
Encryption and Secure Computer Networks

GERALD J. POPEK AND CHARLES S. KLINE

Unwerstty of Cahfornta at Los Angeles, Los Angeles, Caltfornta 90024

There is increasing growth in the number of computer networks in use and in the kinds of

distributed computing applications available on these networks This increase, together
with concern about privacy, security, and integrity of information exchange, has created
considerable interest in the use of encryptlon to protect information in the networks

This survey is directed at the reader who ts knowledgeable about varmus network
designs and who now wishes to consider incorporating encryption methods into these
designs. It is also directed at developers of encryption algorithms who wish to understand

the characteristics of such algorithms useful in network applications.

Key management, network encryption protocols, digital signatures, and the utility of
conventional- or public-key encryptlon methods are each discussed. A case study of how
encryption was integrated into an actual network, the Arpanet, illustrates many issues
present m the design of a network encryption facdity.

Keywords and Phrases" computer networks, computer security, encryption, pubhc-key
cryptosystems, digital signatures, network registries, encryptlon protocols

CR Categories. 3 9, 4 35, 4.39, 5 39, 6 29

INTRODUCTION

It has long been observed that as the cost
per unit of equivalent computation in small
machines became far less than in large cen-
tralized ones, and as the technology of in-
terconnecting machines matured, comput-
ing would take on a more and more distrib-
uted appearance. This change of course is
now happening. In many cases, users' data
manipulation needs can be served by a sep-
arate machine dedicated to the single user,
connected to a network of integrated data-
bases. Organizational needs, such as easy
incremental growth and decentralized con-
trol of computing resources and informa-
tion, are also well served in this manner.
Multiprogramming of general application
software diminishes in importance in such
an environment.

This work was supported by the Advanced Research
Projects Agency of the Department of Defense under
Contract MDA 903-77-C-0211.

As a result, the nature of the protection
and security problem is beginning to
change. Concern over the convenience and
reliability of central operating system pro-
tection facilities is transferring to analogous
concerns in networks. The issues of protec-
tion in computer networks differ in several
fundamental ways from those of centralized
operating systems. One of the most impor-
tant distinctions is the fact that the under-
lying hardware cannot in general be as-
sumed secure. In particular, the communi-
cation lines that comprise the network are
usually not under the physical control of
the network user. Hence no assumptions
can be made about the safety of the data
being sent over the lines. Further, in current
packet-switched networks [KIMB75] the
software in the switches themselves is typ-
ically quite complex and programmed in
assembly language; one cannot say with
certainty that messages are delivered only
to the intended recipients.

Permission to copy without fee all or part of this materml is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copymght notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery To
copy otherwise, or to republmh, reqmres a fee and/or speofic permission
© 1979 ACM 0010-4892/79/1200-0331 $00.75

Computing Surveys, Vol 11, No 4, December 1979

332 • G. J. Popek and C. S. Kl ine

CONTENTS

INTRODUCTION

The Environment and Its Threats

Operational Assumptions
l ENCRYPTION ALGORITHMS AND THEIR

NETWORK APPLICATIONS
1 1 Conventional Encryptlon
1 2 Public-Key Encryption
1 3 Error Detection and Duphcate or Missing

Blocks
1 4 Block Versus Stream Ciphers
1 5 Network ApphcaUons of Encryption
16 Minimum Trusted Mechamsm, Minimum

Central Mechamsm

l 7 Limitations of Encryptlon
2 SYSTEM AUTHENTICATION

3 KEY MANAGEMENT
3 l Conventional-Key Dmtnbutlon
3 2 Pubhc-Key-Based Distribution Algorithms
3 3 Comparison of Public- and Conventional-Key

Dmtnbutlon for Private Communication

4 LEVELS OF INTEGRATION
5 ENCRYPTION PROTOCOLS
6 CONFINEMENT

7 NETWORK ENCRYPTION PROTOCOL CASE

STUDY PRIVATE COMMUNICATION AT
PROCESS-PROCESS LEVEL
7 1 Imtlal Connection

7 2 System Imtlahzatmn Procedures

7 3 Symmetry

8 NETWORK MAIL

9 DIGITAL SIGNATURES

9 1 Network-Regastry-Based Signatures--A Con-

ventmnal-Key Approach

9 2 Notary-Public- and Arch',ve-Based Solutmns

9 3 Comparison of Signature Algorithms

I0 USER AUTHENTICATION

II CONCLUSIONS

ACKNOWLEDGMENTS

BIBLIOGRAPHY

The only general approach to sending
and storing data over media which are not
safe is to use some form of encryption.
Suitable encryption algorithms are there-
fore a prerequisite to the development of
secure networks. Equally important ques-
tions concern the integration of encryption
methods into the operating systems and
applications software which are part of the
network. We focus here on these latter is-
sues, taking a pragmatic, engineering per-
spective toward the problems which must
be settled in order to develop secure net-
work functions, eases where the safety of
the entire network can be assumed are not
discussed here because in these eases the
problems are not special to networking.

Computing Surveys, Vol 11, No 4, December 1979

In networks, as in operating systems,
there are several major classes of protection
policies that one may wish to enforce. The
most straightforward policy, satisfactory
for most applications, concerns data secu-
rity: ensuring that no unauthorized modifi-
cation or direct reference of data takes
place. Highly reliable data security in net-
works today is feasible; suitable methods to
attain this security are outlined in the later
sections.

A more demanding type of policy is the
enforcement of confinement in the network:
preventing unauthorized communication
through subtle methods, such as signaling
via noticeable variations in performance
[LAMP73]. One commonly mentioned (and
fairly easily solved) confinement problem is
traffic analysis: the ability of an observer to
determine the various flow patterns of mes-
sage movement. However, evidence to be
presented later indicates that the condi-
tions under which confinement in general
can be provided in a network are quite
limited.

In the following sections we describe
problems and alternative solutions in the
design of secure networks, discuss their util-
ity with respect to data security and con-
finement, and present an illustrative case
study. The material is intended as a prac-
ticum for those concerned with the devel-
opment of secure computer networks or
those who wish to understand the charac-
teristics of encryption algorithms useful in
network applications.

The Environment and Its Threats

A network may be composed of a wide
variety of nodes interconnected by trans-
mission media. Some of the nodes may be
large central computers; others may be per-
sonal computers or even simple terminals.
The network may contain some computers
dedicated to switching message traffic from
one transmission line to another, or those
functions may be integrated into general-
purpose machines which support user com-
puting. One of the important functions of
computer networks is to supply to users
convenient private communication chan-
nels similar to those provided by common
carriers. The underlying transmission me-

Encryption and Secure Computer Networks . 333

dia, of course, may be point to point or
broadcast. Considerable software is typi-
cally present to implement the exchange of
messages among nodes. The rules or pro-
tocols governing these message exchanges
form the interface specifications between
network components. These protocols can
significantly affect network security con-
cerns, as will be seen later. In any event,
because of the inability to make assump-
tions about the communication links and
switching nodes, one typically must expect
malicious activity of several sorts.

1) Tapptng of Lines. While the relevant
methods are beyond the scope of this dis-
cussion, it should be recognized that it is
frequently a simple matter to record the
message traffic passing through a given
communications line without detection by
the participants in the communication
[WEST70]. This problem is present whether
the line is private, leased from a common
carrier, or part of a broadcast satellite
channel.

2) Introduction of Spurious Messages. It
is often possible to introduce invalid mes-
sages with valid addresses into an operating
network, and to do so in such a way that
the injected messages pass all relevant con-
sistency checks and are delivered as if the
messages were genuine.

3) Retransmission of Previously Trans-
mitted Vahd Messages. Given that it is
possible both to record and introduce mes-
sages into a network, it is therefore possible
to retransmit a copy of a previously trans-
mitted message.

4) Disruption. It is possible that delivery
of selected messages may be prevented:
Portions of messages may be altered, or
complete blockage of communications
paths may occur.

Each of the preceding threats can, in the
absence of suitable safeguards, cause con-
siderable damage to an operating network,
to the extent of making it useless for com-
munication. Tapping of lines leads to loss
of privacy of the communicated informa-
tion. Introduction of false messages makes
reception of any message suspect. Even re-
transmission of an earlier message can
cause considerable difficulty in some cir-
cumstances. Suppose the message is part of

the sequence by which two parties com-
municate their identity to one another.
Then it may be possible for some node to
falsely identify itself in cases where the
valid originator of the message was tempo-
rarily out of service.

More and more applications of computer
networks are becoming sensitive to mali-
cious actions. Increased motivation to dis-
turb proper operation can be expected:
Consider the attention that will be directed
at such uses as military command and con-
trol systems (by which missile firing orders
are sent), or commercial electronic funds
transfer systems (with daily transactions
worth hundreds of billions of U.S. dollars).

Operational Assumptions

In this paper the discussion of protection
and security in computer networks is based
on several underlying assumptions:

1) Malicious attacks, including tapping, ar-
tificial message injection, and disrup-
tion, are expected.

2) The insecure network provides the only
available high-bandwidth transmission
paths between those sites Which wish to
communicate in a secure manner)

3) Reliable private communication is de-
sired.

4) A large number of separately protected
logical channels are needed, even though
they may be multiplexed on a much
smaller number of physical channels.

5) High-speed inexpensive hardware en-
cryption units are available.

It is believed that these assumptions cor-
rectly mirror many current and future en-
vironments. In the next sections we outline
properties of encryption relevant to net-
work use. Those interested in a deeper ex-
amination should see the companion papers
in this issue [LEMP79, SIMM79]. After this
brief outline, the discussion of network se-
curity commences in earnest.

l i t will turn out that s o m e presumed secure and
correct channel wdl be needed to get the secure data
channel going, although the preexisting secure channel
can be awkward to use, with high delay and low
bandwidth. Dlstrlbuhon of the priming reformation
via armored truck might suffice, for example.

Computing Surveys, Vol. 11, No. 4, December 1979

334 ° G. J. Popek and C. S. Kline

1. ENCRYPTION ALGORITHMS AND THEIR
NETWORK APPLICATIONS

1.1 Conventional Encryption

Encryption provides a method of storing
data in a form which is unintelligible with-
out the "key" used in the encryption. Ba-
sically; conventional encryption can be
thought of as a mathematical function,

E = F (D , K) ,

where D is data to be encoded, K is a key
variable, and E is the resulting enciphered
text. For F to be a useful function, there
must exist an F', the inverse of F,

D ffi F ' (E, K)

which, therefore, has the property that the
original data can be recovered from the
encrypted data if the value of the key var-
iable originally used is known.

The use of F and F' is valuable only if it
is impractical to recover D from E without
knowledge of the corresponding K. A great
deal of research has been done to develop
algorithms which make it virtually impos-
sible to do so, even given the availability of
powerful computer tools.

The strength of an encryption algorithm
is traditionally evaluated using the follow-
ing assumptions. First, the algorithm is
known to all involved. Second, the analyst
has available to him a significant quantity
of encrypted data and corresponding clear-
text {i.e., the unencrypted text, also called
plaintext). He may even have been able to
cause messages of his choice to be en-
crypted. His task is to deduce, given an
additional unmatched piece of encrypted
text, the corresponding cleartext. All of the
matched text can be assumed to be en-
crypted through the use of the same key
which was used to encrypt the unmatched
segment. The difficulty of deducing the key
is directly related to the strength of the
algorithm.

