
Machine Learning, 19, 79-92 (1995)

(c) 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Encouraging Experimental Results on Learning CNF

RAYMOND J. MOONEY mooney@cs.utexas.edu

Department of Computer Sciences, University of Texas, Austin, TX 78712

Editor: Dennis Kibler

Abstract. This paper presents results comparing three simple inductive learning systems using different repre-

sentations for concepts, namely: CNF formulae, DNF formulae, and decision trees. The CNF learner performs

surprisingly well. Results on five natural data sets indicates that it frequently trains faster and produces more

accurate and simpler concepts.

Keywords: concept induction, experimental comparison, CNF, DNF, decision trees

1 Introduction

Most empirical research on symbolic concept induction has focussed on learning decision

trees (Quinlan, 1986; Breiman et al., 1984; Buntine & Niblett, 1992; Fayyad & Irani, 1992)

or disjunctive normal form (DNF) expressions (Michalski & Chilausky, 1980; Michalski

et al., 1986; Clark & Niblett, 1989; Pagallo & Haussler, 1990). Very little experimental

research has been done on learning conjunctive normal form (CNF). This paper presents

empirical results comparing simple CNF, DNF, and decision-tree learners on five natural

data sets. The decision-tree system is a version of ID3 (Quinlan, 1986), the DNF system

is a propositional version of FOIL (Quinlan, 1990), and the CNF system is the logical dual

of the FOIL system. In the domains tested, the CNF learner consistently obtains greater or

equal classification accuracy and generally runs faster and produces less complex concepts.

The success of the CNF-learning system is somewhat surprising, since CNF seems to

have a reputation as an "unnatural" concept representation. Although computational learn-

ing theorists frequently examine CNF representations (e.g. kCNF, k-clause CNF) (Valiant,

1984; Pitt & Valiant, 1988), there are no popular, practical algorithms for learning CNF. Ac-

tually, CNF is a quite natural representation for "nearly conjunctive" concepts. In addition,

our results indicate that the dual of FOIL is an efficient and effective CNF learner.

2 Learning algorithms

2.1 DNF learner

The DNF learner is a propositional version of FOIL (Quinlan, 1990), which we call PFOIL.

FOIL is a system for learning first-order Horn clauses; however, the basic algorithm is a

heuristic covering algorithm for learning DNF similar to AQ (Michalski, 1975) or GREEDY3

(Pagallo & Haussler, 1990). Pseudocode for PFOIL is shown in Table 1. The primary sim-

plification compared to FOIL, is that it only needs to deal with fixed examples rather than

expanding tuples. Each execution of the outer loop adds one term to the final DNF expres-



80 MOONEY

Table 1. DNF learning algorithm: PFOIL.

Let Pos be all the positive examples.

Let DNF be empty.

Until Pos is empty do:

Let Neg be all the negative examples.

Set Term to empty and Pos2 to Pos.

Until Neg is empty do:

Choose the feature-value pair, L, that maximizes DNF-gain(L, Pos2,Neg2)

Add L to Term.

Remove from Neg all examples that do not satisfy L.

Remove from Pos2 all examples that do not satisfy L.

Add Term as one term of DNF.

Remove from Pos all examples that satisfy Term.

Return DNF

Function DNF-gain (L , Pos , Neg)

Let P be the number of examples in Pos and N the number of examples in Neg

Let p be the number of examples in Pos that satisfy L.

Let n be the number of examples in Neg that satisfy L.

Return p*(log(p/(p+n)) - log(P/(P+N)))

sion and removes the positive examples that it covers. Each execution of the inner loop
adds one literal to the current term, using an information-gain metric to determine the best
literal. The metric computes the total information gained regarding the current positive

examples, which is given by the number of them that satisfy the literal multiplied by the
information gained regarding each one of them (Quinlan, 1990).

The current system only handles discrete-valued features, in which a "literal" is a specific

feature-value pair, such as color=red, pregnant=true, or pregnant=f alse. No

special processing is used to handle missing values. An example that is missing a value for

a particular feature is simply assumed not to satisfy any specific feature-value pair for that

feature. If due to noise, missing values, or local minima, there is no literal with positive
information gain, the incomplete term is simply returned. This happened relatively rarely

in the current experiments, training set accuracy almost always averaged over 99%. Finally,
there is currently no pre-pruning or post-pruning of terms or clauses to avoid overfilling.

