B–D) Values of (B) Redundancy, (C) Signal correlation, (D) Noise correlation, for frequency pairs in the
LFP spectrum. Measures were computed for frequencies set at least 2 Hz apart.
doi:10.1371/journal.pcbi.1000239.g008
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pyramidal neurons. AMPA strength was modulated in the same

way in all AMPA synapses, both corticocortical and thalamocor-

tical ones. These manipulations give extra insight on the

differential role of excitatory and inhibitory synapses in determin-

ing the oscillations and process sensory information. Furthermore,

some of the manipulations of synaptic parameters considered here

are in principle reproducible experimentally using AMPA/GABA

antagonists/agonists. They can therefore be considered as testable

predictions of our model.

Decreasing GABA strength led to an increase of the power

associated to all frequencies (Figure 10A, Table 1). The increase

was close to zero only for frequencies below 5 Hz, confirming that

this range is largely determined by external modulation rather

than internal dynamics. The relative increase of the power did not

display any peak, suggesting that it could be simply due to the

increase in average activity: the overall firing rate of the network

increased of more than 50% when GABA was reduced to 60% of

the default value. The information transfer was not affected

significantly by changing GABA strength in the investigated range

(Figure 10B, Table 1).

Increasing AMPA strength led to an increase of the corticocor-

tical excitation but also of the input strength. An increase of 20%

of AMPA strength was sufficient to increase the network firing rate

of more than 40%. Increasing AMPA strength resulted in a

general increase in the power associated to all frequencies

(Figure 10C, Table 1). The increase was more pronounced for

frequencies in the gamma band. On the other hand, increasing

AMPA strength tended to decrease information transfer at high

frequencies (Figure 10D, Table 1).

Overall, these simulations show that changing synaptic strengths

affects quantitatively, but not qualitatively, our results. This means

that our results are robust to parameter changes, provided the

network stays in an inhibition-dominated regime in which

individual neurons fire at low rates in an irregular fashion.

Furthermore, these simulations provide an experimentally testable

prediction: specific antagonists or agonists of synaptic transmission

can affect the shape of the LFP spectrum without significantly

changing its information content.

Discussion

In recent years, the relationship between sensory stimuli and the

temporal structure of LFPs has been the subject of extensive

investigations (e.g., [8–10,14,45–47]). Since LFPs reflect integra-

tive processes in areas such as the dendrite which are otherwise

inaccessible, characterizing how LFPs encode sensory stimuli is

crucial to understand how the microcircuitry of brain networks

participates in sensation and shapes the magnitude and timing of

Figure 9. Effects of modulations of naturalistic stimuli. (A) Power spectrum of LFP during a single stimulus, for three different levels of
baseline of the same signal. Results averaged over 20 trials. (B) Information content of LFP spectrum for three different levels of baseline for the whole
input. Same color code as (A). Red dashed line corresponds to significance threshold (p,0.05; bootstrap test) for information. (C) Power spectrum of
LFP during a single stimulus with a naturalistic signal (in black) and with the same signal averaged (in purple). Results averaged over 20 trials. The
stimulus selected is different from the one in (A). (D) Information contained in the LFP spectrum relative to naturalistic signals and averaged signals.
Same color code as (C). Red dashed line same as (B).
doi:10.1371/journal.pcbi.1000239.g009

Table 2. Synaptic efficacies (mV).

On
Interneurons

On Pyramidal
Neurons

GABA 2.7 1.7

Recurrent (‘cortical’) AMPA 0.7 0.42

External (‘thalamic’) AMPA 0.95 0.55

doi:10.1371/journal.pcbi.1000239.t002

Model of LFP coding

PLoS Computational Biology | www.ploscompbiol.org 11 December 2008 | Volume 4 | Issue 12 | e1000239



local activity. Characterizing how LFPs encode information is also

important to understand how neural signals can optimally

communicate with brain-machine interfaces [48], and to better

interpret the blood oxygenation level-dependent response, which

correlates with several LFP bands [22,49,50]. Neurophysiological

investigations have revealed that a broad range of LFP frequencies

is involved in sensory processing, and that the dependence of LFPs

on stimuli is complex. However, this complex dependence

between the type of sensory stimuli and LFP frequency responses

and its potential function has remained so far unexplained.

Here, we developed a theoretical framework for the under-

standing of the role of LFPs in sensory coding by studying the

behavior of model networks of sparsely connected excitatory and

inhibitory neurons that were stimulated dynamically. The

interplay of excitation and inhibition captured by these networks

is one fundamental feature of the organization of cortical

microcircuit which is believed to shape the dynamics of local

mass activation. Moreover, these networks intrinsically generate

gamma-range oscillations, the most widely reported rhythm

generated by sensory cortex. Building on the previous theoretical

knowledge of how these networks generate oscillations when

stimulated with time independent stimuli, we were able to provide

several advances. First, we were able to quantify the information

content of the fluctuations generated by the network and

determine which LFP frequencies convey most information.

