
Encryption Policies for Regulating Access to
Outsourced Data

SABRINA DE CAPITANI DI VIMERCATI, SARA FORESTI

Università degli Studi di Milano

SUSHIL JAJODIA

George Mason University

STEFANO PARABOSCHI

Università degli Studi di Bergamo

and

PIERANGELA SAMARATI

Università degli Studi di Milano

Current access control models typically assume that resources are under the strict custody of a
trusted party, which monitors each access request to verify if it is compliant with the specified ac-
cess control policy. There are many scenarios where this approach is becoming no longer adequate.
Many clear trends in Web technology are creating a need for owners of sensitive information to
manage access to it by legitimate users using the services of honest but curious third parties, that
is, parties trusted with providing the required service but not authorized to read the actual data
content. In this scenario, the data owner encrypts the data before outsourcing and stores them
at the server. Only the data owner and users with knowledge of the key will be able to decrypt
the data. Possible access authorizations are to be enforced by the owner. In this paper, we ad-
dress the problem of enforcing selective access on outsourced data without need of involving the
owner in the access control process. The solution puts forward a novel approach that combines
cryptography with authorizations, thus enforcing access control via selective encryption. The pa-
per presents a formal model for access control management and illustrates how an authorization
policy can be translated into an equivalent encryption policy while minimizing the amount of
keys and cryptographic tokens to be managed. The paper also introduces a two-layer encryption
approach that allows the data owner to outsource, besides the data, the complete management
of the authorization policy itself, thus providing efficiency and scalability in dealing with policy
updates. We also discuss experimental results showing that our approach is able to efficiently
manage complex scenarios.

This paper extends the previous work by the authors appeared under the title “Over-encryption:
Management of Access Control Evolution on Outsourced Data,” in Proc. of VLDB 2007, Sep.
2007, Vienna, Austria [De Capitani di Vimercati et al. 2007].
This work was supported in part by the EU within the FP7 under grant 216483 “PrimeLife”; by
NSF grants CT-20013A, CT-0716567, CT-0716323, and CT-0627493; by AFOSR grants FA9550-
07-1-0527, FA9550-09-1-0421, and FA9550-08-1-0157; and by ARO grant W911NF-09-01-0352.
Authors’ addresses: S. De Capitani di Vimercati, S. Foresti, P. Samarati, Università degli Studi
di Milano, 26013 Crema, Italy, email: {firstname.lastname}@unimi.it; S. Jajodia, George Mason
University, Fairfax, VA 22030-4444, USA, email: jajodia@gmu.edu; S. Paraboschi, Università degli
Studi di Bergamo, 24044 Dalmine, Italy, email: parabosc@unibg.it.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0362-5915/20YY/0300-0001 $5.00

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY, Pages 1–45.

Sara
Line

2 · S. De Capitani di Vimercati et al.

Categories and Subject Descriptors: H.2.7 [Database Management]: Database Administra-
tion—Security, integrity, and protection; D.4.6 [Operating System]: Security and Protection—
Access Control; K.6.5 [Management of Computing and Information Systems]: Security
and Protection

General Terms: Security, Design, Management

Additional Key Words and Phrases: Data outsourcing, encryption policy, privacy

1. INTRODUCTION

Contrary to the vision of a few years ago, where many predicted that Internet users
would have in a short time exploited the availability of pervasive high-bandwidth
network connections to activate their own servers, users are today, with increasing
frequency, resorting to service providers for disseminating and sharing resources
they want to make available to others. This trend supports the view that service
providers will be more and more requested to be responsible for the storage and the
efficient and reliable distribution of content produced by others, realizing a “data
outsourcing” architecture on a wide scale. The situation is particularly clear when
we look at the success of services like YouTube, Flickr, Blogger, MySpace. These
services typically assume that the server has complete access to the stored resources
and therefore have limited use for all those scenarios where the server cannot be
granted such an access. In many applications, in fact, the server is considered
honest but curious, that is, is relied upon for the availability of outsourced data
but is not authorized to see the actual data content. The most convincing and
emerging solutions for these scenarios assume that the data owner encrypts data
before sending them to the server for storage and gives the corresponding key to
users authorized to access the data (see Figure 1). In this way, the confidentiality
of information does not rely on an implicit assumption of trust on the server or on
the legal protection offered by specific service contracts, but instead relies on the
technical guarantees provided by encryption techniques. Typically, these solutions
[Ceselli et al. 2005; Hacigümüs et al. 2002(a); Hacigümüs et al. 2002(b)] focus on the
problem of executing queries directly on the encrypted data by exploiting associated
metadata and do not explicitly address the problem of supporting different keys or
different access privileges (authorizations) for different users.

In this paper, we present an approach to allow selective access to encrypted out-
sourced data by users. The basic idea behind our approach is to integrate access
control and encryption, thus encrypting the data to be outsourced with different
keys depending on the authorizations to be enforced on the data. Although it
is usually advisable to leave authorization-based access control and cryptographic
protections separate, as encryption is traditionally considered a mechanism and
should not be adopted in model definition [Samarati and De Capitani di Vimercati
2001], such a combination proves successful and powerful in the data outsourcing
scenario. In particular, since neither the data owner nor the remote server can en-
force the authorization policy, for either efficiency or security reasons, respectively,
implementing selective access via the stored data themselves appears promising.
The idea of applying encryption in a selective way depending on the authorizations
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Encryption Policies for Regulating Access to Outsourced Data · 3

User

encrypted resources

encrypted resources

ke
y

request

R

Data Owner

Server

MetadataRE

Fig. 1. Outsourcing scenario

holding on data is in itself not new and has been investigated in the context of
XML documents, where different keys can be used to encrypt different portions of
the XML tree [Miklau and Suciu 2003; XML Encryption Syntax and Processing
2002]. The solutions developed in this context have investigated the management
of multiple keys within a single documents but have not addressed the problems re-
lated to the definition, management, and evolution of the authorization policy, and
therefore of the corresponding encryption, which are the focus and contributions of
our work.

