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Encryption key distribution via 
chaos synchronization
Lars Keuninckx1, Miguel C. Soriano2, Ingo Fischer2, Claudio R. Mirasso2, Romain M. Nguimdo3 

& Guy Van der Sande1

We present a novel encryption scheme, wherein an encryption key is generated by two distant complex 

nonlinear units, forced into synchronization by a chaotic driver. The concept is sufficiently generic to 
be implemented on either photonic, optoelectronic or electronic platforms. The method for generating 

the key bitstream from the chaotic signals is reconfigurable. Although derived from a deterministic 
process, the obtained bit series fulfill the randomness conditions as defined by the National Institute 
of Standards test suite. We demonstrate the feasibility of our concept on an electronic delay oscillator 

circuit and test the robustness against attacks using a state-of-the-art system identification method.

�e development of new strategies to protect sensitive information from interception and eavesdropping has been 
receiving signi�cant attention, especially in our present-day worldwide communication networks. �e aim of this 
work is the development and implementation of a novel random key distribution system based on the concept 
of generalized synchronization between distant elements in large networks. Such a random key synchroniza-
tion system successfully realized in photonics would have signi�cant impact in the �eld of physical layer based 
encryption techniques, o�ering not only high con�dentiality but also potential high-speed real-time encryption 
and decryption. Implemented in photonic systems, it would be fully compatible with present and future telecom-
munication networks. For the purpose of demonstrating the viability of the concept, we here put our focus to on 
an electronic system implementation.

Nowadays, con�dentiality and the authenticity of information are mostly ensured through mathematical 
algorithms. Algorithmic key-based encryption systems usually take a digital data stream and convolute it with a 
given binary pattern, which we refer to as the key. �e resulting encrypted binary string can then be transmitted 
through a public communication channel. A classic example of this type of encryption is the Vernam cipher1, 
where the recipient decodes the message using the same key-string code as used for encryption. In this case, the 
key is agreed via another secure channel. �is algorithm has been mathematically proven to be totally secure if 
the key is fully random, has the same length as the message and is used only once. One-time pad cryptography is, 
however, not suited for secure communications between two parties who have not been able to exchange encryp-
tion keys beforehand. To circumvent this drawback, other so�ware cryptosystems relying on asymmetric-key 
algorithms (public-key cryptography such as RSA) have been developed2. However, asymmetric algorithms use 
signi�cant computational resources in comparison with their symmetric counterparts and therefore are generally 
not used to encrypt bulk data streams. Also, the e�ectiveness of these encryption techniques relies on the fact that 
it is computationally hard (but not impossible) to decrypt a message only knowing the public key3. �erefore, the 
growing computational power and the fact that a key is used more than once remains a latent threat for current 
algorithmic cryptography. Recently, although the asymmetric key algorithm itself was not broken, the Heartbleed 
bug in OpenSSL allowed for harvesting private keys from server communications4.

In order to strengthen the process of securely exchanging a private key other -hardware oriented- approaches 
have been proposed such as quantum cryptography. However, quantum cryptography, while secure in theory if 
operating at the quantum level, cannot encrypt information in real time and its key generation rate and trans-
mission distance is limited due to noise and attenuation in the quantum channel5. Also, it is not compatible with 
standard �ber optic networks because standard telecom components such as optical ampli�ers would disrupt its 
workings6. An interesting alternative electronic approach, similar to the idea of quantum entanglement but lim-
ited to wired communications, is presented by Kish7.
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A complementary way to improve the con�dentiality of an encrypted message can be realized by additionally 
encoding at the physical layer using chaotic carriers. Chaos based encryption systems rely on two spatially sepa-
rated chaotic systems to synchronize with each other. Once the two systems are synchronized, the chaotic output 
of the sender can be used as the carrier in which the message is hidden as a small modulation. �e receiver can 
extract the message by comparing the incoming signal with the synchronized one8. Multi-gigabit information 
transmission in real installed optical networks over several tens of kilometers have been demonstrated using this 
paradigm9. However, the necessity of sharing a chaotic carrier signal over a public channel reveals information 
on the speci�cs of the system used. �erefore, these chaos based communication systems o�er con�dentiality but 
cannot, for the moment, guarantee security. Such chaos based encryption schemes could augment the security 
by operating in a bidirectional fashion, whereby the modulating messages from both communicating parties 
involved perturb the shared synchronization inducing signal. Since both parties have exact a priori knowledge of 
their own respective modulating signal, they are able to deduce the message imposed on the carrier by the other 
party9,10. However, an optimized hardware solution (compatible with so�ware methods) for con�dential data 
transmission, possibly operating at the high bit rates that photonics o�ers, is currently lacking and highly desired.

