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There is increasing growth in the number of computer networks in use and in the kinds of 

distributed computing applications available on these networks This increase, together 
with concern about privacy, security, and integrity of information exchange, has created 
considerable interest in the use of encryptlon to protect information in the networks 

This survey is directed at the reader who ts knowledgeable about varmus network 
designs and who now wishes to consider incorporating encryption methods into these 
designs. It is also directed at developers of encryption algorithms who wish to understand 

the characteristics of such algorithms useful in network applications. 

Key management, network encryption protocols, digital signatures, and the utility of 
conventional- or public-key encryptlon methods are each discussed. A case study of how 
encryption was integrated into an actual network, the Arpanet, illustrates many issues 
present m the design of a network encryption facdity. 

Keywords and Phrases" computer networks, computer security, encryption, pubhc-key 
cryptosystems, digital signatures, network registries, encryptlon protocols 

CR Categories. 3 9, 4 35, 4.39, 5 39, 6 29 

INTRODUCTION 

It has long been observed that as the cost 
per unit of equivalent computation in small 
machines became far less than in large cen- 
tralized ones, and as the technology of in- 
terconnecting machines matured, comput- 
ing would take on a more and more distrib- 
uted appearance. This change of course is 
now happening. In many cases, users' data 
manipulation needs can be served by a sep- 
arate machine dedicated to the single user, 
connected to a network of integrated data- 
bases. Organizational needs, such as easy 
incremental growth and decentralized con- 
trol of computing resources and informa- 
tion, are also well served in this manner. 
Multiprogramming of general application 
software diminishes in importance in such 
an environment. 
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As a result, the nature of the protection 
and security problem is beginning to 
change. Concern over the convenience and 
reliability of central operating system pro- 
tection facilities is transferring to analogous 
concerns in networks. The issues of protec- 
tion in computer networks differ in several 
fundamental ways from those of centralized 
operating systems. One of the most impor- 
tant distinctions is the fact that the under- 
lying hardware cannot in general be as- 
sumed secure. In particular, the communi- 
cation lines that comprise the network are 
usually not under the physical control of 
the network user. Hence no assumptions 
can be made about the safety of the data 
being sent over the lines. Further, in current 
packet-switched networks [KIMB75] the 
software in the switches themselves is typ- 
ically quite complex and programmed in 
assembly language; one cannot say with 
certainty that messages are delivered only 
to the intended recipients. 
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The only general approach to sending 
and storing data over media which are not 
safe is to use some form of encryption. 
Suitable encryption algorithms are there- 
fore a prerequisite to the development of 
secure networks. Equally important ques- 
tions concern the integration of encryption 
methods into the operating systems and 
applications software which are part of the 
network. We focus here on these latter is- 
sues, taking a pragmatic, engineering per- 
spective toward the problems which must 
be settled in order to develop secure net- 
work functions, eases where the safety of 
the entire network can be assumed are not 
discussed here because in these eases the 
problems are not special to networking. 
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In networks, as in operating systems, 
there are several major classes of protection 
policies that one may wish to enforce. The 
most straightforward policy, satisfactory 
for most applications, concerns data secu- 
rity: ensuring that no unauthorized modifi- 
cation or direct reference of data takes 
place. Highly reliable data security in net- 
works today is feasible; suitable methods to 
attain this security are outlined in the later 
sections. 

A more demanding type of policy is the 
enforcement of confinement in the network: 
preventing unauthorized communication 
through subtle methods, such as signaling 
via noticeable variations in performance 
[LAMP73]. One commonly mentioned (and 
fairly easily solved) confinement problem is 
traffic analysis: the ability of an observer to 
determine the various flow patterns of mes- 
sage movement. However, evidence to be 
presented later indicates that the condi- 
tions under which confinement in general 
can be provided in a network are quite 
limited. 

In the following sections we describe 
problems and alternative solutions in the 
design of secure networks, discuss their util- 
ity with respect to data security and con- 
finement, and present an illustrative case 
study. The material is intended as a prac- 
ticum for those concerned with the devel- 
opment of secure computer networks or 
those who wish to understand the charac- 
teristics of encryption algorithms useful in 
network applications. 

The Environment and Its Threats 

A network may be composed of a wide 
variety of nodes interconnected by trans- 
mission media. Some of the nodes may be 
large central computers; others may be per- 
sonal computers or even simple terminals. 
The network may contain some computers 
dedicated to switching message traffic from 
one transmission line to another, or those 
functions may be integrated into general- 
purpose machines which support user com- 
puting. One of the important functions of 
computer networks is to supply to users 
convenient private communication chan- 
nels similar to those provided by common 
carriers. The underlying transmission me- 
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dia, of course, may be point to point or 
broadcast. Considerable software is typi- 
cally present to implement the exchange of 
messages among nodes. The rules or pro- 
tocols governing these message exchanges 
form the interface specifications between 
network components. These protocols can 
significantly affect network security con- 
cerns, as will be seen later. In any event, 
because of the inability to make assump- 
tions about the communication links and 
switching nodes, one typically must expect 
malicious activity of several sorts. 

1) Tapptng of Lines. While the relevant 
methods are beyond the scope of this dis- 
cussion, it should be recognized that it is 
frequently a simple matter to record the 
message traffic passing through a given 
communications line without detection by 
the participants in the communication 
[WEST70]. This problem is present whether 
the line is private, leased from a common 
carrier, or part of a broadcast satellite 
channel. 

2) Introduction of Spurious Messages. It 
is often possible to introduce invalid mes- 
sages with valid addresses into an operating 
network, and to do so in such a way that 
the injected messages pass all relevant con- 
sistency checks and are delivered as if the 
messages were genuine. 

3) Retransmission of Previously Trans- 
mitted Vahd Messages. Given that it is 
possible both to record and introduce mes- 
sages into a network, it is therefore possible 
to retransmit a copy of a previously trans- 
mitted message. 

4) Disruption. It is possible that delivery 
of selected messages may be prevented: 
Portions of messages may be altered, or 
complete blockage of communications 
paths may occur. 

Each of the preceding threats can, in the 
absence of suitable safeguards, cause con- 
siderable damage to an operating network, 
to the extent of making it useless for com- 
munication. Tapping of lines leads to loss 
of privacy of the communicated informa- 
tion. Introduction of false messages makes 
reception of any message suspect. Even re- 
transmission of an earlier message can 
cause considerable difficulty in some cir- 
cumstances. Suppose the message is part of 

the sequence by which two parties com- 
municate their identity to one another. 
Then it may be possible for some node to 
falsely identify itself in cases where the 
valid originator of the message was tempo- 
rarily out of service. 

More and more applications of computer 
networks are becoming sensitive to mali- 
cious actions. Increased motivation to dis- 
turb proper operation can be expected: 
Consider the attention that  will be directed 
at such uses as military command and con- 
trol systems (by which missile firing orders 
are sent), or commercial electronic funds 
transfer systems (with daily transactions 
worth hundreds of billions of U.S. dollars). 

Operational Assumptions 

In this paper the discussion of protection 
and security in computer networks is based 
on several underlying assumptions: 

1) Malicious attacks, including tapping, ar- 
tificial message injection, and disrup- 
tion, are expected. 

2) The insecure network provides the only 
available high-bandwidth transmission 
paths between those sites Which wish to 
communicate in a secure manner) 

3) Reliable private communication is de- 
sired. 

4) A large number of separately protected 
logical channels are needed, even though 
they may be multiplexed on a much 
smaller number of physical channels. 

5) High-speed inexpensive hardware en- 
cryption units are available. 

It is believed that these assumptions cor- 
rectly mirror many current and future en- 
vironments. In the next sections we outline 
properties of encryption relevant to net- 
work use. Those interested in a deeper ex- 
amination should see the companion papers 
in this issue [LEMP79, SIMM79]. After this 
brief outline, the discussion of network se- 
curity commences in earnest. 

l i t  will turn out that  s o m e  presumed secure and 
correct channel wdl be needed to get the secure data 
channel going, although the preexisting secure channel 
can be awkward to use, with high delay and low 
bandwidth. Dlstrlbuhon of the priming reformation 
via armored truck might suffice, for example. 

Computing Surveys, Vol. 11, No. 4, December 1979 



334 ° G. J. Popek and C. S. Kline 

1. ENCRYPTION ALGORITHMS AND THEIR 
NETWORK APPLICATIONS 

1.1 Conventional Encryption 

Encryption provides a method of storing 
data in a form which is unintelligible with- 
out the "key" used in the encryption. Ba- 
sically; conventional encryption can be 
thought of as a mathematical function, 

E = F ( D ,  K) ,  

where D is data to be encoded, K is a key 
variable, and E is the resulting enciphered 
text. For F to be a useful function, there 
must exist an F', the inverse of F, 

D ffi F '  (E, K)  

which, therefore, has the property that the 
original data can be recovered from the 
encrypted data if the value of the key var- 
iable originally used is known. 

The use of F and F' is valuable only if it 
is impractical to recover D from E without 
knowledge of the corresponding K. A great 
deal of research has been done to develop 
algorithms which make it virtually impos- 
sible to do so, even given the availability of 
powerful computer tools. 

The strength of an encryption algorithm 
is traditionally evaluated using the follow- 
ing assumptions. First, the algorithm is 
known to all involved. Second, the analyst 
has available to him a significant quantity 
of encrypted data and corresponding clear- 
text {i.e., the unencrypted text, also called 
plaintext). He may even have been able to 
cause messages of his choice to be en- 
crypted. His task is to deduce, given an 
additional unmatched piece of encrypted 
text, the corresponding cleartext. All of the 
matched text can be assumed to be en- 
crypted through the use of the same key 
which was used to encrypt the unmatched 
segment. The difficulty of deducing the key 
is directly related to the strength of the 
algorithm. 

F is invariably designed to mask statisti- 
cal properties of the cleartext. Ideally the 
probability of each symbol of the encrypted 
character set appearing in an encoded mes- 
sage E ideally is to be equal. Further, the 
probability distribution of any pair (di- 
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gram) of such characters is to be fiat. Sim- 
ilarly, it is desirable that the n-gram prob- 
ability distribution be as flat as possible for 
each n. This characteristic is desired even 
in the face of skewed distributions in the 
cleartext, for it is the statistical structure of 
the input language, as it "shows through" 
to the encrypted language, which permits 
cryptanalysis. 

