Encryption methods based on combinatorial designs

Dinesh G. Sarvate
Jennifer Seberry
University of Wollongong, jennie@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers
Part of the Physical Sciences and Mathematics Commons

Recommended Citation

Sarvate, Dinesh G. and Seberry, Jennifer: Encryption methods based on combinatorial designs 1986. https://ro.uow.edu.au/infopapers/1019

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

Encryption methods based on combinatorial designs

Abstract

We explore the use of some combinatorial designs for possible use as secret codes. We are motivated to use designs as (1) combinatorial designs are often hard to find, (2) the algorithms for encryption ond decryption are of reasonable length, (3) combinatorial designs have very large numbers of designs in each equivalence class lending themselves readily to selection using a secret key.

\section*{Disciplines}

Physical Sciences and Mathematics

\section*{Publication Details}

Sarvate, DG and Seberry, J, Encryption methods based on combinatorial designs Ars Combinatoria, 21A, 1986, 237-246.

Encryption Methods Based on Combinatorial Designs

 Dinesh G. Sarvate and Jennifer Seberry

 Dinesh G. Sarvate and Jennifer Seberry
 Besser Department of Computer Science, University of Sydney
 NSW, 2006,
 Australis

Abstract

.

We explore the use of some combinotorial designs for possible use as secret codes. We are motivated to use designs os (1) combinotorial designs are often hard to find, (2) the olgorithms for encryption and decryption are of reasonable length, (3) combinotoriol designs hove very large numbers of designs in each equivalence class lending themselves reodily to selection using o secret key.

1. Introduction.

We explore some possible ways combinatorial designs might be used as secret codes. We hope our ideas will encourage much more research into applications of combinatorial cryptogrophy. Cryptosecurity con be enhanced by using different methods for producing sequence of random permutotions (see Sloone[1983]) and also by permuting the encoded messoge with a random permutotion using o secret key (see Ayoub (1981)).

Where we have considered combinatorial designs which ore well known we refer the reader to standord texts such of Holl [1967], Raghavara0 [1971] or Wallis,Street and Wallis[1972] for definitians and constructions. For less frequently used or less well known designs o definition or reference is given.

All these methods lend themselves to further opacity if random number generators (an excellent survey can be found in Sloane[1983]) are used to apply permutations at any or all stages of encryption.

2. Encryption method using mutually orthogonal Latin

 Squores.Suppose we hove o set of k mutually orthogonal latin squares of order n. A key is used which chooses o poir of the k-set ot rondom. Encryption is now ochived by tronsmitting for massoge i, j the i, j th position of the selected poir of orthogonal squares.

Example. The following are three 4×4 mutuolly orthogonal matrices:

1234	1234	1234
2143	$B=4321$	$C=3412$
3412	2143	4321
4321	3412	2143

Suppose the key chooses the third and first latin squares. Then to transmit the message 1,4 we send the $(1,4)$ th element of the third and first latin squares i.e. 4,4.

Decryption is achieved by looking of which row ond columns of the squares contain the poir 4,4 ond that is the $(1,4)$ th position.

Extro security is ensured by
(o) permutotions of the rows and columns of the lotin squares as o set,
(b) permutations of the elements within one or more of the latin squares,
(c) the key con change the pair of lotin squares used ofter every two byte message if needed,
(d) the key con olter the size of the pairs of the latin squeres being used ofter every two byte messoge if needed,
(e) the key can be used to choose onother inequivalent and non-isomorphic poir ot any stage

Mutually orthogonal latin squares of size n can used to send any of the n^{2} possible two byte messoges.

Longer messages use arthaganal f-squares and n-dimensianal arrays.

We illustrote vio on exomple. Suppose A, B, C ore, os before, poirwise mutually orthogonal latin squares then

$A_{1}=A A$	$B_{1}=B E$	$c_{1}=12342143$
A A	B B	34124321
		43213412
		21431234
		34124321
		12342143
		21431234
		43213412

ore mutually orthogonal in the sense that each of the 4^{3} messages from o 4-ary alphabet occur in the position i, j position of A_{1}, B_{1}, C_{1}. For example, the message $1,4,3$ occurs in the 2,6 position

This process of adding more mutually orthogonal faces to a higher dimentional array allows
(a) a key to be used to choose any subset of the faces of the array,
(b) the rows and columns of the faces to be permuted,
(c) the elements of the faces to be permuted.
(d) compression of the messoge,
(e) the key to be used to choose inequivalent higher dimensional arrays at any stage of the encryption process

3. Encryption methods using Room squares.

faom squares can also be used to send messages in a foshion similar to that described for latin squares. As currently defined not all messages are available. For example consider the Room square

```
014527 - 36 - -
- 025631 - 47 -
- -036742 - 52
62 - 047153 -
- 73-75 1264
75-14 - - 0623
3416 - 25 - - 07
```

The situation becomes o little better for encryption if we note this exomple is of o skew Room square ond so if the i, j entry is empty the j, i entry, $i x j$ is not.Thus we con send ony messoge.

