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Abstract. We study the problem of information-theoretically secure encryption in
the bounded-storage model introduced by Maurer [15]. The sole assumption of this
model is a limited storage bound on an eavesdropper Eve, who is even allowed to be
computationally unbounded. Suppose a sender Alice and a receiver Bob agreed on a
short private key beforehand, and there is a long public random string accessible by all
parties, say broadcast from a satellite or sent by Alice. Eve can only store some partial
information of this long random string due to her limited storage. Alice and Bob read
the public random string using the shared private key, and produce a one-time pad for
encryption or decryption. In this setting, Aumann et al. [3] proposed protocols with
a nice property called everlasting security, which says that the security holds even if
Eve later manages to obtain that private key. Ding and Rabin [8] gave a better analysis
showing that the same private key can be securely reused for an exponential number of
times, against some adaptive attacks.

We show that an encryption scheme with such nice properties can be derived imme-
diately from any strong randomness extractor, a function which extracts randomness
from a slightly random source, so that its output and its seed together are almost ran-
dom. To have an efficient encryption scheme, one needs a strong extractor that can be
evaluated in an on-line and efficient way. We give one such construction, which yields
an encryption scheme that has the nice security properties as before but now can encrypt
longer messages using shorter private keys.

Key words. Bounded-storage model, Everlasting security, Randomness extractors,
List-decodable codes, Expander graphs.

1. Introduction

Almost all cryptographic protocols in use today are based on some intractability as-
sumptions. That is, adversaries are assumed to be computationally bounded, and some

∗ The conference version of this paper appeared in CRYPTO 2002.
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problems are assumed to be computationally hard. However, no such complexity lower
bound has been proved, and in fact it seems to remain far beyond the reach of current
techniques in complexity theory. So it is possible that future advances in cryptanaly-
sis or computer technology may jeopardize the security of today’s cryptographic sys-
tems. One extreme then is to look for protocols with provable information-theoretical
security, which are secure against computationally unbounded adversaries, but this is
known to be impossible in general. Taking a step back, it would still be nice if one
could prove information-theoretical security basing only on some minimal and reason-
able assumption. Maurer proposed one such model, called the bounded-storage model
[15], where the only assumption is that an adversary has a bounded amount of storage.
To exploit such weakness of an adversary, a very long public random string, acces-
sible by all parties, is usually employed. With respect to this model, several interest-
ing cryptographic protocols have been proposed, with provable information-theoretical
security.

One important task in cryptography is secure transmission against eavesdropping,
where a sender Alice wants to send a message to a receiver Bob in a way to keep an
eavesdropper Eve from learning the content. In this paper we study private-key encryption
using one-time pads in the bounded-storage model. Assume Alice and Bob share a private
key beforehand. Then a long public random string X is generated, say broadcast from a
satellite or sent by Alice, which is accessible by all parties. Eve has a limited storage so
that only some partial information about X can be stored. For the protocol to be efficient,
Alice and Bob should require much less storage than the bound placed on Eve. Alice and
Bob read the string X on the fly, and compute a one-time pad Z . Then Alice encrypts
her message as C = M ⊕ Z and sends C to Bob. When X is sent, Eve computes and
stores some partial information about X , hoping later to recover M after eavesdropping
the cipher-text C . In this setting, Aumann et al. [3] gave protocols, improving those of
Maurer [15] and Cachin and Maurer [6], which enjoy a nice provable property called
everlasting security. This is an information-theoretical security property and guarantees
secrecy for Alice and Bob even if Eve later after the transmission manages to obtain that
private key. However, how would Alice and Bob share a private key in the first place?
They might need to set up some truly secret channel for that, but this seems inconvenient
in general and may even be infeasible on occasions. The private key can actually be sent
via today’s public-key encryption. The everlasting security guarantees that even if Eve
later obtains that private key after the transmission of X , say by breaking the public-key
encryption, the message M will still remain information-theoretically secure. Such a
feature seems quite attractive, as the security is guaranteed by the limitation of current
storage technology, and will not be affected by future advances of any kind. This is
possible as some crucial information has been lost forever. Shortly after, Ding and Rabin
[8] gave a better analysis showing that the same private key can be securely reused for
an exponential number of times in a way that each encryption remains secure even after
revealing all previous plain-texts.

Let k be the security parameter such that Eve cannot distinguish different messages
with advantage more than 2−k . Let m be the length of the message to be encrypted. Let
n be the length of the public random string X . Assume that the eavesdropper’s storage
bound is νn, for some constant ν < 1. Given these parameters, we would like to find
an encryption scheme that minimizes the length of the private key. Also, as the public
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random string X is typically very long and broadcast at a very high rate, the encryption
scheme should be able to process X in an on-line and efficient fashion.