The preceding characteristics, desirable 
from a protection viewpoint, have other 
implications. In particular, if any single bit 
of a cleartext message is altered, then the 
probability of any particular bit being al- 
tered in the corresponding message is ap- 
proximately ½. Conversely, if any single bit 
in an encrypted message is changed, the 
probability is approximately ½ that any par- 
ticular bit in the resulting decrypted mes- 
sage has been changed [FEIs75]. This prop- 
erty follows because of the necessity for f la t  
n-gram distributions. As a result, encryp- 
tion algorithms are excellent error detec- 
tion mechanisms, as long as the recipient 
has any knowledge of the original cleartext 
transmission. 

The strength of an encryption algorithm 
is also related to the ratio of the length of 
the key to the length of the data. Perfect 
ciphers that completely mask statistical in- 
formation require keys of lengths equal to 
the data they encode. Fortunately, cur- 
refitly available algorithms are of such high 
quality that this ratio can be small; as a 
result, a key can be often reused for subse- 
quent messages. That  is, subsequent mes- 
sages essentially extend the length of the 
data. It is still the ease that keys need to be 
changed periodically to prevent the ratio 
from becoming too small, and, thus, the 
statistical information available to an ana- 
lyst too great. The loss of protection which 
would result from a compromised key is 
thus also limited. 

1.2 Public-Key Encryption 

Diffie and Hellman [DZFF76b] proposed a 
variation of conventional encryption meth- 
ods that may, in some cases, have certain 
advantages over standard algorithms. In 
their class of algorithms there exists 

E = F ( D ,  K) ,  

as before, to encode the data, and 
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D = F ' ( E ,  K' )  

to recover the data. The major difference is 
that the key K'  used to decrypt the data is 
not equal to, and is impractical to derive 
from, the key K used to encode the data. 
Presumably there exists a pair generator 
which, on the basis of some input informa- 
tion, produces the matched keys K and K'  
with high strength {i.e., resistance to the 
derivation of K'  given K, D, and matched 
E = F ( D ,  K)) .  

Many public-key algorithms have the 
property that either F or F' can be used for 
encryption, and both result in strong ci- 
phers. That is, one can encode data using 
F' and decode using F. The RSA algorithm 
is one that has this property [RwE77a]. 
The property is useful in both key distri- 
bution and "digital signatures" (the elec- 
tronic analogs of handwritten signatures) 
and will be assumed here. 

The potential value of such encryption 
algorithms lies in some expected simplifi- 
cations in initial key distribution, since K 
can be publicly known; hence the name 
public-key encryption. There are also sim- 
plifications for digital signatures. These is- 
sues are examined further in Sections 3 and 
9. Rivest et al. and Merkle and Hellman 
have proposed actual algorithms which are 
believed strong, but they have not yet been 
extensively evaluated [RIvE77a, HELL78]. 

Much of the remaining material in this 
survey is presented in a manner indepen- 
dent of whether conventional- or public- 
key-based encryption is employed. Each 
case is considered separately when signifi- 
cant. 

1.3 Error Detection and Duplicate or Missing 

Blocks 

Given the general properties of encryption 
as already described, it is an easy matter to 
detect (but not correct) errors in encrypted 
messages. A small part of the message must 
be redundant, and the receiver must know 
in advance the expected redundant part of 
the message. In a block with k check bits, 
the probability of an undetected error upon 
receipt of the block is approximately 1/(2k), 
for reasonably sized blocks, if the probabi- 
listic assumption mentioned in Section 1 is 
valid. For example, if three 8-bit characters 

are employed as checks, the probability of 
an undetected error is less than 1/(2 e4) or 
1/107. 

In the case of natural language text, no 
special provisions need necessarily be 
made, since that text already contains con- 
siderable redundancy and casual inspection 
permits error detection with very high 
probability. The check field can also be 
combined with information required in the 
block for reasons other than encryption. In 
fact, the packet headers in most packet- 
switched networks contain considerable 
highly formatted information, which can 
serve the check function. For example, du- 
plicate transmitted blocks may occur either 
because of a deliberate attempt or through 
abnormal operation of the network switch- 
ing centers. To detect the duplication, it is 
customary to number each block in order 
of transmission. If this number contains 
enough bits and the encryption block size 
matches the unit of transmission, the se- 
quence number can serve as the check field. 

Feistel et al. [FEm75] describe a variant 
of this method, called block chaining, in 
which a small segment of the preceding 
encrypted block is appended to the current 
cleartext block before encryption and trans- 
mission. The receiver can therefore easily 
check that blocks have been received in 
proper order by making the obvious check. 
However, if the check fails, he cannot tell 
how many blocks are missing. In both of 
these cases, once a block is lost and not 
recoverable by lower level network proto- 
cols, some method for reestablishing valid- 
ity is needed. One method is to obtain new 
matched keys. An alternative (essential for 
public-key systems) is to employ an authen- 
tication protocol (as described in Section 2) 
to choose a new valid sequence number or 
data value to restart block chaining. 

1.4 Block Versus Stream Ciphers 

Whether an encryption method is a block 
or stream cipher affects the strength of the 
algorithm and has implications for com- 
puter use. A stream cipher, in deciding how 
to encode the next bits of a message, can 
use the entire preceding portion of the mes- 
sage, as well as the key and the current bits. 
A block cipher, on the other hand, encodes 
each successive block of a message on the 
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basis of that  block only and the given key. 
It is easier to construct strong stream ci- 
phers than strong block ciphers. However, 
stream ciphers have the characteristic that 
an error in a given block makes subsequent 
blocks undecipherable. In many cases 
either method may be satisfactory, since 
lower level network protocols can handle 
necessary retransmission of garbled or lost 
blocks. Independent of whether a block or 
stream cipher is employed, some check 
data, as mentioned in Section 1.2, are still 
required to detect invalid blocks. In the 
stream cipher case, when an invalid block 
is discovered after decoding, the decryption 
process must be reset to its state preceding 
the invalid block. 

Stream ciphers are less acceptable for 
computer use in general. If one wishes to 
be able to update portions of a long en- 
crypted message (or file) selectively, then 
block ciphers permit decryption, update, 
and reencryption of the relevant blocks 
alone, while stream ciphers require reen- 
cryption of all subsequent blocks in the 
stream. So block ciphers are usually pre- 
ferred. The Lucifer system [FEIs73] is a 
candidate as a reasonably strong block ci- 
pher. Whether or not the National Bureau 
of Standards' Data Encryption Standard 
(DES), with its 56-bit keys, is suitably 
strong is open to debate [DIFF77], but it is 
being accepted by many commercial users 
as adequate [NBS77]. 

1.5 Network Applications of EncrypUon 

Four general uses of encryption having ap- 
plication in computer networks are briefly 
described in this section. Much of the re- 
mainder of this paper is devoted to detailed 
discussion of them. 

1.5.1 Authentication 

One of the important requirements in com- 
puter communications security is to pro- 
vide a method by which participants in the 
communication can identify one another in 
a secure manner. Encryption solves this 
problem in several ways. First, possession 
of the right key is taken as prima facie 
evidence that the participant is able to en- 
gage in the message exchanges. The trans- 
mitter can be assured that only the holder 

of the key is able to send or receive trans- 
missions in an intelligible way. 

Even using secure authentication, one is 
still subject to the problems caused by lost 
messages, replayed valid messages, and the 
reuse of keys for multiple conversations 
{which exacerbates the replay problem). A 
general authentication protocol which can 
detect receipt of previously recorded mes- 
sages when the keys have not been changed 
is presented later. The actual procedures 
by which keys are distributed in the general 
case are, of course, important, and will be 
discussed in subsequent sections. 

1 5.2 Private Communicatton 

The traditional use of encryption has been 
in communications where the sender and 
receiver do not trust the transmission me- 
dium, be it a hand-carried note or mega- 
bytes shipped over high-capacity satellite 
channels. This use is crucial in computer 
networks. 

1.5.3 Network Mad 

In the private communication function, it 
is generally understood that first, all parties 
wishing to communicate are present, and 
second, they are willing to tolerate some 
overhead in order to get the conversation 
established. A key distribution algorithm 
involving several messages and interaction 
with all participants would be acceptable. 
In the case of electronic mail, which typi- 
cally involves short messages, it may be 
unreasonable for the actual transmission to 
require such significant overhead. Mail 
should not require that the receiver ac- 
tuaUy be present at the time the message is 
sent or received. Since there is no need for 
immediate delivery, it may be possible to 
get lower overhead at the cost of increased 
queuing delays. 

1.5.4 Dtgital Signatures 

The goal here is to allow the author of a 
digitally represented message to "sign" it in 
such a fashion that the "signature" has 
properties similar to an analog signature 
written in ink for the paper world. Without 
a suitable digital signature method, the 
growth of distributed systems may be seri- 
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ously inhibited, since many transactions, 
such as those involved in banking, require 
a legally enforceable contract. 

The properties desired of a digital signa- 
ture method include the following: 

1) Unforgeability. Only the actual author 
should be able to create the signature. 

2) Authenticity. There must be a straight- 
forward way to demonstrate conclu- 
sively the validity of a signature in case 
of dispute, even long after authorship. 

3) No repudiation. It must not be possible 
for the author of signed correspondence 
to subsequently disclaim authorship. 

4) Low cost and high convenience. The 
simpler and lower cost the method, the 
more likely it will be used. 

1.6 Minimum Trusted Mechanism; Minimum 

Central Mechanism 

In all the functions presented in Section 
1.5, it is desirable that there be a minimum 
number of trusted mechanisms involved 
[PoPE74b]. This desire occurs because the 
more mechanism, the greater the opportu- 
nity for error, either by accident or by in- 
tention {perhaps by the developers or main- 
tainers). One wishes to minimize the in- 
volvement of a central mechanism for anal- 
ogous reasons. This fear of large complex 
and central mechanisms is well justified, 
given the experience of failure of large cen- 
tral operating systems and data manage- 
ment systems to provide a reasonable level 
of protection against penetration [POPE 74a, 
CARL75]. Kernel-based approaches to soft- 
ware architectures have been developed to 
address this problem; they have as their 
goal minimization of the size and complex- 
ity of trusted central mechanisms. For more 
information about such designs, see 
McCA79, POPE79, DOWN79. 

Some people are also distrustful that a 
centralized governmental communication 
facility, or even a large common carrier, can 
ensure privacy and other related character- 
istics. These general criteria are quite im- 
portant to the safety and credibility of 
whatever system is eventually adopted. 
They also constrain the set of approaches 
that may be employed. 