F is invariably designed to mask statisti-
cal properties of the cleartext. Ideally the
probability of each symbol of the encrypted
character set appearing in an encoded mes-
sage E ideally is to be equal. Further, the
probability distribution of any pair (di-

Computing Surveys, Vol 11, No 4, December 1979

gram) of such characters is to be fiat. Sim-
ilarly, it is desirable that the n-gram prob-
ability distribution be as flat as possible for
each n. This characteristic is desired even
in the face of skewed distributions in the
cleartext, for it is the statistical structure of
the input language, as it "shows through"
to the encrypted language, which permits
cryptanalysis.

The preceding characteristics, desirable
from a protection viewpoint, have other
implications. In particular, if any single bit
of a cleartext message is altered, then the
probability of any particular bit being al-
tered in the corresponding message is ap-
proximately ½. Conversely, if any single bit
in an encrypted message is changed, the
probability is approximately ½ that any par-
ticular bit in the resulting decrypted mes-
sage has been changed [FEIs75]. This prop-
erty follows because of the necessity for f la t
n-gram distributions. As a result, encryp-
tion algorithms are excellent error detec-
tion mechanisms, as long as the recipient
has any knowledge of the original cleartext
transmission.

The strength of an encryption algorithm
is also related to the ratio of the length of
the key to the length of the data. Perfect
ciphers that completely mask statistical in-
formation require keys of lengths equal to
the data they encode. Fortunately, cur-
refitly available algorithms are of such high
quality that this ratio can be small; as a
result, a key can be often reused for subse-
quent messages. That is, subsequent mes-
sages essentially extend the length of the
data. It is still the ease that keys need to be
changed periodically to prevent the ratio
from becoming too small, and, thus, the
statistical information available to an ana-
lyst too great. The loss of protection which
would result from a compromised key is
thus also limited.

1.2 Public-Key Encryption

Diffie and Hellman [DZFF76b] proposed a
variation of conventional encryption meth-
ods that may, in some cases, have certain
advantages over standard algorithms. In
their class of algorithms there exists

E = F (D , K) ,

as before, to encode the data, and

Encryption and Secure Computer Networks • 335

D = F ' (E , K')

to recover the data. The major difference is
that the key K' used to decrypt the data is
not equal to, and is impractical to derive
from, the key K used to encode the data.
Presumably there exists a pair generator
which, on the basis of some input informa-
tion, produces the matched keys K and K'
with high strength {i.e., resistance to the
derivation of K' given K, D, and matched
E = F (D , K)) .

Many public-key algorithms have the
property that either F or F' can be used for
encryption, and both result in strong ci-
phers. That is, one can encode data using
F' and decode using F. The RSA algorithm
is one that has this property [RwE77a].
The property is useful in both key distri-
bution and "digital signatures" (the elec-
tronic analogs of handwritten signatures)
and will be assumed here.

The potential value of such encryption
algorithms lies in some expected simplifi-
cations in initial key distribution, since K
can be publicly known; hence the name
public-key encryption. There are also sim-
plifications for digital signatures. These is-
sues are examined further in Sections 3 and
9. Rivest et al. and Merkle and Hellman
have proposed actual algorithms which are
believed strong, but they have not yet been
extensively evaluated [RIvE77a, HELL78].

Much of the remaining material in this
survey is presented in a manner indepen-
dent of whether conventional- or public-
key-based encryption is employed. Each
case is considered separately when signifi-
cant.

1.3 Error Detection and Duplicate or Missing

Blocks

Given the general properties of encryption
as already described, it is an easy matter to
detect (but not correct) errors in encrypted
messages. A small part of the message must
be redundant, and the receiver must know
in advance the expected redundant part of
the message. In a block with k check bits,
the probability of an undetected error upon
receipt of the block is approximately 1/(2k),
for reasonably sized blocks, if the probabi-
listic assumption mentioned in Section 1 is
valid. For example, if three 8-bit characters

are employed as checks, the probability of
an undetected error is less than 1/(2 e4) or
1/107.

In the case of natural language text, no
special provisions need necessarily be
made, since that text already contains con-
siderable redundancy and casual inspection
permits error detection with very high
probability. The check field can also be
combined with information required in the
block for reasons other than encryption. In
fact, the packet headers in most packet-
switched networks contain considerable
highly formatted information, which can
serve the check function. For example, du-
plicate transmitted blocks may occur either
because of a deliberate attempt or through
abnormal operation of the network switch-
ing centers. To detect the duplication, it is
customary to number each block in order
of transmission. If this number contains
enough bits and the encryption block size
matches the unit of transmission, the se-
quence number can serve as the check field.

Feistel et al. [FEm75] describe a variant
of this method, called block chaining, in
which a small segment of the preceding
encrypted block is appended to the current
cleartext block before encryption and trans-
mission. The receiver can therefore easily
check that blocks have been received in
proper order by making the obvious check.
However, if the check fails, he cannot tell
how many blocks are missing. In both of
these cases, once a block is lost and not
recoverable by lower level network proto-
cols, some method for reestablishing valid-
ity is needed. One method is to obtain new
matched keys. An alternative (essential for
public-key systems) is to employ an authen-
tication protocol (as described in Section 2)
to choose a new valid sequence number or
data value to restart block chaining.

1.4 Block Versus Stream Ciphers

Whether an encryption method is a block
or stream cipher affects the strength of the
algorithm and has implications for com-
puter use. A stream cipher, in deciding how
to encode the next bits of a message, can
use the entire preceding portion of the mes-
sage, as well as the key and the current bits.
A block cipher, on the other hand, encodes
each successive block of a message on the

Computing Surveys, Vol. 11, No 4, December 1979

336 • G. J. Popek and C. S. Kline

basis of that block only and the given key.
It is easier to construct strong stream ci-
phers than strong block ciphers. However,
stream ciphers have the characteristic that
an error in a given block makes subsequent
blocks undecipherable. In many cases
either method may be satisfactory, since
lower level network protocols can handle
necessary retransmission of garbled or lost
blocks. Independent of whether a block or
stream cipher is employed, some check
data, as mentioned in Section 1.2, are still
required to detect invalid blocks. In the
stream cipher case, when an invalid block
is discovered after decoding, the decryption
process must be reset to its state preceding
the invalid block.

Stream ciphers are less acceptable for
computer use in general. If one wishes to
be able to update portions of a long en-
crypted message (or file) selectively, then
block ciphers permit decryption, update,
and reencryption of the relevant blocks
alone, while stream ciphers require reen-
cryption of all subsequent blocks in the
stream. So block ciphers are usually pre-
ferred. The Lucifer system [FEIs73] is a
candidate as a reasonably strong block ci-
pher. Whether or not the National Bureau
of Standards' Data Encryption Standard
(DES), with its 56-bit keys, is suitably
strong is open to debate [DIFF77], but it is
being accepted by many commercial users
as adequate [NBS77].

1.5 Network Applications of EncrypUon

Four general uses of encryption having ap-
plication in computer networks are briefly
described in this section. Much of the re-
mainder of this paper is devoted to detailed
discussion of them.

1.5.1 Authentication

One of the important requirements in com-
puter communications security is to pro-
vide a method by which participants in the
communication can identify one another in
a secure manner. Encryption solves this
problem in several ways. First, possession
of the right key is taken as prima facie
evidence that the participant is able to en-
gage in the message exchanges. The trans-
mitter can be assured that only the holder

of the key is able to send or receive trans-
missions in an intelligible way.

Even using secure authentication, one is
still subject to the problems caused by lost
messages, replayed valid messages, and the
reuse of keys for multiple conversations
{which exacerbates the replay problem). A
general authentication protocol which can
detect receipt of previously recorded mes-
sages when the keys have not been changed
is presented later. The actual procedures
by which keys are distributed in the general
case are, of course, important, and will be
discussed in subsequent sections.

1 5.2 Private Communicatton

The traditional use of encryption has been
in communications where the sender and
receiver do not trust the transmission me-
dium, be it a hand-carried note or mega-
bytes shipped over high-capacity satellite
channels. This use is crucial in computer
networks.

1.5.3 Network Mad

In the private communication function, it
is generally understood that first, all parties
wishing to communicate are present, and
second, they are willing to tolerate some
overhead in order to get the conversation
established. A key distribution algorithm
involving several messages and interaction
with all participants would be acceptable.
In the case of electronic mail, which typi-
cally involves short messages, it may be
unreasonable for the actual transmission to
require such significant overhead. Mail
should not require that the receiver ac-
tuaUy be present at the time the message is
sent or received. Since there is no need for
immediate delivery, it may be possible to
get lower overhead at the cost of increased
queuing delays.

1.5.4 Dtgital Signatures

The goal here is to allow the author of a
digitally represented message to "sign" it in
such a fashion that the "signature" has
properties similar to an analog signature
written in ink for the paper world. Without
a suitable digital signature method, the
growth of distributed systems may be seri-

Computing Surveys, Vol. 11, No 4, December 1979

Encryptton and Secure Computer Networks * 337

ously inhibited, since many transactions,
such as those involved in banking, require
a legally enforceable contract.

The properties desired of a digital signa-
ture method include the following:

1) Unforgeability. Only the actual author
should be able to create the signature.

2) Authenticity. There must be a straight-
forward way to demonstrate conclu-
sively the validity of a signature in case
of dispute, even long after authorship.

3) No repudiation. It must not be possible
for the author of signed correspondence
to subsequently disclaim authorship.

4) Low cost and high convenience. The
simpler and lower cost the method, the
more likely it will be used.

1.6 Minimum Trusted Mechanism; Minimum

Central Mechanism

In all the functions presented in Section
1.5, it is desirable that there be a minimum
number of trusted mechanisms involved
[PoPE74b]. This desire occurs because the
more mechanism, the greater the opportu-
nity for error, either by accident or by in-
tention {perhaps by the developers or main-
tainers). One wishes to minimize the in-
volvement of a central mechanism for anal-
ogous reasons. This fear of large complex
and central mechanisms is well justified,
given the experience of failure of large cen-
tral operating systems and data manage-
ment systems to provide a reasonable level
of protection against penetration [POPE 74a,
CARL75]. Kernel-based approaches to soft-
ware architectures have been developed to
address this problem; they have as their
goal minimization of the size and complex-
ity of trusted central mechanisms. For more
information about such designs, see
McCA79, POPE79, DOWN79.

Some people are also distrustful that a
centralized governmental communication
facility, or even a large common carrier, can
ensure privacy and other related character-
istics. These general criteria are quite im-
portant to the safety and credibility of
whatever system is eventually adopted.
They also constrain the set of approaches
that may be employed.

1.7 Limitations of Encryption

While encryption can contribute in useful
ways to the protection of information in
computing systems, there are a number of
practical limitations to the class of appli-
cations for which it is viable. Several of
these limitations are discussed below.

1.7.1 Processtng m Cleartext

Most of the operations that one wishes to
perform on data, from simple arithmetic
operations to the complex procedure of con-
structing indexes to databases, require that
the data be supplied in cleartext. Therefore,
the internal controls of the operating sys-
tem, and to some extent the applications
software, must preserve protection controls
while the cleartext data are present. While
some have proposed that it might be pos-
sible to maintain the encrypted data in
main memory and have them decrypted
only upon loading into CPU registers (and
subsequently reencrypted before storage
into memory), there are serious questions
as to the feasibility of this approach
[GAIN77]. The key management facility re-
quired is nontrivial, and the difficulties in-
herent in providing convenient controlled
sharing seem forbidding. Another sugges-
tion sometimes made is to use an encoding
algorithm which is homomorphic with re-
spect to the desired operations [RIVE78].
Then the operation could be performed on
the encrypted values, and the result can be
decrypted as before. Unfortunately, known
encoding schemes with the necessary prop-
erties are not strong algorithms, nor is it
generally believed that such methods can
be constructed.