The goal of our solution is to translate an authorization policy to be enforced in
an equivalent encryption policy regulating which data are encrypted with which key
and regulating key release to users. We are guided by the principles of releasing
at most one key to each user, and encrypting each resource at most once. To
achieve them, we exploit a hierarchical organization of keys allowing the derivation
of keys from other keys and public tokens [Akl and Taylor 1983; Atallah et al.
2005; Crampton et al. 2006; Sandhu 1987]. Our goal is then to minimize the
number of tokens to be generated and maintained. We also address the problem
of enforcing updates to the authorization policy while limiting the cost in terms of
bandwidth and computational power (providing a two layer approach that avoids
the need for the owner to download the affected resources, decrypt and re-encrypt
them, and reload their new versions). Our solution to this problem is particularly
appealing as it allows delegating to the server the complete management, not only
the enforcement, of the authorization policy. It is important to note that our basic
technique is independent from any specific data model and it does not rely on any
specific authorization language. In fact, the translation of the authorization policy
into a key derivation scheme is completely transparent to the owner. An important
strength of our solution is that it does not substitute the current proposals, rather
it complements them, enabling them to support encryption in a selective form and
easily enforce dynamic policy changes.

The contributions of this paper can be summarized as follows. First (Section 2
and Section 3), we propose a formal model for representing an authorization pol-
icy through an equivalent encryption policy . We also introduce the definition of
minimum encryption policy and we prove that the problem of computing a mini-
mum encryption policy is NP-Hard. Second (Section 4 and Section 5), we present a
heuristic algorithm for computing a minimal encryption policy equivalent to a given

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

4 · S. De Capitani di Vimercati et al.

authorization policy. We then describe how authorization policy changes can be
supported while leaving to the data owner the control on the authorization policy
management. Third (Section 6 and Section 7), building on the base model, we pro-
pose the use of a two-layer approach to outsource, besides the resource storage and
dissemination, the authorization policy management: the first layer of encryption
is applied by the data owner at initialization time (when releasing the resources for
outsourcing), the second layer of encryption is applied by the service itself to take
care of dynamic policy changes. We then characterize the different views of the
resources by different users and evaluate potential risks of information exposures
(Section 8). We also illustrate experimental results (Section 9) confirming the ben-
efits of our proposal in terms of token reduction and efficiency. Finally, we discuss
related work (Section 10) and give our concluding remarks (Section 11). The proofs
of the theorems and lemmas are reported in the electronic Appendix .

2. AUTHORIZATION AND ENCRYPTION POLICIES

In this section, we describe our model for expressing an authorization policy through
encryption and illustrate how users interact with the server to access the outsourced
data.

2.1 Authorization policy

We assume that the data owner defines a discretionary authorization policy to
regulate access to the outsourced resources, where a resource could be a file, a
relational table, or even a tuple within a relation. We assume access by users to the
outsourced resources to be read-only, while write operations are to be performed at
the owner’s site (typically by the owner itself). Note that write operations require
re-encryption and re-uploading of the involved resources on the server. Permissions
that need to be enforced through encryption are of the form 〈user,resource〉.1 Given
a set U of users and a set R of resources, we define an authorization policy over U
and R as follows.

Definition 2.1 Authorization policy. Let U and R be the set of users and re-
sources in the system, respectively. An authorization policy over U and R, denoted
A, is a triple 〈U ,R,P〉, where P is a set of permissions of the form 〈u , r 〉, with
u ∈ U and r ∈ R, stating the accesses to be allowed.

The set of permissions can be represented through an access matrix MA, with a
row for each user u ∈ U and a column for each resource r ∈ R [Samarati and De
Capitani di Vimercati 2001]. Each entry MA[u ,r] is set to 1 if u can access r ; it is
set to 0 otherwise. Given an access matrix MA over sets U and R, acl(r) denotes
the access control list of r (i.e., the set of users that can access r).

We model an authorization policy as a directed and bipartite graph GA having a
vertex for each user u ∈ U and for each resource r ∈ R, and an edge from u to r
for each permission 〈u , r 〉 ∈ P to be enforced. Since our modeling of the problem
and its solution will exploit graphs, we explicitly define GA as follows.

1For the sake of simplicity, we do not deal with the fact that permissions can be specified for groups
of users and groups of resources. Our approach supports dynamic grouping, thus subsuming any
statically defined group.

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Encryption Policies for Regulating Access to Outsourced Data · 5

r1 r2 r3 r4 r5 r6 r7 r8 r9
A 0 0 0 0 0 1 1 0 1
B 0 0 1 1 1 0 0 1 1
C 0 0 1 1 1 0 0 0 1
D 1 1 0 0 0 1 1 1 1
E 0 0 0 0 0 1 1 1 1
F 0 0 0 0 0 1 1 1 1

(a)

r1

A

ÂÂ?
??

