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We study the first passage time for a polymer, that we call the narrow encounter time (NETP), to
reach a small target located on the surface of a microdomain. The polymer is modeled as a freely joint
chain (beads connected by springs with a resting non zero length) and we use Brownian simulations
to study two cases: when (i) any of the monomer or (ii) only one can be absorbed at the target
window. Interestingly, we find that in the first case, the NETP is an increasing function of the polymer
length until a critical length, after which it decreases. Moreover, in the long polymer regime, we
identified an exponential scaling law for the NETP as a function of the polymer length. In the second
case, the position of the absorbed monomer along the polymer chain strongly influences the NETP.
Our analysis can be applied to estimate the mean first time of a DNA fragment to a small target in
the chromatin structure or for mRNA to find a small target. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4772403]

I. INTRODUCTION

Polymers such as DNA or mRNA often have to move in-
side constrained environment such as the nucleus or the cy-
toplasm before reaching a small, strategic target. Such tar-
gets include nuclear pores located on the nuclear envelope
or ribosomes dispersed in the cytoplasm involved in protein
synthesis:1 mRNA must exit from the nucleus via passive dif-
fusion in order to synthesize proteins (in the absence of any
active transport of the RNA in the nucleus or the cytoplasm2).
The task of finding a small nuclear pore can also arise in the
context of gene delivery, where DNA fragments have to en-
ter the nucleus. Finally, during the process of double strand
DNA repair, DNA ends have to search for one another in the
confined chromatin environment,3 and can also localize to the
membrane periphery to interact with the nuclear pores.4

Previous studies of polymer in confined domains focused
on static properties5, 6 such as translocation,7–9 or reptation10

through a cylindrical tube and their dynamics.11 During
translocation, the polymer is threaded through a pore and dif-
fuses until it exits the other side. The polymer has to overcome
an effective barrier generated by each monomer on the surface
membrane. In contrast, the encounter process we are studying
here differs significantly and we shall study the search process
of a small target by a freely diffusing polymer. This search
process shares some similarities with the polymer looping
problem12–14 where the critical time scale is defined by the
duration for the two polymer ends to meet. We present here
a numerical study for the motion of a freely joint chain13

polymer in a confined microdomain. Two different types of
kinetics for diffusion-controlled processes in dense polymer
systems have been discussed in Ref. 15, depending on the root

a)A. Amitai and C. Amoruso contributed equally to this work.

mean square displacement of the active polymer site (com-
pact and noncompact exploration). When the polymer is very
small and its motion is dominated by its center of mass diffu-
sion, then the narrow encounter time of the polymer (NETP)
is precisely the mean first passage time for a Brownian par-
ticle to a small target, also known as the narrow escape time
(NET).16–24 In a space of dimension d, it is given by

〈τ2d〉 = A

πD
ln

1

ε
+ O(1), for d = 2,

(1)

〈τ3d〉= |�|
4εD

[
1 + L(0) + N (0)

2π
ε log ε + O(1)

] , for d = 3,

(2)

where A is the area (in two dimensions) and ε is the ratio of
the absorbing region of the boundary to the total length of
the boundary. In three dimensions, |�| is the volume, ε is the
radius of the small absorbing target, and L(0) and N(0) are
the two principal curvatures at the origin. D is the diffusion
constant. The order one term in each expression depends on
the initial position of the moving particle.22 These formulas
have been extended to the case of multiple windows.22, 25, 26

We study here how the polymer length controls the mean time
for a monomer to reach a small target (a disk of radius ε) lo-
cated on the boundary of a microdomain. Once a monomer
hits this disk, the target is found. In the context of chemi-
cal reactions, this time is the reciprocal of the forward reac-
tion rate for diffusion limited processes. The present analysis
of the NETP complements previous computations of the for-
ward rate.27–32 It may also be used to estimate the first time
to activate a gene by a factor located on the DNA, which is
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different from the classical activation due to a transcription
factor.33–36 However, at this stage a final analytical formula
has to be derived.37

The paper is organized as followed: we first present the
freely joint chain polymer, where the monomers are repre-
sented by beads connected by elastic springs. We run Brown-
ian simulations and estimate the NETP in two cases:

1. When any of the polymer monomer can be absorbed at
the target region, which we designate 〈τany〉.

2. When only one of the monomers can escape through the
target region, which we call 〈τmon〉.

Each of these cases might be relevant under different condi-
tions: in some cases, one of the two ends of the polymer has
to reach the target, whereas in other situations, it might be
sufficient for any part of the polymer to reach the target, such
as in gene activation. We then present the NETP simulation
results. To study the effect associated to the polymer length,
we estimate the mean first passage time of a single absorb-
ing monomer to the boundary of a total absorbing sphere,
when the other monomers are reflected. We present vari-
ous empirical results about the motion of a single monomer.
Furthermore, we study the dependence of the NETP on the
monomer’s position along the chain and the distribution of the
arrival times. Finally, we extend the NETP simulation analy-
sis to include bending elasticity.