Observe that as Eve can only store νn bits of information Q from the n-bit random
string X , very likely a substantial amount of randomness still remains in X relative to Q.
The remaining randomness may be crude and not directly applicable, so one would like
to have it purified. This is exactly the issue addressed in the research on constructing the
so-called extractors, first explicitly defined by Nisan and Zuckerman [17]. Extractors
turn out to have many important applications (see [16] for a survey) and have become
a subject of intense study. An extractor is a function that given any source with enough
randomness uses a short perfect random seed to extract many bits which are close to
random. We can use the output from an extractor as a one-time pad for encryption as
it looks random to Eve. A strong extractor is an extractor with a stronger guarantee
that its output and its seed together are close to random, which gives the following nice
properties. On one hand, with high probability, the output of the extractor still looks
random even given the value of the seed, which guarantees the property of everlasting
security of [3] discussed above. On the other hand, with high probability, the seed still
looks random even given the output value of the extractor, which implies that the same
private key can be reused again for the next encryption even if Eve knows the pads of
previous encryptions. Formally, we show that any strong extractor immediately yields an
encryption scheme with everlasting security, against an exponential number of adaptive
attacks, the same property enjoyed by protocols of [3] and [8].

However, not every strong extractor is suitable for an encryption scheme in the setting
we consider here. As the public random string is broadcast at a very high rate and each
party does not have enough memory to store the whole string, we need a strong extractor
that can be evaluated in an on-line and very efficient way. One way of constructing
extractors, introduced by Trevisan [19], is to encode the input string using some list-
decodable code and then project that codeword onto some dimensions determined by the
random seed as output. A list-decodable code, roughly speaking, is a code guaranteeing
some upper bound on the number of codewords in any Hamming ball of certain radius.
For the security parameter k so that Eve’s distinguishing probability is at most 2−k , we
need the number of codewords to be at most 2µn+O(k), for some constant µ ∈ (0, 1), in
any ball of relative radius 1

2−2−O(k). The work of Aumann et al. [3], [8] can be understood
within this framework. Their main technical contribution can be seen as constructing
such a list-decodable code mapping an n-bit string to an nO(k)-bit codeword, where each
bit of a codeword is the parity of O(k) input bits. For an extractor with one output bit, they
encode the input, pick a random dimension of that codeword, and output the bit there,
needing a seed of length O(k log n) for sampling. To output m bits, they independently
choose m random dimensions, and project that codeword onto those m dimensions,
needing a seed of length O(mk log n). So in their encryption scheme, a private key of
length O(mk log n) is required to encode a message of length m. That is, in order to
achieve the everlasting security, they need a private key much longer than the message,
which may limit the applicability of their protocol. Our improvement comes from two
directions. First, we construct such a list-decodable code mapping an n-bit string onto
a codeword of length n2O(k), where each bit of a codeword is again the parity of O(k)
input bits, but now selected via a random walk on some expander graph. An essentially
same construction appeared in [1] but was used for a different purpose: to amplify further
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the distance of a code which already has some linear distance. Here we use this code
construction alone and prove its list-decodability property, which seems new and may
have interest of its own. Next, to have an m-bit output, if we simply project the codeword
onto m random dimensions, needing a seed of length O(m(k+ log n)), we already have
improvement over that of [3] and [8]. For large m, we follow the approach of [19] and
[18] by picking some pseudo-random collection of m dimensions, instead of m random
dimensions, for projection. As a result, for any m ≤ nγ with γ ∈ (0, 1), we only need a
seed of length O((k + log n)2/log n). Note that n is typically much larger than k. When
setting n = 2	(k), we get an encryption scheme using a private key of length O(log n),
which is a dramatic improvement over [3] and [8].

To encrypt an m-bit message, Alice and Bob need to prepare m families of O(k)
indices and remember them. We use random walk on expander graphs and some set
system to determine those m families, which seems to cost some extra computation
compared with [3] and [8]. However, this small extra effort is only required during the
preprocessing phase, when computation time may not be a concern, so hopefully would
not be an issue from a practical point of view. During the broadcast of the long public
random string X , we do exactly the same as that of [3] and [8]. That is, Alice and Bob
compute the m-bit one-time pad, where each of the m bits is a parity of O(k) bits from
X , which can be done in an extremely fast way.

Our protocol enjoys the following key expansion property, which is addressed by a
new result of Dziembowski and Maurer [9]. In [3], to generate a one-time pad of length
m, Alice and Bob need first to agree on a private key of length O(mk log n), much longer
than the pad they want to generate. In [8] a key doubling technique is used to generate
a one-time pad of length m using a private key of length O(k log n), but it requires a
public random string of length
(nk log m log n), much longer than Eve’s storage bound
νn. So an open question was whether one could generate a pad longer than the private
key while using a public random string only slightly longer than Eve’s storage bound.
The main contribution of Dziembowski and Maurer [9] is to settle this question, and
they need a private key of length O(k log n). Independently, we also settle this question
but via a very different method, needing a private key of length O((k + log n)2/log n),
which is smaller than theirs for k = O(log2 n). Both [9] and our result allow the ratio
between the length of public random string and Eve’s storage bound to be arbitrarily
close to one.1 On the other hand, we do not require the long public random string X to
be perfectly random, while this is not clear in [9]. In reality, perfect random sources may
not be available and one may have to rely on sources of lower quality. Our scheme works
as long as X contains enough amount of randomness, which only needs to be slightly
larger than Eve’s storage bound.