Therefore, since data must be processed
in cleartext, other means are necessary to
protect data from being compromised by
applications software while the data are
under control of the operating system, and
the remarks in the previous section con-
cerning minimization of these additional
means are very important to keep in mind.

1.7 2 Revocat ion

Keys are similar to simple forms of capa-
bihties, which have been proposed for op-
erating systems [DENN66, FABR74]. They
act as tickets and serve as conclusive evi-

Computing Surveys, Vol 11, No. 4, December 1979

338 • G. J. Popek and C. S. Kl ine

dence that the holder may access the cor-
responding data. Holders may pass keys,
just as capabilities may be passed. Methods
for selective revocation of access are just as
complex as those known for capability sys-
tems [FABR74]. The only known method is
to decrypt the data and reencrypt with a
different key. This action invalidates all the
old keys and is obviously not very selective.
Hence new keys must be redistributed to
all those for whom access is still permitted.

1.7.3 Protecbon Against Modlhcatton

Encryption by itself provides no protection
against inadvertent or intentional modifi-
cation of the data. However, it can provide
the means of detecting that modification by
including as part of the encrypted data a
number of check bits. When decryption is
performed, if those bits do not match the
expected values, then the data are known
to be invalid.

Detection of modification, however, is
often not enough protection. In large data-
bases, for example, it is not uncommon for
very long periods to elapse before any par-
ticular data item is referenced. It is only at
this point that a modification would be
detected. Error correcting codes could be
applied to the data after encryption in order
to provide redundancy. However, these will
not be helpful if a malicious user has suc-
ceeded in modifying stored data and has
destroyed the adjacent data containing the
redundancy. Therefore, very high quality
recovery software would be necessary to
restore the data from (possibly very old)
archival records.

1 7 4 Key Storage and Management

Every data item that is to be protected
independently of other data items requires
encryption by its own key. This key must
be stored as long as it is desired to be able
to access the data. Thus, to be able to
protect a large number of long-lived data
items separately, the key storage and man-
agement problem becomes formidable. The
collection of keys immediately becomes so
large that safe system storage is essential.
After all, it is not practical to require a user
to supply the key when needed, and it is

not even practical to embed the keys in
applications software, since that would
mean the applications software would re-
quire very high quality protection.

The problem of key storage is also pres-
ent in the handling of removable media.
Since an entire volume (tape or disk pack)
can be encrypted with the same key (or
small set of keys}, the size of the problem
is reduced. If archival media are encrypted,
then the keys must be kept for a long period
in a highly reliable way. One solution to
this problem would be to store the keys on
the units to which they correspond, perhaps
even in several different places to avoid
local errors on the medium. The keys would
have to be protected, of course; a simple
way would be to encrypt them with yet a
different "master" key. The protection of
this master key is absolutely essential to
the system's security.

In addition, it is valuable for the access
control decision to be dependent on the
value of the data being protected, or even
on the value of other, related data; salary
fields are perhaps the most quoted example.
In this case, the software involved, be it
applications or system procedures, must
maintain its own key table storage in order
to examine the cleartext form of the data
successfully. That storage, as well as the
routines which directly access it, requires a
high-quality protection mechanism beyond
encryption.

Since a separate, reliable protection
mechanism seems required for the heart of
a multiuser system, it is not clear that the
use of encryption (which requires the im-
plementation of a second mechanism) is
advisable for protection within the system.
The system's protection mechanism can
usually be straightforwardly extended to
provide all necessary protection facilities.

2. SYSTEM AUTHENTICATION

Authentication refers to the identification
of one member of a communication to the
other in a reliable, unforgeable way. In early
interactive computer systems, the primary
issue was to provide a method by which the
operating system could determine the iden-
tity of the user who was attempting to log

Computing Surveys, Vol 11, No. 4, December 1979

Encryption and Secure Computer Networks • 339

in. Typically, user identification involves
supplying confidential parameters, such as
passwords or answers to personal questions.
There was rarely any concern over the ma-
chine identifying itself to the user.

In networks, however, mutual authenti-
cation is of interest: Each "end" of the
channel may wish to assure itself of the
identity of the other end. Quick inspection
of the class of methods used in centralized
systems shows that a straightforward ex-
tension is unacceptable. Suppose each par-
ticipant must send a secret password to the
other. Then the first member that sends
the password is exposed. The other member
may be an imposter, who has now received
the necessary information in order to pose
to other nodes as the first member. Exten-
sion to a series of exchanges of secret infor-
mation will not solve the problem; it only
forces the imposter into a multistep proce-
dure.

There are a number of straightforward
encryption-based authentication protocols
which provide reliable mutual authentica-
tion without exposing either participant.
The methods are robust in the face of all
the network security threats mentioned
earlier. The general principle involves the
encryption of a rapidly changing unique
value using a prearranged key and has been
independently rediscovered by a number of
people [FEIs75, KENT76, POPE78]. An ob-
vious application for such protocols is to
establish a mutually agreed upon sequence
number or block chaining initial value that
can be used to authenticate communica-
tions over a secure channel whose keys
have been used before. The sequence num-
ber or value should either be one that has
not been used before, or it should be se-
lected at random, in order to protect against
undetected replay of previous messages.

Here is an outline of a simple, general
authentication sequence between nodes A
and B. At the end of the sequence A has
reliably identified itself to B. A similar se-
quence is needed for B to identify itself to
A. Typically, one expects to interleave the
messages of both authentication sequences.

Assume that in the authentication se-
quence A uses a secret key associated with
itself. The reliability of the authentication

depends only on the security of that key.
Assume that B holds A's matching key (as
well as the matching keys for all other
parties to which B might talk).

1) B sends A, in cleartext, a random,
unique data item, in this case the current
time of day as known to B.

2) A encrypts the received time of day us-
ing its authentication key and sends the
resulting ciphertext to B.

3) B decrypts A's authentication message,
using A's matched key, and compares it
with the time of day which B had sent.
If they match, then B is satisfied that A
was the originator of the message.

This simple protocol exposes neither A
nor B if the encryption algorithm is strong,
since it should not be possible for a crypt-
analyst to be able to deduce the key from
the encrypted time of day. This is true even
if the cryptanalyst knows the corresponding
cleartext time of day. Further, since the
authentication messages change rapidly, re-
cording an old message and retransmitting
is not effective.

To use such an authentication protocol
to establish a sequence number or initial
value for block chaining, A includes that
information, before encryption, in its step
2 message to B.

3. KEY MANAGEMENT

For several participants in a network con-
versation to communicate securely, it is
necessary for them to obtain matching keys
to encrypt and decrypt the transmitted
data. It should be noted that a matched
pair of keys forms a logical channel which
is independent of all other such logical
channels but as real as any channel created
by a network's transmission protocols. Pos-
session of the key admits one to the chan-
nel. Without the key the channel is una-
vailable. Since the common carrier function
of the network is to provide many commu-
nication channels, how the keys which cre-
ate the corresponding necessary private
channels are supplied is obviously an im-
portant matter. The following sections de-
scribe various key distribution methods for
both conventional- and public-key encryp-
tion systems.

Computing Surveys, Vol. 11, No. 4, December 1979

340 • G. J. Popek and C. S. Kline

3.1 Conventional-Key Distribution

As there are, by assumption, no suitable
transmission media for the keys other than
the physical network, it is necessary to de-
vise means to distribute keys over the same
physical channels by which actual data are
transmitted. The safety of the logical chan-
nels over which the keys are to pass is
crucial. Unfortunately, the only available
method by which any data, including the
keys, can be transmitted in a secure manner
is through the very encryption whose ini-
tialization is at issue. This seeming circu-
larity is actually easily broken through lim-
ited prior distribution of a small number of
keys by secure means. The usual approach
involves designating a host machine or a
set of machines [HWLL78] on the network
to play the role of key distribution center
(KDC), at least for the desired connection.
It is assumed that a pair of matched keys
has been arranged previously between the
KDC and each of the potential participants,
say A~, A2 Am. One of the participants,
A,, sends a short message to the KDC ask-
ing that matched key pairs be distributed
to all the A's, including A,. If the KDC's
protection policy permits the connection,
secure messages containing the key and
other status information will be sent to each
A over the prearranged channels. Data can
then be sent over the newly established
logical channel. The prearranged key dis-
tribution channels carry a low quantity of
traffic, and thus, recalling the discussion in
Section 1, the keys can be changed rela-
tively infrequently by other means.

This general approach has many varia-
tions to support properties such as a dis-
tributed protection policy, integrity in the
face of crashes, and the like. Some of these
are discussed below.

3.1.1 Centrahzed Key Control

Perhaps the simplest form of the key dis-
tribution method employs a single KDC for
the entire network. Therefore n prear-
ranged matched key pairs are required for
a network with n distinguishable entities.
An obvious disadvantage of this unadorned
approach is its effect on network reliability.
If communication with the KDC becomes

impossible, either because the node on
which the KDC is located is down or be-
cause the network itself breaks, then the
establishment of any further secure com-
munication channels is impossible. If the
overall system has been constructed to pre-
vent any interuser communication in other
than a secure manner, then the entire net-
work eventually stops. This design for dis-
tributed systems is, in general, unaccepta-
ble except when the underlying communi-
cations topology is a star and the KDC is
located at the center. Note, however, that
this drawback can be fairly easily remedied
by the availability of redundant KDCs in
case of failure of the main facility. 2 The
redundant facility can be located at any site
which supports a secure operating system
and provides appropriate key generation
facilities. Centralized key control can quite
easily become a performance bottleneck,
however.

Needham and Schroeder present an ex-
ample of how such a KDC would operate
[NEED78]. Assume that A and B each have
a secret key, Ks and Kb, known only to
themselves and the KDC. To establish a
connection, A sends a request to the KDC
requesting a connection to B and includes
an identifier (a random number perhaps).
The KDC will send back to A: i) a new key
Kc to use in the connection, ii) the identifier,
iii) a copy of the request, and iv) some
information which A can send to B to es-
tablish the connection and prove A's iden-
tity. That message from the KDC to A is
encrypted with A's secret key Ka. Thus, A
is the only one who can receive it, and A
knows that it is genuine. In addition, A can
check the identifier to verify that it is not
a replay of some previous request, and can
verify that his original cleartext message
was not altered before reception by the
KDC.

2 The redundant KDCs form a simple distributed,
replicated database, where the replicated reformation
includes private keys and permission controls. How-
ever, the database is rarely updated, and when up-
dated, there are no serious requirements for synchro-
mzatlon among the updates It Is not necessary for
copies of a key at all sites to be updated simultane-
ously, for example Therefore, little additional com-
plexity from the distributed character of the key man-
agement function would be expected.

Computing Surveys, Vol 11, No 4, December 1979

Encryption and Secure Computer Ne tworks • 341

MESSAGE 1 R E Q ~

KEY DISTRIBUTION J / ~ K v

MESSAGE, /

STEPS

FmURE I. Key distribution and conversatlon establishment: conventlonal key algorithms. Note: [t J] denotes

the cryptogram obtained from the cleartext t, encrypted wlth keyj.