II. RESULTS

A. The narrow encounter time (NETP) for different
polymer length

To study the NETP, we model the polymer motion with
a freely joint chain (FJC)13 inside a convex domain �. Each
polymer consists of N beads with coordinates x = (x1, ..xN ),
where consecutive beads are connected by springs of char-
acteristic constant k and experience isotropic random colli-
sion forces. These forces are modeled as Brownian motions.
The average bond length between neighboring monomers is
given by

〈|xk − xk+1|〉 = l0. (3)

Because the DNA molecule is a quite unextendable at small
scales below the persistence length of 50 nm, we decided to
include this length in our simulations. Thus, contrary to the
usual Rouse model38 in which l0 = 0, we study here the FJC
where the equilibrium length between the nearest neighbors is
nonzero with l0 = 50 nm. For long polymer chains, it should
not matter much which of the models (FJC or Rouse) to use,
because they share many similarities.38

The dynamics of the polymer is described by the over-
damped Langevin-Smoluchowski equation:

ẋ + 1

γ
∇UN =

√
2Dη̇, (4)

where η is a Gaussian random variable with zero mean and
unit variance, γ is the friction coefficient, and UN is the po-

tential energy generated by the springs

UN (x) = k

2

N−1∑
k=1

(|xk − xk+1| − l0)2. (5)

For all simulations, we use a circular or spherical mi-
crodomain �. To construct the initial configuration of the
polymer, we put all monomers close to the origin folded on
the top of each other and then ran simulations for a time long
enough that depend on the size of the polymer. Indeed, for
short polymers, we run simulations during a period of time
R2

DCM
= NR2/D (R is the radius of the sphere), which repre-

sent the mean time for the center of mass to explore the spher-
ical domain. For longer polymers for which the radius of gy-
ration is comparable to R, we run a preliminary simulation
for a time equal to the longest relaxation time of the polymer
l2
0N2

D
.38 To conclude, to make sure that the initial configuration

of the polymer inside the sphere was chosen at equilibrium,

we run an initial simulation up to time max{NR2

D ,
l20N2

D }.
Most of the boundary is reflecting, except for the small

absorbing window, where the polymer can be absorbed. Sam-
ple trajectories (Fig. 1) of the center of mass (initial posi-
tion at the center of the domain) for different sets of parame-
ters with beads and springs (blue), the boundary (green), and
the absorbing target (red). The analytical estimation of the
NETP remains a challenging problem, since the computation
involves generalizing the narrow escape theory to the tubu-
lar neighborhood of the absorbing hole in dimension 2N or
3N.37 However, this computation does not fall into the narrow
escape methodology,16–24 rather the computation requires to
analyze the mean first passage time of a stochastic particle in
a narrow band in high dimension, and thus many of the ap-
proximations used for a punctual particle are no longer valid.
Obtaining such a formula for the polymer would be useful to
better explore the complexity of the parameter space.

B. The NETP has a bell shape profile

To study the dependency of the NETP as a function of
the polymer length N, we use the Euler’s scheme (Eq. (A2))
and run Brownian simulations for a range of polymer lengths
from N = 1 to N = 350, in dimensions two and three under
the two scenarios described above. In Figs. 2–4, the NETP
values are normalized to the NET for a single particle, which
we obtained from Brownian simulations: τ 0 = 3s in dimen-
sion two and τ 0 = 15s in dimension 3, with parameters listed
in Table I and the diffusion constant for a single monomer
is D = 0.04 μm2/s.48 The NETP curve contains two phases
that we shall now discuss (the NET τ 0 for one particle is re-
ferred in the figures as 〈τ 2d〉 and 〈τ 3d〉 in dimension 2 and 3,
respectively).

1. The initial phase of the NETP increases linearly
with the polymer length

In dimensions two and three, the NETP is initially an in-
creasing function of the number of beads N, until a critical
value Nc after which it is decreasing. With the parameter of
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(a) (b)

(c)

FIG. 1. Confined trajectories of FJC polymer. In a circular(2D)/spherical(3D) domain of radius 250 nm, the target size is ε = 50 nm. Trajectories of the center
of mass (black) before absorption at the target (red). (a) Simulation with 1 bead, moving in 2 dimensions. (b)−(c) Simulations of a 4-bead FJC polymer, moving
in 2 dimensions (b) and in 3 dimensions (c).