Second, we found explicit coding rules between features of the

stimulus dynamics and LFP frequency which are compatible with

several neurophysiological reports. Third, we demonstrated that

these coding rules lead to low and high LFP frequencies acting as

largely independent information channels, in agreement with

recent experimental data [14]. The significance of these findings

and their relation to previous work will be discussed in detail next.

Advances with Respect to Previous Modeling Work
Modeling the mechanisms of generation of oscillations in

excitatory and inhibitory networks of spiking neurons is one of the

most extensively studied topics in neural network dynamics. In this

work, we reported several advances to the understanding of

dynamics of recurrent networks. First, most previous model studies

focused on the network dynamics under constant stimulation. We

generalized these results to characterize the network dynamics to

slowly-varying periodic and naturalistic stimuli. Second, rather

than focusing only on the spectral structure of the network

oscillations, we went a step further and quantified the information

content of each band of the LFP spectrum in a way directly

comparable to experimental findings. Combining a wide set of

stimulations with the information theoretic analysis allowed us to

derive simple and novel translation rules between stimuli and LFP

responses.

Another advance in recurrent network modeling is that previous

studies quantified the network output only as the total firing rate,

whereas we quantified its output also in terms of simulated LFPs.

This greatly facilitates the comparison with experimental record-

ings, permits a better validation of the models, and provides a

mean to test explicitly some hypotheses on what LFPs reflect and

how best to capture their properties with a simple model, which is

itself an open question. We found that simulated LFPs based on

sum of synaptic currents account for some of the main findings in

stimulus encoding of LFPs: the modulation of the LFP gamma

band when using stimuli eliciting firing rate modulations [3,6–9],

Figure 10. Effects of modulations in GABA and AMPA synaptic strength when naturalistic stimuli are injected. (A) Power spectrum of
LFP for a single stimulus and different values of GABA strength, measured as percentage of the reference strength displayed in Table 2. Results are
averaged over 20 trials. (B) Information contained in the LFP spectrum for the three synaptic strengths. Red dashed line corresponds to significance
threshold (p,0.05; bootstrap test) for information. Same color code as (A). (C–D) Same as (A–B) for AMPA strength modulations.
doi:10.1371/journal.pcbi.1000239.g010
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the entrainment of low frequency LFPs to stimulus oscillations

[11,16] and the way the two phenomena contribute to the

information content of the whole LFP spectrum [14]. Therefore,

despite LFPs potentially reflecting complex slow activity unrelated

to synaptic activation such as voltage-dependent membrane

oscillations [30] or spike afterpotentials [31], our study suggests

that many coding properties of LFPs can be understood with

simple models based on massed synaptic activation.

Previous modelling studies have computed local field potentials

from detailed 3D models of networks of compartmental model

neurons [32,51,52]. It would be interesting to investigate in such

models how well the very simple LFP model introduced in the

present paper correlates with the LFP model based on the detailed

geometry of the underlying network. In particular, such a study

could shed light on which combination of average AMPA/GABA

currents best represents the ‘true’ LFP.

Dependence of LFP Frequency on Stimulus
The main result of this study is the derivation of very simple

rules of transformation between stimulus characteristics and the

dynamics of the evoked LFP responses. Though very simple, these

rules account for a large number of experimental observations.

The first coding rule is that gamma-range LFPs carry information

about sensory stimuli that provokes responses of neurons providing

synaptic inputs to the specified area that vary from stimulus to

stimulus only in terms of their total spike rate. This rule is in full

agreement with the observation that stimuli of different contrast

are encoded in V1 as gamma-range changes of LFPs [8], that

direction of motion is encoded in area MT in the gamma-range

LFPs [9], that orientation of gratings is encoded in V1 by gamma-

range LFPs [7], and that sound frequencies are best encoded in the

high frequencies of auditory field potentials [3], as all such stimuli

elicit mostly changes of firing rate (rather than changes in the

temporal response profile) in neurons providing synaptic inputs to

the specified areas. As we discussed in Results, the simulations

demonstrating this rule also correctly predict that the peak of

maximal gamma power happens at a lower frequency than the

peak of stimulus selectivity in the gamma range [7,14]. The second

coding rule is that stimulus-related changes of low-frequency

cortical fluctuations encode information about slow dynamic

features in the sensory or thalamic input that vary at the

considered frequency. This is fully consistent with the finding that

the low frequencies of LFPs can be entrained by slow periodic

stimuli [11,16], and that LFPs in V1 lock to some slowly varying

dynamic features extracted from natural movies [14]. The double

peak of information at low frequencies (,10 Hz) and in the

gamma range (60–90 Hz) found in response to natural movies [14]

can also be explained by this coding rule, since a natural movie

contains both temporal frequency changes at low frequencies and

objects and features capable of eliciting firing rate changes.