Encryption Key Distribution Via Chaos Synchronization
�e goal of our work is to demonstrate a system which can encrypt data in a new way, with a high level of security 
and which can be built using current o�-the-shelf components. We propose a concept, built here in electronics, 
that later can be developed in photonics. We refer to the scheme as key distribution based on synchronized 
random bit generation. It relies on the synchronization between a transmitter and a distant receiver through an 
uncorrelated chaotic driver signal. From the synchronized chaotic signals, a random key can be distilled that 
would be extremely di�cult to be reconstructed from the information shared in the public channel. Figure 1 
shows the conceptual scheme, with a transmitter module on the le� hand side and a receiver module on the 
right. Transmitter and receiver can communicate with each other over a public channel. �e transmitter module 
contains an autonomous chaotic driver and a chaotic responder system, while the receiver module has a chaotic 
responder system identical to the chaotic responder of the sender module. Both driver and responder consist of 
several interacting/networked nonlinear elements. �e driver generates a broadband chaotic signal, which is sent 
to both responders via a public channel. If both responders are practically identical, synchronization between the 
responders of the transmitter and receiver modules can be established through the signal of the chaotic driver. 
To this end, the responder systems need to react consistently to the chaotic driver, meaning that given identical 
inputs, regardless of their respective initial internal states, the responder states eventually synchronize to each 
other11,12.

If the driver and responders generate su�ciently complex dynamics (typically if these signals originate from a 
large network or high-dimensional nonlinear system), the generalized synchronization allows that the driver sig-
nal can have low to zero correlation and mutual information with the responder’s signal13. �is has been proven 
to be the case for many other interdependence indicators14. From the broadband chaos at the output of the sender 
module’s responder, random bits can be generated by sampling the chaotic time evolution and by converting 
analog signals to digital. �ese bits will form the private key that is used to encrypt a message. �e encrypted mes-
sage as well as the driver’s signal are transmitted through the public channel. At the receiver module, the synchro-
nized responder generates the same random bit sequence as was used for the encryption, allowing for immediate 
message decryption. Note that the proposed system, which we experimentally prove the viability of in this paper, 
di�ers signi�cantly from standard chaos-based communications. In such systems, the message is either hidden 
as a low-power perturbation of the chaotic carrier or the chaotic carrier itself is used as the key. In our proposed 
system, an eavesdropper cannot derive information regarding the decryption key from just eavesdropping in the 
public channel, due to the unknown transformation that the driver signal undergoes in the responders.

�is approach has several advantages compared to asymmetric key-algorithms, standard chaos-based com-
munications and quantum key distribution systems. While the one-time pad key, that has the same length as 
the total message, is being generated bit per bit, the message can be encrypted in real-time, meaning without a 
computationally expensive operation. Because the key is derived from a chaotic signal, the same key will not be 
generated twice. �ese properties lead to a very attractive encryption protocol.

Figure 1. Conceptual scheme of real-time message encryption and decryption based on the novel random 
key synchronization concept. 
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�e proposed method hinges upon the identical properties of the receivers, such that we see a hardware 
implementation being deployed between large-volume data exchange facilities, where control over the physical 
access to the devices is guaranteed. �e security is o�ered by the di�culty to access the hardware so that there is 
no chance to extract its dynamical signal transformation. Practically speaking, the method we present can be fully 
translated to the digital domain by being implemented as delay-coupled iterated maps using a �eld programmable 
gate array (FPGA) or application speci�c integrated circuit ASIC). �e parameters of the delay coupled maps that 
control the dynamical behavior of the system can then be seen as a pre-shared key.

One obvious attack vector would be to duplicate the exact system that is used on the receiver’s side. However, 
synchronization can only be achieved when the responder system is build with devices having very similar param-
eters (within tolerances of a few percent or less). For an electronic implementation (as demonstrated below) the 
receivers could be made almost identical and truly unique by pairwise growing them side-by-side on a single 
wafer and/or by pairwise laser-trimming the on-chip resistors. Consequently, a brute-force attack by stepping 
hardware devices would be overly time consuming.

A second attack vector is a brute force one with an eavesdropper measuring the signals locally at either the 
sender or receiver site and reconstructing the high-dimensional, nonlinear transformation function connecting 
the driver’s and responder’s signals. Note that for this attack vector to succeed, physical access to a receiver is a 
prerequisite, that given the application site, may be easily blocked. We will discuss this issue further in the text.

Hence, to ensure high con�dentiality of the message two challenging requirements remain. First, the key 
needs to be indistinguishable from a random bitstream. �is will depend on the properties of both the chaotic 
driver and the responders. Second, information on the generated random key cannot be retrieved from the cha-
otic driver signal and its properties. �erefore, to achieve random key synchronization, we need to demonstrate 
chaos synchronization through a driving signal that has almost zero correlation with the responder signals. �e 
chaotic signals should be broadband enough to support fully random bit extraction. Moreover, the system must 
be built in such a way that noise cannot disrupt its operation.