Once A has received this message, A
sends to B the data from the KDC intended
for B. Those data include the connection
key Kc, as well as A's identity, all encrypted
by B's secret key. Thus B now knows the
new key, that A is the other party, and that
all this came from the KDC. However B
does not know that the message he just
received is not a replay of some previous
message. Thus B must send an identifier to
A encrypted by the connection key, upon
which A can perform some function and
return the result to B. Now B knows that
A is current, i.e., there has not been a replay
of previous messages. Figure 1 illustrates
the messages involved. Of the five mes-
sages, two can be avoided, in general, by
storing frequently used keys at the local
sites, a technique known as caching.

3 1.2 Fully Distnbuted Key Control

Here it is possible for every "intelligent"
node in the network to serve as a KDC for
certain connections. (We assume some
nodes are "dumb," such as terminals or
possibly personal computers.) If the in-
tended participants A~, A2 Am reside
at nodes N1, N2 Nm, then only the
KDCs at each of those nodes need be in-

volved in the protection decision. One node
chooses the key, and sends messages to
each of the other KDCs. Each KDC can
then decide whether the attempted channel
is to be permitted and reply to the originat-
ing KDC. At that point the keys would be
distributed to the participants. This ap-
proach has the obvious advantage that the
only nodes which must be properly func-
tioning are those which support the in-
tended participants. Each of the KDCs
must be able to communicate with all other
KDCs in a secure manner, implying that
n*(n - 1)/2 matched key pairs must have
been arranged. Of course, each node needs
to store only n - 1 of them. For such a
method to be successful, it is also necessary
for each KDC to communicate with the
participants at its own node in a secure
fashion. This approach permits each host
to enforce its own security policy if user
software is forced by the local system ar-
chitecture to use the network only through
encrypted channels. This arrangement has
appeal in decentralized organizations.

3.1 3 H~erarch~cal Key Control

This method distributes the key control
function among "local," "regional," and

Computing Surveys, Vol. II, No 4, December 1979

342 * G. J. Popek and C. S. Kline

"global" controllers. A local controller is
able to communicate securely with entities
in its immediate logical locale, that is, with
those nodes for which matched key pairs
have been arranged. If all the participants
in a channel are within the same region,
then the connection procedure is the same
as for centralized control. If the participants
belong to different regions, then it is nec-
essary for the local controller of the origi-
nating participant to send a secure message
to its regional controller, using a prear-
ranged channel. The regional controller for-
wards the message to the appropriate local
controller, who can communicate with the
desired participant. Any of the three levels
of KDCs can select the keys. The details of
the protocol can vary at this point, depend-
ing on the exact manner in which the
matched keys are distributed. This design
approach obviously generalizes to multiple
levels in the case of very large networks. It
is analogous to national telephone ex-
changes, where the exchanges play a role
very similar to the KDCs.

One of the desirable properties of this
design is the limit it places on the combi-
natorics of key control. Each local KDC
only has to prearrange channels for the
potential participants in its area. Regional
controllers only have to be able to com-
municate securely with local controllers.
While the combinatorics of key control may
not appear difficult enough to warrant this
kind of solution, in the subsequent section
on levels of integration we point out circum-
stances in which the problem may be very
serious.

The design also has a property not pres-
ent in either of the preceding key control
architectures: local consequences of local
failures. If any component of the distrib-
uted key control facility should fail or be
subverted, then only users local to the failed
component are affected. Since the regional
and global controllers are of considerable
importance to the architecture, it would be
advisable to replicate them so that the
crash of a single node will not segment the
network.

All of these key control methods permit
easy extension to the interconnection of
different networks, with differing encryp-
tion disciplines. The usual way to connect

Computing Surveys, Vol 11, No. 4, December 1979

different networks, which often employ dif-
ferent transmission protocols, is to have a
single host called a gateway common to
both networks [CERF78, BOGGS0]. Inter-
network data are sent to the gateway,
which forwards them toward the final des-
tination. The gateway is responsible for any
format conversions, as well as for the sup-
port of both systems' protocols and naming
methods. If the networks' transmissions are
encrypted in a manner similar to that de-
scribed here, then the gateway might be
responsible for decrypting the message and
reencrypting it for retransmission in the
next network. This step is necessary if the
encryption algorithms differ, or if there are
significant differences in protocol. If the
facilities are compatible, then the gateway
can merely serve as a regional key control-
ler for both networks, or even be totally
uninvolved.

There are strong similarities among these
various methods of key distribution, and
differences can be reduced further by de-
signing hybrids to gain some of the advan-
tages of each. Centralized control is a de-
generate case of hierarchical control. Fully
distributed control can be viewed as a var-
iant of hierarchical control. Each host's
KDC acts as a local key controller for that
host's entities and communicates with
other local key controllers to establish con-
nections. In that case, of course, the com-
munication is direct, without a regional
controller required.

3.2 Public-Key-Based Distribution
Algorithms

The public-key algorithms discussed earlier
have been suggested as candidates for key
distribution methods that might be simpler
than those described in the preceding sec-
tions. Recall that K', the key used to deci-
pher the encoded message, cannot be de-
rived from K, the key used for encryption,
or from matched encrypted and cleartext.
Therefore, each user A, after obtaining a
matched key pair (K, K'), can publicize his
key K. Another user B, wishing to send a
message to A, can employ the publicly
available key K. To reply, A employs B's
public key. At first glance this mechanism

Encryption and Secure Computer Networks • 343

seems to provide a simplified way to estab-
lish secure communication channels. No
secure dialogue with a key controller to
initiate a channel appears necessary.

The idea is that an automated "telephone
book" of public keys could be made avail-
able. Whenever user A wishes to commu-
nicate with user B, A merely looks up B's
public key in the book, encrypts the mes-
sage with that key, and sends it to B
[DIFF76b]. There is no key distribution
problem here at all. Further, no central
authority is required to set up the channel
between A and B.

This idea, however, is incorrect: Some
form of central authority is needed, and the
protocol involved is no simpler nor any
more efficient than one based on conven-
tional algorithms [NEED78]. First, the
safety of the public-key scheme depends
critically on the correct public key being
selected by the sender. If the key listed with
a number in the "telephone book" is the
wrong one, then the protection supplied by
public-key encryption has been lost. Fur-
thermore, maintenance of the (by necessity,
machine-supported) book is nontrivial be-
cause keys will change, either because of
the desire to replace a key which has been
used for high amounts of data transmission
or because a key has been compromised
through a variety of ways. There must be
some source of carefully maintained
"books" with the responsibility of carefully
authenticating any changes and correctly
sending out public keys (or entire copies of
the book} upon request.

A modified version of Needham and
Schroeder's proposal follows. Assume that
A and B each have a public key known to
the authority and a private key known only
to themselves. Additionally, assume the
authority has a public key known to all
and a private key known only to the
authority.

A begins by sending to the authority a
time-stamped message requesting commu-
nication with B. The authority sends A the
public key of B, a copy of the original
request, and the time stamp, encrypted us-
ing the private key of the authority. A can
decrypt this message using the public key
of the authority and is thus also sure of the
source of the message. The time stamp

guarantees that this is not an old message
from the authority containing a key other
than B's current public key, and the copy
of the request permits A to verify that his
original cleartext message was not altered. 3

A can now send messages to B because
he knows B's public key. However, to iden-
tify himself, as well as to prevent a replay
of previous transmissions, A now sends his
name and an identifier to B, encrypted in
B's public key. B now performs the first
two steps above with the authority to re-
trieve A's public key. Then B sends to A
the identifier just received, and an addi-
tional identifier, both encrypted with A's
public key. A can decrypt that message and
is now sure that he is talking to the current
B. A must now send back the new identifier
to B so that B can be sure he is talking to
a current A. These messages are displayed
in Figure 2. The above protocol contains
seven messages, but four of them, those
which retrieve the public keys, can be
largely dispensed with by local caching
of public keys. Thus, as in the conventional-
key distribution example, we again find
three messages are needed.

Some public-key advocates have sug-
gested ways other than caching in order to
avoid requesting the public key from the
central authority for each communication.
One such proposal is the use of certificates
[KoHN 78]. A user can request that his pub-
lic key be sent to him as a certificate, which
is a user/public-key pair, together with
some certifying information. For example,
the user/public-key pair may be stored as
a signed message 4 from the central author-
ity. When the user wishes to communicate
with other users, he sends the certificate to
them. They each can check the validity of
the certificate, using the certifying infor-
mation, and then retrieve the public key.
Thus the central authority is needed only
once, when the initial certificate is re-
quested.

Both certificates and caching have sev-
eral problems. First, the mechanism used
to store the cache of keys must be correct.

~These mlha l s teps are essential ly an adapta t ion of
the au then tma t lon protocol given in Sect ion 2.
4 See Sect ion 9 for a discussion of digital s ignatures.

Computing Surveys, Vol n , No. 4, December 1979

344 • G. J. Popek and C. S. Kline

MESSAGE 1. R ~ U T H O R I T Y ~ G E 4?EQUEST, +TIME,

KEY DISTRIBUTION J J ~-MESSAGE2 [Ph+REQUEST+TIME] ~
STEPS

AUTHENTICATION
STEPS

FIGURE 2. Key dis t r ibut ion and conver sahon es tab l i shment : pubhc-key algori thms. Note P, is public key for
~, S~ Is secret key for ~.

Second, the user of the certificate must
decode it and check it (verify the signature)
each time before using it, and he must also
have a secure and correct way of storing
the key. Perhaps most important, as keys
change, the cache and old certificates be-
come obsolete. This is essentially the ca-
pability revocation problem revisited
[REDE74]. Either the keys must be verified
(or re-requested) periodically, or a global
search must be made whenever invalidating
a key. Notice that even with the cache or
certificates, an internal authentication
mechanism is still required.

Public-key systems also have the prob-
lem that it is more difficult to provide pro-
tection policy checks. In particular, conven-
tional encryption mechanisms easily allow
protection policy issues to be merged with
key distribution. If two users may not com-
municate, then the key controller can refuse
to distribute keys. ~ However, public-key
systems imply the knowledge of the public
keys. Methods to add protection checks to
public-key systems add an additional layer
of mechanism.

This approach blocks c o m m u m c a t l o n if the hos t
operat ing sy s t ems are cons t ruc ted m such a way as to
prohibi t cleartext c o m m u m c a t l o n over the network

Computing Surveys, Vol ll, No 4, December 1979

3.3. Comparison of Public- and

Conventional-Key Distribution for Private

Communication

It should be clear that both of the above
protocols establish a secure channel, and
that both require the same amount of over-
head to establish a connection (three mes-
sages). Even if that amount had been dif-
ferent by a message or two, the overhead is
still small compared to the number of mes-
sages for which a typical connection will be
used.

The above protocols can be modified to
handle multiple authorities; such modifi-
cations have also been performed by Need-
ham and Schroeder [NEED78]. Again, the
number of messages can be reduced to three
by caching.

It should also be noted that the safety of
these methods depends only on the safety
of the secret keys in the conventional
method or the private keys in the public-
key method. Thus an equivalent amount of
secure storage is required.