Our model was able to reproduce the most salient coding

properties of LFPs in early visual cortex based on the hypothesis

that the power modulations of LFPs at low frequencies followed

temporal patterns emerging in the stimulus itself rather than being

generated ex novo within the brain. This hypothesis stems from

the observations that low frequency LFPs lock to slow rhythmic

stimuli, and from the observations of [14] that the most

informative component of the LFP power during movie

stimulation was the stimulus modulation of the additional amount

of power evoked during movie presentation with respect to

spontaneous power. However, the brain is capable of internally

generating rhythms in the low (#10 Hz) frequency range through

several cellular and network mechanisms [53] not implemented in

our model. It is therefore conceivable that in many circumstances

internal sources of slow rhythm generation are modulated by the

external stimuli. In such cases, we would expect that additional

stimulus-related information reflecting these internal processes

may become available in the low frequency LFP modulations.

Correlation between Stimulus Selectivity of Different
Frequency Bands

It was recently reported that, during stimulation with natural-

istic movies, low frequency LFPs and gamma-range LFPs in visual

cortex are decoupled and act as independent information channels

[14]. Our model was able to reproduce this finding and to provide

an explanation. The independence between low frequency and

gamma LFPs arises because they reflect two different input

features (the slow frequency variation of the input rate and the

total input spike count respectively) and these two input features

appears to be largely independent when computed from LGN

responses to natural movies (as demonstrated here).

One potential advantage of this frequency decomposition into

independent transmission channels is that it may enable the

cortical network to transmit more information by multiplexing it

over several nested timescales [54]. Since LFPs reflect largely

synaptic activity which may be partly decoupled from spiking

activity, it is not guaranteed that all the information encoded in

LFP oscillations may be used by other neural systems. The extent

to which this information gain could be realized depends on how

and whether the information carried by LFP oscillations can be

read out by downstream systems. It seems plausible that the

amount of gamma oscillations could be effectively read out by a

downstream decoder, because gamma oscillations are often found

to carry information redundant to that of spiking activity [14] and

because gamma oscillations modulate transmission of signal across

neural populations [55,56]. Single cells in downstream networks

could have intrinsic resonances at gamma frequencies allowing

them to preferentially respond to such inputs [57]. Low frequency

oscillations could be potentially read out as well, because these

oscillations have greater spatial coherence and can thus be made

more widely available to decoding networks. The phase or power

of these oscillations may therefore be known to local target

populations and it could be used to increase the information

content of spikes by means of phase-of-firing or power-of-firing

codes [15]. Whatever the extent to which this information may be

used within cortex, we note that the independence of information

carried by low and high frequency LFPs is potentially relevant to

the practical development of brain machine interfaces, as it

suggests that simultaneous decoding of different LFP bands may

permit to obtain information which cannot be obtained by

considering one frequency band only.

Our model did not only reproduce correctly the independence

between low frequency LFPs and gamma LFPs, but reproduced

well both signal and noise correlations over a wide range of LFPs

frequencies. Notably, the only significant discrepancy between

signal and noise correlation in real data [14] and in the present

model, was that the model reported little or none noise

correlations across all frequencies, whereas the real data presented

strong noise correlation in the 12–24 Hz frequency range. These

strong noise correlations were present also during spontaneous

activity and were accompanied by little stimulus selectivity and

little signal correlations during movie stimulation: Belitski and

coworkers [14] hypothesized that the 12–24 Hz LFP frequency

region related mainly to stimulus-independent neuromodulation.

Since our model did not include any form of variation of

neuromodulation across trials and independent from the stimulus,

the fact that we could not find such noise correlations in the

simulated data is compatible with their hypothesis that this
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phenomenon reflects the action of one or more neuromodulation

pathway not specifically activated by the type of visual stimulus.

Functional Characterization of LFP Bands
The analysis of EEGs and LFPs traditionally divides these

measurements into a number of frequency bands, which correlate

with distinct behavioral states and are thought to originate from

different types of neural events triggered by different processing

pathways such as sensory pathways or neuromodulation. Howev-

er, the literature reports widely different, and often somehow

arbitrary assumptions about which frequency range to investigate

and how to set the boundaries of each band. A potential solution

to this ambiguity is to set the boundaries ‘functionally’ [7], so as to

extract as much information as possible about the stimuli. The

coding rules obtained here suggest that, if this information

theoretically optimal band partitioning is implemented, the

optimal gamma range partitioning would remain roughly stable

with stimuli and consistent with the one proposed in [7] because

gamma range coding happens robustly whenever the network

receives input rate modulations. On the other hand, partitioning

the low frequency range into maximally informative bands may

provide frequency boundaries that are dependent on the stimulus

dynamics and not an intrinsic property of the network.

Experimental Predictions Arising from the Model
An hypothesis of our model is that the stimulus-related changes

in the power of low frequency LFPs follow at least in part the

dynamics of the stimulus. For example, the high information

content of low frequency LFPs found in response to natural movies

was attributed to the temporal structure of the image flow, which

contains the highest power and information in the low-frequency

range. We suggest that a useful experimental paradigm that could

help testing the hypotheses and coding rules presented here

consists of changing the stimulus dynamics by using faster stimuli

than natural movies and studying how this affects the informative

LFP-frequency range. If the low frequency band modulations are

mostly reproducing the modulations of the input spectrum, the

exact position of the low frequency information peak should vary

accordingly. Similarly, the interval in the gamma band containing

information is predicted to depend on the rate range of the input,

that for visual stimuli can be modulated with the image contrast.