1.7 Limitations of Encryption 

While encryption can contribute in useful 
ways to the protection of information in 
computing systems, there are a number of 
practical limitations to the class of appli- 
cations for which it is viable. Several of 
these limitations are discussed below. 

1.7.1 Processtng m Cleartext 

Most of the operations that one wishes to 
perform on data, from simple arithmetic 
operations to the complex procedure of con- 
structing indexes to databases, require that 
the data be supplied in cleartext. Therefore, 
the internal controls of the operating sys- 
tem, and to some extent the applications 
software, must preserve protection controls 
while the cleartext data are present. While 
some have proposed that  it might be pos- 
sible to maintain the encrypted data in 
main memory and have them decrypted 
only upon loading into CPU registers (and 
subsequently reencrypted before storage 
into memory), there are serious questions 
as to the feasibility of this approach 
[GAIN77]. The key management facility re- 
quired is nontrivial, and the difficulties in- 
herent in providing convenient controlled 
sharing seem forbidding. Another sugges- 
tion sometimes made is to use an encoding 
algorithm which is homomorphic with re- 
spect to the desired operations [RIVE78]. 
Then the operation could be performed on 
the encrypted values, and the result can be 
decrypted as before. Unfortunately, known 
encoding schemes with the necessary prop- 
erties are not strong algorithms, nor is it 
generally believed that such methods can 
be constructed. 

Therefore, since data must be processed 
in cleartext, other means are necessary to 
protect data from being compromised by 
applications software while the data are 
under control of the operating system, and 
the remarks in the previous section con- 
cerning minimization of these additional 
means are very important to keep in mind. 

1.7 2 Revocat ion 

Keys are similar to simple forms of capa- 
bihties, which have been proposed for op- 
erating systems [DENN66, FABR74]. They 
act as tickets and serve as conclusive evi- 
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dence that the holder may access the cor- 
responding data. Holders may pass keys, 
just as capabilities may be passed. Methods 
for selective revocation of access are just as 
complex as those known for capability sys- 
tems [FABR74]. The only known method is 
to decrypt the data and reencrypt with a 
different key. This action invalidates all the 
old keys and is obviously not very selective. 
Hence new keys must be redistributed to 
all those for whom access is still permitted. 

1.7.3 Protecbon Against Modlhcatton 

Encryption by itself provides no protection 
against inadvertent or intentional modifi- 
cation of the data. However, it can provide 
the means of detecting that modification by 
including as part of the encrypted data a 
number of check bits. When decryption is 
performed, if those bits do not match the 
expected values, then the data are known 
to be invalid. 

Detection of modification, however, is 
often not enough protection. In large data- 
bases, for example, it is not uncommon for 
very long periods to elapse before any par- 
ticular data item is referenced. It is only at 
this point that a modification would be 
detected. Error correcting codes could be 
applied to the data after encryption in order 
to provide redundancy. However, these will 
not be helpful if a malicious user has suc- 
ceeded in modifying stored data and has 
destroyed the adjacent data containing the 
redundancy. Therefore, very high quality 
recovery software would be necessary to 
restore the data from (possibly very old) 
archival records. 

1 7 4 Key Storage and Management 

Every data item that is to be protected 
independently of other data items requires 
encryption by its own key. This key must 
be stored as long as it is desired to be able 
to access the data. Thus, to be able to 
protect a large number of long-lived data 
items separately, the key storage and man- 
agement problem becomes formidable. The 
collection of keys immediately becomes so 
large that  safe system storage is essential. 
After all, it is not practical to require a user 
to supply the key when needed, and it is 

not even practical to embed the keys in 
applications software, since that would 
mean the applications software would re- 
quire very high quality protection. 

The problem of key storage is also pres- 
ent in the handling of removable media. 
Since an entire volume (tape or disk pack) 
can be encrypted with the same key (or 
small set of keys}, the size of the problem 
is reduced. If archival media are encrypted, 
then the keys must be kept for a long period 
in a highly reliable way. One solution to 
this problem would be to store the keys on 
the units to which they correspond, perhaps 
even in several different places to avoid 
local errors on the medium. The keys would 
have to be protected, of course; a simple 
way would be to encrypt them with yet a 
different "master" key. The protection of 
this master key is absolutely essential to 
the system's security. 

In addition, it is valuable for the access 
control decision to be dependent on the 
value of the data being protected, or even 
on the value of other, related data; salary 
fields are perhaps the most quoted example. 
In this case, the software involved, be it 
applications or system procedures, must 
maintain its own key table storage in order 
to examine the cleartext form of the data 
successfully. That  storage, as well as the 
routines which directly access it, requires a 
high-quality protection mechanism beyond 
encryption. 

Since a separate, reliable protection 
mechanism seems required for the heart of 
a multiuser system, it is not clear that  the 
use of encryption (which requires the im- 
plementation of a second mechanism) is 
advisable for protection within the system. 
The system's protection mechanism can 
usually be straightforwardly extended to 
provide all necessary protection facilities. 

2. SYSTEM AUTHENTICATION 

Authentication refers to the identification 
of one member of a communication to the 
other in a reliable, unforgeable way. In early 
interactive computer systems, the primary 
issue was to provide a method by which the 
operating system could determine the iden- 
tity of the user who was attempting to log 
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in. Typically, user identification involves 
supplying confidential parameters, such as 
passwords or answers to personal questions. 
There was rarely any concern over the ma- 
chine identifying itself to the user. 

In networks, however, mutual authenti- 
cation is of interest: Each "end" of the 
channel may wish to assure itself of the 
identity of the other end. Quick inspection 
of the class of methods used in centralized 
systems shows that a straightforward ex- 
tension is unacceptable. Suppose each par- 
ticipant must send a secret password to the 
other. Then the first member that sends 
the password is exposed. The other member 
may be an imposter, who has now received 
the necessary information in order to pose 
to other nodes as the first member. Exten- 
sion to a series of exchanges of secret infor- 
mation will not solve the problem; it only 
forces the imposter into a multistep proce- 
dure. 

There are a number of straightforward 
encryption-based authentication protocols 
which provide reliable mutual authentica- 
tion without exposing either participant. 
The methods are robust in the face of all 
the network security threats mentioned 
earlier. The general principle involves the 
encryption of a rapidly changing unique 
value using a prearranged key and has been 
independently rediscovered by a number of 
people [FEIs75, KENT76, POPE78]. An ob- 
vious application for such protocols is to 
establish a mutually agreed upon sequence 
number or block chaining initial value that 
can be used to authenticate communica- 
tions over a secure channel whose keys 
have been used before. The sequence num- 
ber or value should either be one that  has 
not been used before, or it should be se- 
lected at random, in order to protect against 
undetected replay of previous messages. 

Here is an outline of a simple, general 
authentication sequence between nodes A 
and B. At the end of the sequence A has 
reliably identified itself to B. A similar se- 
quence is needed for B to identify itself to 
A. Typically, one expects to interleave the 
messages of both authentication sequences. 

Assume that in the authentication se- 
quence A uses a secret key associated with 
itself. The reliability of the authentication 

depends only on the security of that  key. 
Assume that  B holds A's matching key (as 
well as the matching keys for all other 
parties to which B might talk). 

1) B sends A, in cleartext, a random, 
unique data item, in this case the current 
time of day as known to B. 

2) A encrypts the received time of day us- 
ing its authentication key and sends the 
resulting ciphertext to B. 

3) B decrypts A's authentication message, 
using A's matched key, and compares it 
with the time of day which B had sent. 
If they match, then B is satisfied that  A 
was the originator of the message. 

This simple protocol exposes neither A 
nor B if the encryption algorithm is strong, 
since it should not be possible for a crypt- 
analyst to be able to deduce the key from 
the encrypted time of day. This is true even 
if the cryptanalyst knows the corresponding 
cleartext time of day. Further, since the 
authentication messages change rapidly, re- 
cording an old message and retransmitting 
is not effective. 

To use such an authentication protocol 
to establish a sequence number or initial 
value for block chaining, A includes that  
information, before encryption, in its step 
2 message to B. 

3. KEY MANAGEMENT 

For several participants in a network con- 
versation to communicate securely, it is 
necessary for them to obtain matching keys 
to encrypt and decrypt the transmitted 
data. It should be noted that  a matched 
pair of keys forms a logical channel which 
is independent of all other such logical 
channels but as real as any channel created 
by a network's transmission protocols. Pos- 
session of the key admits one to the chan- 
nel. Without the key the channel is una- 
vailable. Since the common carrier function 
of the network is to provide many commu- 
nication channels, how the keys which cre- 
ate the corresponding necessary private 
channels are supplied is obviously an im- 
portant matter. The following sections de- 
scribe various key distribution methods for 
both conventional- and public-key encryp- 
tion systems. 
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3.1 Conventional-Key Distribution 

As there are, by assumption, no suitable 
transmission media for the keys other than 
the physical network, it is necessary to de- 
vise means to distribute keys over the same 
physical channels by which actual data are 
transmitted. The safety of the logical chan- 
nels over which the keys are to pass is 
crucial. Unfortunately, the only available 
method by which any data, including the 
keys, can be transmitted in a secure manner 
is through the very encryption whose ini- 
tialization is at issue. This seeming circu- 
larity is actually easily broken through lim- 
ited prior distribution of a small number of 
keys by secure means. The usual approach 
involves designating a host machine or a 
set of machines [HWLL78] on the network 
to play the role of key distribution center 
(KDC), at least for the desired connection. 
It is assumed that a pair of matched keys 
has been arranged previously between the 
KDC and each of the potential participants, 
say A~, A2 . . . . .  Am. One of the participants, 
A,, sends a short message to the KDC ask- 
ing that matched key pairs be distributed 
to all the A's, including A,. If the KDC's 
protection policy permits the connection, 
secure messages containing the key and 
other status information will be sent to each 
A over the prearranged channels. Data can 
then be sent over the newly established 
logical channel. The prearranged key dis- 
tribution channels carry a low quantity of 
traffic, and thus, recalling the discussion in 
Section 1, the keys can be changed rela- 
tively infrequently by other means. 

This  general approach has many varia- 
tions to support properties such as a dis- 
tributed protection policy, integrity in the 
face of crashes, and the like. Some of these 
are discussed below. 