One might suspect, however, that the
software required to implement a public-
key authority would be simpler than that
for a KDC, and therefore it would be easier
to certify its correct operation. If this view
were correct, it would make public-key-
based encryption potentially superior to

Encryption and Secure Computer Networks

conventional algorithms, despite the equiv-
alent protocol requirements. It is true that
the contents of the authority need not be
protected against unauthorized reference,
since the public keys are to be available to
all, while the keys used in the authentica-
tion protocol between the KDC and the
user must be protected against reference.
However, the standards of software relia-
bility which need to be imposed on the
authority for the sake of correctness are not
substantially different from those required
for the development of a secure KDC. More
convincing, all of the KDC keys could be
stored in encrypted form, using a KDC
master key, and only decrypted when
needed. Then the security of the KDC is
reduced to protection of the KDC's master
key and of the individual keys when in use.
This situation is equivalent to the public-
key repository case, since there the private
key of the repository must be safely stored
and protected during use.

It has also been pointed out that a con-
ventional KDC, since it issued the conver-
sation key, can listen in and in fact generate
what appear to be valid messages. Such
action cannot be done by the public-key
repository. This distinction is minor how-
ever. Given that both systems require a
trusted agent, it is a simple matter to add
a few lines of certified correct code to the
conventional-key agent (the KDC) that de-
stroys conversation keys immediately after
distribution. Thus the system characteris-
tics of both conventional- and public-key
algorithms, as used to support private com-
munication, are more similar than initially
expected.

4. LEVELS OF INTEGRATION

There are many possible choices of end-
points for the encryption channel in a com-
puter network, each with its own trade-offs.
In a packet-switched network, one could
encrypt each line between two switches
separately from all other lines. This is a
low-level choice and is often called link
encryption. Instead, the endpoints of the
encryption channels could be chosen at a
higher architectural level--at the host ma-
chines which are connected to the network.
Thus the encryption system would support
host-host channels, and a message would

• 345

be encrypted only once as it was sent
through the network (or networks) rather
than being decrypted and reencrypted a
number of times, as implied by the low-
level choice. In fact, one could choose an
even higher architectural level: Endpoints
could be individual processes within the
operating systems of the machines that are
attached to the network. If the user were
employing an intelligent terminal, then the
terminal would be a candidate for an end-
point. This viewpoint envisions a single en-
cryption channel from the user directly to
the program with which he is interacting,
even though that program might be run-
ning on a site other than the one to which
the terminal is connected. This high-level
choice of endpoints is sometimes called
end- to-end encryption.

The choice of architectural level in which
the encryption is to be integrated has many
ramifications. One of the most important is
the combinatorics of key control versus the
amount of trusted software.

In general, as one considers higher and
higher system levels, the number of identi-
fiable and separately protected entities in
the system tends to increase, sometimes
dramatically. For example, while there are
less than a hundred hosts attached to the
Arpanet [ROBE73], at a higher level there
often are over a thousand processes con-
currently operating, each one separately
protected and controlled. The number of
terminals is of course also high. This nu-
merical increase means that the number of
previously arranged secure channels--that
is, the number of separately distributed
matched key pairs--is correspondingly
larger. Also, the rate at which keys must be
generated and distributed can be dramati-
cally increased.

In return for the additional cost and com-
plexity which result from higher level
choices, there can be significant reduction
in the amount of software whose correct
functioning has to be ensured. This issue is
very important and must be carefully con-
sidered. It arises in the following way. When
the lowest level (i.e., link encryption) is
chosen, the data being communicated exist
in cleartext form as they are passed by the
switch from one encrypted link to the next.
Therefore the software in the switch must
be trusted not to intermix packets of differ-

Computmg Surveys, Vol 11, No 4, December 1979

346 • G. J. Popek and C. S. Khne

ent channels. If a higher level is selected,
then protection errors in the switches are
of little consequence. If the higher level
chosen is host to host, however, operating
system failures are still serious, because the
data exist as cleartext while they are system
resident.

In principle then, the highest level inte-
gration of encryption is most secure. How-
ever, it is still the case that the data must
be maintained in cleartext form in the ma-
chine upon which processing is done. The
more classical methods of protection within
individual machines are still necessary, and
the value of very high level end-end en-
cryption is thereby somewhat lessened. A
rather appealing choice of level that inte-
grates effectively with kernel-structured
operating system architectures is outlined
in the case study in Section 7.

Another operational drawback to high-
level encryption should be pointed out.
Once the data are encrypted, it is difficult
to perform meaningful operations on them.
Many front end systems provide such low-
level functions as packing, character era-
sures, and transmission on end-of-line or
control-character detect. If the data are
encrypted when they reach the front end,
then these functions cannot be performed.
Any channel processing must he done
above the level at which encryption takes
place, despite the fact that performance
and considerations such as the above some-
times imply a lower level.

5. ENCRYPTION PROTOCOLS

Network communication protocols concern
the discipline imposed on messages sent
throughout the network to control virtually
all aspects of data traffic, both in amount
and direction. Choice of protocol has dra-
matic impacts on the flexibility and band-
width provided by the network. Since en-
cryption facilities provide a potentially
large set of logical channels, the encryption
protocols by which the operation of these
channels is managed also has significant
impact on system architecture and per-
formance.

There are several important questions
which any encryption protocol must an-
swer:

1) How is the initial cleartext/ciphertext/
cleartext channel from sender to re-
ceiver and back established?

2) How are cleartext addresses passed by
the sender around the encryption facili-
ties to the network without providing a
path by which cleartext data can be
inadvertently or intentionally leaked by
the same means?

3) What facilities are provided for error
recovery and resynchronization of the
protocol?

4) How are channels closed?
5) How do the encryption protocols inter-

act with the rest of the network proto-
cols?

6) How much software is needed to imple-
ment the encryption protocols? Does the
security of the network depend on this
software?

One wishes a protocol which permits
channels to be dynamically opened and
closed, allows the traffic flow rate to be
controlled (by the receiver presumably),
and provides reasonable error handling, all
with a minimum of mechanism upon which
the security of the network depends. The
more software involved, the more one must
be concerned about the safety of the overall
network. Performance resulting from use of
the protocol must compare favorably with
the attainable performance of the network
using other protocols not including encryp-
tion. One would prefer a general protocol
which could also be added to the existing
networks, disturbing their existing trans-
mission mechanisms as little as possible.
The appropriate level of integration of en-
cryption or the method of key distribution
must be considered as well.

Fortunately, the encryption channel can
be managed independently of the conven-
tional communication channel, which is re-
sponsible for communication initiation and
closing, flow control, error handling, and
the like. As a result, many protocol ques-
tions can be ignored by the encryption fa-
cilities and can be handled by conventional
means.

In Section 7 we outline a complete pro-
tocol in order to illustrate the ways in which
these considerations interact and the inde-
pendence that exists. The case considered

Computing Surveys, VoL 11, No 4, December 1979

Encryption and Secure Computer Networks

employs distributed key management and
an end-to-end architecture, all added to an
existing network.

6. CONFINEMENT

To confine a program, process, or user
means to render it unable to communicate
other than through the explicitly controlled
paths. Often improper communications are
possible through subtle, sometimes timing-
dependent, channels. As an example, two
processes might bypass the controlled
channels by affecting each other's data
throughput. Although many such improper
channels are inherently error prone, the
users may employ error detection and cor-
rection protocols to overcome that prob-
lem.

Unfortunately, the confinement problem
in computer networks is particularly diffi-
cult to solve because most network designs
require some information to be transmitted
in cleartext form. This cleartext informa-
tion, although limited, can be used for the
passage of unauthorized information. In
particular, the function of routing a mes-
sage from computer to computer toward its
final destination requires that the headers
which contain network addresses and con-
trol information be in cleartext form, at
least inside the switching centers. A mali-
cious user, cooperating with a penetrator,
can send data by the ordering of messages
between two communication channels.
Even though the data of the communica-
tions are encrypted, the headers often are
transmitted in cleartext form, unless link
encryption is also used to encrypt the entire
packet, including header. In any case, the
routing task, often handled in large net-
works by a set of dedicated interconnected
machines which form a subnet, requires
host addresses in the clear within the
switching machines. Thus a penetrator who
can capture parts of the subnetwork can
receive information. The only solutions to
this problem appear to be certification of
the secure nature of some parts of the sub-
network and host hardware/software.
Work is in progress at the University of
Texas on the application of program veri-
fication methods to this problem [GooD77].

Certain confinement problems remain

• 347

even if certification is applied as suggested.
For example, the protocol-implementing
software in a given system usually manip-
ulates communications for several users si-
multaneously. Either this software must be
trusted, or data must be encrypted before
it reaches this software. Even in this latter
case, certain information may be passed
between the user and the network software,
and thus, potentially, to an unauthorized
user. As an example, ff a queue is used to
hold information waiting to be sent from
the user to the network, the user can receive
information by noting the amount drained
from this queue by the network software.
In almost any reasonable implementation
on a system with finite resources, the user
will at least be able to sense the time of
data removal, if not the amount.

How well current program verification
and certification methods apply here is
open to question, since these confinement
channels are quite likely to exist even in a
correct implementation. That is, any feasi-
ble design seems to include such channels.

Given the difficulty of confinement en-
forcement, it is fortunate that most appli-
cations do not require it.

7. NETWORK ENCRYPTION PROTOCOL
CASE STUDY: PRIVATE COMMUNICATION
AT PROCESS-PROCESS LEVEL

It is useful to review a case study of how
encryption was integrated into a real sys-
tem in order to recognize the importance of
the various issues already presented. The
example here was designed and imple-
mented for the Arpanet, and is described in
more detail by Popek and Kline [POPE78];
here we only outline the solution in general
terms. The goal is to provide secure com-
munication that does not involve applica-
tion software in the security facilities. We
also wish to minimize the amount of trusted
system software.

The protocol provides process-to-process
channels and guarantees that it is not pos-
sible for application software running
within the process to cause cleartext to be
transmitted onto the network. Basic oper-
ation of the protocol is suggested in Figure
3. It is assumed, in keeping with the discus-
sion in Section 1.6, that the system software

Computing Surveys, VoL 11, No. 4, December 1979

348 • G. J. Popek and C. S. Kline

U 1 U 2 U n NM

"AROmA"El \ /

NM" % % u~

' ~ ENCRYPTION
UNIT

FIGURE 3.

~ PROCESSES

I / \ / ISOFTWARE
F ~ L ~ _ ~ 7 ~ KERNEL

'N,TWOR, NE"VOR, /
INTERFACE INTERFACE ~

ENCRYPTION /
UNIT

Data flow m process-to-process encrypted channels.

base at each node is a suitably small, secure
operating system kernel, which operates
correctly.

It is also expected that the amount of
software involved in management of the
network from the operating system's point
of view is substantial; therefore one does
not wish to trust its correct operation. 6 Re-
sponsibilities of that software include estab-
fishing communications channels, support-
ing retransmission when errors are de-
tected, controlling data flow rates, multi-
plexing multiple logical channels on the
(usually) single physical network connec-
tion, and assisting or making routing deci-
sions. We call the modules which provide
these functions the network manager.