As seen from Fig. 1, it is a necessity that the driver signal and the encrypted message remain in synchrony. We 
assume that the branches of the public channel delay the driver and encrypted message signals equally, such that 
the signals remain synchronized in time. In an analog implementation, this requires the same group velocity over 
the transmission media. In a practical telecom setup, the analog driver signal is likely to be digitized �rst and put 
into numbered frames, before being transported over the same physical medium as the digital encrypted message. 
�us synchronization would be guaranteed by the higher layers of the communication protocol.

Experimental Setup
In the following, we describe the experimental electronic system that we have constructed to demonstrate the 
concept. �e system uses several �rst order nonlinear blocks (NLBs) as depicted in Fig. 2. A single NLB consists 
of a nonlinear unimodal function, built around a bipolar transistor. �e nonlinear function is followed by an 
RC network, acting as a low-pass �lter with a characterisitc time of 33 µ s, and a non-inverting ×  2 ampli�er. �e 
dynamical behavior of an NLB is adequately modeled by:

= − +RC
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where the nonlinearity f is described by the Mackey-Glass15 function Eq. (2):
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with parameters A =  1.99, B =  0.466 V−1, and exponent n =  8.38. �e purpose of the ampli�er is to map the input 
and output dynamic ranges, roughly 0 …  3 V, onto each other. It also acts as a bu�er, such that NLBs can be cas-
caded. �e resistor of the RC network is chosen much larger than the output resistance of the nonlinearity. In 
Fig. 3, we show a diagram of the complete system, which consists of a chaotic signal source, called the driver, and 
two ideally identical responder branches. �e driver has eight NLBs, placed in a ring with a delay τ and program-
mable gain Gd. Labeling vd,i for i =  1 …  8, the output voltages of the NLBs, the driver is described by:

Figure 2. �e nonlinear block (NLB). 
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and v vd d,8  is the output of the driver. The Mackey-Glass nonlinearity with delay belongs to the class of 
high-dimensional dynamical systems16.

Because the delay and the NLBs are commutable, the driver circuit is equivalent to eight NLBs, each coupled 
with delay τ/8 in between. �is is reminiscent of an eightfold Mackey-Glass system. �e driver signal passes a 
programmable gain Gr, and drives two responder branches, each consisting of four NLBs. �e signals of the �rst 
responder branch vr1,i, i =  1 …  4 are described by:
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and v vr r1 1,4. Similar equations describe the signals of the second responder branch. Much care was taken to 
match the corresponding components of both responders as closely as possible, in order to obtain a near identical 
response to the driver signal. �is is achieved by using resistors with one percent tolerance, and matching the 
transistors and capacitors of corresponding placement in the branches. A more practical integrated circuit 
approach, where both responders are manufactured on a single wafer which is sliced a�erwards, would yield even 
better matching. Note only the pairwise NLBs of the responders require matching. Within a responder, the NLBs 
may di�er from one another, and this can even be exploited to guarantee a unique transformation. �e delay and 
gains reside on a Digilent Nexys II �eld programmable gate array (FPGA) platform, which also provides storage 
memory for the measured signals. It is programmed to sample at fs =  250 kHz. �e delay line has a length of 
N =  10000 samples, corresponding to τ =  40 ms ≈  1212RC.

Results
In Fig. 4, we show the nonlinear input-output characteristics for several cascaded NLBs, when scanned slowly, i.e. 
vO =  f (n)(vI). It is clear from Fig. 4, that each nonlinear transformation adds complexity to the dynamical behavior 
of the responder and driver signals. Intuitively, because of the unimodal character of f, most output values can 
originate from two input values, i.e. f−1(y) =  {x1, x2}, such that f(x1) =  f(x2) =  y. Cascading n such (static) functions 
then leads to 2n possible input values for each output value. Also, the resulting function f(n) has 2n−1 local maxima, 
of which the abscissa, in the limit n →  ∞ , form a Cantor set.

Figure 5 shows an experimentally obtained bifurcation diagram of the driver. For a wide range of loop gains 
Gd, as programmed in the FPGA based delay line, the driver signal is clearly chaotic. We note that the driver 
dynamics takes several hundred delay times to reach a steady-state dynamical regime. All subsequent results are 
measured a�er this warm-up period. In turn, the responders are fully synchronized a�er a transient period of 
about 2 ms (linked to the RC time of the NLBs), when started from any initial condition. In Fig. 6, we show meas-
ured timeseries of the driver and responders. It is clear that while the responders show nearly identical signals, 
there is little or no resemblance between the signals of the driver and the responders. To quantize the di�erence 
between driver and responder signals, we calculate the normalized root mean square error (NRMSE):

Figure 3. System diagram of the driver and responders. Each block labeled “NLB” contains the subcircuit of 
Fig. 2. Pairwise NLB blocks in the responder chains were built using matched components.
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From a measurement of 2 ×  106 samples, we obtain: NRMSE(driver, responder1) =  1.419,
NRMSE(driver, responder2) =  1.427, NRMSE(responder1, responder2) =  0.0852, showing that the two 

responder signals are very much alike, while there is a large di�erence between the responder and driver. We 
further characterize the (dis)similarity of these signals by looking at the auto- and cross-correlations. For sampled 

Figure 4. Input-output responses for (a) two, (b) four, (c) six and (d) eight cascaded NLBs when slowly 
scanned.