3.1.1 Centrahzed Key Control 

Perhaps the simplest form of the key dis- 
tribution method employs a single KDC for 
the entire network. Therefore n prear- 
ranged matched key pairs are required for 
a network with n distinguishable entities. 
An obvious disadvantage of this unadorned 
approach is its effect on network reliability. 
If communication with the KDC becomes 

impossible, either because the node on 
which the KDC is located is down or be- 
cause the network itself breaks, then the 
establishment of any further secure com- 
munication channels is impossible. If the 
overall system has been constructed to pre- 
vent any interuser communication in other 
than a secure manner, then the entire net- 
work eventually stops. This design for dis- 
tributed systems is, in general, unaccepta- 
ble except when the underlying communi- 
cations topology is a star and the KDC is 
located at the center. Note, however, that  
this drawback can be fairly easily remedied 
by the availability of redundant KDCs in 
case of failure of the main facility. 2 The 
redundant facility can be located at any site 
which supports a secure operating system 
and provides appropriate key generation 
facilities. Centralized key control can quite 
easily become a performance bottleneck, 
however. 

Needham and Schroeder present an ex- 
ample of how such a KDC would operate 
[NEED78]. Assume that  A and B each have 
a secret key, Ks and Kb, known only to 
themselves and the KDC. To establish a 
connection, A sends a request to the KDC 
requesting a connection to B and includes 
an identifier (a random number perhaps). 
The KDC will send back to A: i) a new key 
Kc to use in the connection, ii) the identifier, 
iii) a copy of the request, and iv) some 
information which A can send to B to es- 
tablish the connection and prove A's iden- 
tity. That  message from the KDC to A is 
encrypted with A's secret key Ka. Thus, A 
is the only one who can receive it, and A 
knows that  it is genuine. In addition, A can 
check the identifier to verify that  it is not 
a replay of some previous request, and can 
verify that  his original cleartext message 
was not altered before reception by the 
KDC. 

2 The redundant KDCs form a simple distributed, 
replicated database, where the replicated reformation 
includes private keys and permission controls. How- 
ever, the database is rarely updated, and when up- 
dated, there are no serious requirements for synchro- 
mzatlon among the updates It Is not necessary for 
copies of a key at all sites to be updated simultane- 
ously, for example Therefore, little additional com- 
plexity from the distributed character of the key man- 
agement function would be expected. 
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MESSAGE 1 R E Q ~  

KEY DISTRIBUTION J / ~ K v 

MESSAGE, / 

STEPS 

FmURE I. Key distribution and conversatlon establishment: conventlonal key algorithms. Note: [t J] denotes 

the cryptogram obtained from the cleartext t, encrypted wlth keyj. 

Once A has received this message, A 
sends to B the data from the KDC intended 
for B. Those data include the connection 
key Kc, as well as A's identity, all encrypted 
by B's secret key. Thus B now knows the 
new key, that A is the other party, and that 
all this came from the KDC. However B 
does not know that the message he just 
received is not a replay of some previous 
message. Thus B must send an identifier to 
A encrypted by the connection key, upon 
which A can perform some function and 
return the result to B. Now B knows that 
A is current, i.e., there has not been a replay 
of previous messages. Figure 1 illustrates 
the messages involved. Of the five mes- 
sages, two can be avoided, in general, by 
storing frequently used keys at the local 
sites, a technique known as caching. 

3 1.2 Fully Distnbuted Key Control 

Here it is possible for every "intelligent" 
node in the network to serve as a KDC for 
certain connections. (We assume some 
nodes are "dumb," such as terminals or 
possibly personal computers.) If the in- 
tended participants A~, A2 . . . . .  Am reside 
at nodes N1, N2 . . . . .  Nm, then only the 
KDCs at each of those nodes need be in- 

volved in the protection decision. One node 
chooses the key, and sends messages to 
each of the other KDCs. Each KDC can 
then decide whether the attempted channel 
is to be permitted and reply to the originat- 
ing KDC. At that point the keys would be 
distributed to the participants. This ap- 
proach has the obvious advantage that the 
only nodes which must be properly func- 
tioning are those which support the in- 
tended participants. Each of the KDCs 
must be able to communicate with all other 
KDCs in a secure manner, implying that 
n*(n  - 1)/2 matched key pairs must have 
been arranged. Of course, each node needs 
to store only n - 1 of them. For such a 
method to be successful, it is also necessary 
for each KDC to communicate with the 
participants at its own node in a secure 
fashion. This approach permits each host 
to enforce its own security policy if user 
software is forced by the local system ar- 
chitecture to use the network only through 
encrypted channels. This arrangement has 
appeal in decentralized organizations. 

3.1 3 H~erarch~cal Key Control 

This method distributes the key control 
function among "local," "regional," and 
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"global" controllers. A local controller is 
able to communicate securely with entities 
in its immediate logical locale, that is, with 
those nodes for which matched key pairs 
have been arranged. If all the participants 
in a channel are within the same region, 
then the connection procedure is the same 
as for centralized control. If the participants 
belong to different regions, then it is nec- 
essary for the local controller of the origi- 
nating participant to send a secure message 
to its regional controller, using a prear- 
ranged channel. The regional controller for- 
wards the message to the appropriate local 
controller, who can communicate with the 
desired participant. Any of the three levels 
of KDCs can select the keys. The details of 
the protocol can vary at this point, depend- 
ing on the exact manner in which the 
matched keys are distributed. This design 
approach obviously generalizes to multiple 
levels in the case of very large networks. It 
is analogous to national telephone ex- 
changes, where the exchanges play a role 
very similar to the KDCs. 

One of the desirable properties of this 
design is the limit it places on the combi- 
natorics of key control. Each local KDC 
only has to prearrange channels for the 
potential participants in its area. Regional 
controllers only have to be able to com- 
municate securely with local controllers. 
While the combinatorics of key control may 
not appear difficult enough to warrant this 
kind of solution, in the subsequent section 
on levels of integration we point out circum- 
stances in which the problem may be very 
serious. 

The design also has a property not pres- 
ent in either of the preceding key control 
architectures: local consequences of local 
failures. If any component of the distrib- 
uted key control facility should fail or be 
subverted, then only users local to the failed 
component are affected. Since the regional 
and global controllers are of considerable 
importance to the architecture, it would be 
advisable to replicate them so that the 
crash of a single node will not segment the 
network. 

All of these key control methods permit 
easy extension to the interconnection of 
different networks, with differing encryp- 
tion disciplines. The usual way to connect 
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different networks, which often employ dif- 
ferent transmission protocols, is to have a 
single host called a gateway common to 
both networks [CERF78, BOGGS0]. Inter- 
network data are sent to the gateway, 
which forwards them toward the final des- 
tination. The gateway is responsible for any 
format conversions, as well as for the sup- 
port of both systems' protocols and naming 
methods. If the networks' transmissions are 
encrypted in a manner similar to that de- 
scribed here, then the gateway might be 
responsible for decrypting the message and 
reencrypting it for retransmission in the 
next network. This step is necessary if the 
encryption algorithms differ, or if there are 
significant differences in protocol. If the 
facilities are compatible, then the gateway 
can merely serve as a regional key control- 
ler for both networks, or even be totally 
uninvolved. 

There are strong similarities among these 
various methods of key distribution, and 
differences can be reduced further by de- 
signing hybrids to gain some of the advan- 
tages of each. Centralized control is a de- 
generate case of hierarchical control. Fully 
distributed control can be viewed as a var- 
iant of hierarchical control. Each host's 
KDC acts as a local key controller for that 
host's entities and communicates with 
other local key controllers to establish con- 
nections. In that case, of course, the com- 
munication is direct, without a regional 
controller required. 

3.2 Public-Key-Based Distribution 
Algorithms 

The public-key algorithms discussed earlier 
have been suggested as candidates for key 
distribution methods that might be simpler 
than those described in the preceding sec- 
tions. Recall that K', the key used to deci- 
pher the encoded message, cannot be de- 
rived from K, the key used for encryption, 
or from matched encrypted and cleartext. 
Therefore, each user A, after obtaining a 
matched key pair ( K, K' ), can publicize his 
key K. Another user B, wishing to send a 
message to A, can employ the publicly 
available key K. To reply, A employs B's 
public key. At first glance this mechanism 
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seems to provide a simplified way to estab- 
lish secure communication channels. No 
secure dialogue with a key controller to 
initiate a channel appears necessary. 

The idea is that an automated "telephone 
book" of public keys could be made avail- 
able. Whenever user A wishes to commu- 
nicate with user B, A merely looks up B's 
public key in the book, encrypts the mes- 
sage with that key, and sends it to B 
[DIFF76b]. There is no key distribution 
problem here at all. Further, no central 
authority is required to set up the channel 
between A and B. 

This idea, however, is incorrect: Some 
form of central authority is needed, and the 
protocol involved is no simpler nor any 
more efficient than one based on conven- 
tional algorithms [NEED78]. First, the 
safety of the public-key scheme depends 
critically on the correct public key being 
selected by the sender. If the key listed with 
a number in the "telephone book" is the 
wrong one, then the protection supplied by 
public-key encryption has been lost. Fur- 
thermore, maintenance of the (by necessity, 
machine-supported) book is nontrivial be- 
cause keys will change, either because of 
the desire to replace a key which has been 
used for high amounts of data transmission 
or because a key has been compromised 
through a variety of ways. There must be 
some source of carefully maintained 
"books" with the responsibility of carefully 
authenticating any changes and correctly 
sending out public keys (or entire copies of 
the book} upon request. 

A modified version of Needham and 
Schroeder's proposal follows. Assume that 
A and B each have a public key known to 
the authority and a private key known only 
to themselves. Additionally, assume the 
authority has a public key known to all 
and a private key known only to the 
authority. 

A begins by sending to the authority a 
time-stamped message requesting commu- 
nication with B. The authority sends A the 
public key of B, a copy of the original 
request, and the time stamp, encrypted us- 
ing the private key of the authority. A can 
decrypt this message using the public key 
of the authority and is thus also sure of the 
source of the message. The time stamp 

guarantees that this is not an old message 
from the authority containing a key other 
than B's current public key, and the copy 
of the request permits A to verify that his 
original cleartext message was not altered. 3 

A can now send messages to B because 
he knows B's public key. However, to iden- 
tify himself, as well as to prevent a replay 
of previous transmissions, A now sends his 
name and an identifier to B, encrypted in 
B's public key. B now performs the first 
two steps above with the authority to re- 
trieve A's public key. Then B sends to A 
the identifier just received, and an addi- 
tional identifier, both encrypted with A's 
public key. A can decrypt that  message and 
is now sure that he is talking to the current 
B. A must now send back the new identifier 
to B so that B can be sure he is talking to 
a current A. These messages are displayed 
in Figure 2. The above protocol contains 
seven messages, but four of them, those 
which retrieve the public keys, can be 
largely dispensed with by local caching 
of public keys. Thus, as in the conventional- 
key distribution example, we again find 
three messages are needed. 