The study of the dependence of the information peaks on our

model predicts also that, in the presence of GABA antagonists

reducing but not blocking the inhibitory synaptic transmission,

there is an increase of the power in the gamma band and only a

very small decrease of the associated information. All of these

predictions can be tested with current methodology, and the

suggested experiments can help us understanding better the origin

and function of the brain dynamics reflected in LFP fluctuations.

Methods

Model
The simulated network is composed of N = 5000 neurons. 80%

of the neurons are taken to be excitatory, the remaining 20% are

inhibitory [58]. The network is randomly connected: the

connection probability between any directed pair of cells is 0.2

[59,60]. Both pyramidal neurons and interneurons are described

by leaky integrate and fire (LIF) dynamics [61]. Each neuron k is

described by its membrane potential Vk that evolves according to

tm
dVk

dt
~{VkzIAk{IGk ð1Þ

where tm is the membrane time constant (20 ms for excitatory

neurons, 10 ms for inhibitory neurons, [62]), IAk are the (AMPA-

type) excitatory synaptic currents received by neuron k, while IGk

are the (GABA-type) inhibitory currents received by neuron k.

Note that in Equation 1 we have taken the resting potential to be

equal to zero. When the membrane potential crosses the threshold

Vthr (18 mV above resting potential) the neuron fires causing the

following consequences: i) the neuron potential is reset at a value

Vres (11 mV above resting potential), ii) the neuron can not fire

again for a refractory time trp (2 ms for excitatory neurons, 1 ms

for inhibitory neurons).

Synaptic currents are the linear sum of contributions induced by

single pre-synaptic spikes, which are described by a difference of

exponentials. They can be obtained using auxiliary variables xAk,

xGk. AMPA and GABA-type currents of neuron k are described by

tdA
dIAk

dt
~{IAkzxAk ð2Þ

trA
dxAk

dt
~{xAkztm Jk{pyr

X
pyr

d t{tk{pyr{tL

� � 

zJk{ext

X
ext

d t{tk{ext{tLð Þ
! ð3Þ

tdG
dIGk

dt
~{IGkzxGk ð4Þ

trG

dxGk

dt
~{xGkztm Jk{int

X
int

d t{tk{int{tLð Þ
 !

ð5Þ

where tk2pyr/int/ext is the time of the spikes received from pyramidal

neurons/interneurons connected to neuron k, or from external

inputs (see below). tdA (tdG) and trA (trG) are respectively the decay

and rise time of the AMPA-type (GABA-type) synaptic current.

tL = 1 ms is the latency of post-synaptic currents. Jk2pyr/int/ext is the

efficacy of the connections from pyramidal neurons/interneurons/

external inputs on the population of neurons to which k belongs.

Most of the external input, i.e. all the signal and the largest part of

the noise, is assumed in our model to come from the thalamus.

The values of these parameters for all types of synapses are

displayed in Tables 2 and 3. These values are of the order of

magnitude of experimentally measured values [28,63–66]. Mod-

ifying them affects quantitatively, but not qualitatively, our results,

provided the network stays in an inhibition-dominated regime, as

demonstrated in [26] and in the section Effects of Changing Synaptic

Strength on Information Transfer. Changing parameters such as the

latency tL or the synaptic time constants can potentially change

both location and shape of the peak in both LFP spectrum and

information vs frequency curve. However, changing these

parameters in the physiologically relevant range affects only

mildly the agreement of the model with the data (see Table 4).

External Inputs
Each neuron is receiving an external excitatory synaptic input

(see previous section, last term in the r.h.s. of Equation 3). These

synapses are activated by random Poisson spike trains, with a time-

varying rate which is identical for all neurons. This rate is given by

Model of LFP coding
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next tð Þ~ nsignal tð Þzn tð Þ
� �

z
ð6Þ

where nsignal(t) represents the signal, and n(t) is the noise. […]. is a

threshold-linear function, [x]+ = x if x.0, [x]+ = 0 otherwise, to

avoid negative rates which could arise due to the noise term. Each

simulation is repeated 20 times with the same signal and a noise

generated independently for each simulation. A single run is called

a trial. We now describe signal and noise separately.

Signal
We use three types of signals: constant; periodic; and

‘naturalistic’. All signals last 2 seconds.

N The constant signals used in the section How gamma

oscillations are modulated by the firing rate of the input stimulus are

defined by

nsignal tð Þ~n0 ð7Þ

where n0 is a constant rate, with a value ranging from 1.2 to

2.6 spikes/ms.

N The periodic signals used in the section Response of the network

to low frequency oscillatory inputs are defined by

nsignal tð Þ~v0zAsin 2pvtð Þ ð8Þ

where n0 is a constant baseline equal to 1.6 spikes/ms, A is the

amplitude of the oscillatory component, and v is the

frequency. The latter were varied in different simulations

respectively from 0.4 to 1.6 spikes/ms and from 4 to 16 Hz.