??
??

??
??

??
??

??
??

??
?

¿¿8
88

88
88

88
88

88
88

88
88

88
88

88

»»1
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

1 r2

B

¿¿8
88

88
88

88
88

88
88

88
88

88
88

88

½½4
44

44
44

44
44

44
44

44
44

44
44

44
44

4 //

++WWWWWWWWWWWWWWW

''OOOOOOOOOOOOOOOO r3

C

¿¿8
88

88
88

88
88

88
88

88
88

88
88

88

33ggggggggggggggg //

++WWWWWWWWWWWWWWW r4

r5

D //

++WWWWWWWWWWWWWWW

''OOOOOOOOOOOOOOOO

##GGGGGGGGGGGGGGGGGG

BB§§§§§§§§§§§§§§§§§§§§§§§§§

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
r6

E

33ggggggggggggggg //

++WWWWWWWWWWWWWWW

''OOOOOOOOOOOOOOOO r7

F

77oooooooooooooooo

33ggggggggggggggg //

++WWWWWWWWWWWWWWW r8

r9

(b)

Fig. 2. An example of access matrix (a) and corresponding authorization policy graph (b)

Definition 2.2 Authorization policy graph. Let A = 〈U ,R,P〉 be an authoriza-
tion policy. The authorization policy graph overA, denoted GA, is a graph 〈VA, EA〉,
where VA = U ∪R and EA = {(u , r) | 〈u , r 〉 ∈ P}.

In the following, we will use A−→ to denote reachability of vertices in graph GA.
Consequently, we will use u A−→r and 〈u , r 〉 ∈ P indistinguishably to denote that
user u is authorized to access resource r according to policy A.

It is easy to see that access matrix MA corresponds to the bipartite adjacency
matrix of the authorization policy graph GA. Figure 2 illustrates an example of
authorization policy with 6 users, 9 resources, and 26 permissions, reporting the
access matrix and the corresponding authorization policy graph.

2.2 Encryption policy

Our goal is to represent the authorization policy by means of proper resource en-
cryption and key distribution. We assume, for efficiency reasons, to adopt sym-
metric encryption. A naive solution to our goal would consist in encrypting each
resource with a different key and assigning to each user the set of keys used to
encrypt the resources she can access. Such a solution is clearly unacceptable, since
it would require each user to manage as many keys as the number of resources she
is authorized to access.

To avoid users having to store and manage a huge number of (secret) keys, we
exploit a key derivation method . Basically, a key derivation method allows the com-
putation of a key starting from another key and some public information. Among
all the key derivation methods (e.g., [Akl and Taylor 1983; Atallah et al. 2005; Ate-
niese et al. 2006; Crampton et al. 2006; Gudes 1980; Harn and Lin 1990; Hwang and
Yang 2003; Liaw et al. 1989; MacKinnon et al. 1985; Sandhu 1987; 1988; De Santis
et al. 2004; Shen and Chen 2002]), the proposal in [Atallah et al. 2005] minimizes
the amount of re-encrypting and re-keying that must be done to enforce changes to

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

6 · S. De Capitani di Vimercati et al.

the authorization policy. The method is based on the definition and computation
of public tokens. Let K be the set of symmetric encryption keys in the system.
Given two keys k i and k j in K, a token ti,j is defined as ti,j=k j⊕h(k i,lj), where
lj is a publicly available label associated with k j , ⊕ is the bitwise xor operator,
and h is a deterministic cryptographic function. The existence of a public token
ti,j allows a user knowing k i to derive key k j through token ti,j and public label lj .
Since keys need to remain secret, while tokens are public, the use of tokens greatly
simplifies key management. Key derivation via tokens can be applied in chains: a
chain of tokens is a sequence ti,l. . . tn,j of tokens such that tc,d directly follows ta,b

in the chain only if b = c.
A major advantage of using tokens is that they are public and allow the user to

derive multiple encryption keys, while having to worry about a single one. Exploit-
ing tokens, the release to a user of a set K = {k1, . . . , kn} of keys can be equivalently
obtained by the release to the user of a single key k i∈K and the publication of a
set of tokens allowing the (direct or indirect) derivation of all keys k j∈K, j 6=i. In
the following, we use T to denote the set of tokens defined in the system and L to
denote the set of labels associated with the keys in K and used for computing the
tokens in T .

Since tokens are public information, we assume that they are stored on the remote
server (just like the encrypted data), so any user can access them. We model
the relationships between keys through tokens allowing derivation of one key from
another, via a graph, called the key and token graph. The graph has a vertex for
each pair 〈k , l 〉 of key k and corresponding label l . There is an edge from a vertex
〈k i, l i〉 to a vertex 〈k j , l j〉 if there exists a token ti,j allowing the derivation of k j

from k i. The graph is formally defined as follows.

Definition 2.3 Key and token graph. Let K be a set of keys, L be a set of publicly
available labels, and T be a set of tokens defined on them. A key and token graph
over K, L, and T , denoted GK,T , is a graph 〈VK,T , EK,T 〉, where VK,T ={〈k i, l i〉 |
k i ∈ K, l i ∈ L is the label associated with k i} and EK,T = {(〈k i, l i〉, 〈k j , l j〉) | ti,j ∈
T }.

The graphical representation of keys and tokens nicely captures the derivation
relationship between keys that can be either direct, by means of a single token, or
indirect, via a chain of tokens (corresponding to a path in the key and token graph).