When learning from data with multiple disjoint categories, PFOIL learns a separate DNF
description for each non-negative category using the examples of that category as positive
instances and the examples of all other categories as negative instances. During testing,

if an example satisfies the DNF description of more than one category, it is assigned to

the matching category with the most training examples. If a test example doesn't match

any of the category descriptions, it is assigned to overall most common category, or to the

negative category, if one exists.

To help ensure that PFOIL was a representalive DNF learner, we ran several experiments
comparing it to a comparable version of AQ (Michalski, 1975). In almost all cases, there

was no statistically significant difference in predictive accuracy; however, AQ generally
took significantly longer to run. If AQ's beam-width was set to one (therefore forcing it to
hill-climb like PFOIL), its run time was similar to PFOIL's but it's DNF expressions were
significantly more complex.



EXPERIMENTAL RESULTS ON LEARNING CNF 81

Table 2. CNF learning algorithm: PFOIL-CNF.

Let Neg be all the negative examples.

Let CNF be empty.

Until Neg is empty do:

Let Pos be all the positive examples.

Set Clause to empty and Neg2 to Neg.

Until Pos is empty do:

Choose the feature-value pair, L, that maximizes CNF-gain(L,Pos,Neg2)

Add L to Clause.

Remove from Pos all examples that satisfy L.

Remove from Neg2 all examples that satisfy L.

Add Clause as one clause of CNF.

Remove from Neg all examples that do not satisfy Clause.

Return(CNF)

Function CNF-gain(L,Pos,Neg)

Let P be the number of examples in Pos and N the number of examples in Neg.

Let p be the number of examples in Pos that do not satisfy L.

Let n be the number of examples in Neg that do not satisfy L.

Return n*(log(n/(p+n)) - log(N/(P+N)))

2.2 CNF learner

There has been a noticeable absence of heuristic algorithms for learning CNF. The standard

PAC algorithm for learning kCNF (Valiant, 1984) requires a fixed limit on the size of clauses

(k) and its time complexity is exponential in k. Therefore, it is not practical for most realistic

problems.

The current experiments employ a logical dual of PFOIL, which we call PFOIL-CNF.

Pseudocode for PFODL-CNF is shown in Table 2.
1
 While PFOIL learns terms until all

of the positive examples are covered, PFOIL-CNF learns clauses until all of the negative

examples are removed. While PFOIL learns terms one literal at a time until all the negatives

are removed, PFOIL-CNF learns clauses one literal at a time until all of the positives are

covered. PFOIL-CNF's information gain metric is also the dual of PFOIL's. It computes

the total information gained regarding the current negative examples, which is given by the

number of them that are removed by the current literal multiplied by the information gained

regarding each one of them.

All of the comments about PFOIL regarding discrete features, missing values, pruning,

and multiple categories apply in corresponding form to the current version of PFOIL-CNF.

In every sense, PFOIL and PFOIL-CNF are exact duals.

2.3 Decision tree learner

The decision-tree learner is a version of ID3 (Quinlan, 1986). The same version was used

in the experiments reported by Shavlik et al. (1991). It learns a single tree for classifying

examples into multiple categories and uses the normal information-gain splitting criterion.

Missing feature values are handled according to the methods recommended in (Quinlan,

1989). When evaluating a potential splitting feature, the system adjusts its information

gain by distributing examples with unknown values across the possible values according to



82 MOONEY

their frequency. When considering partitioning the training set along a particular attribute,

if a training example has an unknown value for this attribute, a fraction of the example is

assigned to each subset based on the frequency of its corresponding value. When classifying

a new case with an unknown value for the attribute being tested, all branches are explored

and the results are combined to reflect the relative probabilities of the different outcomes.

In order to make it comparable to PFOIL and PFOIL-CNF, no pruning is performed. If

the system is eventually left with examples with the exact same features but in different

classes, it creates a leaf labelled with the majority class.

3 Data sets

This section briefly describes the data sets used in the experiments. All of them are available

through the UCI repository of machine learning databases (Murphy & Aha, 1993).

The soybean data set is the original data for soybean disease diagnosis (Michalski &

Chilausky, 1980). It contains 630 examples of 15 different diseases described using 35

features in which 5.1 % of the feature values are missing. A few features can be viewed as

discrete-valued numerical attributes; however, these are simply treated as nominal in the

current experiments.