Table I, using Brownian simulations, we found that the criti-
cal value Nc ∈ [10 − 15] (later on, we obtained the same criti-
cal length when only a single monomer can be absorbed). We
were surprised to see that the polymer size associated with
this critical number is much smaller than the critical length
obtained from the radius of gyration Rg ≈ √

Ncl0/
√

6 ≈ 150.
This suggests that the the radius of gyration is not sufficient
to characterize the effect of the confinement on the polymer
dynamics.

In addition, for short polymer lengths, such that N < Nc,
the NETP is largely determined by the motion of the center

TABLE I. Parameters of the simulations.

Parameters Description Value

R Radius of the
circular/spherical domain

250 nm

a Radius of the absorbing
window

50 nm

l0 Polymer persistence length 50 nm 46

D Diffusion constant 4 × 10−2 μm2/s (Ref. 48)
γ Friction coefficient 3.1 × 10−5 Ns/m
k Spring constant 1.75 × 10−2 Nm−1

(Ref. 47)

of mass. When the polymer is far from the absorbing target,
none of the beads will be able to reach it, until the center of
mass has moved close to the target. The NETP thus reflects
the mean first passage time of the center of mass to the target.
In this limiting case, the center of mass undergoes Brownian
motion with a diffusion constant inversely proportional to the
number of beads: DCM = D

N
. Thus, in the regime N � Nc,

the NETP is approximately that of a single particle, but with
a smaller diffusion constant. The expression for the NET ((1)
and (2)) are inversely proportional to DCM, and thus we obtain
the initial linear regime in N:

〈τany〉2d ≈ N〈τ2d〉,
(6)

〈τany〉3d ≈ N〈τ3d〉,

as confirmed in Fig. 2. However, for a polymer of length com-
parable to the size of the microdomain, the location of the
center of mass does not determine anymore the NETP. In that
regime, smaller subsections of the polymer can be close to the
target even if the center of mass is far away. In addition, when
any bead can be absorbed, increasing the polymer length re-
sults in a decrease in the NETP (Fig. 2). Interestingly, two
regimes can be further distinguished for the decay phase.
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(a) (b)

(c)

FIG. 2. NETP for any monomer to the target, for different polymer lengths. The results are normalized to τ 0 (the NET for 1 bead), Eqs. (1) and (2). Depicted is
the mean time for any of the beads to reach the target in dimension two (a) and three (b). Each data point represents the average over 2000 runs. The Brownian

data are fitted by a double exponential function in dimension 2,
〈τany(N)〉2d

〈τ2d 〉 = a2 exp(−α2N ) + b2 exp(−β2N ) with exponents α2 = 0.0075, β2 = 0.024, and

coefficients a2 = 0.23, b2 = 2.17 and in dimension 3
〈τany(N)〉3d

〈τ3d 〉 = a3 exp(−α3N ) + b3 exp(−β3N ) with exponents α3 = 0.0082, β3 = 0.030 and coefficient a3

= 0.60, b3 = 1.56. (c) Probability distribution P[τ /τ 0] of arrival times for any monomer to a small target (in three dimensions) for N = 100. The probability
distribution of the arrival times to a small hole, located on the boundary of a sphere in three dimensions, is approximated by a sum of two exponentials. The
datas are well approximated by a single exponential of the form Pr{τ 3d = t} = a exp (−αt) with a = 0.814, and α = 4.185.

2. The decay phase of the NETP is approximated
by an exponential

When any bead can be absorbed, the decay phase of the
NEPT (Fig. 2) can be separated into two different regimes
that can be described as followed. In the first one, the poly-
mer moves freely until a monomer hits the absorbing bound-
ary. The NETP is determined by the competitive effects of a
decreased diffusion constant for the center of mass and an in-
creased total polymer length. Increasing the polymer length
leads to an effective smaller volume of the effective confin-
ing domain in which the polymer has to find the absorbing
window. To investigate more specifically the dynamics of the
polymer, we monitored in our simulations the time evolution
of several polymers and observed at equilibrium various het-
erogeneous configurations with multiple pearl-like-structure
(PLS) (Fig. 3). Thus, a polymer forms transient PLSs, some-
times a single PLS (Fig. 3(a)), or two transient small ones
(Fig. 3(b)), or even three little ones (Fig. 3(c)). We con-
clude that a polymer of intermediate size is not simply uni-
formly distributed, rather its shape changes, making transient
between various substructures, characterized as PLSs. These
transients structures (Fig. 3(c)) suggest that the NETP as a
function of N for a confined polymer cannot result from a

simple scaling law, that can be analyzed from a steady state
distribution.