Some public-key advocates have sug- 
gested ways other than caching in order to 
avoid requesting the public key from the 
central authority for each communication. 
One such proposal is the use of certificates 
[KoHN 78]. A user can request that  his pub- 
lic key be sent to him as a certificate, which 
is a user/public-key pair, together with 
some certifying information. For example, 
the user/public-key pair may be stored as 
a signed message 4 from the central author- 
ity. When the user wishes to communicate 
with other users, he sends the certificate to 
them. They each can check the validity of 
the certificate, using the certifying infor- 
mation, and then retrieve the public key. 
Thus the central authority is needed only 
once, when the initial certificate is re- 
quested. 

Both certificates and caching have sev- 
eral problems. First, the mechanism used 
to store the cache of keys must be correct. 

~These mlha l  s teps  are essential ly an  adapta t ion  of 
the  au then tma t lon  protocol given in Sect ion 2. 
4 See Sect ion 9 for a discussion of digital s ignatures.  
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MESSAGE 1. R ~ U T H O R I T Y ~ G E  4?EQUEST, +TIME, 

KEY DISTRIBUTION J J ~-MESSAGE2 [Ph+REQUEST+TIME] . . . .  ~ 
STEPS 

AUTHENTICATION 
STEPS 

FIGURE 2. Key  dis t r ibut ion and  conver sahon  es tab l i shment :  pubhc-key  algori thms.  Note  P, is public key for 
~, S~ Is secret  key for ~. 

Second, the user of the certificate must 
decode it and check it (verify the signature) 
each time before using it, and he must also 
have a secure and correct way of storing 
the key. Perhaps most important, as keys 
change, the cache and old certificates be- 
come obsolete. This is essentially the ca- 
pability revocation problem revisited 
[REDE74]. Either the keys must be verified 
(or re-requested) periodically, or a global 
search must be made whenever invalidating 
a key. Notice that even with the cache or 
certificates, an internal authentication 
mechanism is still required. 

Public-key systems also have the prob- 
lem that  it is more difficult to provide pro- 
tection policy checks. In particular, conven- 
tional encryption mechanisms easily allow 
protection policy issues to be merged with 
key distribution. If two users may not com- 
municate, then the key controller can refuse 
to distribute keys. ~ However, public-key 
systems imply the knowledge of the public 
keys. Methods to add protection checks to 
public-key systems add an additional layer 
of mechanism. 

This  approach  blocks c o m m u m c a t l o n  if the  hos t  
operat ing sy s t ems  are cons t ruc ted  m such  a way as to 
prohibi t  cleartext  c o m m u m c a t l o n  over the  network 
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3.3. Comparison of Public- and 

Conventional-Key Distribution for Private 

Communication 

It should be clear that both of the above 
protocols establish a secure channel, and 
that both require the same amount of over- 
head to establish a connection (three mes- 
sages). Even if that amount had been dif- 
ferent by a message or two, the overhead is 
still small compared to the number of mes- 
sages for which a typical connection will be 
used. 

The above protocols can be modified to 
handle multiple authorities; such modifi- 
cations have also been performed by Need- 
ham and Schroeder [NEED78]. Again, the 
number of messages can be reduced to three 
by caching. 

It should also be noted that  the safety of 
these methods depends only on the safety 
of the secret keys in the conventional 
method or the private keys in the public- 
key method. Thus an equivalent amount of 
secure storage is required. 

One might suspect, however, that the 
software required to implement a public- 
key authority would be simpler than that 
for a KDC, and therefore it would be easier 
to certify its correct operation. If this view 
were correct, it would make public-key- 
based encryption potentially superior to 
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conventional algorithms, despite the equiv- 
alent protocol requirements. It is true that 
the contents of the authority need not be 
protected against unauthorized reference, 
since the public keys are to be available to 
all, while the keys used in the authentica- 
tion protocol between the KDC and the 
user must be protected against reference. 
However, the standards of software relia- 
bility which need to be imposed on the 
authority for the sake of correctness are not 
substantially different from those required 
for the development of a secure KDC. More 
convincing, all of the KDC keys could be 
stored in encrypted form, using a KDC 
master key, and only decrypted when 
needed. Then the security of the KDC is 
reduced to protection of the KDC's master 
key and of the individual keys when in use. 
This situation is equivalent to the public- 
key repository case, since there the private 
key of the repository must be safely stored 
and protected during use. 

It has also been pointed out that a con- 
ventional KDC, since it issued the conver- 
sation key, can listen in and in fact generate 
what appear to be valid messages. Such 
action cannot be done by the public-key 
repository. This distinction is minor how- 
ever. Given that both systems require a 
trusted agent, it is a simple matter to add 
a few lines of certified correct code to the 
conventional-key agent (the KDC) that de- 
stroys conversation keys immediately after 
distribution. Thus the system characteris- 
tics of both conventional- and public-key 
algorithms, as used to support private com- 
munication, are more similar than initially 
expected. 

4. LEVELS OF INTEGRATION 

There are many possible choices of end- 
points for the encryption channel in a com- 
puter network, each with its own trade-offs. 
In a packet-switched network, one could 
encrypt each line between two switches 
separately from all other lines. This is a 
low-level choice and is often called link 
encryption. Instead, the endpoints of the 
encryption channels could be chosen at a 
higher architectural level--at the host ma- 
chines which are connected to the network. 
Thus the encryption system would support 
host-host channels, and a message would 
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be encrypted only once as it was sent 
through the network (or networks) rather 
than being decrypted and reencrypted a 
number of times, as implied by the low- 
level choice. In fact, one could choose an 
even higher architectural level: Endpoints 
could be individual processes within the 
operating systems of the machines that are 
attached to the network. If the user were 
employing an intelligent terminal, then the 
terminal would be a candidate for an end- 
point. This viewpoint envisions a single en- 
cryption channel from the user directly to 
the program with which he is interacting, 
even though that  program might be run- 
ning on a site other than the one to which 
the terminal is connected. This high-level 
choice of endpoints is sometimes called 
end- to-end encryption. 

The choice of architectural level in which 
the encryption is to be integrated has many 
ramifications. One of the most important is 
the combinatorics of key control versus the 
amount of trusted software. 

In general, as one considers higher and 
higher system levels, the number of identi- 
fiable and separately protected entities in 
the system tends to increase, sometimes 
dramatically. For example, while there are 
less than a hundred hosts attached to the 
Arpanet [ROBE73], at a higher level there 
often are over a thousand processes con- 
currently operating, each one separately 
protected and controlled. The number of 
terminals is of course also high. This nu- 
merical increase means that the number of 
previously arranged secure channels--that 
is, the number of separately distributed 
matched key pairs--is correspondingly 
larger. Also, the rate at which keys must be 
generated and distributed can be dramati- 
cally increased. 

In return for the additional cost and com- 
plexity which result from higher level 
choices, there can be significant reduction 
in the amount of software whose correct 
functioning has to be ensured. This issue is 
very important and must be carefully con- 
sidered. It arises in the following way. When 
the lowest level (i.e., link encryption) is 
chosen, the data being communicated exist 
in cleartext form as they are passed by the 
switch from one encrypted link to the next. 
Therefore the software in the switch must 
be trusted not to intermix packets of differ- 
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ent channels. If a higher level is selected, 
then protection errors in the switches are 
of little consequence. If the higher level 
chosen is host to host, however, operating 
system failures are still serious, because the 
data exist as cleartext while they are system 
resident. 

In principle then, the highest level inte- 
gration of encryption is most secure. How- 
ever, it is still the case that  the data must 
be maintained in cleartext form in the ma- 
chine upon which processing is done. The 
more classical methods of protection within 
individual machines are still necessary, and 
the value of very high level end-end en- 
cryption is thereby somewhat lessened. A 
rather appealing choice of level that inte- 
grates effectively with kernel-structured 
operating system architectures is outlined 
in the case study in Section 7. 

Another operational drawback to high- 
level encryption should be pointed out. 
Once the data are encrypted, it is difficult 
to perform meaningful operations on them. 
Many front end systems provide such low- 
level functions as packing, character era- 
sures, and transmission on end-of-line or 
control-character detect. If the data are 
encrypted when they reach the front end, 
then these functions cannot be performed. 
Any channel processing must he done 
above the level at which encryption takes 
place, despite the fact that  performance 
and considerations such as the above some- 
times imply a lower level. 

5. ENCRYPTION PROTOCOLS 

Network communication protocols concern 
the discipline imposed on messages sent 
throughout the network to control virtually 
all aspects of data traffic, both in amount 
and direction. Choice of protocol has dra- 
matic impacts on the flexibility and band- 
width provided by the network. Since en- 
cryption facilities provide a potentially 
large set of logical channels, the encryption 
protocols by which the operation of these 
channels is managed also has significant 
impact on system architecture and per- 
formance. 

There are several important questions 
which any encryption protocol must an- 
swer: 

1) How is the initial cleartext/ciphertext/ 
cleartext channel from sender to re- 
ceiver and back established? 

2) How are cleartext addresses passed by 
the sender around the encryption facili- 
ties to the network without providing a 
path by which cleartext data can be 
inadvertently or intentionally leaked by 
the same means? 

3) What facilities are provided for error 
recovery and resynchronization of the 
protocol? 

4) How are channels closed? 
5) How do the encryption protocols inter- 

act with the rest of the network proto- 
cols? 

6) How much software is needed to imple- 
ment the encryption protocols? Does the 
security of the network depend on this 
software? 

One wishes a protocol which permits 
channels to be dynamically opened and 
closed, allows the traffic flow rate to be 
controlled (by the receiver presumably), 
and provides reasonable error handling, all 
with a minimum of mechanism upon which 
the security of the network depends. The 
more software involved, the more one must 
be concerned about the safety of the overall 
network. Performance resulting from use of 
the protocol must compare favorably with 
the attainable performance of the network 
using other protocols not including encryp- 
tion. One would prefer a general protocol 
which could also be added to the existing 
networks, disturbing their existing trans- 
mission mechanisms as little as possible. 
The appropriate level of integration of en- 
cryption or the method of key distribution 
must be considered as well. 

Fortunately, the encryption channel can 
be managed independently of the conven- 
tional communication channel, which is re- 
sponsible for communication initiation and 
closing, flow control, error handling, and 
the like. As a result, many protocol ques- 
tions can be ignored by the encryption fa- 
cilities and can be handled by conventional 
means. 