The congressional voting data set contains records from the U.S. House of Represen-

tatives from the year 1984 (Schlimmer, 1987). It consists of 435 examples from two

classes (Democrat and Republican) with data from 15 key votes in which 5.8% of the

feature values are missing. Like Buntine and Niblett (1992), we deleted the feature

physician-fee-freeze in order to make a more interesting problem. Otherwise,

the most reliable concept description is a trivial test of this single attribute. PFoiL and

PFOIL-CNF were run with Democrats as positive and Republicans as negative. Similar

results were obtained when Republicans were considered positive.

The audiology data set consists of hearing-disorder cases from the Baylor College of

Medicine (Porter et al., 1990) in Quinlan's standardized form available from the UCI repos-

itory. There are 226 examples of 24 categories of hearing disorders using 69 features in

which 2% of the feature values are missing.

The promoter data set consists of 106 DNA sequences, each represented as a string of 57

nucleotides (one of A, G, T, or C). Half of these are examples of a gene-starting sequence

called a promoter (Towell et al., 1990). There are no missing values.

The splice-junction data set is another DNA sequence database (Noordewier et al., 1991).

It consists of 3190 sequences of 60 nucleotides each. Only 0.03% of the feature values

are missing. There are three categories. Two of them represent different boundary re-

gions between protein-coding sections (exons) and non-coding sections (introns) of a DNA

sequence. The third category is negative.

4 Experiments

4.1 Method

In order to compare the performance of the three systems, learning curves were generated

for each of the five data sets. Each system was trained in batch fashion on increasingly



EXPERIMENTAL RESULTS ON LEARNING CNF 83

Figure 1. Test accuracy for soybean data.

larger fractions of a fixed training set and repeatedly tested on the same disjoint test set. At

each point, the following statistics were gathered: training set accuracy, test set accuracy,

training time, and concept complexity. For concept complexity, we recorded the number of

literals for CNF and DNF formulae and the number of leaves for decision trees. Although,

literal and leaf counts are not directly comparable, they provide a reasonable measure of

relative complexity.

All of the results were averaged over 25 trials, each with a different randomly selected

training and test set. In most domains, the test set consisted of all remaining examples;

however, a random set of 200 test examples was used for the larger splice-junction data.

The results were statistically evaluated using a two-tailed paired t-test. For each training

set size, each pair of systems was compared to determine if their differences in accuracy,

time, and complexity were statistically significant (p < 0.05).

4.2 Results

Representative curves for test accuracy, concept complexity, and train time for some of

the domains are shown in Figs. 1-7. Run times are for a SPARCstation 2 running Lucid

Common Lisp. Due to the specifics of the implementations, when given zero training exam-

ples, PFOIL classifies everything as negative, PFOIL-CNF classifies everything as positive,

and ID3 returns a random class. Differences at zero training examples are not particularly

meaningful and will not be discussed. If other specific differences are not mentioned, they

should be assumed to be statistically insignificant. When orderings of systems are given, it

is always from "best" to "worst."

On the soybean data, PFOIL-CNF performed quite well. Its accuracy was significantly

greater than PFOIL's after 80 examples, and significantly greater than ID3's except at 300



84 MOONEY

Figure 2. Concept complexity for soybean data.

Figure 3. Test accuracy for audiology data.

examples. PFOIL was significantly better than ID3 at 20 and 40 examples and significantly

worse at 300 examples. With respect to training time, all differences after 80 examples were

significant, with the ordering: ID3, PFOIL-CNF, PFOIL. Regarding concept complexity,



EXPERIMENTAL RESULTS ON LEARNING CNF 85

Figure 4. Concept complexity for audiology data.

Figure 5. Test accuracy for splice junction data.

PFOIL-CNF always produced simpler results than PFOIL. Comparing leaf and literal

counts is problematic, but ID3 did significantly worse than the other two except at 300

examples.



86 MOONEY

Figure 6. Concept complexity for splice junction data.

Figure 7. Training time for splice junction data.