Figure 5. Experimentally obtained bifurcation diagram for the driver. �e gain Gd is digitally controlled in 
the FPGA based delay line.
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real-valued signals x(i) and y(i), with i =  − n, … , n, the time-averaged cross-correlation of a single realization of 
the signals is calculated as:

∑=
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with k being the shi� between the signals (�e signals are zero-padded if an index extends outside [− n, … , n].). 
�e means of the signals are removed, since they convey no information. �is process is repeated for many (typ-
ically m =  50 …  100) di�erent realizations of the signals to obtain …R R, ,xy xy m,1 , . �en these values are averaged 
to obtain the cross-correlation:
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Here it is assumed that the processes from which the signals stem are wide sense stationary (WSS), so that 
 =R k Rxy k[ ( )] ( )xy . �e auto-correlation of x(i) is calculated as above, by taking y(i) =  x(i). In what follows, we 
normalize the correlations to:
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since the maximum of the auto-correlation is found at zero shi�.
The normalized auto-correlation of the driver, Rdd, has extrema at multiples of the delay τ. We plot the 

auto-correlation for the gain value of Gd =  0.8743 in Fig. 7a. �e shi� is expressed in units of τ. �e largest resid-
ual peaks, found at ±  τ, are below 0.015, as seen in the inset. Although derived from a deterministic system, this 
is close to the auto-correlation of white noise. We located this optimal gain value by plotting the magnitude of 

Figure 6. (a) Measured timeseries of driver (red) and responder 1 (blue) and (b) of responder 2 (red) and 
responder 1 (blue).

Figure 7. (a) Normalized auto-correlation function of the driver at the optimal gain Gd =  0.8743. (b) Absolute 
value of the normalized auto-correlation function Rdd of the driver at multiples of the delay time τ, plotted 
against gain Gd.
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the �rst four peaks of the normalized auto-correlation as a function of the loop gain Gd, in Fig. 7b. For shi�s of 
5τ and higher, these peaks were found to be negligibly small. From these results, we determined that a gain value 
of Gd =  0.8743 is optimal to minimize the sum of the absolute values of these peaks. In this way, periodic compo-
nents of the driver signal are almost completely suppressed. �is is important because any self-similarity in the 
driver signal might lead to correlations in the responder signals, which are derived from the driver. �e bitstreams 
that are derived from these time series might then also show similarities and fail to appear random. Likewise, the 
cross-correlations of the driver and responder signals, Rdr1 and Rdr2, show peaks at or close to multiples of τ. In 
Fig. 8, we show the cross-correlation between the driver and responder 1 for gain Gr =  1.1811. �e largest peak 
is below 0.03. �e situation for responder 2 is similar. As before and shown in Fig. 8b this optimal gain value 
was determined such that the absolute sum of the peaks is as low as possible. Conversely, as shown in Fig. 9a, 
the responders have a near perfect correlation, as was already indicated by their low NRMSE. In Fig. 9b, the 
auto-correlation of responder 1, Rr1r1 is shown, indicating that the noise like behavior is inherited from the driver 
signal. �e auto-correlation of responder 2, Rr2r2, is very similar to that of responder 1, and therefore is not shown.

To summarize, because the responder signals are nearly identical, the bitstreams derived thereof will also be 
nearly identical. �e bitstream derived from the driver signal will inherit its very low long-term auto-correlations. 
More so, the low cross-correlation between the driver and the responders will result in nearly uncorrelated 
bitstreams. To be able to adequately suppress the cross-correlation between the driver and the responders, 
the responder branches need to have a su�cient number of nonlinear nodes. In similar experiments in pho-
tonics, where each responder consisted of only one laser, driven by a random phase light source, the residual 
cross-correlation was as high as 0.2 and the driver signal was noiselike, implying higher correlation within the 
relevant bandwidth17,18. �ese systems are based on synchronized semiconductor lasers. In a cascade of unidi-
rectionally coupled semiconductor lasers the synchronization is likely to be intermittently lost in a process called 
bubbling19. In a related work, for a mutually coupled laser arrangement using zero lag synchronization, an exten-
sive reconciliation post procedure was needed to transform the merely correlated bitstreams to truely identical 
bitstreams usable as key over a public channel20. In addition, over the last decade, a number of classical private 
key distribution systems have been proposed using diverse physical systems either in electronics or photonics 
hardware21–23.