In a second regime, when the length of the polymer be-
comes long enough, so that at least one monomer can always
be found in the boundary layer (of size ε) of the absorbing
hole,17, 18 we expect the NETP to have a different decay as a
function of N compared to the previous intermediate regime.
In that case, the center of mass is strongly restricted due to
the interaction of all the monomers with the microdomain

FIG. 3. Snapshots of the polymer configuration during the Brownian dynam-
ics. A polymer (N = 100) is shown at (a) 7.5 ms , (b) 30 ms, and (c) 60 ms
during the Brownian dynamics (the initial configuration of the polymer has
uniformly distributed angles, with length l0). This simulation reveals pearl-
like structures (PLSs): a large PLS in (a), two PLSs (b), and three small ones
(c). The time step is 
 = 1.5 × 10−4 s.
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(a) (b)

(c) (d)

(e) (f)

FIG. 4. Dynamics and distribution of a single monomer: (a) NETP for the three monomers: end, middle and N − 1 as a function of the polymer length N in
three dimensions (Brownian simulations): the encounter time is normalized to the time τ 0 (for a single bead). Parameters are described in Table I. (b) Probability
distribution P[τ /τ 0] of arrival times for the end monomer to a small target (in three dimensions). The datas are well approximated by a single exponential of the
form Pr{τ 3d = t} = aexp ( − αt) with a = 1.014, α = 0.76. Monomers radial distribution: (c) probability distribution function (pdf) of monomers position. The
radial pdf is calculated from Brownian simulations for the end monomers N = 16 (points), N = 150 (full line), and the middle monomers N = 16 (points-line),
N = 150 (dashed line). (d) The pdf of the center of mass for N = 16 (points), N = 48 (dashed line), N = 150 (full line). The normalized effective potential
UN(r) = −kBTlog (P(r)) acting on a monomer was calculated from the radial pdf. (e) The potential for the end and middle monomers corresponding to (c). (f)
The potential for the center of mass corresponds to (d). The asymptotic behavior for the end and the middle monomers are significantly different, confirming
that the boundary has different effect depending on the position of each monomer.

surface (Fig. 4(d)). The NETP is determined by mean time
for a monomer in the boundary layer of the absorbing win-
dow. It is still an unsolved problem to obtain an asymptotic
estimate for that time. Using an optimal fit procedure, we ob-
tain for the NETP an empirical scaling approximation with
two exponentials

〈τany(N )〉2d

〈τ2d〉
= a2 exp(−α2N ) + b2 exp(−β2N ) for d = 2 (7)

and

〈τany(N )〉3d

〈τ3d〉
= a3 exp(−α3N ) + b3 exp(−β3N ) for d = 3. (8)

〈τ 3d〉 and 〈τ 2d〉 are the NET for a single particle τ 0, in di-
mension 3 and 2, respectively. In dimension two, the expo-
nents are α2 = 0.0075, β2 = 0.024 and coefficients a2 = 0.23,
b2 = 2.17 and in dimension 3, α3 = 0.0082, β3 = 0.030 and
coefficient a3 = 0.60, b3 = 1.56 (Fig. 2). The empirical laws
(7) and (8) remain to be derived analytically.
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3. The arrival time is approximately Poissonian when
any monomer can reach the target

Finally, we have shown in Fig. 2(c) that the histogram of
arrival time of any monomer to the small target can be well
approximated by a single exponential, suggesting that the ar-
rival time be almost Poissonian. This result can appear quite
surprising, but it is the effect of the small target, which select
the long time behavior of the polymer.19

4. Phenomenological explanation of NETP bell shape

The bell shape nature of the NETP can be qualita-
tively explained using the NET Eqs. (1) and (2). Indeed, a
small polymer can be considered as a quasi-particle of radius
Rg = l0

√
N/6,10 evolving in an effective domain, which is

the full domain minus its volume. Thus, the NETP is related
to the mean first passage time of the quasi-particle with dif-
fusion constant DCM = D

N
in the apparent domain of volume

Va = 4π
3 (R − Rg)3, leading to a mean time proportional

Va

εDN

= N
4π

3εD
(R − l0

√
N/6)3. (9)

This phenomenological formula shows that the mean time has
a maximum for Nm = 25 (parameter of Table I), which is an
over estimation of the empirical value that we obtained from
Brownian simulation N = 10. To summarize, when each bead
can reach the absorbing target, the NETP exhibits two differ-
ent behaviors: while for short polymer size, the dynamics can
be abstractly described by a quasi-particle, leading to a max-
imum of the NETP, for longer polymers, the NETP decays
with a single exponential, a behavior that was not expected.
An analytical derivation of this result is still missing.