In addition to obtaining a better construction, we try to place this line of research in an
appropriate framework, where ideas could be understood in a more intuitive and perhaps
deeper way and various powerful tools have been developed. Most of the techniques
we use are standard in the research area on pseudo-randomness. The idea of using

1 This is the case when we produce a single one-time pad for a single message. To produce several one-time
pads for several messages, we need several blocks of public random strings. The ratio is still arbitrarily close
to one if it is with respect to the length of each block, but it is not so with respect to the total length of these
blocks.
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extractors in such a setting actually appeared implicitly before in the work of Cachin
and Maurer [6]. They first sample bits from X in a pairwise independent way, and then
apply universal hash functions on these bits. In retrospect, their approach does produce
an on-line strong extractor. Since then the theory of pseudo-randomness has made some
advancement, which enables us to have a better understanding and derive stronger results.
Recently, Vadhan has found a new construction that reduces the private key length down
to O(k+log n) [20], which beats ours when k = ω(log n). His approach is similar to that
of Cachin and Maurer [6], but he is able to utilize stronger tools developed afterwards.
First, a good oblivious sampler is used to select a subset of positions beforehand, which
will likely inherit enough min-entropy from X . When X is broadcast, the bits in those
positions are stored in real time, which takes care of the issue that X comes at a very high
rate. Finally, a good strong extractor is applied on those bits to extract randomness, and
now one can afford to use any strong extractor with good parameters without needing to
worry about how fast it can be evaluated. Another related result is that of Bar-Yossef et al.
[4]. They show that the extractors of Trevisan [19] and Raz et al. [18] can be turned into
on-line ones by using the concatenated Reed–Solomon and Hadamard code together with
the weak design of Hartman and Raz [12]. The seed length is O((k + log n)2/log n),
the same as ours. However, their concern was just to be able to read X in one-pass
with small space. In fact, the evaluation of their extractors is more involved and time-
consuming, so they may not be suited for our setting here with X coming at a very
rapid pace.

Notation, definitions, and some simple facts are given in Section 2. In Section 3 we
prove that any strong extractor gives an encryption scheme with everlasting security.
In Section 4 we construct an efficient on-line strong extractor which yields an efficient
encryption scheme.

2. Preliminaries

For a positive integer n, let [n] denote the set {1, . . . , n}. For an n-dimensional vector
m, let m(i), for i ∈ [n], denote the component in the i th dimension of m, and let m(I ),
for I ⊆ [n], denote the vector consisting of those m(i)’s for i ∈ I . For our convenience,
we use {−1, 1}, instead of the usual {0, 1}, for the binary values unless noted otherwise.
For a positive integer n, let U n denote the uniform distribution over {−1, 1}n , and we
omit the superscript n when no confusion is caused. All the logarithms in this paper have
base 2.

The distance between two vectors x, y is defined as dH(x, y) ≡ |{i : x(i) 
= y(i)}|,
which is also known as their Hamming distance.

Definition 1. A mapping C : {−1, 1}n → {−1, 1}n̄ defines a code, with {C(x) : x ∈
{−1, 1}n} as the set of codewords. It is called a list-decodable code with parameter
( 1

2 − ε, L), or a ( 1
2 − ε, L)-list code, if for any z ∈ {−1, 1}n̄ , there are at most L

codewords within distance ( 1
2 − ε)n̄ from z.

We also need a way to measure how close two distributions are.
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Definition 2. The distance between two distributions A, B is defined as ‖A − B‖ ≡
1
2

∑
x |Pr[A = x]− Pr[B = x]|.

This is usually called the variational distance, and it is easy to verify that ‖A−B‖ ≤ 1.
We say that a distribution is ε-random if its distance to the uniform one is at most ε.
Here is a simple but useful lemma, which is proved in Appendix A.

Lemma 1. Suppose the distribution A is independent of distributions B and B ′. Then
for any function g, ‖〈g(A, B), B〉 − 〈g(A, B ′), B ′〉‖ = ‖B − B ′‖.

We need a measure to quantify the randomness contained in a slightly random source.
Shannon’s entropy function captures the average randomness of a source, while we need
some worst-case measure of randomness instead.

Definition 3. For a distribution X , its min-entropy is defined as H∞(X) ≡ minx log(1/
Pr[X = x]).

So H∞(X) ≥ r if and only if Pr[X = x] ≤ 2−r for any x . For a distribution with
enough randomness, guaranteed by its min-entropy, we look for a procedure that can
purify the randomness by using a short random seed as a catalyst.