The definition of tokens allows us to easily support the assumption that each
user can be released only a single key and that each resource can be encrypted by
using a single key. Note that these are not simplifying or limiting requirements,
rather they are desiderata that we want our solution to satisfy. We then require
our solution to operate under the following assumption.

Assumption 2.4. Each resource is available in a single instance. Each user can
be released only one key.

We also assume that each key k is uniquely identified through the label l associ-
ated with it. A key assignment and encryption schema φ determines the labels of
the keys assigned to users and of the keys used for encrypting resources, as stated
by the following definition.
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Encryption Policies for Regulating Access to Outsourced Data · 7

Definition 2.5 Key assignment and encryption schema. Let U ,R,K,L be the
set of users, resources, keys, and labels in the system, respectively. A key as-
signment and encryption schema over U ,R,K,L is a function φ : U ∪ R 7→ L that
returns for each user u∈ U the label l ∈ L associated with the (single) key k in K
released to the user and for each resource r∈ R the label l ∈ L associated with the
(single) key k in K with which the resource is encrypted.

We are now ready to introduce the definition of encryption policy as follows.

Definition 2.6 Encryption policy. Let U and R be the set of users and resources
in the system, respectively. An encryption policy over U and R, denoted E , is a
6-tuple 〈U ,R,K,L, φ, T 〉, where K is the set of keys defined in the system, L is the
set of corresponding labels, φ is a key assignment and encryption schema, and T is
a set of tokens defined on K and L.

The encryption policy can be conveniently represented via a graph by extending
the key and token graph to include a vertex for each user and each resource, and
adding an edge from each user vertex u to the vertex 〈k , l 〉 such that φ(u)=l and
from each vertex 〈k , l 〉 to each resource vertex r such that φ(r)=l . We can think of
the encryption policy graph as a graph obtained by merging GA with GK,T , where
instead of directly linking each user u with each resource r she can access, we pass
through the vertex 〈k i,l i〉 such that l i=φ(u), the vertex 〈k j ,l j〉 such that l j=φ(r),
and possibly a chain of keys/tokens connecting them. The encryption policy graph
is formally defined as follows.

Definition 2.7 Encryption policy graph. Let E = 〈U ,R,K,L, φ, T 〉 be an encryp-
tion policy. The encryption policy graph over E , denoted GE , is the graph 〈VE , EE〉
where:

—VE = VK,T ∪ U ∪R;
—EE = EK,T ∪ {(u , 〈k , l 〉) | u ∈ U ∧ l = φ(u)} ∪ {(〈k , l 〉, r) | r ∈ R ∧ l = φ(r)},
where VK,T and EK,T are as in Definition 2.3.

Figure 3 illustrates an example of encryption policy graph, where dotted edges
represent the key assignment and encryption schema (function φ) and solid edges
represent the tokens. In the following, we will use E−→ to denote the reachability
of vertices in graph GE (e.g., A

E−→ r6). A user u can then retrieve (via her own
key and the set of public tokens) all the keys of the vertices reachable from vertex
whose label l is equal to φ(u). The resources accessible to a user according to an
encryption policy are therefore all and only those reachable from u in the encryption
policy graph GE . Our goal is then to translate an authorization policy A into an
equivalent encryption policy E , meaning that A and E allow exactly the same
accesses, as formally defined in the following.

Definition 2.8 Policy equivalence. Let A = 〈U ,R,P〉 be an authorization policy
and E = 〈U ,R,K,L, φ, T 〉 be an encryption policy. A and E are equivalent , denoted
A ≡ E , iff the following conditions hold:

—∀u ∈ U , r ∈ R : u E−→r =⇒ u A−→r

—∀u ∈ U , r ∈ R : u A−→r =⇒ u E−→r
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

8 · S. De Capitani di Vimercati et al.

º¹ ¸·³´ µ¶k7, l7 // r1

A //º¹ ¸·³´ µ¶k1, l1

!!CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

C

ÁÁ<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<

¼¼4
44

44
44

44
44

44
44

44
44

44
44

44
44

44
44

44
44

44
44

44
º¹ ¸·³´ µ¶k8, l8 // r2

B //º¹ ¸·³´ µ¶k2, l2

ÁÁ<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<

¾¾7
77

77
77

77
77

77
77

77
77

77
77

77
77

77
77

77
77

7
//

,,XXXXXXXXXXXXXXXXXXX

((QQQQQQQQQQQQQQQQQQQQQ
º¹ ¸·³´ µ¶k9, l9 // r3

C //º¹ ¸·³´ µ¶k3, l3

ÁÁ<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<

33ffffffffffffffffffff //

,,XXXXXXXXXXXXXXXXXXX º¹ ¸·³´ µ¶k10, l10 // r4

º¹ ¸·³´ µ¶k11, l11 // r5

D //º¹ ¸·³´ µ¶k4, l4 //

,,XXXXXXXXXXXXXXXXXXX

((QQQQQQQQQQQQQQQQQQQQQ

%%JJJJJJJJJJJJJJJJJJJJJJJJJ

@@££££££££££££££££££££££££££££££££

=={{{{{{{{{{{{{{{{{{{{{{{{{{{{{ º¹ ¸·³´ µ¶k12, l12 // r6

E //º¹ ¸·³´ µ¶k5, l5

33fffffffffffffffffff //

,,XXXXXXXXXXXXXXXXXXX

((QQQQQQQQQQQQQQQQQQQQQ
º¹ ¸·³´ µ¶k13, l13 // r7

F //º¹ ¸·³´ µ¶k6, l6

66mmmmmmmmmmmmmmmmmmmmm

33fffffffffffffffffff //

,,XXXXXXXXXXXXXXXXXXX º¹ ¸·³´ µ¶k14, l14 // r8

º¹ ¸·³´ µ¶k15, l15 // r9

Fig. 3. An example of encryption policy graph

For instance, it is easy to see that the authorization policy in Figure 2 and
the encryption policy represented by the encryption policy graph in Figure 3 are
equivalent.