C. When a single monomer can be absorbed, the
NETP depends on its location on the polymer chain

To study the impact on the NETP of the monomer lo-
cation along the polymer chain that can be absorbed at the
target, we ran a new set of Brownian simulations (Fig. 4). The
polymer is confined in a sphere and only one monomer (we
call it active monomer) can be absorbed, while all others are
reflected at the target site. Interestingly, the simulation reveals
that the location of the absorbing monomer on the chain can
drastically affect the arrival time to the small target. Between
the middle and the end monomer, we observe a factor 3 re-
duction in the arrival time. Interestingly, already taking the
N − 1th monomer compared to the last one is making a no-
ticeable difference. In addition, the NETP increases to a dif-
ferent plateau that depends also on the monomer location: the
plateau starts at a length N = 20 for the end monomer, while
it is around N = 75 for the middle monomer. We note that the
effect of the boundary starts on the polymer dynamics is seen
already for N = 20, which is much smaller than the length of
a polymer for which the gyration radius is comparable to the
domain radius.

To analyze this behavior, we examined each phase sepa-
rately. In the increasing phase (as a function of the polymer
length, Fig. 4(a)), the arrival of the monomer to the target is

mainly governed by the diffusion of the polymer center of
mass, which can be approximated by a diffusing ball of dif-
fusion constant DCM = D/N . However, for larger N, this ap-
proximation is not valid, rather the arrival time converges to
a constant value that depends on the structure of the polymer
where the stochastic dynamics is much richer than simple dif-
fusion. The motion of the active monomer, which is affected
by the entire polymer, depends on its length and the boundary
of the confined domain.39 Intuitively, the interaction of the ac-
tive monomer with the other monomers generates an effective
potential through their interaction with the boundary, which is
different for the middle and the end monomer, leading to the
major differences reported in Figs. 4(a) and 4(c).

For N large enough, the middle monomer is more con-
fined than the end one, and by analogy with the diffusion of
a stochastic particle in a potential well, the middle monomer
has to surmount a higher potential barrier to reach the small
target located on the boundary. To clarify this hand waving
explanation, we approximate the active monomer motion as
diffusion in a spherical symmetrical potential V inside our
confined spherical domain for the polymer. The stochastic de-
scription is

Ẋ = V (X)

γ
+

√
2kT

γ
ẇ, (10)

where w is the standard Brownian motion. Using the symme-
try of the domain, the potential V has a single minimum at
the center. Interestingly, in the high potential barrier approx-
imation, the mean time to a small target does not depend on
the specific shape of the potential, but rather on its minimum
and maximum.40 In that case, the mean time τ (N) to a target,
which depends on the polymer size is given by

τ (N ) = (2π )3/2γ
√

kT

4aω
3/2
N

exp

[
UN

kT

]
, (11)

where UN(r) is the energy barrier generated by the polymer
due to the presence of the boundary of the domain at the target
site and ωN is the frequency at the minimum (UN (r) ≈ ωN

2 r2

near 0).40 The potential UN(r) can be recovered from formula
(11) and the numerical simulations described in Fig. 4(c). We
conclude that the position along the polymer chain of the
monomer interacting with the target critically influences the
search process.

We now directly evaluate the monomers distribution in-
side our confined domain using a numerical approach. To
further characterize the dynamics of a single monomer, we
computed the equilibrium radial probability distribution func-
tion (pdf) P(r) of the monomers position. We found that the
monomers, depending on their location along the chain, are
differently distributed inside the confined domain (Figs. 4(c)
and 4(d)). The middle monomer is more restricted to the cen-
ter, away from the boundary compared to the end monomer,
which explores in average a larger area. As the length of
the chain increases, the middle monomer gets more re-
stricted, while the end one does not seem to be much affected
(Fig. 4(c)). The center of mass has a similar behavior as the
middle monomer and its spatial distribution gets restricted for
increasing polymer length. From the radial pdf, we decided
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to evaluate the effective potential UN(r) acting on a monomer
by UN(r) = −kBT log (P(r)) defined in Eq. (11). The potential
acting on the center of mass is large enough so that it never
arrived to the periphery during our simulations (Figs. 4(e) and
4(f)). Finally, similar to the case where all the monomers can
interact with the target, we show in Fig. 4(b), that the arrival
time distribution is well approximated by a single exponen-
tial, showing that the distribution is almost Poissonian. How-
ever, the rate depends on the location of absorbing monomer
along the polymer chain.

1. Influence of the polymer length on the arrival time
of an ensemble of absorbing monomers to the sphere
boundary

To evaluate the effect of the polymer length on the
monomer dynamics, we study the arrival time of the ensem-
ble of n consecutive (the first one a polymer end) monomers
to a sphere. As described in Sec. II C, the reflecting monomers
can prevent the absorbing ones to reach the boundary of the
sphere. To explore the arrival time as a function of n, we run
Brownian simulations in a three dimensional sphere for var-
ious polymer sizes (N monomers) and absorbing lengths n,
while the N − n remaining monomers are reflected on the
surface. We have found (Fig. 5(a)) that the arrival time decays
with n, independently of the polymer size (N = 40, 140, 220).