On the congressional voting data there were no striking differences. The graphs are not

shown; however, data was gathered for 20, 50, 100, 180, and 300 training examples. The

only significant difference in accuracy was that PFOIL did slightly worse than the other two



EXPERIMENTAL RESULTS ON LEARNING CNF 87

at 300 examples. All training times after 50 examples were significant, with the ordering:

PFOIL, PFOIL-CNF, ID3; however, the difference between PFOIL and PFOIL-CNF was min-

imal. All differences in concept complexity were significant with the ordering: ID3, PFOIL,

PFOIL-CNF; however, the difference between PFOIL and PFOIL-CNF were again minimal.

On the audiology data, CNF showed some advantages. Regarding accuracy, PFOIL-CNF

was better than ID3 at 20 examples and better than PFOIL at 140 and 200 examples. PFOIL

was better that ID3 at 20 examples but consistently worse after 90 examples. All training

times were significantly different, generally with the ordering: PFOIL.-CNF, PFOIL, ID3;

except that ID3 was faster than PFOIL at 200 examples and PFOIL was faster than PFoiL-

CNF at 20 and 50 examples. All differences in concept complexity after 50 examples were

significant with the ordering: ID3, PFOIL-CNF, PFOIL; but IDS was significantly worse

than the other two at 20 examples.

On the promoter data, CNF again showed a slight advantage. The graphs are not shown;

however, data was collected for 10, 20, 40, 60 and 80 training examples. The results

are qualitatively similar to the splice junction results but the differences are smaller. With

respect to accuracy, PFOIL-CNF was significantly better than PFOIL at 40 examples and better

than ID3 at 40 and 60 examples. All training times were significantly different with the

ordering: PFOIL-CNF, PFOIL, ID3; except that there was no significant difference between

PFOIL and PFOIL-CNF at 40 and 60 examples. All differences in concept complexity were

also significant with the ordering: PFOIL-CNF, PFOIL, ID3; except there was no significant

difference between PFOIL and PFOIL-CNF at 10 and 20 examples.

On the splice-junction data, CNF shows a fairly strong advantage. On accuracy, PFOIL-

CNF is consistently better than the other two systems, with differences as large as ten

percentage points. PFOIL is significantly better than ID3 at 100, 200, and 300 examples

but significantly worse than ID3 at 500. On training time, PFOIL-CNF is again consistently

better, except it is slower than PFOIL at 20 examples. PFOIL is significantly faster than ID3

up to 200 examples, but significantly slower for 500 examples. All differences in concept

complexity are also significant with the ordering: PFOIL-CNF, PFOIL, ID3; except for PFOIL

and PFOIL-CNF at 20 examples.

4.3 Discussion

Overall, the CNF-learner performed surprisingly well. With respect to classification ac-

curacy, it was never statistically significantly worse than the other two systems and was

frequently superior. In addition, PFOIL-CNF ran faster and produced simpler concepts than

PFOIL, except on the congressional voting data, where the difference was minimal (less

than 10%). Except on the soybean data, PFOIL-CNF also ran faster than ID3. It also pro-

duced simpler concepts in three of the five domains, assuming literal and leaf counts are

comparable measures.

Since all of the algorithms are "top down" and "grow" concept descriptions until they are

consistent with the training data, their run time is a function of their concept complexity.

Consequently, PFOIL-CNF's faster run time is explained by the fact that it is learning simpler

concepts. The fact that PFOIL-CNF frequently learned more accurate, simpler concepts

indicates that CNF was a somewhat better bias for the domains tested. Apparently, the

assumption that the concepts in these domains could be represented as simple CNF formulae

was frequently slightly more appropriate than the assumption that they could be represented

as simple DNF formulae or simple decision trees.



88 MOONEY

Table 3. Sample DNF and CNF concepts in the splice-junction domain.

DNF for Intron-Exon border (26 literals)

P-2=A A P-1=G A P-9=T A P-7=C V

P-2=A A P-1=G A P-21=C A P-25=C V

P-2=A A P-1=G A P2=G A P-3=C V

P-2=A A P-1=G A P-10=T A P-14=T V

P-2=A A P-1=G A P-8=C A P-20=T V

P19=A A P10=C A P-13=C V

P-21=G A P-19=A A P-26=A

CNF for Intron-Exon border (17 literals)

P-2=A V P3=T A

P-1=G V P20=C A

P-3=C V P-10=T V P23=A A

P-7=C V P-21=C V P-19=T V P25=A V P12=A A

P-18=C V P-1S=C V P6=G V P16=A V P-10=G

Table 4. Sample DNF and CNF concepts in the audiology domain.