Figure 8. (a) Normalized cross-correlations of driver and responder 1, at optimal gains Gd and Gr. �e 
horizontal units are delay loop lengths τ. (b) Absolute value of the normalized cross-correlation function Rdr1 of 
the driver and responder 1 at multiples of the delay time τ, plotted against gain Gr.

Figure 9. Normalized cross-correlations of the responders (a) and auto-correlation of responder 1 (b) at 
optimal gains Gd and Gr. �e horizontal units are delay loop lengths τ.
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Bit Generation
Here, we introduce a scheme for generating bits from the driver and responder signals that we call the delayed 
comparison method (DCM). �e method automatically delivers balanced bit series. For this method to work, it 
is only required that the driver and responder signals, interpreted as random processes, are wide sense stationary 
(WSS)24. If we compare two instances of such a process X(t) at times t1 and t2, the probability that the �rst meas-
urement is smaller than the second one is:

≤ = − ≤ .P X t X t P X t X t{ ( ) ( )} { ( ) ( ) 0} (9)1 2 1 2

Because X(t) is WSS, its mean µX and variance σX are constant. De�ning Y(t1, t2) =  X(t1) −  X(t2) as the random 
process of the di�erence, it follows that µY =  0. Also, the probability density function of Y only depends on the 
time di�erence τ =  t1 −  t2 and can be written as fY(y; τ). �us:

∫ τ≤ =
−∞

P Y f y dy{ 0} ( ; ) ,
(10)Y

0

and likewise:

∫ τ≥ = .
+∞

P Y f y dy{ 0} ( ; )
(11)Y0

Note that Y(t) also has zero skew, assuming that X(t) has a constant median νX besides a �xed mean and 
variance:

µ ν

σ
=

−

=S 0,
(12)

Y
Y Y

Y

with νY the median of Y. �us the probability density function fY(y, τ) must be symmetric around the origin. 
Hence P{Y ≤  0} =  P{Y ≥  0} =  1/2, or:

≤ = ≥ = .P X t X t P X t X t{ ( ) ( )} { ( ) ( )}
1

2 (13)1 2 1 2

We proceed as follows to obtain the bits from the timeseries. First the timeseries x(n) are downsampled over 
a factor r, where r is chosen larger than the width of the central auto-correlation peak. �is is the decorrelation 
step, used to avoid long successions of the same bit value. �en the resulting timeseries x(rn) is transformed into 
a series of bits b(n) as follows:

=






> −
b n

x rn x r n
( )

1: ( ) ( ( 1)),

0: otherwise, (14)

which is the deskewing step. Note that because the time series samples are discretized, there is a small probability 
that two samples are equal, such that Eq. (14) introduces a small bias. �is can be resolved by choosing alternat-
ing values for the bits resulting from these equal samples. However, we found this to be unnecessary, and used 
Eq. (14) as is. Lastly, every other bit of b(n) is discarded, yielding the �nal bit series B(n):

= .B n b n( ) (2 ) (15)

Without this last step, one sample of the time series would be used for the generation of two bits. �is repeti-
tion would eventually show up in the frequency tests to evaluate randomness. Figure 10 gives a schematic outline 
of the process. Since choosing a di�erent r-interval results in a di�erent bit series, it is clear that the process 
outlined in Fig. 10 can be applied in parallel to produce multiple bit series from one time series, thus showing an 
advantage in speed. For multiple intervals ri, the bitrate is given by:

∑=R f
r

1

2
,

(16)
s

i i

with fs being the sample speed of the responder timeseries. Using r-intervals 81, 123, 234, 441 and 619, we 
obtained 22 million bits. �e probability to obtain a ‘one’ for the driver and responders bitstreams are:

= . = . = .P P P{1} 0 499655, {1} 0 499804, {1} 0 499840, (17)d r r1 2

Figure 10. �e delayed comparison method for random bits generation from a chaotic timeseries. x(n) is 
either the sampled driver or one of the responder signals.
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resulting in nearly maximal entropies of respectively:

= − . ⋅ = − . ⋅ = − . ⋅ .
− − −H H H1 3 43 10 , 1 1 11 10 , 1 7 37 10 (18)d r r

7
1

7
2

8

�e conditional probability matrix of the resulting bit series for the responders, Pr1,r2(i, j) =  P{r1 =  i|r2 =  j} 
with i, j ∈  {0, 1}, is:

=
. .

. .
( )P 0 9755 0 0246

0 02455 0 9754
,r r1, 2

and between driver and responder 1:

=
. .

. .

.( )P 0 4970 0 5034
0 5030 0 4966r d1,

�e probabilities between the driver and responder 2 are similar to those between the driver and responder 
1. �e mutual information between the driver and responder 1 calculates as Ir1;d =  7.3 · 10−7, showing that in 
the event an eavesdropper is able to obtain the r-intervals, still very little information can be obtained from the 
in-channel key about the responder key.