N ‘Naturalistic’ signals were built from a single electrode

MUA recording from LGN of anesthetized monkey watching

natural movie scenes. This MUA was measured as the absolute

value of the high pass filtered (400–3000 Hz) extracellular

signal recorded from an electrode placed in the LGN while the

monkey was presented binocularly a color movie (we refer to

[67] for full details on experimental methods). The MUA

measured in this way is thought to represent a weighted

average of the extracellular spikes of all neurons within a

sphere of <140–300 mm around the tip of the electrode [29],

and thus gives a good idea of the spike rate fluctuations of a

patch of geniculate input to cortex during viewing of natural

stimuli. We took 40 consecutive seconds of LGN MUA

recordings during movie presentation, we divided it into 20

non-overlapping intervals of 2 seconds (ideally corresponding

to different movie scenes) following the procedure used in [14],

and each interval was considered as a different visual stimulus.

The standard high-pass filtering and rectification procedure that

we used provides a MUA signal that correlates well with the power

of the local spiking activity measured e.g. by detecting spike times

of the closest neurons with a threshold crossing criterion [29].

However, the high-pass filtering and the rectification are likely to

flatten out differences of the average spike rate between different

stimuli with respect to the true underlying spike rate. This is

because the rectification reduces the dynamic range and the high

pass filtering may preserve some small amount of low frequency

noise that end up as spike rate to all stimuli. To compensate for

this, we amplified the differences across stimuli of MUA rate by

building a signal Qi(t):

Qi tð Þ~Si tð ÞzB Si tð Þ{SSi tð ÞT
� �

ð9Þ

where Si(t) is the original time series of the stimulus i recorded in

the LGN, Si tð Þ is the average value of the stimulus, and SSi tð ÞT is

the average value of the whole recording. This manipulation

leaves power of frequencies .0.5 Hz unchanged. To set the value

of B, we used the following procedure. We know from simulations

with constant inputs that changes in input rate translate into

modulations in the output gamma power band of the LFP. We

computed then the coefficient of variation (CV) of the gamma

power (sum of the power of frequencies in between 30 and

100 Hz) among the different stimuli for the LFP recording from

V1. We selected recordings from the same monkey, experiment

and movie screening of the MUA recording from LGN we were

considering. The resulting CV value, averaged over 7 electrodes,

was CV = 0.2660.05. Increasing B in Equation 9 leads to an

increase in the gamma band LFP CV. We set B = 2, for which

CV = 0.24, consistent with the data. In Figure 9, we use B = 1

(corresponding to CV = 0.18) and B = 3 (CV = 3) to investigate the

sensitivity of the dynamics to changes in parameters defining

external stimuli.

Table 4. Goodness-of-fit with experimental data of model
LFP for different model parameters, measured with x2

r (see
Methods).

Spectrum Information
Content

Average
Spectrum

Model 0.7 1

tL = 0.5 ms 1.1 1.0

tL = 1.5 ms 0.9 0.8

trG = 0.5 ms 0.9 1.3

trG = 1 ms 1.2 1.7

tdG = 4 ms 0.9 1.1

tdG = 6 ms 0.8 1.7

k = 0.4 spikes/ms 3.1 2.1

k = 1.6 spikes/ms 3.5 67

tn = 8 ms 0.8 1.4

tn = 32 ms 1.0 1.0

sn = 0.2 spikes/ms 1.0 2.0

sn = 0.6 spikes/ms 1.4 4.3

LFP = ÆVmæ 0.8 10

LFP = |IA|+|IG|

a = 0 0.7 1.3

a = 0.5 0.7 1.1

a = 1.5 0.8 1.0

a = 2 0.9 1.0

doi:10.1371/journal.pcbi.1000239.t004

Table 3. Synaptic times (ms).

tL tr td

GABA 1 0.25 5

AMPA on inter. 1 0.2 1

AMPA on pyr. 1 0.4 2

doi:10.1371/journal.pcbi.1000239.t003
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The MUA computed in this way was expressed in mV and

needed to be converted into spike rates units to be fed to the

network. A series of papers [68–70], report similar estimates of ,6

spikes/s for the activity of LGN neurons in the absence of visual

stimulations. Anatomical studies estimate that about 130 LGN

synapses project to each V1 neuron in the macaque [71,72].

Multiplying these two numbers we estimated an average baseline

of 0.8 spikes/ms reaching V1 from LGN. The same set of papers

[68–70], shows that during movie stimulations the firing rate of

LGN neurons is ,12 spikes/s, so we set the average value of the

signal to be 1.6 spikes/ms. The final equation determining the

naturalistic signal is then:

ni
signal tð Þ~kzC

Qi tð Þ
SSi tð ÞT

ð10Þ

where k = 0.8 spikes/ms, and C = 0.8 spikes/ms.