To further investigate the role of the polymer length on
the arrival time, we studied the recurrence time of a sin-
gle monomer, which is the time for that monomer to move

from a sphere of radius R2 = R1
2 to the boundary (radius R1

= 250 nm), as described in Figs. 5(b)–5(d). The recurrence
time is increasing with the size of the polymer. However,
it becomes independent on the polymer length for N ≥ 20
(Fig. 5(e)) while the motion of a single monomer does not
depend on the size of polymer. In the regime of large N,
the longest relaxation time due to the internal modes of the
polymer38 is larger than the time it takes for a monomer to
be absorbed at boundary (this situation happens when the ra-
dius of gyration of the polymer is larger than the radius of the
sphere). To clarify that the time to absorption is independent
of the total polymer length N, we simply recall that the motion
of a single monomer in the large N regime is that of a corre-
lated particle, that can be described as anomalous.39 In that
case, the mean square displacement is shown39 to be indepen-
dent of the polymer length. To conclude, Fig. 5(d) shows that
the reflecting monomers prevent the absorbing ones to reach
the surface of the sphere only below a certain number.

D. NETP with additional stiffness

In this final section, we explore the consequence of
adding flexibility on the NETP, which can characterize
complex DNA molecule containing various bound proteins.
We account for the stiffness by including the bending energy

Ubend (x) = κang

2

N−1∑
i=1

(ui+1 − ui)
2 = κang

N−1∑
i=1

(1 − ui · ui+1),

(12)

FIG. 5. The recurrence time of a polymer between two concentric disks and the influence of the absorbing polymer size. A perfectly flexible polymer is
introduced into the spherical domain and we preform a preliminary Brownian simulation until the equilibrium regime is achieved. After that, we estimate the
first time t1 that one of the end monomer hits the surface of the external sphere (a) then the first time t2 that it enters into the sphere of radius R2 (b) and finally
the first time t3 that it hits again the boundary of the external sphere (c). The recurrent time is average of t3 − t1 over many realizations. (d) recurrence time
for the end monomers (polymer of length N = 60) in dimension three, computed as described in panel a-c. (e) Effect of the polymer reacting site size on the
arrival time to a fully absorbing three dimensional sphere. The polymer is composed of N monomers, with n absorbing ones, the other N − n are reflected at the
external sphere. We present the NETP to the boundary for three polymer sizes (40, 140, and 220). The results are normalized by the NET for a single Brownian
particle 〈τ 3d〉.
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where ui = x i+1−x i

|x i+1−x i | is the unit vector connecting two con-
secutive monomers and xi is the position of the ith monomer.
This potential depends on the angle θ i between two succes-
sive monomers with the relation ui · ui+1 = cos θi . The bend-
ing rigidity κang is related to the persistence length Lp of the
polymer by the expression41

Lp = κangl0

kBT
, (13)

where kB is the Boltzmann constant, T is the temperature, l0
has been defined above. The persistence length quantifies the
stiffness of a polymer and can be characterized using the unit
tangent vectors t(s) and t(0) at positions s and 0 along the
polymer. Averaging over all starting positions, the expecta-
tion of φ, which is the angle between t(s) and t(0), falls off
exponentially with the distance s along the polymer

〈û(s) · û(0)〉 = e−s/LP . (14)

For our simulations, we use the value κang = 5 (Ref. 42) that
leads to Lp = 250 nm, which is the reported value of the
persistence length of chromatin fibers.43, 44 We use the rigid
polymer dynamics obtained from the over-damped Langevin-
Smoluchowski equation

ẋ + ∇U =
√

2Dẇ, (15)

where the total potential U = U (x) is the sum of two energy
potentials

U (x) = UN (x) + Ubend (x), (16)

where UN (x) is the elastic potential defined in Eq. (5). In-
terestingly, the two potentials are of the same order of mag-
nitude: using the maximum extensibility of DNA about 10%
of its total length,45 in that case the length r − l0 ∼ 5 nm
(r = |xk+1 − xk|) and UN

el = 1
2k(r − l0)2 ∼ 2 × 10−18 Nm,

while the maximum energy between three consecutive
monomers due to bending is Ubend = kang(1 − cos θ ) = kBT ∗
Lp/l0 ∗ ∼ 5 × 10−19 Nm. We simulate the arrival time of any
monomer to the absorbing boundary and use the same fitting
procedure as in Fig. 2. It leads in dimension 2 to (Fig. 6(a))