Definition 4 [17]. A function EXT: {−1, 1}n×{−1, 1}s → {−1, 1}m is called a strong
(r, ε)-extractor if for any distribution X over {−1, 1}n with H∞(X) ≥ r and for Y = U s ,
the distribution of 〈EXT(X, Y ), Y 〉 is ε-random.

The usual definition of extractors only requires the distribution of EXT(X, Y ) being
ε-random. The stronger requirement of a strong extractor EXT gives the following nice
property. With high probability, the distribution of EXT(X, Y ) still looks random even
given the value of Y , and also with high probability, the distribution of Y still looks
random even given the value of EXT(X, Y ). This is guaranteed by the following lemma,
which is proved in Appendix B.

Lemma 2. Suppose the distribution 〈A, B〉 is ε-random. Then the probability over
b ∈ B that the distribution 〈A | B = b〉 is not

√
ε-random is at most 2

√
ε.

We consider private-key encryption schemes using one-time pads. In such a scheme,
a sender Alice and a receiver Bob first agree on a private key Y and then later generate a
one-time pad ZY so that the message M is encrypted as C = M ⊕ ZY , where ⊕ denote
the bitwise exclusive or operation. Note that an eavesdropper Eve with C knows M if
and only if she knows ZY . So for the security of such a scheme, it suffices to show that
ZY looks random to Eve, given her information Q. Aumann et al. [3] introduced the
following stronger notion of security.

Definition 5. A private-key encryption scheme is said to have everlasting security of
degree k if the probability over y ∈ Y and q ∈ Q that the distribution 〈ZY | Y = y, Q =
q〉 is not 2−k-random is at most 2−	(k).
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This guarantees that even if Eve is given that private key Y afterwards, she is still
unlikely to know anything about the message M .

3. Everlasting Security from Strong Extractors

In this section we show that using a strong extractor for encryption guarantees the
everlasting security of [3] and [8]. Recall the following scenario. Before the transmission
of an m-bit message M , a sender Alice and a receiver Bob agree on a random private
key Y . Then they read the n-bit public random string X , compute the one-time pad Z ,
and the encrypted message C = M ⊕ Z is sent from Alice to Bob. An adversary Eve
uses a function f to store νn bits of information Q = f (X) from the public string X ,
and then eavesdrops the encrypted message C . If later Eve is given that private key Y ,
can she obtain any information about M?

For the security parameter k, which is usually much smaller than n, choose ε = 2−2k .
Pickµ < 1−ν, sayµ = 0.99−ν, so that 2−(1−µ−ν)n ≤ ε/2, and let r = µn . We will use
a strong (r, ε/2)-extractor EXT: {−1, 1}n × {−1, 1}s → {−1, 1}m . The private key Y is
selected randomly according to the distribution U s and the one-time pad is generated as
Z = EXT(X, Y ). For M = C⊕ Z , Eve knows M if and only if she knows Z . Note that X
conditioned on Q is likely to contain enough randomness, so very likely the distribution
of Z = EXT(X, Y ) would look random to Eve. This idea actually appeared before in
the setting of constructing pseudo-random generators for space-bounded computation
[17]. Furthermore, with EXT being a strong extractor, we show that EXT(X, Y ) still looks
random even given the value of Y .

Lemma 3. ‖〈 f (X), Y,EXT(X, Y )〉 − 〈 f (X),U s,U m〉‖ ≤ ε.

Proof. First, note that ‖〈 f (X), Y,EXT(X, Y )〉 − 〈 f (X),U m,U s〉‖ equals∑
q

Pr[ f (X) = q] · ‖〈Y,EXT(X, Y ) | f (X) = q〉 − 〈U m,U s | f (X) = q〉‖.

We call a value q ∈ {−1, 1}νn bad if Pr[ f (X) = q] ≤ 2−(1−µ)n , and let B denote this
set of bad q’s. For q /∈ B, Pr[X = x | f (X) = q] ≤ 2−n/2−(1−µ)n = 2−µn for any x , so
H∞(X | f (X) = q) ≥ µn. Then for q /∈ B,

‖〈Y,EXT(X, Y ) | f (X) = q〉 − 〈U s,U m | f (X) = q〉‖
= ‖〈Y,EXT(〈X | f (X) = q〉, Y )〉 − 〈U s,U m〉‖
≤ ε

2
.

For q ∈ B, we only have ‖〈EXT(X, Y ), Y | f (X) = q〉 − 〈U m,U s | f (X) = q〉‖ ≤ 1,
but fortunately it is unlikely to have a bad q as∑

q∈B

Pr[ f (X) = q] ≤
∑
q∈B

2−(1−µ)n

≤ 2(ν−1+µ)n

≤ ε

2
.
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Thus,

‖〈 f (X), Y,EXT(X, Y )〉 − 〈 f (X),U s,U m〉‖
=

∑
q

Pr[ f (X) = q]

·‖〈Y,EXT(X, Y ) | f (X) = q〉 − 〈U s,U m | f (X) = q〉‖
≤

∑
q∈B

Pr[ f (X) = q] · 1+
∑
q /∈B

Pr[ f (X) = q] · ε
2

≤ ε

2
+ ε

2
= ε.