Let us assume for the moment that the
keys have already been distributed and
logical channels established so far as
the network managers are concerned. The
operating system nucleus in each case
has been augmented with new calls:
Encrypt(channel name, data) and De.
crypt(channel name, data destination).
Whenever a process wishes to send an en-
crypted block of data, it issues the Encrypt
call. The nucleus takes the data, causes
them to be encrypted, and informs the net-
work manager, which can read the block
into i ts workspace. If we assume that the
network manager knows what destination
site is intended (which it must learn as part
of estaljlishing the logical channel), it then
can place a cleartext header on the en-
crypted block and send it out onto the
network. The cleartext header is essential

6 As an example, in the Arpane t software for the U m x
operat ing sys tem, the network software is comparable
m size to the operat ing sy s t em itself

Computing Surveys, Vol 11, No 4, December 1979

so that switching computers which typi-
cally make up a network can route the
block appropriatelS

When the block arrives at the destination
host computer, the network manager there
reads it in and strips off the header. It then
tells the kernel the process for which the
block is intended. The kernel informs the
process, which can issue a Decrypt call,
causing the data to be decrypted with the
key previously arranged for that process. If
this block really is intended for this process
(i.e., encrypted with the matching key),
then the data are successfully received.
Otherwise, decryption with the wrong key
yields nonsense. The encrypt and decrypt
functions manage sequence numbers in a
manner invisible to the user, as discussed
in Section 1.3.

Clearly this whole mechanism depends
on suitable distribution of keys, together
with informing the network managers in a
coordinated way of the appropriate end-
points of the channel. It is worth noting at
this stage that matched keys form a well-
defined communication channel, and that
in the structure just outlined, it is not pos-
sible for processes to communicate to the
network or the network manager directly;
only the encrypt and decrypt functions can
be used for this purpose. It is for this latter
reason that application software cannot
communicate in cleartext over the network,
an advantage if that code is not trusted (the
usual assumption in military examples).

7 Network encrypt ion facilities mus t , m general, pro-
vide some way to supply the header of a message in
cleartext, even though the body is encrypted. Other-
wise every node on possibly mult iple ne tworks h a s to
be able to examine every message, this is not practical.

Encryption and Secure Computer Networks • 349

7.1 Initial Connect ion

To establish the secure channel, several
steps are necessary. The local network
manager must be told with whom the local
process wishes to communicate. This would
be done by some highly constrained means.
The network manager must communicate
with the foreign network manager and es-
tablish a name for this channel, as well as
other state information such as flow control
parameters. The network manager software
involved need not be trusted. Once these
steps are done, encryption keys need to be
set up in a safe way.

We first outline how this step would be
carried out employing conventional encryp-
tion with fully distributed key manage-
ment; then we comment on how it would
change if public-key systems were used.

Assume that there is a kernel-maintained
key table which has entries of the form:

foreign host name,
channel name,
sequence number,
local process name,
key.

There are also two additional kernel calls.
Open(foreign process name, local process
name, channel name, policy-data) makes
the appropriate entry in the key table (if
one is not already there for the given chan-
nel}, setting the sequence number to an
initial value and sending a message to the
foreign kernel of the form (local process
name, channel name, policy-data, key). 8

If there already is an entry in the local
key table, it should have been caused by
the other host's kernel. In that case Open
checks to make sure that the sequence
number has been initialized and does not
generate a key--rather it sends out the
same message, less the key. Close(channel
name) deletes the indicated entry in the
local key table, and sends a message to the
foreign kernel to do the same.

The policy-data supplied in the Open
call, such as classification/clearance infor-

The reader will note that the kernel-to-kernel mes-
sage generated by the Open call must be sent securely
and therefore must employ a previously arranged key
The network manager must also be involved, since
only it contains the software needed to manage the
network

mation, will be sent to the other site in-
volved in the channel so that it too will
have the relevant basis for deciding
whether or not to allow this channel to be
established.

Once both sides have issued correspond-
ing Open calls, the process can communi-
cate. The following steps illustrate the over-
all sequence in more detail. The host ma-
chines involved are numbered 1 and 2.
Process A is at host 1 and B is at host 2.
The channel name will be x. The notation
NM @ ~ denotes "network manager at
site i."

1) A informs NM @ 1 "connect using x to
B @ 2." This message can be sent locally
in the clear. If confinement between the
network manager and local processes is
important, other methods can be em-
ployed to limit the bandwidth between
A and NM.

2) NM @ 1 sends control messages to
NM @ 2, including whatever host ma-
chine protocol messages are required. 9

3) NM @ 2 receives an interrupt indicating
normal message arrival, performs an
I/O call to retrieve it, examines the
header, determines that it is the recipi-
ent, and processes the message.

4) NM @ 2 initiates step 2 at site 2, leading
to step 3's being executed at site 1 in
response. This exchange continues until
NM @ 1 and NM @ 2 establish a logical
channel, using x as their internal name
for the channel.

5) NM @ 1 executes Open(B, A, x, policy-
data).

6) In executing the Open, the kernel @ 1
generates or obtains a key, makes an
entry in its key table, and sends a mes-
sage over its secure channel to the kernel
@ 2, which in turn makes a correspond-
ing entry in its table and interrupts
NM @ 2, giving it the triple (B, A, x).

7) NM @ 2 issues the corresponding
Open(A, B, x, policy-data'). This call
interrupts B and eventually causes the
appropriate entry to be made in the
kernel table at host 1. The making of
that entry interrupts NM @ 1 and
A @ I .

The host-host protocol messages would normally be
sent encrypted using the N M - N M key in most imple-
mentations.

Computing Surveys, Vol. 11, No. 4, December 1979

350 • G. J. Popek and C. S. Kline

8) A and B can now use the channel by
issuing successive Encrypt and Decrypt
calls.

There are a number of places in the
mechanisms just described where failure
can occur. If the network software in either
of the hosts fails or decides not to open the
channel, no kernel calls are involved and
standard protocols operate. (If user notifi-
cation is permitted, an additional confine-
ment channel is present.) An Open may fail
because the name x supplied was already in
use, a protection policy check was not suc-
cessful, or the kernel table was full. The
caller is notified. He may try again. In the
case of failure of an Open, it may be nec-
essary for the kernel to execute most of the
actions of Close to avoid race conditions
that can result from other methods of in-
dicating failure to the foreign site.

The encryption mechanism just outlined
contains no error correction facilities. If
messages are lost, or sequence numbers are
out of order or duplicated, the kernel
merely notifies the user and network soft-
ware of the error and renders the channel
unusable? ° This action is taken on all chan-
nels, including the host-host protocol chan-
nels as well as the kernel-kernel channels.
For every case but the last, Close calls must
be issued and a new channel created via
Opens. In the last case, the procedures for
bringing up the network must be used.

This simple-minded view is acceptable in
part because the error rate which the logical
encryption channel sees can be quite low.
That is, the encryption channel is built on
top of lower level facilities supplied by con-
ventional network protocols, some imple-
mented by the NM, which can handle
transmission errors (forcing retransmission
of errant blocks, for example) before they
are visible to the encryption facilities. On
highly error prone channels, additional pro-

~o Recall that these sequence numbers are added to
the cleartext by the kernel Encrypt call before encryp-
t]on. They are removed and checked after decryption
by a Decrypt call issued at the receiving site before
dehvery to the user. Hence, if desired, sequence num-
bers can be handled by the encryption unit itself and
never be seen by kernel software. If such a choice is
made, then the conventional network protocols sup-
ported by the NM will need another set of sequence
numbers for error control.

tocol at the encryption level may still be
necessary. See KENT76 for a discussion of
resynchronization of the sequencing sup-
ported by the encryption channel.

From the protection viewpoint, one can
consider the collection of NMs across the
network as forming a single (distributed)
domain. They may exchange information
freely among themselves. No user process
can send or receive data directly to or from
an NM, except via narrow bandwidth chan-
nels through which control information is
sent to the NM and status and error infor-
mation is returned. These channels can be
limited by adding parameterized calls to
the kernel to pass the minimum amount of
data to the NMs and having the kernel
post, to the extent possible, status reports
directly to the processes involved. The
channel bandwidth cannot be zero, how-
ever.

The protocols in this case study can also
be modified to use public-key algorithms.
The kernel, upon receiving the Open re-
quest, should retrieve the public key of the
recipient. Presumably, the kernel would
employ a protocol with the authority to
retrieve the public key and then utilize the
authentication mechanisms described in
the protocols of Section 2.

More precisely, in step 6 above, when the
kernel receives the Open call, it would re-
trieve the public key, either by looking it
up in a cache or requesting it from the
central authority, or via other methods
such as certificates. Once the key is re-
trieved, the kernel would send a message to
the other kernel over the secure kernel-
kernel channel, identifying the user and
supplying those policy and authentication
parameters required. The other kernel,
upon receipt of that message, would re-
trieve the user's private key (from wherever
local user private keys are stored) and con-
tinue the authentication sequence.

7.2 System Initialization Procedures

The task of initializing the network soft-
ware is composed of two important parts.
First, it is necessary to establish keys for
the secure kernel-kernel channels and the
NM-NM channels. Next, the NM can ini-
tialize itself and its communications with

Computing Surveys, Vol. 11, No 4, December 1979

Encryption and Secure Computer Networks • 351

other NMs. Finally, the kernel can initialize
its communications with other kernels.
This latter problem is essentially one of
mutual authentication of each kernel with
the other member of the pair, and appro-
priate solutions depend on the expected
threats against which protection is desired.

The initialization of the kernel-kernel
channel and the NM-NM channel key
table entries requires that the kernel main-
tain initial keys for this purpose. The kernel
cannot obtain these keys using the above
mechanisms at initialization because they
require the prior existence of the NM-NM
and kernel-kernel channels. Thus this cir-
cularity requires the kernel to maintain at
least two key pairs, n However, such keys
could be kept in read-only memory of the
encryption unit if desired.

The initialization of the NM-NM com-
munications then proceeds as it would if
encryption were not present. Once this
NM-NM initialization is complete, the ker-
nel-kernel connections could be established
by the NM. At this point, the system would
be ready for new connection establishment.
It should be noted that if desired, the ker-
nels could then set up new keys for the
kernel-kernel and NM-NM channels, thus
using the initialization keys for a short time
only. To avoid overhead at initialization
time and to limit the sizes of kernel key
tables, NMs probably should only establish
channels with other NMs when a user
wants to connect to that particular foreign
site, and perhaps the NM-NM channel
should be closed after all user channels are
closed.

This case study should serve to illustrate
many of the issues present in the design of
a suitable network encryption facility.

7.3, Symmetry

The case study portrays a basically sym-
metric protocol suitable for use by intelli-
gent nodes, a fairly general case. However,
in some instances one of the pair lacks

II In a centrahzed key controller vermon, the only keys
needed would be those for the channel between the
key controller's NM and the host 's NM, and for the
channel between the key controller's kernel and the
host 's kernel. In a distributed key management sys-
tem, keys would be needed for each key manager

algorithmic capacity, as illustrated by sim-
ple hardware terminals or simple micropro-
cessors. Then a strongly asymmetric pro-
tocol is required, where the burden of es-
tablishing secure communications falls on
the more powerful of the pair.

A form of this problem might also occur
if encryption is not handled by the system,
but by the user processes themselves. Then
for certain operations, such as sending mail,
the receiving user process might not even
be present. (Note that such an approach
may not guarantee the encryption of all
network traffic.) The procedures outlined
in the next section are oriented toward re-
ducing the work of one of the members of
the communicating pair.

8. NETWORK MAIL

Recall that network mail may often be
short messages, to be delivered as soon as
possible to the recipient site and stored
there, even if the intended receiver is not
currently logged in.

Assume that a user at one site wishes to
send a message to a user at another site,
but because the second user may not be
signed on at the time, a system process
(sometimes called a "daemon") is used to
receive the mail and deliver it to the user's
"mailbox" file for his later inspection. It is
desirable that the daemon process not re-
quire access to the cleartext form of the
mail, for that would require trusting the
mail receiver mechanism. This task can be
accomplished by sending the mail to the
daemon process in encrypted form and hav-
ing the daemon put that encrypted data
directly into the mailbox file. The user can
decrypt the data when he signs on to read
his marl.