DNF for Normal Ear (34 literals)

AIR=NORMAL A 0-AR-U=ABSENT A AR-U=NORMAL A MOD-GT-4K=FALSE V

AIR=NORMAL A 0-AR-C=ELEVATED A NOISE=FALSE A 0-AR-U=ELEVATED V

AIR=NORMAL A 0-AR-C=ABSENT A AR-U=ELEVATED A TYMP=A V

AIR=NORMAL A NOISE=FALSE A AGE-GT-60=FALSE A BONE=UNMEASURED A 0-AR-U=ELEVATED V

AIR=NORMAL A NOISE=FALSE A 0-AR-C=ELEVATED A SPEECH=VERY-GOOD V

AIR=NORMAL A SPEECH=NORMAL A AR-C=ELEVATED A NOTCH-AT-4K=FALSE V

AIR=NORMAL A SPEECH=NORMAL A NOISE=FALSE A NAUSEA=FALSE A AR-U=NORMAL

A DIZZINESS=FALSE A AGE-GT-60=FALSE A NOTCH-AT-4K=FALSE A AR-C=NORMAL

CNF for Normal Ear (13 literals)

AIR=NORMAL A

NOISE=FALSE A

0-AR-U=ABSENT V 0-AR-C=ELEVATED V SPEECH=NORMAL A

M-SN-GT-2K=FALSE A

M-SN-GT-4K=FALSE A

TYMP=A A

DIZZINESS=FALSE V 0-AR-C=ELEVATED A

NOTCH-AT-4K=FALSE A

M-SN-2-3K=FALSE A

MOD-GT-4K=FALSE

Specific examples of DNF and CNF concepts learned from the same data are given

in Tables 3 and 4. Notice that the DNF formulae contain repeated patterns of literals

across disjuncts. The DNF results for the soybean and promoter domains show similar

but less pronounced replication. Since representing a CNF concept in DNF generally

requires such duplication, this is another indication that CNF may be a superior bias in

these domains. Pagallo and Haussler (1990) discuss similar duplication resulting from

representing DNF formulae as decision trees.

It should be noted that using intervals on linear features and internal disjunction (allowing

disjunctions of values for the same feature in the "literals" of a DNF formula) (Michalski,



EXPERIMENTAL RESULTS ON LEARNING CNF 89

1983), can help relieve the replication problem for DNF. However, most of the clauses in

the sample CNF formulae are not amenable to either of these approaches.

Unlike DNF formulae, decision trees can "share" conceptual structure across multiple

disjuncts and avoid some of the duplication problems discussed above. However, decision

trees have their own replication problem in which subtrees must be duplicated in order to

represent certain disjunctions (Pagallo & Haussler, 1990). An examination of a number of

decision trees produced for the current data sets revealed a few, small, duplicated subtrees.

However, replication was more clearly indicated by the repeated use of the same features

in different parts of the trees.

Unfortunately, the differences between decision trees and DNF/CNF formulae make

direct comparisons of these representations somewhat difficult. In particular, a single

decision tree can discriminate any number of categories, while separate DNF and CNF

formulae are needed for each category. This allows decision trees to share conceptual

structure across multiple categories in a way that CNF and DNF representations cannot.

This explains why ID3 learns less complex concepts in the audiology domain, since it has

the largest number of categories (24) and therefore the greatest opportunity for sharing

structure across categories.

5 Related research

As previously mentioned, there has been very little experimental research on learning

CNF. Some extensions to the FRINGE (Pagallo & Haussler, 1990) and ClTRE (Matheus &

Rendell, 1989) work on constructive induction in decision trees include feature-construction

heuristics appropriate for learning CNF. Pagallo (1990) explored a dual version of FRINGE

which constructs disjunctive features from negative leaves and a symmetric version which

constructs features appropriate for both DNF and CNF. Yang et al. (1991) present an

improved version of symmetric FRINGE called DCFR1NGE. However, unlike PFOIL-CNF,

these systems do not directly construct CNF formulae in a single pass. Also, the authors

do not present results comparing CNF and DNF biases on natural data.

6 Future research issues

Decision-tree methods for discretizing continuous attributes (Quinlan, 1986; Fayyad &

Irani, 1992) could be employed to handle real-valued features. The effect of using numerical

thresholds and internal disjunction in DNF formulae needs to be determined. Also, the

relative effects of pruning on different representations should be examined.