2.3 Token management

To allow users to access the outsourced data, a portion of the encryption policy E
must be made publicly available and stored on the server. The only component of
the encryption policy E that cannot be publicly released is the set K of keys while
all the other components can be released without compromising the protection
of the outsourced data. The set T of tokens, the set L of labels, and the key
assignment and encryption schema φ(r) over R2 are therefore stored on the server
in the form of a catalog composed of two tables: Labels and Tokens. Table
Labels corresponds to the key assignment and encryption schema φ over R. For
each resource r in R, table Labels maintains the correspondence between the
identifier of r (attribute res id) and the label φ(r) (attribute label) associated with
the key used for encrypting r . Table Tokens corresponds to the set T of tokens.
For each token ti,j in T , table Tokens includes a tuple characterized by three
attributes: source and destination are the labels l i and l j associated with k i and
k j , respectively, and token value is the token value computed as ti,j=k j⊕h(k i,l j).
Figure 4 illustrates tables Labels and Tokens corresponding to the encryption
policy graph represented in Figure 3.

2Note that the definition of φ over U does not need to be made public, since each user knows her
key and therefore the vertex in GE from which she can derive keys.

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Encryption Policies for Regulating Access to Outsourced Data · 9

Labels

res id label
r1 l7
r2 l8
r3 l9
r4 l10
r5 l11
r6 l12
r7 l13
r8 l14
r9 l15

Tokens

source destination token value
l1 l12 k12⊕h(k1,l12)
l1 l13 k13⊕h(k1,l13)
l1 l15 k15⊕h(k1,l15)
l2 l9 k9⊕h(k2,l9)
l2 l10 k10⊕h(k2,l10)
l2 l11 k11⊕h(k2,l11)
l2 l14 k14⊕h(k2,l14)
l2 l15 k15⊕h(k2,l15)
l3 l9 k9⊕h(k3,l9)
l3 l10 k10⊕h(k3,l10)
l3 l11 k11⊕h(k3,l11)
l3 l15 k15⊕h(k3,l15)
l4 l7 k7⊕h(k4,l7)
l4 l8 k8⊕h(k4,l8)
l4 l12 k12⊕h(k4,l12)
l4 l13 k13⊕h(k4,l13)
l4 l14 k14⊕h(k4,l14)
l4 l15 k15⊕h(k4,l15)
l5 l12 k12⊕h(k5,l12)
l5 l13 k13⊕h(k5,l13)
l5 l14 k14⊕h(k5,l14)
l5 l15 k15⊕h(k5,l15)
l6 l12 k12⊕h(k6,l12)
l6 l13 k13⊕h(k6,l13)
l6 l14 k14⊕h(k6,l14)
l6 l15 k15⊕h(k6,l15)

Fig. 4. Catalog for the encryption policy graph represented in Figure 3

3. MINIMUM ENCRYPTION POLICY

A straightforward approach for translating an authorization policy A into an equiv-
alent encryption policy E consists in associating with each user a different key,
encrypting each resource with a different key, and producing and publishing a to-
ken tu,r for each permission 〈u , r 〉 ∈ P. The encryption policy graph in Figure 3
corresponds to an encryption policy that has been generated by translating the
authorization policy in Figure 2 with this approach. While simple, this translation
generates as many keys as the number of users and resources, and as many tokens
as the number of permissions in the system. Even if tokens, being public, need
not to be remembered or stored by users, producing and managing a token for
each single permission can be unfeasible in practice. Indeed, each access to an en-
crypted resource requires a search across the catalog (see the electronic Appendix)
and therefore the total number of tokens is a critical factor for the efficiency of
access to remotely stored data.

This simple solution can be improved by grouping users with the same access
privileges and by encrypting each resource with the key associated with the set
of users that can access it. The advantage is that a key can be possibly used to
encrypt more than one resource. Since there is a one-to-one mapping between an
encryption policy E and the encryption policy graph GE over E , we exploit the
hierarchy among sets of users induced by the partial order relationship based on
set containment (⊆). We create an encryption policy graph GE=〈VE ,EE〉, with VE=
VK,T ∪ U ∪ R, where VK,T includes a vertex for each possible subset U of U , and
EE includes:

—an edge (v i,v j) for each possible pair of vertices v i,v j∈VK,T such that the set Ui

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

10 · S. De Capitani di Vimercati et al.

r1

r2

º¹ ¸·³´ µ¶v5[AB] //

**UUUUUUUUUUU º¹ ¸·³´ µ¶v11[ABC]

&&LLLLLLLLLLLLLLLL r3

A //º¹ ¸·³´ µ¶v1[A]