In either the conventional- or public-key
case, the protocols described in Section 3
can be employed with only. slight modifi-
cations. In the conventional-key case, the
last two messages, those which exchange an
identifier to ensure that the channel is cur-
rent, must be dropped (since the recipient
may not be present). After the sender re-
quests and gets a key K and a copy of K
encrypted with the receiver's secret key, he
appends the encrypted mail to the en-
crypted K and sends both to the receiver.

CompuUng Surveys, Vol. 11, No. 4, December 1979

352 * G. J. Popek and C. S. Khne

The receiving mail daemon can deliver the
mail and key (both still encrypted), and the
intended recipient can decrypt and read it
at his leisure.

In the case of public keys, the sender
retrieves the recipient's public key via an
exchange with the repository, encrypts the
marl, and sends it to the receiving site.
Again the mail daemon delivers the en-
crypted mail, which can be read later by
the recipient since he knows his private
key. Again, the authentication part of the
public-key protocol must be dropped. In
both of these approaches, since the authen-
tication steps were not performed, the re-
ceived mail may be a replay of a previous
message. If detecting duplicate mail is im-
portant, the receiver must keep records of
previous marl.

Both mechanisms outlined above do
guarantee that only the desired recipient of
a message will be able to read it. However,
as pointed out, the recipient is not guaran-
teed the identity of the sender. This prob-
lem is essentially that of digital signatures,
which is discussed in the next section.

9. DIGITAL SIGNATURES

Applications such as bank transactions,
military command and control orders, and
contract negotiations, will require digital
signatures. At first, it appeared that public-
key methods would be superior to conven-
tional ones for use in digital message sig-
natures. The method, assuming a suitable
public-key algorithm, is for the sender to
encode the mail with his private key and
then send it. The receiver decodes the mes-
sage with the sender'spubhc key. The usual
view is that this procedure does not require
a central authority, except to adjudicate an
authorship challenge. However, two points
should be noted. First, a central authority
is needed by the recipient for aid in deci-
phering the first message received from any
given author (to retrieve the corresponding
public key, as mentioned in Section 3.2).
Second, the central authority must keep all
old values of public keys in a reliable way
to properly adjudicate conflicts over old
signatures (consider the relevant lifetime of
a signature on a real estate deed, for ex-
ample).

Furthermore, and more serious, the un-
adorned public-key-signature protocol just
described has an important flaw. The au-
thor of signed messages can effectively
disavow and repudiate his signatures at any
time, merely by causing his secret key to be
made public or "compromised" [SALT78].
When such an event occurs, either by ac-
cident or intention, all messages previously
"signed" using the given private key are
invalidated, since the only proof of validity
has been destroyed. Because the private
key is now known, anyone could have cre-
ated any message claimed to have been sent
by the given author. None of the signatures
can be relied upon.

Hence the validity of a signature on a
message is only as safe as the entire future
protection of the private key. Further, the
ability to remove the protection resides pre-
cisely with the individual (the author) who
should not hold that right. That is, one
important purpose of a signature is to in-
dicate responsibility for the content of the
accompanying message in a way that can-
not be later disavowed.

The situation with respect to signatures
using conventional algorithms might ini-
tially appear slightly better. Rabin
[RABI78] proposes a method of digital sig-
natures based on any strong conventional
algorithm. Like public-key methods it too
requires either a central authority or an
explicit agreement between the two parties
involved to get matters going. 12 Similarly,
an adjudicator is required for challenges.
Rabin's method, however, uses a large num-
ber of keys, with keys not being reused from
message to message. As a result, if a few
keys are compromised, other signatures
based on other keys are still safe. This is
not a real advantage over public-key meth-
ods, since one could readily add a layer of
protocol over the public-key method to
change keys for each message as Rabin
does for conventional methods. One could
even use a variant of Rabin's scheme itself

~2In his paper, Rabm describes an initialization
method which revolves an exphcit contract between
each pair of parties that wish to commumcate with
digitally signed messages One can easily instead add
a central authority to play this role, usmg statable
authentication protocols, thus obviating any need for
two partms to make specific arrangements prior to
exchanging mgned correspondence

Computing Surveys, Vol 11, No 4, December 1979

Encryption and Secure Computer Networks • 353

with public keys, although it is easy to
develop a simpler one.

All of the digital signature methods de-
scribed or suggested above suffer from the
problem of repudiation of signature via key
compromise. Rabin's protocol or analogs to
it merely limit the damage (or, equivalently,
provide selectivity!}. It appears that the
problem is intrinsic to any approach in
which the validity of an author's signature
depends on secret information which can
potentially be revealed, either by the au-
thor or other interested parties. Surely im-
provement would be desirable.

A number of proposals have been made
to augment or replace the unadorned ap-
proaches just outlined. One, suggested in
KLIN79 employs a network-wide distrib-
uted signature facility. Others, based on
analogs to notaries public in the paper
world or replicated, trusted archival facili-
ties, provide a dependable time-stamping
mechanism so that authors cannot disavow
earlier signed correspondence by causing
their keys to be revealed.

9.1 Network-Registry-Based Signatures
- - A Conventional-Key Approach

2) The NR (not necessarily the local com-
ponent) computes a simple characteris-
tic function of the message, author, re-
cipient, and current time; encrypts the
result with a key known only to the NR;
and forwards the resulting "signature
block" to the recipient. The NR only
retains the encryption key employed.

3) The recipient, when the message is re-
ceived, can ask the NR if the message
was indeed signed by the claimed author
by presenting the signature block and
message. Subsequent challenges are
handled in the same way.

Certain precautions are needed to ensure
the safety of the keys used to encrypt the
signature blocks, including the use of differ-
ent keys between pairs of distributed NR
components, and a signature block compu-
tation which requires compromise of mul-
tiple components before signatutre validity
is affected. For example, several NR com-
ponents could each generate fragments of
the keys being used. There is not even any
need for all NR components to be under
control of a single centralized authority so
long as they can all cooperate.

The registry solution is based on the ob-
vious approach of interposing some trusted
interpretive layer, a secure hardware and/
or software "unit," between the author and
his signature keys, whatever their form.
Then it is a simple matter to organize the
collection of units in the network to provide
digital signature facilities. Consider all the
cooperating units together as a distributed
network registry (NR). Some secure com-
munication protocol among the compo-
nents of the registry is required, but it can
be very simple; low-level link-style encryp-
tion using conventional encryption would
suffice.

Given that such facilities exist, then a
simple implementation of digital signatures
which does not require specialized protocols
or encryption algorithms is as follows:

1) The author authenticates with a local
component of the network registry
(NR), creates a message, and hands the
message to the NR together with the
recipient identifier and an indication
that a registered signature is desired.

9.2 Notary-Public- and Archive-Based
Solutions

Public-key algorithms can provide safe sig-
nature methods also. One straightforward
method is based on the behavior of notaries
public in the paper world. ~3 Briefly, there
can be a number of independently operat-
ing (but perhaps licensed} notary public
machines attached to the network. When
a signed message has been produced, it can
be sent to several of the notary public ma-
chines by the author after the author has
signed the message himself. The notary
public machine time-stamps the message,
signs it itself (thereby encoding it a second
time}, and returns the result to the author.
The author can then put the appropriate
cleartext information around the doubly
signed correspondence and send it to the
intended receiver. He checks the notary's
signature by decoding with the notary's
public key, then decodes the message using

' ~ Thin approach was imtlally suggested to one of the
authors by David Redell.

ComputmgSurveys, Vol ll, No. 4, December 1979

354 • G. J. Popek and C. S. Kline

the author's public key. Several notarized
copies can be sent, if desired, to increase
safety.

The assumption underlying this method
is that most of the notaries can be trusted.
Since each notary time-stamps its signa-
ture, it is not possible for the original author
to disavow prior signed correspondence by
"losing" his key at a given time. One might
think, however, that it is still possible for
someone to claim that his key had been
revealed sometime in the past without his
knowledge and selective messages forged.
This problem can be guarded against by
having each notary public return a copy of
each notarized message to the author's per-
manent address. {This "patch" of course
raises the question of how notaries are kept
reliably informed of permanent addresses.)

Each notary is an independent facility,
so that no coordination among notaries is
required. Of course, if only one notary ex-
ists, then the approach is at best no im-
provement over the scheme presented in
the previous section without multiple NR
components. Danger of compromise of the
notaries' private keys is reduced by the
redundant facilities.

A related way to achieve reliable time
registration of signed messages is for there
to be a number of independent archival
sites where either authors or recipients of
signed mail may send copies of correspond-
ence to be time-stamped and stored per-
manently. Of course, the entire message
need not be stored; just a characteristic
function will do. Challenges are handled by
interrogating the archives. The possibility
of an individual's key being compromised
and used without his knowledge can be
treated in the same way as with notaries
public.

9.3 Comparison of Signature Algorithms

The improved conventional-key-based and
public-key-based signature algorithms
share many common characteristics. They
each involve some generally trusted mech-
anism shared among all those communicat-
ing. The safety of signatures still depends
on the future protection of keys as before,
now including those for the network regis-
try, notaries public, or archive facilities.
However, there are several crucial differ-

Computing Surveys, VoL 11, No 4, December 1979

ences from previous protocols. First, the
authors of messages do not retain the abil-
ity to repudiate signatures at will. Second,
the new facilities can be structured so that
failure or compromise of several of the com-
ponents is necessary before signature valid-
ity is lost. In the early proposals a single
failure could lead to compromise.

10. USER AUTHENTICATION

While digital signatures are important, one
must realize that there must still exist a
guaranteed authentication mechanism by
which an individual is authenticated to the
system. Any reasonable communication
system, of course, ultimately requires such
a facility, for if one user can masquerade as
another, all signature systems will fail.
What is required is some reliable way to
identify a user sitting at a terminal--some
method stronger than the password
schemes used today. Perhaps an unforge-
able mechanism based on fingerprints or
other personal characteristics will emerge.

11. CONCLUSIONS

This discussion of network security has out-
lined the issues in developing secure com-
puter networks, as well as presented the
context in which encryption algorithms will
be increasingly used. It is surprising to note
that once the system implications are un-
derstood, public-key algorithms and con-
ventional algorithms are largely equivalent.

Indeed, it is highly unlikely that any
given class of encryption algorithms will be
sufficient alone to provide the various se-
cure functions which will be desired. Mas-
ter-key/subkey relationships, or k-out-of-n
systems TM are just two examples. Rather
than attempt to develop and evaluate the
strength of a new encryption system for
each such application, it would be prefera-
ble to recognize that a strong extensible
system is necessary. Such a system is one
for which new characteristics may be easily
added, and where the strength of the addi-
tion can be demonstrated in a straightfor-
ward, incremental manner. Any strong al-
gorithm, either conventional or public key,

~4 A k-out-of-n system is one in which any k of a set of
n keys are sufficmnt to decrypt, but it is infeasible to
do so with any fewer

E n c r y p t i o n a n d S e c u r e C o m p u t e r N e t w o r k s

can serve as the basis for a s trong extensible
sys tem when combined with addit ional
t rus ted m a n a g e m e n t algorithms, expressed
ei ther in hardware or software. Examples
of such mixed sys tems are given in Sect ion
9. In fact, much of the discussion in this
paper suggests tha t mixed sys tems are es-
sential. Once tha t necessity is recognized,
pressure to develop encrypt ion algori thms
with special characteris t ics is lessened; in-
stead, more a t ten t ion is focused on the need
for strong algori thms in general.