〈τany〉2d

〈τ2d〉 = a2 exp(−α2N ) + b2 exp(−β2N ) (17)

with a2 = 0.37, b2 = 2.9, and α2 = 0.02, β2 = 0.18 and in
dimension 3 (Fig. 6(b)),

〈τany〉3d

〈τ3d〉 = a3 exp(−α3N ) + b3 exp(−β3N ) (18)

with a3 = 0.28, b3 = 1.64, and α3 = 0.01, β3 = 0.12. Com-
pared to the nonflexible polymer, the maximum of the NETP
is now shifted towards smaller values of N: the NETP is an
increasing function of N for N < 6, and for large N, it is a
decreasing function of N. We compare these results with the
ones for flexible polymers: in a confined spherical cavity, flex-
ible polymers have a tendency to fill the available space, with
a probability of finding a monomer at the center of the cav-
ity being higher than at the boundary, when the persistence
length is comparable to the size of the sphere. On the con-
trary, for stiff polymers, the chain is forced to bend abruptly

(a) (b)

(c) (d)

FIG. 6. NETP for a semi-flexible polymer. The NETP is normalized to τ 0 (the NET for 1 bead, Eqs. (1) and (2)). The simulations are for any of the beads of a
semiflexible polymer to reach the small target in dimension 2 (a) and 3 (b). Each data point is an average over 2000 realizations. An double exponential fit leads
to 〈τ̃2〉

〈τ2d 〉 = a2 exp(−α2N ) + b2 exp(−β2N ) with a2 = 0.37, b2 = 2.9 and α2 = 0.02, β2 = 0.18 and in dimension 3, 〈τ̃3〉
〈τ3d 〉 = a3 exp(−α3N ) + b3 exp(−β3N ).

The same fit in three dimensions gives a3 = 0.28, b3 = 1.64 and α3 = 0.01, β3 = 0.12. (c) Fraction of time a monomer spend near the boundary for a flexible
and nonflexible polymer. (d) Snapshot of a nonflexible polymer that has the tendency to locate near the spherical boundary.
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close to the surface and a large fraction of the polymer re-
mains closed to the surface (Figs. 6(c) and 6(d)). Thus, for
a target located on the surface, a monomer located on a non-
flexible polymer should reach it in an almost two-dimensional
process, decreasing the NETP.

We conclude that large enough nonflexible polymer find
small targets faster than completely flexible ones, this is due to
an increase probability to find monomers in the close vicinity
of the boundary where the small target is located.

III. DISCUSSION AND CONCLUSION

We explored here by means of Brownian simulations,
the mean time for part of a FJC polymer to find a small tar-
get located on the surface of a microdomain. When each of
the monomers can be absorbed, our analysis reveals a bell-
shaped curve (Fig. 2). For a short polymer, it must approach
close to the target for one monomer to be absorbed and the
main contribution to the NETP is given by the diffusion of the
center of mass of the polymer DCM. Since DCM is inversely
proportional to N, the center of mass moves slower and the
NETP increases with N. However, for longer polymers whose
lengths are comparable to the size of the microdomain, some
monomers can reach the target even if the center of mass is far
away. In that regime, increasing the polymer length results in
a decrease in the NETP. It is surprising that the empirical fit of
our Brownian simulations requires two exponentials. It would
be interesting to derive analytically this law and the expres-
sion for the associated parameters. Another consequence of
the present analysis is the approximation of the arrival time of
a monomer to the target by a single exponential, showing the
Poissonian nature of this process. Indeed, hitting the target is a
rare event. We further showed that the polymer dynamics can
drastically affect the NETP of a single monomer to the target.
In that case, a repulsive force near the boundary is generated
by the other reflecting monomers (Fig. 4). Consequently, the
NETP converges as the polymer increases to a constant value,
which depends on the monomer position along the polymer
chain.

Our analysis has several applications. In the context of
chromatin dynamics in the nucleus, the long polymer regime
shows that activation, defined as the arrival of one monomer
to an active site by the chromatin segment, depends strongly
on the chromatin length. Moreover, when the polymer repre-
sents a dsDNA break and the microdomain is the local con-
fined domain generated around, our analysis shows that the
mobile DNA segment (length of the polymer) significantly af-
fects the search time: we found that increasing the length from
small (free Brownian) to the maximum value leads to a factor
larger that two difference (Fig. 2). To be quantitative, we can
estimate the mean time for a dsDNA break to find a specific
target such as the other strand, with the following parameters:
the free DNA (persistent) length is 50 nm; it is located inside
a chromatin sphere of radius 250 nm; the diffusion coefficient
is D = 4.10−2μm2/s. We find using the result of Fig. 2 and
formula (7)–(8) that the NETP (mean time for a monomer to
find by diffusion a specific chromatin element of size 12.5 nm
or the other dsDNA break) is around τ = [100 − 200] s.