The random bits were divided in 55 sequences of 400.000 bits each. We tested these sequences with the 
National Institute of standards test suite for random bit streams25. In Table 1, we shows the results. Where a test 
has more than one result, the worst result is shown. �e results �le states that the minimum pass rate for each 
statistical test, with the exception of the random excursion (variant) test, is approximately 52 for a sample size of 
55 binary sequences. �e minimum pass rate for the random excursion (variant) test is approximately 21 for a 

Uniformity P-value Pass Ratio Test

0.181557 54/55 Frequency

0.025193 55/55 BlockFrequency

0.048716 54/55 CumulativeSums

0.595549 55/55 Runs

0.678686 55/55 LongestRun

0.554420 55/55 Rank

0.304126 54/55 FFT

0.678686 52/55 NonOverlappingTemplate

0.021999 55/55 OverlappingTemplate

0.366918 55/55 Universal

0.249284 55/55 ApproximateEntropy

0.186566 23/23 RandomExcursions

0.105618 23/23 RandomExcursionsVariant

0.637119 55/55 Serial

0.042808 54/55 LinearComplexity

Table 1.  Results from the NIST randomness test suite, for the testing of 22 million bits obtained with the 
delayed comparison bit generation method.

Figure 11. Encryption and decryption scheme, demonstrated using the Lena image as message. Full scale 
images are found in Fig. 12.
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sample size of 23 binary sequences. We conclude that the bits generated by the delay comparison method show 
no signs of deviation from randomness.

Demonstration On Lena
We demonstrate our encryption scheme on the “Lena” test image, as shown in Fig. 11. �is grayscale version 
of the image consists of 512 ×  512 8-bit pixels. �e source image ①  is encrypted with the signal of responder 1 
transformed to a bitstream as described before, using an exclusive-or operation, indicated by the symbol ⊗  in the 
�gure. �is is equivalent to a modulo-2 addition. �e exclusive-or based encryption is known to be vulnerable 
to a plaintext-attack. If the message is longer than the key and the same key is used repetitively, a known plain-
text together with the encrypted message can readily reveal the key. However, in our case the key is generated 
on-the-�y and used only once, such that this scheme is equivalent to a Vernam cypher or one-time-pad encryp-
tion. Since the bits of the message and the key are independent random variables, the probability of a ‘1’-bit 
occurring in the encrypted message is:

= = = = + = =

= = = + = =

= = + = =

P P P

P P P P

P P

{encrypted 1} {message 1 and key 0} {message 0 and key 1}

{message 1} {key 0} {message 0} {key 1}

{message 1}
1

2
{message 0}

1

2

1

2
,

(19)

and likewise P{encrypted =  0} =  1/2. �us the encrypted message is a seemingly random bitseries, showing no 
information about the message or the key. �e encrypted message and the key are both transmitted to the receiver 
over the public channel. It is important that the relative phases of the key and message remain the same, once 
these signals reach the receiver side. In practice, this is straightforward to achieve by using established telecom-
munication techniques such as digitization and framing or packaging. �e driver or key signal drives responder 2 
in synchronization with responder 1. �e bitstream derived from the signal of responder 2 is then used to decrypt 
the message ② , again by means of an exclusive-or operation. Some small artefacts are visible in the decrypted 
image, because the synchronization between the responder signals in this proof-of-concept demonstration is 
not perfect. Since the bit error rate is close to 0.025, an 8-bit pixel will have a probability of (1–0.025)8 ≈  0.82 
to be �awless. However, not all bit errors will result in visible pixel errors. Apart from extra error correction, 
we suggest methods for further improvement on this �gure in the discussions section of this paper. Due to the 
unencrypted message and the responder’s bitstream being statistically independent, the encrypted message ③  is 
also a balanced bitstream with the same properties as the key. �e message cannot be decrypted properly by an 
eavesdropper using the key found in the public channel, due to the uncorrelated nature of these bitstreams ④ . In 
Fig. 12, we show the encrypted and decrypted messages again in a larger format for reference.