Noise
There are two sources of noise in our model. The first is due to

the fact that n(t) in Equation 6 is a stochastic variable, generated

according to an Ornstein-Uhlenbeck process,

tn
dn tð Þ

dt
~{n tð Þzsn

ffiffiffiffiffi
2

tn

s !
g tð Þ ð11Þ

where sn is the standard deviation of the noise, and g(t) is a

Gaussian white noise. The mean value of this process is zero, and

its power spectrum is flat up to a cut-off frequency, fc~
1

2ptn
and

then decays as f22. The time constant tn was set to 16 ms to have

fc = 10 Hz, and the standard deviation sn was set to 0.4 spikes/ms

based on CV values for LGN activity [70].

The second source of noise is due to the fact that different

neurons receive independent realizations of a Poisson process, with

the same time-varying rate n(t).

Input Parameters
Signal parameters k, C and the noise parameter sn have been set to

be compatible with experimentally inferred values of thalamic activity

during the screening of natural movies [68–70], B to be compatible

with gamma oscillation range in V1 recordings in the same

conditions, while we have chosen tn so that the noise is maximum

for frequencies lower than 10 Hz, because spontaneous activity in the

visual cortex acts mainly on this timescale [73,74]. We tested the

robustness of our results to changes in these values. As an example, a

key result of the present work is the presence of two peaks in the

information content of the spectrum, for low frequencies and in the

gamma band, when the network is presented with naturalistic stimuli

(Figure 7B). Figure 9C shows that modulations of B led to changes in

the information content of the gamma band and higher frequencies,

but do not affect low frequencies content and the shape of the

Information(frequency) function. Figure S3 shows the robustness of

our conclusion to variations in the input parameters described in the

previous paragraphs.

N Figure S3A: when k was varied by a factor of 4, the low

frequency peak remained unchanged. The gamma peak was

always present, but as k was increased, the peak was set at

higher frequencies, since the overall input strength increased.

N Figure S3B: when tn was increased by a factor of 4, the

information content in the gamma band remained unchanged,

while the low frequency peak decreased in height (the overall

level of noise remained the same, but the larger tn the more it

was focused on low frequencies) but remained at 2 Hz. This

means that results are robust to variations in the cutoff

frequency from 5 to 20 Hz.

N Figure S3C: when sn was varied of a factor of 3, the total

information contained in the gamma peak changed by less than

50% and its shape remained stable. The low frequency peak was

always set at 2 Hz, but its height varied by a factor of ,5.

Table 4 summarizes the effects of changing these parameters on

the agreement between model and data, as measured by the

reduced x2. It shows that this agreement is fairly robust to changes

in tn, while both increasing and decreasing sn and k deteriorates

this agreement.

Numerical Methods
Simulations were done with a Runge-Kutta algorithm with time

step Dt. For equations (1–5) Dt = 0.05 ms. Since the experimental

recording frequency is 500 Hz, the input to the network (included

the noise) was updated every 2 ms.

Generation of Simulated Local Field Potentials
LFP is a common measure of neuronal activity, but it is still not

completely clear how the LFP is related to single neuron variables

like synaptic or ionic currents, and membrane potentials.

Computational models sometimes use as a description of the

LFP the average membrane potential of the neurons of the

network [75], even though it seems definitely more likely that the

LFP is rather more directly related to the synaptic activity [29].

The spectrum of the average membrane potential in our model

has a faster decay at high frequencies than the measured LFP, and

therefore does not reproduce it well (Figure S4). However, the

information content of the average membrane potential turns out

to be similar to the one of the recorded LFPs (Table 4).

On the opposite side, LFPs have been computed using

compartmental neuron models [32,51]. The model used in [51]

adopted the neuronal structure described in [76]: dendritic

branches were divided into cilindrical compartments of 50 mm

length. Each compartment contained many synapses, whose

characteristics depended on the branch (apical, basal etc). The

LFP was computed for every point in the space surrounding the

neuron as the total extracellular potential originated by the

trasmembrane currents of the hundreds of different compartments.

In [32] the procedure was similar but the neuronal structure was

reduced to a total of 15 compartments. In both models, LFPs were

originated by synaptic currents on pyramidal neurons dendrites.

Here, we resorted to a similar but simpler approach, which

takes into account that our model makes no attempt to replicate

the spatial organization of cortical neurons, and thus the sum in

space of currents has to be abstracted and simplified, as follows. To

capture in a simple way the fact that pyramidal cells contribute the

most to LFP generation because their apical dendrites are

arranged in an approximate open field configuration, we assumed

that the LFP is generated by the dipole-like dendrites of pyramidal

cells, in which currents flow in the cell through apical excitatory

synaptic contacts while they flow out through basal inhibitory

contacts [77]. This suggests to model LFPs as the sum of the

absolute values of AMPA and GABA currents (|IA|+|IG|) on

pyramidal cells, which was the model we adopted in this work, and

that was able to reproduce correctly both the power spectrum of

recorded LFPs and its information content (Table 4, Figure 7B,

and Figure S4). Taking the LFP to be a different linear

combination of AMPA and GABA currents give rise to

qualitatively similar results (Table 4 and Figure S4). LFP signals

Model of LFP coding
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are high-passed at 1 Hz with a 4th order Butterworth filter to

reproduce experimental recording procedures of [14].