In Section 7 we outline a complete pro- 
tocol in order to illustrate the ways in which 
these considerations interact and the inde- 
pendence that exists. The case considered 
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employs distributed key management and 
an end-to-end architecture, all added to an 
existing network. 

6. CONFINEMENT 

To confine a program, process, or user 
means to render it unable to communicate 
other than through the explicitly controlled 
paths. Often improper communications are 
possible through subtle, sometimes timing- 
dependent, channels. As an example, two 
processes might bypass the controlled 
channels by affecting each other's data 
throughput. Although many such improper 
channels are inherently error prone, the 
users may employ error detection and cor- 
rection protocols to overcome that prob- 
lem. 

Unfortunately, the confinement problem 
in computer networks is particularly diffi- 
cult to solve because most network designs 
require some information to be transmitted 
in cleartext form. This cleartext informa- 
tion, although limited, can be used for the 
passage of unauthorized information. In 
particular, the function of routing a mes- 
sage from computer to computer toward its 
final destination requires that the headers 
which contain network addresses and con- 
trol information be in cleartext form, at 
least inside the switching centers. A mali- 
cious user, cooperating with a penetrator, 
can send data by the ordering of messages 
between two communication channels. 
Even though the data of the communica- 
tions are encrypted, the headers often are 
transmitted in cleartext form, unless link 
encryption is also used to encrypt the entire 
packet, including header. In any case, the 
routing task, often handled in large net- 
works by a set of dedicated interconnected 
machines which form a subnet, requires 
host addresses in the clear within the 
switching machines. Thus a penetrator who 
can capture parts of the subnetwork can 
receive information. The only solutions to 
this problem appear to be certification of 
the secure nature of some parts of the sub- 
network and host hardware/software. 
Work is in progress at the University of 
Texas on the application of program veri- 
fication methods to this problem [GooD77]. 

Certain confinement problems remain 

• 347 

even if certification is applied as suggested. 
For example, the protocol-implementing 
software in a given system usually manip- 
ulates communications for several users si- 
multaneously. Either this software must be 
trusted, or data must be encrypted before 
it reaches this software. Even in this latter 
case, certain information may be passed 
between the user and the network software, 
and thus, potentially, to an unauthorized 
user. As an example, ff a queue is used to 
hold information waiting to be sent from 
the user to the network, the user can receive 
information by noting the amount drained 
from this queue by the network software. 
In almost any reasonable implementation 
on a system with finite resources, the user 
will at least be able to sense the time of 
data removal, if not the amount. 

How well current program verification 
and certification methods apply here is 
open to question, since these confinement 
channels are quite likely to exist even in a 
correct implementation. That  is, any feasi- 
ble design seems to include such channels. 

Given the difficulty of confinement en- 
forcement, it is fortunate that most appli- 
cations do not require it. 

7. NETWORK ENCRYPTION PROTOCOL 
CASE STUDY: PRIVATE COMMUNICATION 
AT PROCESS-PROCESS LEVEL 

It is useful to review a case study of how 
encryption was integrated into a real sys- 
tem in order to recognize the importance of 
the various issues already presented. The 
example here was designed and imple- 
mented for the Arpanet, and is described in 
more detail by Popek and Kline [POPE78]; 
here we only outline the solution in general 
terms. The goal is to provide secure com- 
munication that does not involve applica- 
tion software in the security facilities. We 
also wish to minimize the amount of trusted 
system software. 

The protocol provides process-to-process 
channels and guarantees that  it is not pos- 
sible for application software running 
within the process to cause cleartext to be 
transmitted onto the network. Basic oper- 
ation of the protocol is suggested in Figure 
3. It is assumed, in keeping with the discus- 
sion in Section 1.6, that the system software 
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base at each node is a suitably small, secure 
operating system kernel, which operates 
correctly. 

It is also expected that  the amount of 
software involved in management of the 
network from the operating system's point 
of view is substantial; therefore one does 
not wish to trust its correct operation. 6 Re- 
sponsibilities of that software include estab- 
fishing communications channels, support- 
ing retransmission when errors are de- 
tected, controlling data flow rates, multi- 
plexing multiple logical channels on the 
(usually) single physical network connec- 
tion, and assisting or making routing deci- 
sions. We call the modules which provide 
these functions the network manager. 

Let us assume for the moment that the 
keys have already been distributed and 
logical channels established so far as 
the network managers are concerned. The 
operating system nucleus in each case 
has been augmented with new calls: 
Encrypt( channel name, data) and De. 
crypt(channel name, data destination). 
Whenever a process wishes to send an en- 
crypted block of data, it issues the Encrypt 
call. The nucleus takes the data, causes 
them to be encrypted, and informs the net- 
work manager, which can read the block 
into i ts  workspace. If we assume that the 
network manager knows what destination 
site is intended (which it must learn as part 
of estaljlishing the logical channel), it then 
can place a cleartext header on the en- 
crypted block and send it out onto the 
network. The cleartext header is essential 

6 As an example,  in the  Arpane t  software for the  U m x  
operat ing sys tem,  the  network software is comparable  
m size to the  operat ing sy s t em itself 
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so that switching computers which typi- 
cally make up a network can route the 
block appropriatelS 

When the block arrives at the destination 
host computer, the network manager there 
reads it in and strips off the header. It then 
tells the kernel the process for which the 
block is intended. The kernel informs the 
process, which can issue a Decrypt call, 
causing the data to be decrypted with the 
key previously arranged for that process. If 
this block really is intended for this process 
(i.e., encrypted with the matching key), 
then the data are successfully received. 
Otherwise, decryption with the wrong key 
yields nonsense. The encrypt and decrypt 
functions manage sequence numbers in a 
manner invisible to the user, as discussed 
in Section 1.3. 

Clearly this whole mechanism depends 
on suitable distribution of keys, together 
with informing the network managers in a 
coordinated way of the appropriate end- 
points of the channel. It is worth noting at 
this stage that  matched keys form a well- 
defined communication channel, and that  
in the structure just outlined, it is not pos- 
sible for processes to communicate to the 
network or the network manager directly; 
only the encrypt and decrypt functions can 
be used for this purpose. It is for this latter 
reason that  application software cannot 
communicate in cleartext over the network, 
an advantage if that code is not trusted (the 
usual assumption in military examples). 

7 Network  encrypt ion  facilities mus t ,  m general,  pro- 
vide some  way to supply  the  header  of  a message  in 
cleartext,  even though  the  body is encrypted.  Other-  
wise every  node on  possibly mult iple  ne tworks  h a s  to 
be able to examine  every message,  this  is not  practical. 
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7.1 Initial Connect ion  

To establish the secure channel, several 
steps are necessary. The local network 
manager must be told with whom the local 
process wishes to communicate. This would 
be done by some highly constrained means. 
The network manager must communicate 
with the foreign network manager and es- 
tablish a name for this channel, as well as 
other state information such as flow control 
parameters. The network manager software 
involved need not be trusted. Once these 
steps are done, encryption keys need to be 
set up in a safe way. 

We first outline how this step would be 
carried out employing conventional encryp- 
tion with fully distributed key manage- 
ment; then we comment on how it would 
change if public-key systems were used. 

Assume that there is a kernel-maintained 
key table which has entries of the form: 

foreign host name, 
channel name, 
sequence number, 
local process name, 
key. 

There are also two additional kernel calls. 
Open( foreign process name, local process 
name, channel name, policy-data) makes 
the appropriate entry in the key table (if 
one is not already there for the given chan- 
nel}, setting the sequence number to an 
initial value and sending a message to the 
foreign kernel of the form (local process 
name, channel name, policy-data, key). 8 

If there already is an entry in the local 
key table, it should have been caused by 
the other host's kernel. In that case Open 
checks to make sure that the sequence 
number has been initialized and does not 
generate a key--rather  it sends out the 
same message, less the key. Close( channel 
name) deletes the indicated entry in the 
local key table, and sends a message to the 
foreign kernel to do the same. 

The policy-data supplied in the Open 
call, such as classification/clearance infor- 

The reader will note that  the kernel-to-kernel mes- 
sage generated by the Open call must  be sent securely 
and therefore must  employ a previously arranged key 
The network manager must  also be involved, since 
only it contains the software needed to manage the 
network 

mation, will be sent to the other site in- 
volved in the channel so that  it too will 
have the relevant basis for deciding 
whether or not to allow this channel to be 
established. 

Once both sides have issued correspond- 
ing Open calls, the process can communi- 
cate. The following steps illustrate the over- 
all sequence in more detail. The host ma- 
chines involved are numbered 1 and 2. 
Process A is at host 1 and B is at host 2. 
The channel name will be x. The notation 
NM @ ~ denotes "network manager at 
site i." 

1) A informs NM @ 1 "connect using x to 
B @ 2." This message can be sent locally 
in the clear. If confinement between the 
network manager and local processes is 
important, other methods can be em- 
ployed to limit the bandwidth between 
A and NM. 

2) NM @ 1 sends control messages to 
NM @ 2, including whatever host ma- 
chine protocol messages are required. 9 

3) NM @ 2 receives an interrupt indicating 
normal message arrival, performs an 
I/O call to retrieve it, examines the 
header, determines that it is the recipi- 
ent, and processes the message. 

4) NM @ 2 initiates step 2 at site 2, leading 
to step 3's being executed at site 1 in 
response. This exchange continues until 
NM @ 1 and NM @ 2 establish a logical 
channel, using x as their internal name 
for the channel. 

5) NM @ 1 executes Open(B, A, x, policy- 
data). 

6) In executing the Open, the kernel @ 1 
generates or obtains a key, makes an 
entry in its key table, and sends a mes- 
sage over its secure channel to the kernel 
@ 2, which in turn makes a correspond- 
ing entry in its table and interrupts 
NM @ 2, giving it the triple (B, A, x). 

7) NM @ 2 issues the corresponding 
Open(A, B, x, policy-data'). This call 
interrupts B and eventually causes the 
appropriate entry to be made in the 
kernel table at host 1. The making of 
that entry interrupts NM @ 1 and 
A @ I .  

The host-host  protocol messages would normally be 
sent encrypted using the N M - N M  key in most  imple- 
mentations. 
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8) A and B can now use the channel by 
issuing successive Encrypt and Decrypt 
calls. 