As previously mentioned, for some purposes it is difficult to compare multi-category,

n-ary decision trees to DNF and CNF formulae. A learner that induces a separate de-

cision tree for each category and is restricted to binary splits on specific feature val-

ues would be easier to compare. Factoring out these additional differences might allow

the relative advantages and disadvantages of decision tree representations to be studied

more clearly.

Although it did not arise frequently in the current experiments, CNF, not surprisingly,

has its own replication problem. An example from the current experiments is shown in

Table 5, in which the literal STE3M-CANKERS=ABOVE-SEC-NDE is repeated in six clauses.



90 MOONEY

Table 5. Example of replication in CNF.

CNF for Frog Eye Leaf Spot (28 literals)

FRUIT-SPOTS=COLORED V LEAFSPOT-SIZE=>-l/8 A

EXTERNAL-DECAY=FIRM-AND-DRY V LEAF-SHREAD=ABSENT A

EXTERNAL-DECAY=FIRM-AND-DRY V TEMP=NORM V STEM-CANKERS=ABOVE-SEC-NDE A

FRUIT-PODS=DISEASED V SEED-TMT=FUNGICIDE V HAIL=NO V AREA-DAMAGED=SCATTERED A

STEM-CANKERS=ABOVE-SEC-NDE V PLANT-GROWTH=NORM A

STEM-CANKERS=ABQVE-SEC-NDE V SEED=NORH A

STEM-CANKERS=ABOVE-SEC-NDE V DATE=8 V DATE=9 V DATE=10 V HAIL=NO A

STEM-CANKERS-ABQVE-SEC-NDE V GERMINATION=80-89%. V DATE=9 V AREA-DAMAGED=LOW-AREAS V

PRECIP=NQRM A

STEM-CANKERS=ABQVE-SEC-NDE V PLANT-STAND=NORMAL V CROP-HIST=SAME-LST-SEV-YRS

However, even in this case, the learned DNF representation was more complex (33 literals

versus 28). There are obviously concepts that can be represented more compactly in DNF

than CNF; however, these did not seem to arise in the current experiments.

A standard representation that can completely avoid replication is multi-level Horn-

clause theories. By appropriately introducing new intermediate terms, replication can be

prevented. Inverse resolution operators like intra-construction and inter-construction (Mug-

gleton, 1987) introduce new terms in order to remove redundancy and to compact concept

representations. However, there has been little research on efficient, oracle-free methods

for inducing multi-level Horn-clause theories. The symmetric FRINGE and DCFRlNGE

algorithms discussed above are possible exceptions but typically require many passes

through the data. An integration of PFOIL and PFOIL-CNF seems like an alternative promis-

ing approach.

7 Conclusions

This paper has presented experiments comparing inductive concept learning using three

different representations: DNF formulae, CNF formulae, and decision trees. In four out of

five domains, the CNF learner produced more accurate concepts than the other two learners.

In most cases, it also ran faster and produced simpler concepts. This is an indication that

CNF may be a useful bias for real-world problems. However, there has been little focus

on developing practical algorithms for learning CNF. The promising results reported in this

paper will hopefully encourage more research in this and related areas.

Acknowledgments

I would like to thank the editor, Dennis Kibler, and the anonymous reviewers for their

helpful comments on the initial draft of this paper. I would also like to thank John Zelle

for stimulating discussions that inspired the development of PFOIL-CNF. This research

was supported by the National Science Foundation under grant IRI-9102926 and the Texas

Advanced Research Program under grant 003658114.



EXPERIMENTAL RESULTS ON LEARNING CNF 91

Notes

1. One can easily show that the time complexity of both PFoil and PFoil-CNF is O (nec) where n is the number

of possible literals, e is the number of examples, and c is the complexity of the final learned concept in number

of literals (i.e. adding each literal in the definition requires determining the gain of each possible literal which

requires examining each remaining example). The complexity of the learned concept, c, is in turn bounded

by O(ne), since each term in a DNF formula has some subset of the n possible literals and covers at least

one new positive example in order to have positive gain (a dual argument holds for CNF). Therefore, both

algorithms are O(n
2e

2).

References

Breiman, L., Friedman, J., Olshen, R,, & Stone, C. (1984). Classification and Regression Trees. Monterey, CA:

Wadsworth and Brooks.