Spectral Analysis
The power spectrum in each trial obtained in response to each

simulated stimulus was obtained using the multitaper technique

[78], which provides an efficient way to simultaneously control the

bias and variance of spectral estimation by using multiple Slepian

data tapers and was the one mostly used in recent neurophysi-

ological studies of LFPs [8,14]. The use of Slepian functions

minimizes the bias, whereas the use of multiple orthogonal tapers

on the same data minimizes the variance. The Slepian functions

are defined in terms of their length L in time and their bandwidth

W in frequency. For each choice of L and W, up to K = 2LW21

tapers are highly concentrated in frequency, having 90% of their

power within the interval [2W, W], and can be averaged for

spectral estimation. To reduce the spectral bias, the average over

tapers was computed using the adaptive procedure described by

[78]. A simplified way of conceptualizing the multitaper method is

that it provides an average over the local frequency ensemble with

a range 2W [78]. The value of W should be chosen on the basis of

empirical considerations. Here, we chose LW = 2 because it

matches the one used by [14] and thus makes the comparison

between simualtion and experiments more transparent.

For the sake of the entrainment analysis only (Figure 6D and

Figure S1), both the LFP and the naturalistic stimuli were band-

passed at selected frequencies with a Kaiser window with a 2 Hz

bandwidth, very small passband ripple (0.01 dB), and high

stopband attenuation (60 dB) [14]. Forward and backward

filtering was used to eliminate phase shifts introduced by the

filter. For each band-passed signal the phase was extracted by the

means of the Hilbert transform. The phase of each band-passed

LFP was compared with the input signal phase, for periodic

signals, or with the phase of the band-passed naturalistic signal.

We computed then the circular variance [79] of the input-output

phase difference Dw(t) as CircVar = 12|ÆexpiDw(t)æt|. Circular

variance ranges from 0 (perfectly locked phases) to 1 (random

phase differences uniformly spread over the circle).

Measures of Information Carried by the Neural Response
Power

To determine how well the power of LFPs rf at a certain

frequency f encodes the stimuli, we computed the mutual

information I(S, Rf) between the power rf at frequency f and the

stimuli S [80], as follows:

I S; Rf

� �
~
X

s

P sð Þ
X

rf

P rf

��s� �
log2

P rf sj
� �

P rf

� � ð12Þ

where P(s) is the probability of the presentation of the stimulus s,

P(rf) the probability of the frequency f to have power rf over all

trials and all stimuli, P(rf|s) the probability of rf to be observed

when stimulus s is presented. The above single-frequency

information analysis can be extended to compute how much

information about the stimulus we can obtain when combining

together the power rf1 and rf2 at two different frequencies. The

mutual information that the joint knowledge of the powers rf1 and

rf2 conveys about the stimulus is as follows:

I S; Rf 1Rf 2

� �
~
X

s

P sð Þ
X

rf

P rf 1rf 2

��s� �
log2

P rf 1rf 2 sj
� �

P rf 1rf 2

� � ð13Þ

If two frequencies were tuned to completely different stimulus

features, and they did not share any source of noise, then we would

expect I(S; Rf1Rf2) to be equal to the sum of the information that

each frequency conveys separately. It is therefore useful to

introduce the following ‘‘information redundancy’’ [41,81,82]:

Red f1,f2ð Þ~Red Rf 1Rf2

� �
~I S; Rf 1

� �
zI S; Rf 2

� �
{I S; Rf 1Rf 2

� � ð14Þ

When redundancy is positive, the two frequencies are said to

convey redundant information about the stimulus; when redun-

dancy is zero, the two frequencies are said to convey independent

information.

Estimates of mutual information often suffer from the limited

amount of data available to calculate the conditional probabilities

and the resulting statistical errors. These errors translate into a bias

in the information estimate. To correct for this bias, we

implemented a multi-step procedure, which follows the ideas

presented in [15,83] and was used, described and tested in our

previous studies [14,15]. In brief, the bias estimation of the

information contained in the multidimensional responses was

greatly reduced at the very source, and made negative, by using

the ‘‘shuffling’’ technique described in [83]. Then, a well-established

quadratic extrapolation procedure [84] was used to further reduce

the bias. We finally evaluated and subtracted out any (small in this

dataset) residual bias by the ‘‘bootstrap’’ procedure fully reported in

[15]. This procedure provides information estimates which are very

accurate. The performance of these procedures on simulated data

has been reported previously [15,83]. In particular, when tested on

data with statistics similar to the one considered here and with

number of trials similar to the one available here, the resulting

information estimates are very tight and present a very small

residual error in the estimate of the bias.