A Possible Attack Using A Basis Splines Volterra Series
A possible �rst step in an attack on this encryption method would be to try to perform a system identi�cation, 
using a set of known driver and responder signals. Note that for this method to work, an attacker needs to some-
how obtain the responder signal which is not present in the channel. An up to date method for �nding gener-
alized synchronization between signals, i.e. showing how one signal is in some deterministic way derived from 
another, is given in ref. 26. �e method is called the Functional Synchrony Model (FSM). Within the framework 
of FSM, a system F which transforms an input signal x(t) for t =  1 …  N to an output signal y(t) =  F[x](t) is mod-
eled as a Volterra series of order n. Here the input x would be the driver signal and the output y the responder sig-
nal, with F the transformation performed by the responder system. �e estimated output signal yE(t) is a sum of 
Volterra functionals. In ref. 26, the basis B consists of M cubic b-splines. �ese span a vector space of third-order 
piecewise polynomials with smooth nonlinearities, uniquely determined by a knot sequence τM on the memory 
interval [0, M]. Once a knot sequence is chosen, the spline functions are fully speci�ed and can be built using the 
de Boor algorithm27. If the knots are uniformly spaced, the b-splines are simply shi�ed copies of each other and 
called cardinal b-splines. In ref. 26 both uniformly and nonuniformly spaced knots are used, the latter chosen to 
support maxima in the cross-correlation of the timeseries x and y.

Figure 12. Close ups of the encrypted and decrypted messages of Fig. 11: (a) original unencrypted message ①, 
(b) encrypted message ③, (c) decrypted message at receiver end ②, (d) in-channel decrypted message obtained 
by the eavesdropper ④ .
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�e �nal model is linear with respect to the coe�cients that make up the sum of the covariates. �is can be solved 
by any number of methods. In ref. 26, elastic net regularization is used, which is further explained in ref. 28. �is 
method seeks the coe�cients â for which:

βλ β λ= − Φ + + −ˆ ( )y xa a a aarg min ( ) (1 ) ,
(20)a

2 1 2

with |·|1 the L1-norm and |·|2 the L2-norm. For β =  0 this is a ridge regression, placing a penalty on large coe�-
cients to avoid over�tting. Choosing β =  1 yields a lasso regression, resulting into a sparse set of nonzero coe�-
cients. With a β parameter between one and zero, both properties can be obtained, resulting in the selection of the 
most important features in the data, while at the same time assuring the model generalizes well. Parameter λ 
regulates the severity of the penalty. �e level of accuracy of the resulting model is measured using the NRMSE 
Eq. (5) and the Pearson correlation coe�cient p

y y,
E

:

σ σ

=p
y yCov[ , ]

,
(21)

y y
E

y y
,

E

E

with  µ µ= − −y y y yCov[ , ] [( )( )]
E y E y

E

, the covariance between the ideal and the estimated model output. 

�e evaluation of the model is applied on a separate validation data set.
We implemented the above FSM scheme in a Python script, which was verified using the following 

Mackey-Glass system:

ξ
ξ τ

ξ τ
ξ τ=

−

+ −

− = t
t

t
t( )

2 ( )

1 ( )
( ), 300,

(22)
9

System Mackey-Glass, Eq. (22)

sample size 30000

sampling interval 0.1

n 2

M 28

knots interval 350, uniform

β 0.99

λ 5.5 ×  10−7

covariates 435

nonzero coe�cients 158

p
y,yE 0.966

NRMSE 0.2587

Table 2.  Parameters and results for the veri�cation of our implementation of the FSM model on the 
Mackey-Glass system of Eq. (22).

Figure 13. (a) Mackey-Glass embedding x(t) =  ξ(t −  τ) vs. y(t) =  ξ(t) used for testing the FSM. (b) Scatter plot 
of desired signal y(t) vs. estimated signal yE(t) using a second order FSM, with parameters as in Table 2.
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as in ref. 26, where it is shown that a single transformation x(t) =  ξ(t −  τ) →  y =  ξ(t) can be predicted with Pearson 
correlation coe�cient that is close to unity. Table 2 states the parameters we used, and the resulting Pearson corre-
lation coe�cient. Figure 13a shows the input and desired output signal. Figure 13b shows a scatter plot of the FSM 
estimated signal vs. the desired signal, which is very much in line with what is found in ref. 26. �is also indicates 
that a single MG-like transformation is not safe for encryption purposes.

We applied the FSM methodology, with the sampled driver signal vd as input and the responder signal vr1 as 
output, in an attempt to characterize Eq. (4). �e responder signals decay in about one millisecond or 250 sam-
ples at the chosen sampling rate. �erefore, we chose the spline window to be 400 samples to cover this interval. 
Table 3 states the parameters for the best results we could obtain, while keeping the computation time reasonable. 
We applied a nonuniform knot sequence, where the knots support the highest maxima of the cross-correlation 
of the driver and responder signals in the given window. Using a third-order approach results in 3276 covariates. 
�e 25 b-splines are shown in Fig. 14a. As is clear from the scatter plot, Fig. 14b, the estimated responder signal 
vr1,E bears little resemblance to the actual signal vr1. �e time needed to determine the coe�cients from a training 
time series of 30000 samples and building the testing time series of 1 million samples, was well over ten hours on 
an Intel dual-core laptop working at 2.4 GHz. A fourth order FSM with 25 b-splines would have 23751 covariates. 
We estimate that the training alone would take several days and, as suggested in ref. 26, any gain in information is 
easily negated by increasing the number of NLBs in the responders.