Now according to Lemma 2, even if Eve saved the information f (X) and later obtains
the private key Y , the distribution of EXT(X, Y ) is still 2−k-random with probability
at least 1 − 2−k+1. That is, it gives an encryption scheme with everlasting security of
degree k.

Just like previous work, we assume above that the public string X is perfectly random.
However, such a perfect random source may not be available in reality, and one may
need to rely on sources of lower quality. Note that our proof above actually works for
any source X of length n′ > n with H∞(X) ≥ n. That is, our result holds as long as
Eve’s storage bound is at most a fraction ν of the source’s min-entropy.

3.1. Reusing the Same Private Key

Next, we show that the same key can be reused for 2k times, even given all previous
one-time pads. Now the idea is that for a strong extractor EXT, very likely the distribution
of Y would still look random even given the value of EXT(X, Y ), so the same Y could
be used again to extract randomness in the next round.

Suppose now the public random string consists of K blocks (X1, . . . , X K ) such that
any block conditioned on any value of its previous blocks still has min-entropy at least n.2

Consider the following scenario, with K messages M1,M2, . . . ,MK to be transmitted.
For i ∈ [K ], Alice reads the i th block Xi of the public random string, computes the i th
pad Zi = EXT(Xi , Y ), and sends the encrypted message as Ci = Mi ⊕ Zi to Bob. For
i ∈ [K ], suppose Eve is also given Z[i−1] = (Z1, . . . , Zi−1) and uses a function fi to
store νn bits of information Qi = fi (Xi , Qi−1, Z[i−1]) from the public string Xi . Finally,
Eve eavesdrops the encrypted message CK and is given Y , can she learn anything about
MK ? For the security, again it suffices to show that Z K looks random even given Z[K−1],
QK , and Y . We choose ε = 2−3k , r = µn, and use a strong (r, ε/2)-extractor EXT. Here
is the key lemma.

Lemma 4. For any i ∈ N, ‖〈Z[i−1], Qi , Y, Zi 〉 − 〈Z[i−1], Qi ,U s,U m〉‖ ≤ iε.

2 This is called a blockwise source, introduced by Chor and Goldreich [7].
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Proof. We use induction on i . Lemma 3 handles precisely the case i = 1. So assume
it holds for some i ≥ 1 and consider the case i + 1. By triangle inequality, we have

‖〈Z[i], Qi+1, Y, Zi+1〉 − 〈Z[i], Qi+1,U
s,U m〉‖

≤ ‖〈Z[i], Qi+1, Y,EXT(Xi+1, Y )〉 − 〈Z[i], Qi+1, Y ′,EXT(Xi+1, Y ′)〉‖
+ ‖〈Z[i], Qi+1, Y ′,EXT(Xi+1, Y ′)〉 − 〈Z[i], Qi+1,U

s,U m〉‖,

where Y ′ is the distribution U s which is independent of Z[i]. The first term is about how
random Y remains after i iterations, while the second term is about how good the (i+1)th
extraction is using a new random key Y ′. In the first term, Qi+1 = fi+1(Xi+1, Qi , Z[i]),
and Xi+1 is independent of Qi , Z[i], Y , and Y ′. Then according to Lemma 1, the first
term equals

‖〈Z[i], Qi , Y 〉 − 〈Z[i], Qi , Y ′〉‖ = ‖〈Z[i], Qi , Y 〉 − 〈Z[i], Qi ,U
s〉‖

= ‖〈Z[i−1], Qi , Y, Zi 〉 − 〈Z[i−1], Qi ,U
s, Zi 〉‖

≤ iε,

where the inequality is from the inductive hypothesis. In the second term, Xi+1 is inde-
pendent of Z[i], so only Qi+1 affects the distribution of Xi+1. Then using an argument
similar to the proof of Lemma 3, the second term can be bounded above by ε. Therefore,
we have

‖〈Z[i], Qi+1, Y, Zi+1〉 − 〈Z[i], Qi+1,U
s,U m〉‖ ≤ (i + 1)ε,

which proves the inductive step and thus the lemma.

For K ≤ 2k , the distance is at most 2−2k . Then according to Lemma 2, even given the
previous pads Z1, . . . , Z K−1 and the private key Y , the K th pad Z K is still 2−k-random
with probability at least 1− 2−k+1. So we have the following theorem.

Theorem 1. Any strong (µn, 2−3k)-extractor yields an encryption scheme with ever-
lasting security of degree k, whose private key can be securely reused for 2k times, against
the adaptive attacks discussed above.

Note that we only requires Eve’s storage bound to be at most a ν fraction of the min-
entropy in each block Xi . However, if we consider the K blocks together, Eve’s storage
bound needs to be at most a µ/K fraction of the total min-entropy in the whole random
string.