44jjjjjjjjjj //

**TTTTTTTTTT º¹ ¸·³´ µ¶v6[AC]

44iiiiiiiiiii

%%KKKKKKKKKKKKKKK º¹ ¸·³´ µ¶v12[ABD]

**VVVVVVVVVVV r4

B //º¹ ¸·³´ µ¶v2[B]

::uuuuuuuuuuuuuu

**TTTTTTTTTT

$$IIIIIIIIIIIIII º¹ ¸·³´ µ¶v7[AD]

44iiiiiiiiiii

**UUUUUUUUUUU

--

,,

º¹ ¸·³´ µ¶v15[ABCD]

¾¾

r5

C //º¹ ¸·³´ µ¶v3[C]

::uuuuuuuuuuuuuu //

$$IIIIIIIIIIIIII º¹ ¸·³´ µ¶v8[BC]

>>}}}}}}}}}}}}}}}}}}

**UUUUUUUUUUU

44

22

11

º¹ ¸·³´ µ¶v13[ACD]

44hhhhhhhhhhh
r6

D //º¹ ¸·³´ µ¶v4[D]

::uuuuuuuuuuuuuu //

**TTTTTTTTTT

77

55

º¹ ¸·³´ µ¶v9[BD]

>>}}}}}}}}}}}}}}}}}} //

--

º¹ ¸·³´ µ¶v14[BCD]

88rrrrrrrrrrrrrrrr
r7

º¹ ¸·³´ µ¶v10[CD]

99sssssssssssssss

44iiiiiiiiiii
r8

r9

Fig. 5. An example of encryption policy graph over {A, B, C, D}

of users represented by v i is a subset of the set Uj of users represented by v j and
the set containment relationship is direct;

—an edge (ui,v i) for each user ui∈U such that v i∈VK,T and the set of users repre-
sented by v i is {ui};

—an edge (v j ,r j) for each resource r j∈R such that v j∈VK,T and the set of users
represented by v j is acl(r j).

As an example, consider the portion of the authorization policy in Figure 2 that
is defined on the set {A, B, C, D} of users.

Figure 5 illustrates the encryption policy graph over {A, B, C, D} defined as
described above. In the figure, each vertex v i also reports, between square brackets,
the set of users, denoted v i.acl, represented by v i. It is interesting to note that
the subgraph induced by VK,T is an n-stratified graph, where n is the number of
users in the system (i.e., n =|U |). Each strata, which we call level , contains all the
vertices that represent sets of users with the same cardinality. For instance, in the
encryption policy graph in Figure 5, v1, v2, v3, and v4 are vertices at level 1. In
the following, the level of a vertex v ∈ VK,T will be denoted as level(v).

By assigning to each vertex v ∈ VK,T of the encryption policy graph a pair
〈v .key,v .label〉, corresponding to a key and label, the authorization policy can be
enforced by: i) encrypting each resource with the key of the vertex corresponding
to its access control list (e.g., resource r5 should be encrypted with the key as-
sociated with the vertex representing {B, C}), and ii) assigning to each user the
key associated with the vertex representing the user in the graph. Note that the
encryption policy corresponding to this encryption policy graph is such that:

—the sets K and L include all the keys and labels, respectively, associated with
vertices in VK,T ;

—the key assignment and encryption schema φ is such that ∀u ∈ U , φ(u) = v .label,
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Encryption Policies for Regulating Access to Outsourced Data · 11

with v the vertex representing the user (i.e., v .acl={u}), and ∀r ∈ R, φ(r) =
v .label, with v the vertex representing acl(r) (i.e., v .acl=acl(r));

—the set T includes a token for each edge (v i,v j) in EE , with v i,v j ∈ VK,T , that
allows the derivation of key v j .key from key v i.key.

Although this solution is simple and easy to implement, it defines more keys than
actually needed and requires the publication of a great amount of information on
the remote server, thus causing an expensive key derivation process at the user-side.
For instance, in the encryption policy graph in Figure 5 vertex v10 is not needed
for enforcing the authorization policy since its key is not used for encrypting any
resource. The presence of such a vertex only increases the size of table Tokens
stored on the server without giving any benefit. We are then interested in find-
ing a minimum encryption policy , equivalent to a given authorization policy and
minimizing the number of tokens to be maintained by the server.

Definition 3.1 Minimum encryption policy. Let A = 〈U ,R,P〉 be an authoriza-
tion policy and E = 〈U ,R,K,L, φ, T 〉 be an encryption policy such that A ≡ E . E
is minimum with respect to A iff @ E ′ = 〈U ,R,K′,L′, φ′, T ′〉 such that A ≡ E ′ and
|T ′| < |T |.

Given an authorization policy A, different minimum encryption policies may
exist and our goal is to compute one of them, as stated by the following problem
definition.

Problem 3.2 Min-EP. Let A = 〈U ,R,P〉 be an authorization policy. Determine
a minimum encryption policy E = 〈U ,R,K,L, φ, T 〉.

Unfortunately, Problem 3.2 is NP-hard , as proved by the following theorem.

Theorem 3.3. The Min-EP problem is NP-hard.

We then propose a heuristic approach for solving Problem 3.2 that reduces the
user’s overhead in deriving keys through a simplification of the encryption policy
graph created according to the process previously described. Our heuristic approach
is based on two basic observations. First, the encryption policy graph has to include
only the vertices that are needed to enforce a given authorization policy, connecting
them to ensure a correct key derivability. Second, beside the vertices needed for
the enforcement of the authorization policy, other vertices can be included if they
are useful for reducing the size of the catalog. We therefore present a factorization
procedure that, as the experiments in Section 9 show, improves the performance at
the user-side since it allows a great reduction in the number of tokens. Sections 3.1
and 3.2 discuss these two observations, which will then be taken into account by
the heuristic approach in Section 4.