Example. Use the modified Room square

11	45	27	-	36	-	-
-	22	56	31	-	47	-
-	-	33	67	42	-	51
62	-	-	44	71	53	-
-73	-	-	55	12	64	
75	-	14	-	-	66	23
34	16	-	25	-	-	77

Then to encode the message 76 we observe 67 in the 3,4 th position and send 43.

All the permutations that were previousily used for the latin squares can still be used.

We note further that the Room square of the example is constructed using the storter-adder technique and each element con be found from the first row

```
114527 - 36 - -
```

so that if the $1, j$ element is x, y the $i, j+i-1$ element (with $j+i-1$ reduced $\bmod n$, the size of the Room square) is $x+i-1, y+i-1$ where $x+i-1$ and $y+i-1$ ore reduced $\bmod n$, but $n=n(\bmod n)$.

The differences between the elements of the first row are all different so to encipher 76 we first note thot $6-7=-1$ and 45 has difference 1 hence 76 can also be encrypted by $-1,2$ meaning
(a) start with the pair distance 1 aport,
(b) add two to both,
(c) reverse the order.

Thus to decode $-2,4$ we note 7 and 2 are -2 appart and so decode as 64.

To encrypt longer messages the higher dimensionsi onlogues of skew Room squares are most useful.

4. Designs with two way elimination of heterogeneity.

These designs were first studied in connection with estimating tobocco mosoic virus by Youden(1937] and hove subsequently been studied by 0 number of outhors including Agrawal [1966i,ii], Agrowal and

Mishra[1971] Preece[1966i, ii], Seberryl1979i], Street[1981], Sterling and Wormald 1976]. A number of infinite families os well os one-off exomples ore known.

These designs comprise two designs with parameters ($v_{1}, b, r_{1}, k, \lambda_{1}$) ond ($r_{1}, b, v_{1}, k, \lambda_{2}$), such that the incidence matrices N_{1} and N_{2} of the designs satisfy the additional property

$$
N_{1} N_{2}^{\top}=k J .
$$

Example. Let the designs have the parameters

$$
v_{1}=r_{2}=9, r_{1}=v_{2}=4, b=12, k=3
$$

and treatments $A, B, C, D, E, F, G, H, I$ and a, D, C, d respectively.
The two way design is

Note that the blocks of N_{2} are
$b, c, b, a, a, a, d, d, b, c, b, c$
$c d c d c d a \theta a b c b$
dbdcdcbbdaaa
The design N_{1} has blocks
$A, D, G, A, B, C, A, B, C, A, B, C$
BEHDEFFDEEFD
CFIGHIHIGIGH
The two-way design is
$A b \cdot D c . G b A a B a C a A d B d C b A c B C D C$
Bc Ed Hc Dd Ec Fo Fa Da Ea Ed fc Db
Cd Fb id Gc Holc Hb lo Gd lo Go Ho

There are o number of encryption methods possible using these designs.
(1) the treatment of N_{1} is sent to indicate the message given by the r_{1}-tuple of treatments of N_{2} associated with that treatment.

In the obove example sending F would actually send the message (b, d, a, c).
(2) the block of N_{1} is sent to indicate the message given by the k_{2}-tuple of treatments of N_{2} associated with that block.

In the example sending 5 would octually send the message (a, c, d).
(3) A pair of treatments of N_{1} ore sent. Since N_{1} is a block design ony pair of treatments occur in λ_{1} blocks and the message is those pairs (in the order given by the treatments of N_{1}).

In the example sending $A G$ actually sends the message oc, where GA sends co.

Now o secret key can be used to
(o) permute the rows of the two-woy designs,
(b) permute the columns of the two-way design,
(c) permute the treatments of the secand design,
(d) permute the blocks of the second design.