Buntine, W., & Niblett, T. (1992). A further comparison of splitting rules for decision-tree induction. Machine

Learning, 8(1 ):75-86.

Clark, P., & Niblett, T. (1989). The CN2 induction algorithm. Machine Learning, 3:261-284.

Fayyad, U.M., & Irani, K.B. (1992). On the handling of continuous-valued attributes in decision-tree generation.

Machine Learning, 8(1):87-102.

Matheus, C.J., & Rendell, L.A. (1989). Constructive induction on decision trees. In Proceedings of the Eleventh

International Joint Conference on Artificial Intelligence, Detroit, MI, 645-650.

Michalksi, R., Mozetic, I., Hong, J., & Lavrac, N. (1986). The multi-purpose incremental learning system AQ15

and its testing application to three medical domains. In Proceedings of the Fifth National Conference on Artificial

Intelligence, Philadelphia, PA, 1041-1045.

Michalski, R.S. (1975). Synthesis of optimal and quasi-optimal variable valued logic formulas. In Proceedings of

the 1975 International Symposium on Multiple-Valued Logic, Bloomington, IN, 76-87.

Michalski, R.S. (1983). A theory and methodology of inductive learning. In R.S. Michalski, J.G. Carbonell, &

T.M. Mitchell, (Eds.), Machine Learning: An Artificial Intelligence Approach, Tioga, 83-134.

Michalski, R.S., & Chilausky, S. (1980). Learning by being told and learning from examples: An experimental

comparison of the two methods of knowledge acquisition in the context of developing an expert system for

soybean disease diagnosis. Journal of Policy Analysis and Information Systems, 4:126-161.

Muggleton, S. (1987). Duce, an oracle based approach to constructive induction. In Proceedings of the Tenth

International Joint Conference on Artificial Intelligence, Milan, Italy, 287-292.

Murphy, P.M., & Aha, D.W. (1993). UCI repository of machine learning databases (machine-readable data repos-

itory at ics.uci.edu). Department of Information and Computer Science, University of California, Irvine, CA.

Noordewier, M.O., Towell, G.G., & Shavlik, J. W. (1991). Training knowledge-based neural networks to recognize

genes in DNA sequences. In Advances in Neural Information Processing Systems, 3, San Mateo, CA: Morgan

Kaufman.

Pagallo, G. (1990). Adaptive Decision Tree Algorithms for Learning from Examples. PhD thesis, University of

California, Santa Cruz, CA.

Pagallo, G., & Haussler, D. (1990). Boolean feature discovery in empirical [earning. Machine Learning, 5:71-100.

Pin, L., & Valiant, L.G. (1988). Computational limitations on learning from examples. Journal of the Association

for Computing Machinery, 35(4):965-984.

Porter, B., Bareiss, R., & Holte, R. (1990). Concept learning and heuristic classification in weak-theory domains.

Artificial Intelligence, 45:229-263.

Quinlan, J.R. (1986). Induction of decision trees. Machine Learning, 1(1):81-106.

Quinlan, J.R. (1989). Unknown attribute values in induction. In Proceedings of the Sixth International Workshop

on Machine Learning, Ithaca, NY, 164-168.

Quinlan, J.R. (1990). Learning logical definitions from relations. Machine Learning, 5:239-266.

Schlimmer, J.C. (1987). Concept Acquisition Through Representational Adjustment. PhD thesis, Department of

Information and Computer Science, University of California, Irvine, CA.

Shavlik, J.W., Mooney, R.J., & Towell, G.G. (1991). Symbolic and neural learning algorithms: An experimental

comparison. Machine Learning, 6:111—143.



92 MOONEY

Towell, G.G., Shavlik, J.W., & Noordewier, M.O. (1990). Refinement of approximate domain theories by

knowledge-based artificial neural networks. In Proceedings of the Eighth National Conference on Artificial

Intelligence, Boston, MA, 861-866.

Valiant, L.G. (1984). A theory of the learnable. Communications of the Association for Computing Machinery,

27(11):1134-1142.

Yang, D., Rendell, L., & Blix, G. (1991). A scheme for feature construction and a comparison of empirical methods.

In Proceedings of the Twelfth International Joint Conference on Artificial Intelligence, Sydney, Australia,

699-704.

Received November 5, 1992

Accepted May 4, 1993

Final Manuscript November 19, 1993