AHO74 I f one assumes tha t the purpose of a
secure network is mainly to provide pr ivate
pipes, similar to those supplied by com m on
carriers, then general principles by which BocGS0
secure, common-carr ier -based, point-to-
point communica t ion can be provided are

BRAN73
reasonably well in hand. Of course, in any
sophist icated implementa t ion , there will be
considerable careful engineering to be done.

BRAN75
However, this conclusion rests on an im-
por tan t assumpt ion tha t is not universally
valid. T h e securi ty and correctness of func- CARL75
tion of the underlying operat ing sys tems
mus t be suitably high so tha t the network
securi ty methods described here are not
being built on an unreliable base, obviat ing CERF78

their safety. For tunate ly , reasonably secure
operat ing sys tems are well on their way; DENN66
SO this intrinsic dependence of ne twork
securi ty on appropr ia te operat ing sys tem
suppor t should not seriously delay corn- DIFF76a
mort carrier securi ty [McCA79, POPE78,
FP.IE79].

One could, however, take a ra ther differ- DIFF76b
ent view of the nature of the network se-
curi ty problem. T h e goal might be to pro- DIFF77
vide a high-level extended machine for the
user, in which no explicit awareness of the
network is required. T h e underlying facility DI~F79
is t rus ted to move da ta securely f rom site
to site as necessary to suppor t wha tever
da ta types and operat ions are re levant to DowN79
the user. The facility operates securely and
with integri ty in the face of unplanned
crashes of any nodes in the network. Syn- EVAN74
chronization of operat ions on user meaning-
ful objects (such as operat ion w i t h d r a w a l

f rom object c h e c k i n g accoun t } is reliably FABR74
mainta ined using min imum trusted mech-
anism. Other higher level secur i ty-re levant FETE79
operat ions beyond digital s ignatures are
provided. I f one takes such a high-level
view of the goal of network security, then

• 355

the simple common-car r ie r solutions are
insufficient and more work remains.

ACKNOWLEDGMENTS

The authors thank the referees for their comments. In
particular, it is a pleasure to acknowledge Adele Gold-
berg for her help and guidance in revising the manu-
script.

BIBLIOGRAPHY

AHO, A., HopcRorr, J , AND ULLMAN, J.,
The Destgn and Analysis of Computer Al.
gortthms, Addison.Wesley, Reading,
Mass., 1974.
BoGGs, D., SxocH, J., TAFT, E., ANY MET-
CALFE, R., "Pup: An internetwork archi-
tecture," to appear in IEEE Trans. Com-
put., Feb. 1980.
BRANSTAD, D. K., "Security aspects of
computer networks," presented at the
AIAA Computer Network Systems Conf,
April 1973.
BRANSTAD, D. K., "Encryption protection
in computer data communications," in
Proc. 4th Data Communwations Symp.,
1975, pp. 8-1-8-7.
CARLSTEDT, J.~ BISBE¥, R., AND POPEK,
G, Pattern directed protection evaluatton,
Rep. ISI/RR-75-31, Information Sciences
Inst., U. of Southern California, Marina
Del Rey, Calif., 1975.
CERF, V., AND KIRSTEIN, P., "Issues m
packet-network interconnection," Proc.
IEEE, 66, 11 (Nov. 1978), 1386-1408.
DENNIS, J B., AND VAN HORN, E. C., "Pro-
grammmg semantics for multiprogrammed
computations," Commun. ACM 9, 3
(March 1966), 143-155.
DIFFIE, W., AND HELLMAN, M, "Multiuser
cryptographic techniques," in Proc. 1976
AFIPS NCC, Vol. 45, AFIPS Press, Arling-
ton, Va., pp. 109-112.
DIFFIE, W., AND HELLMAN, M, "New di-
rections m cryptography," IEEE Trans.
Inf. Theory IT-22, 11 (Nov. 1976), 644-654.
DIFFIE, W., AND HELLMAN, M., "Exhaus-
tive cryptanalysls of the NBS data encryp-
tion standard," Computer 10, 6 (June
1977), 74-84.
DIFFIE, W., AND HELLMAN, M., "Privacy
and authentication: An introduction to
cryptography," Proc. IEEE 67, 3 (March
1979), 397-427.
DowNs, D., AND POPEK, G., "Data base
system security and Ingres," m Proe. Conf.
Very Large Data Bases, 1979, Rio De Ja-
nelro, Brazil.
EVANS, A., KANTROWITZ, W., AND WEISS,
E., "A user authentication system not re-
qmring secrecy in the computer," Com-
mun. ACM 17, 8 (Aug. 1974), 437-442
FABRY, R. S, "Capability-based address-
mg," Commun. ACM 17, 7 (July 1974),
403-412.
FEIERTAG, R, AND NEUMANN, P., "The
foundations of a provably secure operating
system (PSOS)," in Proc. 1979 AFIPS
NCC, Vol. 48, AFIPS Press, Arlington, Va,
pp. 329-334.

Computing Surveys, Vol. 11, No. 4, December 1979

356

FEIS73

FEIS75

GAIN77

GOOD77

HELL78

KENT76

KIME75

KLIN 79

KOHN78

LAMP73

LEMP79

LENN78

MATY78

McCA79

MERK78

MEYE73

NBS77

RECEIVED

* G . J . Popek and C. S. Kline

FEISTEL, H., "Cryptography and computer
privacy," Sc. Am. 228, 5 (May 1973), 15-
23.
FEISTEL, H., NOTZ, U A., AND SMITH, J.
L., "Some cryptographic techniques for
machine to machine data communica-
tions," Proc. IEEE 63, 11 (Nov. 1975),
1545-1554.
GAINES, R. S., Prwate communication,
Sept. 1977. NEED78
GOOD, D. I., "Constructing verified and
rehable communications processmg sys-
tems," ACM Soft. Eng. Notes, Oct 77, pp.
2-5.
HELLMAN, M. E., "Security in communi-
cations networks," m Proe. 1978 AFIPS
NCC, Vol. 47, AFIPS Press, Arhngton, Va.,
pp 1131-1134.
KENT, S., Encryptton-based protectton POPE78
protocols for mteractive user-computer
communtcatmn, Tech. Rep. 162, M I T.
Lab. for Computer Scmnce, May 1976.
KIMBLETON, S. R , AND SCHNEIDER, G. M,
"Computer communications networks Ap-
proaches, objectwes and performance con- POPE79
siderations," Comput. Surv. 7, 3 (Sept
1975), 129-173.
KLINE, C S., AND POPEK, G. J., "Public
key vs. conventional key eneryption," in
Proc. 1979 AF[PS NCC, Vol. 48, AFIPS RARI78
Press, Arlington, Va., pp. 831-837
KOHNFELDER, L., Towards a practwal
pubhc-key eryptosystem, B.S. Thesis, REDE74
M.I.T, Cambridge, Mass.
LAMPSON, B. W., "A note on the confine-
ment problem," Commun. ACM 16, 10
(Oct 1973), 613- 615 RIVE77a
LEMPEL, A, "Cryptology m transition,"
Comput. Surv. 11, 4 (Dec. 1979), 285-304.
LENNON, R. E , "Cryptography architec-
ture for information security," IBM Syst.
J 17, 2 (1978), 138-150.
MATYAS, S M., AND MEYER, C. H., "Gen- RIVE78
eration, distribution, and installation of
cryptographic keys," IBM Syst. J 17, 2
(1978), 126-137.
MCCAULEY, E. J , AND DRONGOWSKI, P ROEE73
J., "KSOS--The design of a secure oper-
ating system," m Proc 1979 AFIPS NCC,
Vol 48, AFIPS Press, Arlington, Va., pp. SALT78
345-353.
MERKLE, R. C, "Secure communicatmns
over insecure channels," Commun. ACM SEND78
21, 4 (April 1978), 294-299.
MEYER,-C. H , "Design consideratmns for
cryptography, in Proc. 1973 AFIPS NCC,
Vol. 42, AFIPS Press, Arhngton, Va., pp. SIMM79
603-606.
NATIONAL BUREAU OF STANDARDS, Data
encryptmn standard, Federal Information WEST70
Processmg Standards Publ 46, 1977

NBS78a

NBS78b

PoPE 74a

POPE74b

APRIL 1979; FINAL REVISION ACCEPTED SEPTEMBER 1979

NATIONAL BUREAU OF STANDARDS, De-
sign alternatives for computer network se-
curity, Special Publ. 500-21, Vol. 1, NBS,
Washington, D.C., 1978.
NATIONAL BtJREAU OF STANDARDS, The
network security center: A system level
approach to computer security, Special
Publ. 500-21, Vo| 1, Washington, D.C.,
1978.
NEEDHAM, R M., AND SCHROEDER, M D ,
"Using encryption for authentmation in
large networks of computers," Commun.
ACM 21, 12 (Dec 1978), 993-999.
POPEK, G J., "Protection structures,"
IEEE Comput. (July 1974), 22-33
POPEK, G J., "A pnnclple of kernel de-
sign," in Proc. 1974 AFIPS NCC, Vol. 43,
AFIPS Press, Arlington, Va., pp. 977-978.
POPEK, G. J., AND KLINE, C S., "Design
Issues for secure computer networks," m
Operating Systems, an Advanced Course,
R. Bayer, R. M. Graham, and G. Seeg-
muller, Eds, Springer-Verlag, New York,
1978.
POPEK, G. J., KAMPE, M, KLINE, C. S.,
STOUGHTON, A., URBAN, M, AND WALTON,
E. J , "UCLA secure umx," in Proc. 1979
AFIPS NCC, Vol 48, AFIPS Press, Arhng-
ton, Va., pp 355-364.
RABIN, M., "Dtgltalized signatures," m
Foundations of Secure Computing, R De-
miUo et al., Eds., Academic Press, New
York, 1978.
REDELL, D D , AND FAERY, R S., "Selec-
tive revocation of capabilities," in Proc
IRIA Conf. Protection m Operating Sys-
tems, Rncquencourt, France, Aug. 1974
RIVEST, R. L., SHAMIR, A., AND ADLEMAN,
L., A method for obtaining digital signa-
tures and public-key cryptosystems, Tech.
Memo. LCS/TM82, M I.T Lab. for Com-
puter Science, Car~bndge, Mass., April 4,
1977 (revised Aug 31, 1977).
RiVEST, R. L., SHAMIR, A, AND ADLEMAN,
L., "A method for obtaining digital signa-
tures and public-key cryptosystems," Com-
mun. ACM 21, 2 (Feb 1978), 120-126.
ROBERTS, L., AND WESSLER, B., "The
ARPA network," m Computer Communi-
cation Networks, Prentice-Hall, Engle-
wood Cliffs, N.J., 1973, pp. 485-499.
SALTZER, J , "On digital signatures," ACM
Operating Syst. ReD. 12, 2 (Apr. 1978), 12-
14.
SENDROW, M., "Key management in EFT
environments," m Proc. COMPCON 1978,
pp. 351-354 (available from IEEE, New
York).
SIMMONS, G. J., "The asymmetric encryp-
tion/decryption channel," Comput. Surv
11, 4 (Dec. 1979), 305-330
WESTIN, A. F., Privacy and Freedom, Ath-
eneum Press, New York, 1970.

Computing Surveys, Vol 11, No 4, December 1979