4. An On-Line Strong Extractor

Although using any strong extractor for encryption does provide a good security guaran-
tee, not any arbitrary strong extractor is suitable in the setting we consider here. Recall
that the public random string X is very long so it needs to be broadcast at a very high rate.
Alice and Bob do not have enough memory to store the whole string, so they would like



36 Chi-Jen Lu

to be able to apply the extractor in an on-line and efficient way. One way of constructing
extractors, introduced by Trevisan [19], is based on list-decodable codes. In order to
have an efficient on-line strong extractor, we need a list-decodable code with an efficient
on-line encoding procedure. The main work of [3] and [8] can be seen as constructing
one such code, where each output bit of a codeword is a parity of a small number of
input bits. Here we give another code with a better parameter.

4.1. An On-Line List-Decodable Code

We use some type of graphs called expander graphs which have their second largest
eigenvalue bounded away from their largest one.3 We also need these graphs to be
explicit in the sense that given any vertex of a graph, computing its neighbors can be
done efficiently.

Lemma 5 [10], [13]. There exists an explicit family of expander graphs (Gn)n∈N with
the following property. There is a constant d and a constant λ < d such that for every
n ∈ N, Gn is a d-regular graph of n vertices with the second largest eigenvalue λ.

Expander graphs enjoys some pseudo-random properties, and we use the following
one.

Lemma 6 [2]. Suppose G is a d-regular graph with the second largest eigenvalue λ,
and B is a set containing at least an α fraction of G’s vertices. Then a t-step random
walk on G misses B with probability at most βα ≡ (1− α + (λ/d)2)t/2.

In fact, this probability is not far away from the probability (1 − α)t achieved by
sampling t vertices randomly and independently, but now we only need log n+ t log d =
log n + O(t) random bits for sampling, instead of t log n random bits. Objects with this
property are called oblivious samplers (for more information, please see the survey by
Goldreich [11]). Observe that smaller λ/d gives smaller βα . This ratio could be reduced
to (λ/d)i by considering the graph Gi , but then each step of a walk on Gi would need
i log d bits, instead of log d bits, to sample.

Let G denote one such d-regular expander graph on n vertices. For a vertex v and for
w ∈ [d]t , let WG(v,w) denote the sequence of t vertices visited by a t-step walk on G
starting from v and then following the directionsw(1), . . . , w(t). Consider the encoding
ECCt : {−1, 1}n → {−1, 1}n̄ , for n̄ = ndt 2t , defined in Fig. 1.

Note that the bit ECCt (x)(v,w, b) = ∏
i∈[t] x(vi )

b(i) is just the parity of at most t
input bits, those bits x( j)’s with j = vi and b(i) = 1. Suppose one had (v,w, b) and
derived those indices j beforehand. Then when x is given, the bit ECCt (x)(v,w, b) can
be computed in an on-line and extremely fast way.

To show that this is a good list-decodable code, we would like to bound the number
of codewords within any Hamming ball of some radius. The Johnson bound in coding
theory (e.g., Chapter 17 of [14]) provides one such bound for codes with some minimum
distance guarantee between any two codewords. It cannot be applied directly to our code

3 The eigenvalues of a graph’s adjacency matrix are called the eigenvalues of that graph.
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• Input: x ∈ {−1, 1}n .
• Output index: (v,w, b) ∈ [n]× [d]t × {0, 1}t .
• Algorithm:

— Do a t-step walk on G to get WG(v,w) = (v1, . . . , vt ).
— Output the bit indexed by (v,w, b) as

ECCt (x)(v,w, b) ≡
∏
i∈[t]

x(vi )
b(i).

Fig. 1. The code ECCt .

ECCt as some codewords are in fact close to each other.4 However, we do have some
distance guarantee between some codewords, as shown by the following lemma.

Lemma 7. Suppose x, y ∈ {−1, 1}n and dH(x, y) ≥ αn. Then dH(ECCt (x),ECCt (y))
≥ ( 1

2 − βα)n̄.

Proof. Let B = {v ∈ [n] : x(v) 
= y(v)}, which has at least αn elements. Consider any
walk (v1, . . . , vt ) ∈ [n]t that hits B, say at vi0 with x(vi0) 
= y(vi0). For any assignment
to b, flipping the bit b(i0) flips exactly one value of x(vi0)

b(i0) and y(vi0)
b(i0), and thus

exactly one value of
∏

i∈[t] x(vi )
b(i) and

∏
i∈[t] y(vi )

b(i). Then for such a walk that hits B,

Pr
b∈{0,1}t

[∏
i∈[t]

x(vi )
b(i) =

∏
i∈[t]

y(vi )
b(i)

]
= 1

2
.