The odvontoges of using such designs are
(a) messoge compression,
(b) eose of decoding/encoding,
(c) if used in reverse it is asymmetric,
(d) the reverse procedure con combine encryption with error correction,
(e) these designs are hard to find even before permutations are used on them.

5. Crypto and coloured designs.

Some designs exist which may be more useful for encryption method 3 of the previous section. For exomple in the following desigri on five symbols every poir of elements $(x, y), x, y \in\{0, b, c, d, e)$ occurs os on intersection of some poir of rows.

A	a	b	c		
B	a		$d e$		
C	b			e	
D	b	b	a		
E	c		a	e	
F		c	d	c	
G		d	d		b

So to send say (a, c) we send DC but to send ($e, 0$) we send CD. All the permutotions that con be effected by the secret key are ovailoble.

Similar designs where pairs (or t-tuples) occur exactly once in o row or column have not been widely studied and offer a fruitful area of reseorch.

Cryptodesigns with the less restrictive condition that every element occurs once in o row (so every row is on r-tuple) but each element in column is different ore colled calaured designs ond have proved extremely useful in constructing new BIBDs and SBIBDs(see Seberry(1985ii), Sarvate and Seberry(1985) and de Launey and Seberry(1985).).

6. Encryption method using ordered designs.

The method described in this section is for encrypting on k-ary message by using combinatorial designs with blocks, whose elements are ordered. We encrypt a message of length t into o message of length 2, in other words we compress the message.

Example of such designs are modified directed bolanced incomplete block designs i.e. DBIBD (see Seberry ond Skillicorn [1980], Street ond Wilson[1980], Colbourn ond Colbourn[1984]), cyclic BIBD (see Colbourn and Colbourn(1984)) and directed packings (see Skillicorn and R.G.Stonton 1982], Dowson, Seberry, and Skillicorn [1984]) aver v treatments, $v \geq k$. The method can be easily extended to unordered designs.

Crucial abservation of a $D D(t, k, y)$ where k-ary olphabet is used in blocks of size v where each ordered t-tuple occurs at least once, is that if we number $n_{1}, n_{2}, \ldots, n_{s}$, the $s=\binom{v}{t}$ ways of selecting ot-tuple from the block. Then any t-digit message can be sent by transmitting two symbols the first giving the block number and the second the number n_{0} which corresponds to the required t-tuple.

The sender needs 8 large dictionary the receiver needs only a list of the blocks and the way of choosing the $n_{i}{ }^{\text {th }} t$-tuple from each block.

This method has advantages of
(1) message compression of a high order
(2) small storage and time needed for decryption.

For example, in transmission to space-shuttles, undersea activities or other remote receivers.

Example: Let the messoge be oob dcc odc. Suppose we use the following design, $\operatorname{DD}(3,4,4)$ together with 14 extra blocks to cover all the possible triples.

$$
\begin{aligned}
& \mathrm{DD}(3,4,4): \quad \mathrm{B}_{1}=\mathrm{abcd} \quad \mathrm{~B}_{2}=\mathrm{badc} \quad \mathrm{~B}_{3}=\mathrm{cadb} \\
& B_{4}=d a c b \quad B_{5}=d \text { bca } \quad B_{6}=c \operatorname{cda} \\
& \text { Extrablocks: } B_{7}=0 \mathrm{bab} \quad B_{8}=0 \mathrm{coc} \quad B_{9}=0 \mathrm{dod} \\
& B_{10}=b c b c \quad B_{11}=b d b d \quad B_{12}=c d c d \\
& B_{13}=0000 \quad B_{14}=b c b D \quad B_{15}=C d C c \\
& B_{16}=d d o d \quad B_{17}=d b b o \quad B_{18}=c d o a \\
& B_{19}=c c a b \quad B_{20}=d d b c
\end{aligned}
$$

Suppose n_{1} indicates we should choose positions 123 of the block, n_{2}, n_{3}, n_{4} indicete choosing positions 124, 134, 234 respectively of the block. Then since sab is found in 8_{7}, 8ab is encoded as $7, n_{3}$ dcc is encoded $15, n_{4}$ and odc is encoded $2, n_{4}$.

This design is not optimal in the sense that many pairs and triples occur 2 and 3 times. Optimal solutions where each possible t-tuple occurs and the fewest number of blocks used would be of great interest.

7. A practical Method.

An interesting application of the Rubic cube, in games or teaching, is when the message is of length less then or equal to 54 units. The sender and the receiver know how to read the message on the cube. The sender applies operations $P_{1}, P_{2}, \ldots P_{n}$ and sends the cube via o messenger. The receiver applies $P_{n}{ }^{-1}, \ldots, P_{i}^{-1}$ and recovers the message.