Quantification of Signal and Noise Correlation
To determine which frequencies have related stimulus selectiv-

ity and which have shared sources of variability, we performed a

linear analysis of correlations across frequencies of both the signal

and the noise, as follows. The correlation of the mean responses

across different stimuli of two frequencies are called ‘‘signal

correlations’’ [40,41,85] because they are entirely attributable to

stimulus selectivity. The signal correlation coefficient was com-

puted, for each frequency pair and channel, as the Pearson

correlation across stimuli of the trial-averaged responses. Positive

values indicate that the two frequencies have similar stimulus

preference, whereas a zero values indicates that the two

frequencies prefer totally uncorrelated stimuli. Correlations

manifested as covariations of the trial-by-trial fluctuation around

the mean response to the stimulus are traditionally called ‘‘noise

correlations’’ [40,85]. Since these noise covariations are measured

at fixed stimulus, they ignore all effects attributable to shared

stimulation. To quantify the strength of noise correlations, we

computed the Pearson correlation coefficient (across trials at fixed

stimulus) of the trial-average-subtracted powers rf1 and rf2, and

then we averaged it over all stimulus windows. This quantifies the

correlations of the variations around the mean at each trial and

stimulus window. Positive values of noise correlation means that

when the power of one frequency fluctuates over its mean values,

the power in the other frequency is also more likely to do so.

Goodness of Fit Measurements
For every set of parameters shown in Tables 1 and 4, the

information content of the spectrum of the simulated LFP was

Model of LFP coding
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compared with the information contained in the spectrum of the

real LFPs recorded with seven electrodes in V1 synchronously to

the LGN recording used to construct the naturalistic signals. I(S,

Rf) is the information about the set of stimuli contained in the

power of the frequency f of the simulated LFP. We computed the

information associated to the power of each frequency also for the

LFP recorded in every electrode and then we computed its mean

(IV1(f)) and its standard deviation (sV1(f)) across the electrodes. The

measure used to quantify the agreement between the model and

the data was the reduced chi squared x2
r :

x2
r ~

1

F

XF

f

I S,Rf

� �
{IV1 fð Þ

� �2

s2
V1 fð Þ

, ð15Þ

using a total number of frequencies F equal to 400 (from 0.5 to

200 Hz in a 0.5 Hz step). A value of x2
r close to 1 suggest that the

model is as different from the data as the data are different among

different electrodes. The same procedure was then applied to

compare the model LFP spectrum and the recorded LFPs spectra,

both averaged over all scenes and trials.

Other methods, such as Dynamic Expectation Maximization

[86,87] or Kalman Filtering [88] could be used to obtain a more

principled measure of correspondence between model and data,

the best fit parameters and the parameter confidence. However,

these more sophisticated procedures were in practice not

applicable to our simulations because of the high dimensional

parameter space and because of the long time taken to run the

analysis (6 hours per parameter setting on our workstation). For

this reason, we resorted to fix most parameters from plausible

literature values, and then tune them by hand to obtain a good fit

as measured by x2
r . The robustness to parameter variations was

empirically determined by starting from the so-determined

optimal parameters and checking for biologically plausible values

the reduced x2
r of both information and power spectrum.

Supporting Information

Figure S1 Signal-LFP entrainment for different amplitudes of

periodic stimuli. Circular variance of the phase difference

between periodic input signals of different frequencies and the

LFP bandpassed at corresponding frequencies when the signal

amplitude is 0.4 spikes/ms (A) and 1.6 spikes/ms (B). The

entrainment is inversely proportional to the value of the circular

variance

Found at: doi:10.1371/journal.pcbi.1000239.s001 (0.28 MB TIF)

Figure S2 Frequency correlations across naturalistic stimuli. (A)

Joint information and (B) Redundancy for frequency pairs.

Found at: doi:10.1371/journal.pcbi.1000239.s002 (0.57 MB TIF)

Figure S3 Effects of input parameters modulations on information

content of LFP when naturalistic stimuli are injected. In all panels

the black line corresponds to the combination of parameters value

used in the Results sections, and the red dashed line to significance

threshold (p,0.05; bootstrap test). (A) Information associated to

each frequency when parameter k in Equation 10, corresponding

to the signal baseline, was varied. (B) Same as (A) when parameter

tn in Equation 11 was varied. The different values correspond to a

stronger noise in the range 0–5 Hz (green line), 0–10 Hz (black

line), 0–20 Hz (blue line). (C) Same as (A) when parameter sn in

Equation 11, describing the amplitude of noise fluctuations, was

varied.

Found at: doi:10.1371/journal.pcbi.1000239.s003 (0.94 MB TIF)

Figure S4 LFP Models. (A) Comparison of spectra of LFP

recorded in V1 of anesthetized monkey watching natural movie

scenes and spectra of different LFP models when the network was

injected with naturalistic signals based on LGN activity recorded

in the same experiments. Gray area represents the mean6std

range of power across 7 different electrodes recording synchro-

nously from different sites. The colored lines are spectra obtained

with the following LFP models: average membrane potential

(green line), sum of absolute value of AMPA currents on pyramidal

neurons (pink), sum of absolute values of AMPA and GABA

currents on pyramidal neurons (black), and the same sum with a

weight 2 assigned to GABA currents (orange). Spectra are

averaged over all trials and scenes. (B) Comparison of information

content of the spectrum of recorded and simulated LFPs. Same

data sets and color code as (A). Red dashed horizontal line

indicates significance threshold (p,0.05, bootstrap test).

Found at: doi:10.1371/journal.pcbi.1000239.s004 (0.62 MB TIF)
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