According to Lemma 6, a t-step random walk on G misses B with probability at most
βα . So,

Pr
v,w,b

[ECCt (x)(v,w, b) = ECCt (y)(v,w, b)]

≤ Pr
v,w,b

[WG(v,w) misses B]

+ Pr
v,w,b

[∏
i∈[t]

x(vi )
b(i) =

∏
i∈[t]

y(vi )
b(i) | WG(v,w) hits B

]

≤ βα + 1
2 ,

where WG(v,w) = (v1, . . . , vt ) in the first inequality. Then

dH(ECCt (x),ECCt (y)) = (1− Pr
v,w,b

[ECCt (x)(v,w, b) = ECCt (y)(v,w, b)])n̄

≥ ( 1
2 − βα)n̄.

4 As every output bit of the code depends only on t input bits, there must be an input bit that affects only
(t/n)n̄ output bits. Flipping that input bit results in two different codewords with distance at most (t/n)n̄ � n̄,
for t � n.
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Now for each codeword ECCt (x), the only possible codewords with distance less than
( 1

2 − βα)n̄ from ECCt (x) are those ECCt (x ′)’s with dH(x, x ′) ≤ αn, and there are at
most 2h(α)n such codewords, where h(α) = α log(1/α) + (1 − α) log((1/(1− α)) is
the binary entropy function. Then we need the following lemma, which can be seen as
a generalization to the Johnson bound, and our proof generalizes the version given in
Appendix A of [5].

Lemma 8. Suppose ECC ⊆ {−1, 1}n̄ is a code such that for any codeword c ∈ ECC,
there are at most M codewords in ECC within distance ( 1

2 − β)n̄ from c. Then for any
z ∈ {−1, 1}n̄ and any δ >

√
β/2, the number of codewords within distance ( 1

2 − δ)n̄
from z is at most M/(4δ2 − 2β).

Proof. For any two vectors u, v ∈ {−1, 1}n̄ , let u � v denote their inner product, and
note that

u � v ≡
∑
j∈[n̄]

u( j)v( j) = |{ j : u( j) = v( j)}| − |{ j : u( j) 
= v( j)}|.

Suppose c1 = ECCt (x1), . . . , cL = ECCt (xL) ∈ {−1, 1}n̄ are those codewords within
distance ( 1

2 − δ)n̄ from z. For i ∈ [L], let ui ∈ {−1, 1}n̄ represent the discrepancy
between ci and z, with ui ( j) = ci ( j)z( j) for j ∈ [n̄].5 Define

T ≡
(∑

i∈[L]

ui

)
�

(∑
i∈[L]

ui

)
.

On one hand,

T =
∑
j∈[n̄]

(∑
i∈[L]

ui ( j)

)2

≥ 1

n̄

(∑
j∈[n̄]

∑
i∈[L]

ui ( j)

)2

,

from Cauchy–Schwartz inequality. As
∑

j∈[n̄] ui ( j) = ci � z ≥ 2δn̄ for any i ∈ [L], we
have

T ≥ 1

n̄

(∑
i∈[L]

∑
j∈[n̄]

ui ( j)

)2

≥ 1

n̄
(2δn̄L)2

= 4δ2n̄L2.

On the other hand, we can write

T =
∑
i∈[L]

∑
i ′∈[L]

ui � ui ′ .

5 In [5] ui ( j) is defined as 1 if ci ( j) = z( j) and 0 otherwise. Our definition makes the proof slightly cleaner.
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For i ∈ [L], let N (i) = {i ′ ∈ [L] : dH(xi , xi ′) ≤ βn}. For i ′ /∈ N (i), we have
ui � ui ′ ≤ 2βn̄. For i ′ ∈ N (i), we only have ui � ui ′ ≤ n̄, but |N (i)| ≤ M . So

T =
∑
i∈[L]

∑
i ′∈N (i)

ui � ui ′ +
∑
i∈[L]

∑
i ′ /∈N (i)

ui � ui ′

≤ n̄M L + 2βn̄L2.

Combining the two inequalities, we have 4δ2n̄L2 ≤ T ≤ n̄M L + 2βn̄L2, which
implies L ≤ M/(4δ2 − 2β).

Note that the Johnson bound is just a special case of Lemma 8 with M = 1. Choose
α = 1+(λ/d)2−δ4/t so that βα ≤ δ2. Applying Lemma 8 with β = βα and M = 2h(α)n ,
we immediately have the following.

Corollary 1. The code ECCt is a ( 1
2−δ, 2h(α)n/(2δ2))-list code, forα = 1+(λ/d)2−δ4/t .

4.2. Expanding the Output

Given any list-decodable code ECC′: {−1, 1}n → {−1, 1}n̄ , it is known according to [19]
and [18] that one immediately gets a strong extractor EXT′: {−1, 1}n × [n̄] → {−1, 1}
defined as

EXT′(x, y) = ECC′(x)(y).

That is, the extractor encodes the input string x as ECC′(x) and projects it onto a random
dimension y. To obtain m output bits, the approach of Aumann et al. [3], [8] is to project
ECC′(x) onto m independent and random dimensions, needing m log n̄ random bits for
sampling. That is, they use the extractor EXT′′: {−1, 1}n × [n̄]m → {−1, 1}m defined as

EXT′′(x, (y1, . . . , ym)) = (ECC′(x)(y1), . . . ,ECC′(x)(ym)).