References:

Agrawal, H.L.(1966i), same Hethads af canstruction af designs far tha way eliminotion of heterageneitly, I. J. Amer. Statist. Assoc.,61,1153-1171.

Agrowal, H.L(1966ii), some systemotic methads of construction at designs far the-stoy elimination af heterageneity, Calcutta Statist. Assoc. Bull., 15, 93-108.

Agrawal, H.L. and Mishra, RI(1971), same methads of canstruction of $4 D / B$ designs, Calcutta Statist. Assoc. Bull., 20, 89-92.

Ayoub, F(1981), Encryptian with keyed rondam fermutotions, Electronics Letters, 17, 583-585.

Bose, R.C.(1942), A Nate an the resalvohility of nolonced incamplete tlack designs, Sankhya, 6, 105-110.

Colbourn, C.J. and Colbourn, M. J.(1984), Every two-fald triple system con he directed, J . Combinatorial Theory, $\mathrm{A}, 34,375-378$.

Colbourn,M.J. and Colbourn,C.J.(1984), Recursive canstructians for cyelic designs, J.Stot.Plon and Inf., 10, 97-103.

Dowson, JE. ,Seberry, J. and Skillicorn, D.B.(1984), The directed pocking numbers DDit.v.v). t24, Combinatorica, 4, (2-3) 121-130.

Hall, M. Jr.(1967), Cambinatarial Theary. Ginn (Bloisdell), Boston.

Hess, P. and Wirl, K.(1983), A vaice scrombling system for testing and demanstrotian. Cryptography, Lecture notes in Computer Science, Springer-Verlag(Berlin), Edited T.Beth, 149, 14, 156 .

Louney, W.de and Seberry J. (1985), New group divisible designs obtained via matrices associated with generalized Hadamord matrices, (preprint)

Preece, D.A.(1966i), same ram ond calumn designs for twa sets af treotments, Biometrics,22,1-25.

Preece, D.A.(1966ii), same nolonced incamplete thack designs far ttra sets of treotments, Biometrika, 53,497-506.

Raghavrao, D.(1971), Canstruction and cambinatarial Frablems in Design of Esperiments, John Wiley, New York.

Sorvote D.G. ond Seberry J.(1985) Colourable designs and new group divisible designs, (preprint).

Seberry, J(1979i), A nate an arthaganal groera-latin designs, Ars Combinotoris, 8, 85-94.

Seberry, J.(1985ii) Generalized Hadamord matrices in the construction of regular GDDs with two and three associate classes (preprint)

Seberry, J and Skillicorn, D.B.(1980), All directed B/ADS +ith $k^{\prime}=5$ eajist, J. Combinatorial Theory, A, 29, 244-248.

Skillicorn, D.B.and Stanton, R.G.(1982), The directed packing numthers DD(t, $v, \psi)$. Proceedings of the Eleventh Manitobe Conference on Numerical Mathematics and Computing, Winnipeg, Manitoba,1981. Congressus Numerantium, 34, 247-252.

Sloane, N.J.A.(1983), Encryating by random rotations, Cryptography, Lecture notes in Computer Science Springer-Verlag(Berlin), Edited by T.Beth, 149, 71-127.

Sterling, L.S. and Wormald, N.(1976), A remark an the construction af designs far tia-troy eliminatian of heterogenejty, Bull. Austrol. Moth. Soc., 14, 383-388.

Street, D. and Seberry, J.(1980), All DB/BDs rith hlack size faur esist, Utilitas Mathematico, 18, 27-34.

Street, D.(1981), Graeco lotin and nested row ond calumn designs. Combinotorial Mathematics VIII, edited by K.L.McAvoney, Vol. 684, Lecture Notes in Mothematics, Springer-Verlog, Berlin-HeidelbergNew York, 304-313.

Street, D. and Wilson, W(1980), an directed nolonced incomplete black designs with black sire five Utilitas Mathematica, 16, 161-174.

Wallis, W. D: , Street, A.P. and Wollis Seberry, J.(1972), Cambinotarics, Lecture Notes in Mothemotics, vol 292, Springer Verlog, Berlin-Heidelberg-New York.

Youden, W.J.(1937), Lse at incomplete black replicotions in estimoting tabacco masoic virus, Contributions from Boyce Thompson Institute, 9, 41-48.