Finally, because a dsDNA break has been found to be di-
rected to the nuclear boundary,4 we postulated that a specific
mechanism should be involved. Indeed our analysis (Fig. 5)
reveals that the reflective interaction of the polymer chain
with the nuclear surface generates a local potential that pre-
vents the break to approach the nuclear surface. Thus, by in-
creasing the surface of the target, which can results from de-
phosphorylation, leads to a decrease (Fig. 5) of the NETP of
the break to the nuclear surface. It would be interesting in
a future study to add the effect of nucleosomes.3 The present
work disregards the effect of an external field (such as an elec-
tric field), which could be induced in in vitro experiments. It
would be interesting to add the effect of a field and explore
the consequences on the NETP. In addition, the present study
could also characterize the search of a target by a charged
polymer. Indeed, because the Debye length is 0.8 nm (about
the size of a monomer), the polymer, even if it is charged, can-
not feel the target, showing that the present results are quite
general.
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APPENDIX: NUMERICAL METHODS AND
PARAMETER CALIBRATIONS

1. Simulation procedure

For a chain of N beads (and N − 1 springs), we initialized
the chain with its center of mass at the center of the domain,
with the angle between adjacent springs random (uniformly
distributed between 0 and 2π ).

At each time step, the monomers (beads) move according
to Eq. (A2). When a Brownian bead crosses numerically the
boundary of the domain, it is reflected according to Snell’s
law (angle of incidence = angle of reflection). A monomer is
“absorbed” at the target region if the line drawn from its posi-
tion at the previous time step to its current position intersects
with the target region of the boundary. We record the first time
any of the beads reaches the absorbing region as τ any. If the
bead is not the active monomer, it is reflected back into the
domain and the simulation continues. If the bead is an active
monomer, the simulation ends and the final simulation time
is recorded as τmon. All our results are displayed in reduced
units. We have used the USFC Chimera software49 for visual
snapshots of the polymer dynamics.

2. Simulation parameters

a. Dimensions of the microdomain

We use for the microdomain, a disk and and a sphere in
dimensions two and three, respectively, of radius R = 250 nm.
For a size of the hole of 50 nm, we obtain that ε = a

R
= 0.05.

b. Spring resting length l0

The resting length of the spring connecting two neigh-
boring bead to be 50 nm (approximately 150 base pairs).46
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c. Spring constant k

Using the direct measurements47 of the elasticity of short
stretches (30 base pairs) of double stranded DNA (dsDNA),
the Young’s Modulus of dsDNA is estimated to be 55 MPa.47

We now estimate the spring constant k. Using that the ds-
DNA was on average initially 8.5 nm, but when a force of
113.7 pN was applied, it stretches to an additional 6.5 nm,
under the assumption that the dsDNA is still in the Hookean
regime (i.e., stretching linearly), we obtain a spring constant
of k = F/x = 1.75 × 10−2 N/m.

d. Integration algorithm and time step �t

The simulation time step 
t is chosen such that each bead
moves on average less than the distance 
x� at each time step,
where 
x� is the smaller length scale of our system, which is
the diameter of the small hole 2εR. In practice, we used 
x�

= f × (2εR) where f is an extra precision parameter, fixed to
0.2. Hence, we used 
t = (
x�)2/2D = 1.5 × 10−4s. The
numerical scheme is as follows:

x(t + 
t) = x(t) + 1

γ
∇UN
t + η

√
2D
t, (A1)

that is (for one of the non-end beads),

xk(t + 
t)

= xk(t) − k

γ

(
(xk(t) − xk+1(t)) − l0

xk(t) − xk+1(t)

|xk(t) − xk+1(t)|

+ (xk(t) − xk−1(t)) − l0
xk(t) − xk−1(t)

|xk(t) − xk−1(t)|
)


t

+ η
√

2D
t, (A2)

where η is a Gaussian random variable with zero mean and
unit variance.

e. The friction coefficient γ and the diffusion
constant D

The diffusion constant D of a DNA molecule has been
estimated48 to be D = 4 × 10−2 μm2/s. The friction coef-
ficient is computed by using Einstein relation D = kBT

γ
, at

room temperature and γ = 10−7 Ns/m. The relaxation time
constant of each spring is γ

k
∼ 10−5 s, much shorter than the

time step we used. Our simulations occur in a regime where
the springs relax to their resting length l0 at every time step.
Thus, the polymer keeps its original length (N − 1)l0.

f. Simulation of the stiff polymer in the microdomain

We first introduced in the sphere a perfectly flexible poly-
mer (κang = 0), then we give it a stiffness by changing the

value of κang and a preliminary Brownian dynamics is per-
formed to ensure equilibration of the polymer.
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