Even if the responder signal could be e�ectively predicted from the driver signal, an attacker would somehow 
still need to obtain the r-intervals used in the delayed comparison method to calculate the bit series. Note these 
intervals may be hardwired in the responders before deployment to the �eld and made to be even unknown to 
the manufacturer. We have generated the bit series resulting from the estimated responder time series, under the 
assumption that the attacker somehow got hold of these intervals and compared these to the bit series generated 
from the actual responder signal. �e sample size was 14318 bits. �e resulting conditional probabilities show 
little correlation:

System 4 NLBs responder, Eq. (4)

sample size 30000 �tting, 100 ×  10000 testing

sampling interval 4

n 3

M 25

knots interval 400 samples, non-uniform

β 0.99

λ 1.35 ×  10−4

covariates 3276

nonzero coe�cients 3259

p
r1,r1E 0.1328 ±  0.0048

NRMSE 1.452

Table 3.  Parameters and results for responder system identi�cation, using the driver and responder 1 
signals.

Figure 14. (a) �e 25 b-splines used as basis functions for detecting synchronization between driver and 
responder signals. (b) Scatter plot of FSM estimated responder signal for four NLBs in the responder chain. �e 
parameters are stated in Table 3.
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which is what we expected, given the low correlation between the estimated and real responder signal.

Discussion
A new method for distributing encryption keys based on synchronization of driven chaotic systems has been pre-
sented. �e resulting keys have passed the NIST test suite, showing no distinction from a true random bit series. 
�e keys have the same length as the message and the encryption is done by using an exclusive-or operation. 
�erefore, the encryption/decryption scheme is similar to a Vernam cipher, which is proven to be unbreakable, 
given that the eavesdropper has no information about the key. �e key is used only once and has the same length 
as the message.

We have demonstrated a proof-of-concept setup, based on an analog electronic system. The 
responder-responder synchronization is not perfect, as expected for a circuit that is made with discrete com-
ponents. Nevertheless, the viability of the concept has clearly been shown. More sophisticated implementations 
could use delay coupled driven digital iterated maps. �ese can be directly implemented on a �eld programmable 
gate array or application speci�c integrated circuit. In previous unpublished experiments, we used six NLBs in the 
driver and three NLBs in each responder. However this was found to be insu�cient to obtain the near-noise like 
auto-correlation in the driver. A fully digital implementation could easily contain even more NLBs.

Another method to obtain closely matched responder signals is to construct the analog responder circuits 
on a single integrated circuit wafer, which is cut a�er production. In this way, naturally occurring or deliberately 
induced process variations can be harnessed to produce truly unique systems. �e driver signal can then be 
transmitted over a digital network, utilizing the error correction facilities already present, and converted back to 
analog right before entering the responder circuits. �e downside of this setup would be that failure of a device on 
one end necessitates replacement on both ends.

A possible attack using a state-of-the-art synchronization detection method aimed at mimicking the 
responder system has been shown to be ine�ective. In addition, the delayed comparison method for generating 
random bits inherently o�ers a second layer of safety through the unknown values and number of r-intervals. An 
attacker would need an estimate of the r-intervals close to the number of samples equalling the width of central 
peak in the driver auto-correlation. It is clear that increasing the number of NLBs and r-factors beyond what 
has been demonstrated here, leads to an increasingly complex signal transformation and thus a higher degree 
of con�dentiality against these kind of attacks. �e connection between the di�erence of two r-intervals and the 
resulting di�erence in bitstreams is still to be investigated. Note that since the r-values are easily recon�gured 
at runtime, this system could provide addressable decryption capabilities to multiple connected receivers. �e 
concept and method presented in this manuscript is suitable for photonic implementations, compatible with cur-
rent telecom infrastructures. As optical implementations, the system can e.g. be developed using electro-optical 
systems, which were originally proposed by Neyer and Voges29. A good overview of these systems is given by 
Larger30. �e �rst application of an electro-optical system to chaos encryption was shown by Goedgebuer et al.31. 
�is system uses a nonlinear delay feedback loop illuminated by a CW semiconductor laser. �e nonlinearity 
is implemented through a Mach-Zehnder modulator, which is a customized integrated optics telecom device. 
While having good stability and controllability in real conditions, it also has architectural �exibility so that some 
components can be replaced to change speed, noise, e�ciency etc. or to modify the architecture (additional 
delays, transformations etc.). An alternative setup used for generating phase chaos can also be used. In this sys-
tem, the intensity modulator MZM is replaced by two other devices, namely a fast phase modulator (PM) and an 
imbalanced passive Mach-Zehnder interferometer (MZI), with the time imbalance longer than the characteristic 
time of the phase modulation. �e dynamics of both systems are Ikeda-like and exhibit similar synchronization 
properties to the electronic circuits studied here13.
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