There are a number of places in the 
mechanisms just described where failure 
can occur. If the network software in either 
of the hosts fails or decides not to open the 
channel, no kernel calls are involved and 
standard protocols operate. (If user notifi- 
cation is permitted, an additional confine- 
ment channel is present.) An Open may fail 
because the name x supplied was already in 
use, a protection policy check was not suc- 
cessful, or the kernel table was full. The 
caller is notified. He may try again. In the 
case of failure of an Open, it may be nec- 
essary for the kernel to execute most of the 
actions of Close to avoid race conditions 
that can result from other methods of in- 
dicating failure to the foreign site. 

The encryption mechanism just outlined 
contains no error correction facilities. If 
messages are lost, or sequence numbers are 
out of order or duplicated, the kernel 
merely notifies the user and network soft- 
ware of the error and renders the channel 
unusable? ° This action is taken on all chan- 
nels, including the host-host protocol chan- 
nels as well as the kernel-kernel channels. 
For every case but the last, Close calls must 
be issued and a new channel created via 
Opens. In the last case, the procedures for 
bringing up the network must be used. 

This simple-minded view is acceptable in 
part because the error rate which the logical 
encryption channel sees can be quite low. 
That  is, the encryption channel is built on 
top of lower level facilities supplied by con- 
ventional network protocols, some imple- 
mented by the NM, which can handle 
transmission errors (forcing retransmission 
of errant blocks, for example) before they 
are visible to the encryption facilities. On 
highly error prone channels, additional pro- 

~o Recall that these sequence numbers are added to 
the cleartext by the kernel Encrypt call before encryp- 
t]on. They are removed and checked after decryption 
by a Decrypt call issued at the receiving site before 
dehvery to the user. Hence, if desired, sequence num- 
bers can be handled by the encryption unit itself and 
never be seen by kernel software. If such a choice is 
made, then the conventional network protocols sup- 
ported by the NM will need another set of sequence 
numbers for error control. 

tocol at the encryption level may still be 
necessary. See KENT76 for a discussion of 
resynchronization of the sequencing sup- 
ported by the encryption channel. 

From the protection viewpoint, one can 
consider the collection of NMs across the 
network as forming a single (distributed) 
domain. They may exchange information 
freely among themselves. No user process 
can send or receive data directly to or from 
an NM, except via narrow bandwidth chan- 
nels through which control information is 
sent to the NM and status and error infor- 
mation is returned. These channels can be 
limited by adding parameterized calls to 
the kernel to pass the minimum amount of 
data to the NMs and having the kernel 
post, to the extent possible, status reports 
directly to the processes involved. The 
channel bandwidth cannot be zero, how- 
ever. 

The protocols in this case study can also 
be modified to use public-key algorithms. 
The kernel, upon receiving the Open re- 
quest, should retrieve the public key of the 
recipient. Presumably, the kernel would 
employ a protocol with the authority to 
retrieve the public key and then utilize the 
authentication mechanisms described in 
the protocols of Section 2. 

More precisely, in step 6 above, when the 
kernel receives the Open call, it would re- 
trieve the public key, either by looking it 
up in a cache or requesting it from the 
central authority, or via other methods 
such as certificates. Once the key is re- 
trieved, the kernel would send a message to 
the other kernel over the secure kernel- 
kernel channel, identifying the user and 
supplying those policy and authentication 
parameters required. The other kernel, 
upon receipt of that message, would re- 
trieve the user's private key (from wherever 
local user private keys are stored) and con- 
tinue the authentication sequence. 

7.2 System Initialization Procedures 

The task of initializing the network soft- 
ware is composed of two important parts. 
First, it is necessary to establish keys for 
the secure kernel-kernel channels and the 
NM-NM channels. Next, the NM can ini- 
tialize itself and its communications with 
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other NMs. Finally, the kernel can initialize 
its communications with other kernels. 
This latter problem is essentially one of 
mutual authentication of each kernel with 
the other member of the pair, and appro- 
priate solutions depend on the expected 
threats against which protection is desired. 

The initialization of the kernel-kernel 
channel and the NM-NM channel key 
table entries requires that the kernel main- 
tain initial keys for this purpose. The kernel 
cannot obtain these keys using the above 
mechanisms at initialization because they 
require the prior existence of the NM-NM 
and kernel-kernel channels. Thus this cir- 
cularity requires the kernel to maintain at 
least two key pairs, n However, such keys 
could be kept in read-only memory of the 
encryption unit if desired. 

The initialization of the NM-NM com- 
munications then proceeds as it would if 
encryption were not present. Once this 
NM-NM initialization is complete, the ker- 
nel-kernel connections could be established 
by the NM. At this point, the system would 
be ready for new connection establishment. 
It should be noted that if desired, the ker- 
nels could then set up new keys for the 
kernel-kernel and NM-NM channels, thus 
using the initialization keys for a short time 
only. To avoid overhead at initialization 
time and to limit the sizes of kernel key 
tables, NMs probably should only establish 
channels with other NMs when a user 
wants to connect to that particular foreign 
site, and perhaps the NM-NM channel 
should be closed after all user channels are 
closed. 

This case study should serve to illustrate 
many of the issues present in the design of 
a suitable network encryption facility. 

7.3, Symmetry 

The case study portrays a basically sym- 
metric protocol suitable for use by intelli- 
gent nodes, a fairly general case. However, 
in some instances one of the pair lacks 

II In a centrahzed key controller vermon, the only keys 
needed would be those for the channel between the 
key controller's NM and the host 's NM, and for the 
channel between the key controller's kernel and the 
host 's kernel. In a distributed key management  sys- 
tem, keys would be needed for each key manager 

algorithmic capacity, as illustrated by sim- 
ple hardware terminals or simple micropro- 
cessors. Then a strongly asymmetric pro- 
tocol is required, where the burden of es- 
tablishing secure communications falls on 
the more powerful of the pair. 

A form of this problem might also occur 
if encryption is not handled by the system, 
but by the user processes themselves. Then 
for certain operations, such as sending mail, 
the receiving user process might not even 
be present. (Note that  such an approach 
may not guarantee the encryption of all 
network traffic.) The procedures outlined 
in the next section are oriented toward re- 
ducing the work of one of the members of 
the communicating pair. 

8. NETWORK MAIL 

Recall that network mail may often be 
short messages, to be delivered as soon as 
possible to the recipient site and stored 
there, even if the intended receiver is not 
currently logged in. 

Assume that a user at one site wishes to 
send a message to a user at another site, 
but because the second user may not be 
signed on at the time, a system process 
(sometimes called a "daemon") is used to 
receive the mail and deliver it to the user's 
"mailbox" file for his later inspection. It is 
desirable that the daemon process not re- 
quire access to the cleartext form of the 
mail, for that would require trusting the 
mail receiver mechanism. This task can be 
accomplished by sending the mail to the 
daemon process in encrypted form and hav- 
ing the daemon put that encrypted data 
directly into the mailbox file. The user can 
decrypt the data when he signs on to read 
his marl. 

In either the conventional- or public-key 
case, the protocols described in Section 3 
can be employed with only. slight modifi- 
cations. In the conventional-key case, the 
last two messages, those which exchange an 
identifier to ensure that the channel is cur- 
rent, must be dropped (since the recipient 
may not be present). After the sender re- 
quests and gets a key K and a copy of K 
encrypted with the receiver's secret key, he 
appends the encrypted mail to the en- 
crypted K and sends both to the receiver. 
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The receiving mail daemon can deliver the 
mail and key (both still encrypted), and the 
intended recipient can decrypt and read it 
at his leisure. 

In the case of public keys, the sender 
retrieves the recipient's public key via an 
exchange with the repository, encrypts the 
marl, and sends it to the receiving site. 
Again the mail daemon delivers the en- 
crypted mail, which can be read later by 
the recipient since he knows his private 
key. Again, the authentication part of the 
public-key protocol must be dropped. In 
both of these approaches, since the authen- 
tication steps were not performed, the re- 
ceived mail may be a replay of a previous 
message. If detecting duplicate mail is im- 
portant, the receiver must keep records of 
previous marl. 

Both mechanisms outlined above do 
guarantee that only the desired recipient of 
a message will be able to read it. However, 
as pointed out, the recipient is not guaran- 
teed the identity of the sender. This prob- 
lem is essentially that of digital signatures, 
which is discussed in the next section. 

9. DIGITAL SIGNATURES 

Applications such as bank transactions, 
military command and control orders, and 
contract negotiations, will require digital 
signatures. At first, it appeared that public- 
key methods would be superior to conven- 
tional ones for use in digital message sig- 
natures. The method, assuming a suitable 
public-key algorithm, is for the sender to 
encode the mail with his private key and 
then send it. The receiver decodes the mes- 
sage with the sender'spubhc key. The usual 
view is that this procedure does not require 
a central authority, except to adjudicate an 
authorship challenge. However, two points 
should be noted. First, a central authority 
is needed by the recipient for aid in deci- 
phering the first message received from any 
given author (to retrieve the corresponding 
public key, as mentioned in Section 3.2). 
Second, the central authority must keep all 
old values of public keys in a reliable way 
to properly adjudicate conflicts over old 
signatures (consider the relevant lifetime of 
a signature on a real estate deed, for ex- 
ample). 

Furthermore, and more serious, the un- 
adorned public-key-signature protocol just 
described has an important flaw. The au- 
thor of signed messages can effectively 
disavow and repudiate his signatures at any 
time, merely by causing his secret key to be 
made public or "compromised" [SALT78]. 
When such an event occurs, either by ac- 
cident or intention, all messages previously 
"signed" using the given private key are 
invalidated, since the only proof of validity 
has been destroyed. Because the private 
key is now known, anyone could have cre- 
ated any message claimed to have been sent 
by the given author. None of the signatures 
can be relied upon. 

Hence the validity of a signature on a 
message is only as safe as the entire future 
protection of the private key. Further, the 
ability to remove the protection resides pre- 
cisely with the individual (the author) who 
should not hold that right. That  is, one 
important purpose of a signature is to in- 
dicate responsibility for the content of the 
accompanying message in a way that can- 
not be later disavowed. 