They use a code with n̄ = nO(k), so their extractor needs a seed of length O(mk log n).
Using our code ECCt for some t = O(k), we immediately have an extractor of the same
quality but needing a seed of length only O(m(k + log n)).

For large m, we can get a dramatic improvement by picking some pseudo-random
collection of m dimensions instead of m random ones for projection. This is the idea
behind Trevisan’s extractor construction [19] and the improvement by Raz et al. [18].
The pseudo-random projection is determined by some set system defined next.

Definition 6 [18]. A family of sets S1, . . . , Sm ⊆ [s] is called a weak (�, ρ)-design if

• ∀i , |Si | = �, and
• ∀i ,

∑
j<i 2|Si∩Sj | ≤ ρ(m − 1).

Lemma 9 [18]. For every �,m and ρ > 1, there exists a weak (�, ρ)-design S1, . . . , Sm

⊆ [s] with s = ��/ln ρ��. Such a family can be found in time poly(m, s).

For a random y ∈ {−1, 1}s , such a weak (log n̄, ρ)-design gives a pseudo-random
collection of m dimensions y(S1), . . . , y(Sm), where each y(Si ) is the integer in [n̄]
represented by the log n̄ bits of y indexed by Si .
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Lemma 10 [19], [18]. Suppose S1, . . . , Sm ⊆ [s] is a weak (log n̄, ρ)-design, and
ECC′: {−1, 1}n → {−1, 1}n̄ is a ( 1

2 − ε/(2m), L)-list code. Then the function EXT:
{−1, 1}n × {−1, 1}s → {−1, 1}m defined as

EXT(x, y) = (ECC′(x)(y(S1)), . . . ,ECC′(x)(y(Sm)))

is a strong (r, ε)-extractor, for any r ≥ ρ(m − 1)+ log(2L/ε).

To have a strong (µn, 2−3k)-extractor for our encryption scheme, we use our ( 1
2−δ, L)-

list code ECCt , with

• δ = 1/(2m23k),
• t = O(k) large enough and λ/d = O(1) small enough so that h(α) < µ for
α = 1+ (λ/d)2 − δ4/t , and

• L = 2h(α)n/(2δ2) = 2h(α)n+6k+1m2.

Note that ρ(m − 1)+ log(2L/ε) = ρ(m − 1)+ h(α)n + 9k + 2+ 2 log m. This can be
made smaller than µn for any m ≤ nγ with constant γ ∈ (0, 1), by choosing a proper
ρ = nO(1). Using such a weak (log n̄, ρ)-design and our ( 1

2 − δ, L) list-code ECCt , we
have the following theorem.

Theorem 2. For any constant γ ∈ (0, 1), there is a strong (µn, 2−3k)-extractor with
a seed of length O((k + log n)2/log n) and an output of length nγ , where each output
bit is the parity of O(k) input bits.

This, together with Theorem 1, gives the encryption scheme we claim. Recall that n
is typically much larger than k. A larger n provides a higher security but only costs a
negligible slow-down during encryption time. If we assume or choose n = 2	(k), then
we have an encryption scheme using a private key of length only O(log n).

Appendix A. Proof of Lemma 1

‖〈g(A, B), B〉 − 〈g(A, B ′), B ′〉‖

= 1

2

∑
b

∑
c

|Pr[g(A, B) = c ∧ B = b]− Pr[g(A, B ′) = c ∧ B ′ = b]|

= 1

2

∑
b

∑
c

|Pr[g(A, b) = c] Pr[B = b]− Pr[g(A, b) = c] Pr[B ′ = b]|

= 1

2

∑
b

∑
c

Pr[g(A, b) = c]|Pr[B = b]− Pr[B ′ = b]|

= 1

2

∑
b

|Pr[B = b]− Pr[B ′ = b]|

= ‖B − B ′‖,
where the second equality holds because A is independent of both B and B ′.
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Appendix B. Proof of Lemma 2

The expectation of ‖〈A | B = b〉 −U‖, with b sampled from the distribution B, is

∑
b

Pr[B = b]
1

2

∑
a

∣∣∣∣Pr[A = a | B = b]− 1

|A|
∣∣∣∣

= 1

2

∑
a,b

∣∣∣∣Pr[(A, B) = (a, b)]− Pr[B = b]
1

|A|
∣∣∣∣

≤ 1

2

∑
a,b

∣∣∣∣Pr[(A, B) = (a, b)]− 1

|A||B|
∣∣∣∣

+ 1

2

∑
a,b

∣∣∣∣Pr[B = b]
1

|A| −
1

|A||B|
∣∣∣∣

= ‖〈A, B〉 −U‖ + ‖B −U‖
≤ 2ε.

Then the lemma follows from the Markov inequality.
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