3.1 Vertex and edge selection

From the previous discussion, it is immediate to see that the vertices in VK,T strictly
needed for the enforcement of the authorization policy are the vertices representing:
i) singleton sets of users, whose keys are needed to derive all the other keys used
for decrypting resources in the users’ capabilities; and ii) the acls of the resources,
whose keys are needed for decrypting such resources. In the following, we refer

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

12 · S. De Capitani di Vimercati et al.

to these vertices as material . According to the definition of policy equivalence
(Definition 2.8), the material vertices must be connected in the graph in such a
way that each user u ∈ U is able to derive keys allowing access to all and only the
resources she is authorized to read. This means that the encryption policy graph
must include at least one path from the vertex v i representing user u (i.e., vertex
v i such that v i.acl = {u}) to all material vertices v j such that u∈v j .acl. Since our
main goal is to keep at minimum the number of tokens managed by the server and
since each edge between vertices in VK,T corresponds to a token, our problem is
to connect the material vertices creating an encryption policy graph such that: i)
the corresponding encryption policy is equivalent to a given authorization policy,
ii) the number of edges is minimal. To solve this problem, we observe that the
direct ancestors of a material vertex must form a set covering for it. Indeed, since
for each user u the encryption policy graph must include a path from the vertex
representing u to all vertices v j such that u∈v j .acl and, since, by construction,
there is an edge (v i,v j), with v i,v j ∈ VK,T , iff v i.acl ⊂ v j .acl, vertex v j must have
at least a direct ancestor vk such that u ∈ vk.acl. The existence of a set covering
for the vertices in the encryption policy graph is formalized via the definition of the
following local cover property.

Definition 3.4 Local cover property. Let A = 〈U ,R,P〉 be an authorization pol-
icy and E = 〈U ,R,K,L, φ, T 〉 be an encryption policy. The encryption policy graph
GE= 〈VE ,EE〉 over E , with VE= VK,T ∪ U ∪ R, satisfies the local cover property if
∀v j ∈ VK,T , with |v j .acl|> 1, v j .acl =

⋃
i {v i.acl | (v i,v j) ∈ EE}.

Given an authorization policy A and an encryption policy E , it is easy to see
that if E is equivalent to A, the encryption policy graph over E satisfies the local
cover property, as formally stated by the following theorem.

Theorem 3.5. Let A be an authorization policy and E be an encryption policy.
If E is equivalent to A, the encryption policy graph GE= 〈VE ,EE〉 over E, with VE=
VK,T ∪ U ∪ R, satisfies the local cover property (Definition 3.4).

Our approach to generate an encryption policy equivalent to a given authorization
policy then starts by creating a key and token graph satisfying Definition 3.4. We
apply a bottom up approach, processing vertices in decreasing order of level. For
each material vertex v at level l, its possible direct ancestors are first searched
among the material vertices at level l−1, then at level l−2, and so on, until all the
material vertices directly connected with v form a set covering for v . The rationale
behind this bottom up strategy is that, in principle3, by searching first among the
vertices with a greater level value, the number of direct ancestors and therefore
of edges for connecting them with v should be less than the number of direct
ancestors needed for covering vertex v when such vertices are chosen in increasing
order of level. As an example, consider the material vertices corresponding to the
authorization policy in Figure 2 that represent the following sets of users: {A}, {B},
{C}, {D}, {E}, {F}, {BC}, {ADEF}, {BDEF}, and {ABCDEF}. Consider

3Since this bottom up strategy is a heuristic that we apply for solving a NP-hard problem, the
solution computed through it may not be always the optimal solution. However, we will see in
Section 9 that this heuristic produces good results.

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Encryption Policies for Regulating Access to Outsourced Data · 13

now the material vertex representing {ABCDEF} and suppose to compute a set
covering for it by choosing the appropriate direct ancestors from the given material
vertices. If we apply the bottom up strategy previously described, the possible
direct ancestors for {ABCDEF} are first chosen among the vertices at level: 5,
which is empty; 4, where there are two material vertices (i.e., {ADEF}, {BDEF})
that can be chosen as direct ancestors for {ABCDEF}; 3, which is empty; and
then 2, where vertex {BC} is chosen. The final set covering for {ABCDEF}
is {{ADEF}, {BDEF}, {BC}}, which requires three edges for connecting the
vertices in the set covering with the vertex representing {ABCDEF}. Another
possible set covering for {ABCDEF} is, for example, {{A}, {B}, {C}, {D}, {E},
{F}}, which instead requires six edges.

This simple approach for computing a set covering may however introduce redun-
dant edges. For instance, with respect to the previous example, since {ADEF} and
{BDEF} are selected before {BC}, it is easy to see that the edge from the vertex
representing {BDEF} to the vertex representing {ABCDEF} becomes redundant
after choosing {BC} since each user in {BDEF} is also a member of at least one of
the other two direct ancestors of the vertex representing {ABCDEF}. The redun-
dant edges increase the number of tokens and are not useful for the enforcement
of the authorization policy. We are then interested in computing a non-redundant
encryption policy graph defined as follows.