The situation with respect to signatures 
using conventional algorithms might ini- 
tially appear slightly better. Rabin 
[RABI78] proposes a method of digital sig- 
natures based on any strong conventional 
algorithm. Like public-key methods it too 
requires either a central authority or an 
explicit agreement between the two parties 
involved to get matters going. 12 Similarly, 
an adjudicator is required for challenges. 
Rabin's method, however, uses a large num- 
ber of keys, with keys not being reused from 
message to message. As a result, if a few 
keys are compromised, other signatures 
based on other keys are still safe. This is 
not a real advantage over public-key meth- 
ods, since one could readily add a layer of 
protocol over the public-key method to 
change keys for each message as Rabin 
does for conventional methods. One could 
even use a variant of Rabin's scheme itself 

~2In his paper, Rabm describes an initialization 
method which revolves an exphcit contract between 
each pair of parties that  wish to commumcate with 
digitally signed messages One can easily instead add 
a central authority to play this role, usmg statable 
authentication protocols, thus obviating any need for 
two partms to make specific arrangements prior to 
exchanging mgned correspondence 
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with public keys, although it is easy to 
develop a simpler one. 

All of the digital signature methods de- 
scribed or suggested above suffer from the 
problem of repudiation of signature via key 
compromise. Rabin's protocol or analogs to 
it merely limit the damage (or, equivalently, 
provide selectivity!}. It appears that the 
problem is intrinsic to any approach in 
which the validity of an author's signature 
depends on secret information which can 
potentially be revealed, either by the au- 
thor or other interested parties. Surely im- 
provement would be desirable. 

A number of proposals have been made 
to augment or replace the unadorned ap- 
proaches just outlined. One, suggested in 
KLIN79 employs a network-wide distrib- 
uted signature facility. Others, based on 
analogs to notaries public in the paper 
world or replicated, trusted archival facili- 
ties, provide a dependable time-stamping 
mechanism so that authors cannot disavow 
earlier signed correspondence by causing 
their keys to be revealed. 

9.1 Network-Registry-Based Signatures 
- - A  Conventional-Key Approach 

2) The NR (not necessarily the local com- 
ponent) computes a simple characteris- 
tic function of the message, author, re- 
cipient, and current time; encrypts the 
result with a key known only to the NR; 
and forwards the resulting "signature 
block" to the recipient. The NR only 
retains the encryption key employed. 

3) The recipient, when the message is re- 
ceived, can ask the NR if the message 
was indeed signed by the claimed author 
by presenting the signature block and 
message. Subsequent challenges are 
handled in the same way. 

Certain precautions are needed to ensure 
the safety of the keys used to encrypt the 
signature blocks, including the use of differ- 
ent keys between pairs of distributed NR 
components, and a signature block compu- 
tation which requires compromise of mul- 
tiple components before signatutre validity 
is affected. For example, several NR com- 
ponents could each generate fragments of 
the keys being used. There is not even any 
need for all NR components to be under 
control of a single centralized authority so 
long as they can all cooperate. 

The registry solution is based on the ob- 
vious approach of interposing some trusted 
interpretive layer, a secure hardware and/  
or software "unit," between the author and 
his signature keys, whatever their form. 
Then it is a simple matter to organize the 
collection of units in the network to provide 
digital signature facilities. Consider all the 
cooperating units together as a distributed 
network registry (NR). Some secure com- 
munication protocol among the compo- 
nents of the registry is required, but it can 
be very simple; low-level link-style encryp- 
tion using conventional encryption would 
suffice. 

Given that such facilities exist, then a 
simple implementation of digital signatures 
which does not require specialized protocols 
or encryption algorithms is as follows: 

1) The author authenticates with a local 
component of the network registry 
(NR), creates a message, and hands the 
message to the NR together with the 
recipient identifier and an indication 
that a registered signature is desired. 

9.2 Notary-Public- and Archive-Based 
Solutions 

Public-key algorithms can provide safe sig- 
nature methods also. One straightforward 
method is based on the behavior of notaries 
public in the paper world. ~3 Briefly, there 
can be a number of independently operat- 
ing (but perhaps licensed} notary public 
machines attached to the network. When 
a signed message has been produced, it can 
be sent to several of the notary public ma- 
chines by the author after the author has 
signed the message himself. The notary 
public machine time-stamps the message, 
signs it itself (thereby encoding it a second 
time}, and returns the result to the author. 
The author can then put the appropriate 
cleartext information around the doubly 
signed correspondence and send it to the 
intended receiver. He checks the notary's 
signature by decoding with the notary's 
public key, then decodes the message using 

' ~ Thin approach was imtlally suggested to one of the 
authors  by David Redell. 
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the author's public key. Several notarized 
copies can be sent, if desired, to increase 
safety. 

The assumption underlying this method 
is that most of the notaries can be trusted. 
Since each notary time-stamps its signa- 
ture, it is not possible for the original author 
to disavow prior signed correspondence by 
"losing" his key at a given time. One might 
think, however, that it is still possible for 
someone to claim that his key had been 
revealed sometime in the past without his 
knowledge and selective messages forged. 
This problem can be guarded against by 
having each notary public return a copy of 
each notarized message to the author's per- 
manent address. {This "patch" of course 
raises the question of how notaries are kept 
reliably informed of permanent addresses.) 

Each notary is an independent facility, 
so that  no coordination among notaries is 
required. Of course, if only one notary ex- 
ists, then the approach is at best no im- 
provement over the scheme presented in 
the previous section without multiple NR 
components. Danger of compromise of the 
notaries' private keys is reduced by the 
redundant facilities. 

A related way to achieve reliable time 
registration of signed messages is for there 
to be a number of independent archival 
sites where either authors or recipients of 
signed mail may send copies of correspond- 
ence to be time-stamped and stored per- 
manently. Of course, the entire message 
need not be stored; just a characteristic 
function will do. Challenges are handled by 
interrogating the archives. The possibility 
of an individual's key being compromised 
and used without his knowledge can be 
treated in the same way as with notaries 
public. 

9.3 Comparison of Signature Algorithms 

The improved conventional-key-based and 
public-key-based signature algorithms 
share many common characteristics. They 
each involve some generally trusted mech- 
anism shared among all those communicat- 
ing. The safety of signatures still depends 
on the future protection of keys as before, 
now including those for the network regis- 
try, notaries public, or archive facilities. 
However, there are several crucial differ- 
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ences from previous protocols. First, the 
authors of messages do not retain the abil- 
ity to repudiate signatures at will. Second, 
the new facilities can be structured so that  
failure or compromise of several of the com- 
ponents is necessary before signature valid- 
ity is lost. In the early proposals a single 
failure could lead to compromise. 

10. USER AUTHENTICATION 

While digital signatures are important, one 
must realize that there must still exist a 
guaranteed authentication mechanism by 
which an individual is authenticated to the 
system. Any reasonable communication 
system, of course, ultimately requires such 
a facility, for if one user can masquerade as 
another, all signature systems will fail. 
What is required is some reliable way to 
identify a user sitting at a terminal--some 
method stronger than the password 
schemes used today. Perhaps an unforge- 
able mechanism based on fingerprints or 
other personal characteristics will emerge. 

11. CONCLUSIONS 

This discussion of network security has out- 
lined the issues in developing secure com- 
puter networks, as well as presented the 
context in which encryption algorithms will 
be increasingly used. It is surprising to note 
that once the system implications are un- 
derstood, public-key algorithms and con- 
ventional algorithms are largely equivalent. 

Indeed, it is highly unlikely that any 
given class of encryption algorithms will be 
sufficient alone to provide the various se- 
cure functions which will be desired. Mas- 
ter-key/subkey relationships, or k-out-of-n 
systems TM are just two examples. Rather 
than attempt to develop and evaluate the 
strength of a new encryption system for 
each such application, it would be prefera- 
ble to recognize that a strong extensible 
system is necessary. Such a system is one 
for which new characteristics may be easily 
added, and where the strength of the addi- 
tion can be demonstrated in a straightfor- 
ward, incremental manner. Any strong al- 
gorithm, either conventional or public key, 

~4 A k-out-of-n system is one in which any k of a set of 
n keys are sufficmnt to decrypt, but it is infeasible to 
do so with any fewer 
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can serve as the  basis for a s trong extensible 
sys tem when combined with addit ional 
t rus ted m a n a g e m e n t  algorithms, expressed 
ei ther  in hardware  or software. Examples  
of such mixed sys tems are given in Sect ion 
9. In fact, much  of the discussion in this 
paper  suggests tha t  mixed sys tems  are es- 
sential. Once tha t  necessity is recognized, 
pressure to develop encrypt ion algori thms 
with special characteris t ics  is lessened; in- 
stead, more  a t ten t ion  is focused on the need 
for strong algori thms in general. 

AHO74 I f  one assumes tha t  the purpose  of a 
secure network is mainly  to provide pr ivate  
pipes, similar to those supplied by com m on  
carriers, then  general principles by which BocGS0 
secure, common-carr ier -based,  point-to- 
point communica t ion  can be provided are 

BRAN73 
reasonably  well in hand.  Of course, in any 
sophist icated implementa t ion ,  there  will be 
considerable careful engineering to be done. 

BRAN75 
However,  this conclusion rests  on an im- 
por tan t  assumpt ion  tha t  is not  universally 
valid. T h e  securi ty and correctness of func- CARL75 
tion of the underlying operat ing sys tems 
mus t  be suitably high so tha t  the network 
securi ty methods  described here  are not  
being built  on an unreliable base, obviat ing CERF78 

their  safety. For tunate ly ,  reasonably secure 
operat ing sys tems are well on their  way; DENN66 
SO this intrinsic dependence of ne twork 
securi ty on appropr ia te  operat ing sys tem 
suppor t  should not  seriously delay corn- DIFF76a 
mort carrier  securi ty [McCA79, POPE78, 
FP.IE79]. 

One could, however,  take a ra ther  differ- DIFF76b 
ent  view of the nature  of  the network se- 
curi ty problem. T h e  goal might  be to pro- DIFF77 
vide a high-level extended machine  for the 
user, in which no explicit awareness  of the 
network is required. T h e  underlying facility DI~F79 
is t rus ted to move da ta  securely f rom site 
to site as necessary to suppor t  wha tever  
da ta  types and operat ions are re levant  to DowN79 
the user. The  facility operates  securely and 
with integri ty in the face of unplanned 
crashes of any nodes in the network. Syn- EVAN74 
chronization of operat ions on user meaning-  
ful objects (such as operat ion w i t h d r a w a l  

f rom object  c h e c k i n g  accoun t }  is reliably FABR74 
mainta ined using min imum trusted mech- 
anism. Other  higher level secur i ty-re levant  FETE79 
operat ions beyond digital s ignatures are 
provided. I f  one takes such a high-level 
view of the goal of network security, then 
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the simple common-car r ie r  solutions are 
insufficient and more  work remains.  
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