Definition 3.6 Non-redundant encryption policy graph. Let A = 〈U ,R,P〉 be an
authorization policy and E = 〈U ,R,K,L, φ, T 〉 be an encryption policy equivalent
to A. The encryption policy graph GE= 〈VE ,EE〉 over E , with VE= VK,T ∪ U ∪
R, is non-redundant iff ∀v j ∈ VK,T , with |v j .acl |>1, ∀(v i, v j) ∈ EE , ∃ u∈v i.acl|
∀(v l, v j) ∈ EE , with v l 6= v i, u 6∈ v l.acl.

3.2 Vertex factorization

In addition to the material vertices, other vertices can be inserted in the encryption
policy graph if they can reduce the number of tokens in the catalog. As an example,
consider the material vertices corresponding to the authorization policy in Figure 2.
The sets V and V ′ covering material vertices {ADEF} and {BDEF}, respectively,
can only include the vertices representing singleton sets of users, since there are no
material vertices representing subsets of {ADEF} or of {BDEF}. The number
of edges connecting the vertices in V and V ′ with {ADEF} and {BDEF} are
then eight. Suppose now to add a non material vertex representing {DEF}. In
this case, the set covering for {ADEF} is {{DEF}, {A}} and the set covering
for {BDEF} is {{DEF}, {B}}. The number of edges needed for connecting the
vertices in the sets covering with {ADEF} and {BDEF} is therefore four. Also,
three edges are necessary for covering {DEF} through {{D}, {E}, {F}} for a
total of seven edges against the eight edges of the previous case. Generalizing, it
is easy to see that whenever there are m vertices v1, . . . , vm that share n, with
n > 2, ancestors v′1, . . . , v

′
n, it is convenient to factorize the common ancestors by

inserting an intermediate vertex v′, with v′.acl=
⋃n

i=1v
′
i.acl, and to connect each

vertex v′i, i = 1, . . . , n, with v′, and v′ with v j , j = 1, . . . , m. In this way, the
encryption policy graph includes n + m, instead of n · m, edges (i.e., tokens in
the catalog). The advantage may appear small in the example above, but the

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

14 · S. De Capitani di Vimercati et al.

algorithm A2E

INPUT authorization policy A=〈U ,R,P〉
OUTPUT encryption policy E such that A ≡ E and GE is not redundant

MAIN
VK,T := ∅
EK,T := ∅
/* Initialization */
ACL := {acl(r)|r∈R} ∪ {{u}|u∈U}
for acl∈ACL do
create vertex v
v .acl := acl
v .label := null
v .key := null
for each u∈v .acl do v .counter [u] := 0
VK,T := VK,T ∪ {v }

/* Phase 1: cover vertices without redundancies */
for l:=|U|. . . 2 do

for each v i∈{v |v∈VK,T ∧ level(v)=l} do cover vertex(v i,v i.acl) /* see Figure 7 */
/* Phase 2: factorize common ancestors */
for l:=|U|. . . 2 do

for each v i∈{v |v∈VK,T ∧ level(v)=l} do factorize(v i) /* see Figure 8 */
/* Phase 3: generate encryption policy */
generate encryption policy() /* see Figure 9 */

Fig. 6. Algorithm for computing an encryption policy E equivalent to A

experiments in Section 9 show that this optimization can produce significant gains
in scenarios with complex policies.

Our approach applies this factorization process during the construction of the
encryption policy graph, processing vertices in decreasing order of level and com-
paring a vertex v with each vertex v′ at lower level. This bottom up strategy
guarantees that the vertex added in the graph (if any) to provide factorization will
appear at a level lower than the level of v and v′ and therefore it will be compared
to the other vertices in the graph when the vertices at that level will be analyzed.
To limit the number of pairs of vertices analyzed, we consider only pairs of vertices
that have at least one common direct ancestor; a rather straightforward adaptation
of the analysis in [Baralis et al. 1997] demonstrates that it is sufficient to consider
these pairs, with a significant reduction in the number of comparisons.

4. ALGORITHM A2E
Our heuristic algorithm for computing a minimal encryption policy is illustrated in
Figure 6. The algorithm takes an authorization policy A=〈U ,R,P〉 as input and
returns an encryption policy E equivalent to A and that satisfies Definition 3.6.
To this purpose, the algorithm first creates a key and token graph 〈VK,T ,EK,T 〉
and then generates the corresponding encryption policy, by computing the set T of
tokens and by defining the key assignment and encryption schema φ. Each vertex
v in VK,T is associated with four variables: v .key represents the key of the vertex;
v .label represents the publicly available label associated with v .key; v .acl represents
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Encryption Policies for Regulating Access to Outsourced Data · 15

COVER VERTEX(v ,tocover)
Eadded := ∅
l := level(v) − 1
/* find a correct cover for users in tocover */
while tocover 6= ∅ do

Vl := {v i|v i∈ VK,T ∧ level(v i)=l ∧ v i.acl⊆v .acl}
while tocover 6= ∅ ∧ Vl 6= ∅ do

extract v i from Vl

if v i.acl∩tocover6= ∅ then
tocover := tocover \ v i.acl
Eadded := Eadded ∪ {(v i,v)}
for each u∈v i.acl do v .counter [u] := v .counter [u] + 1

l := l − 1
/* remove redundant edges */
for each (v i,v)∈Eadded do

if (@u |u∈v i.acl ∧ v .counter [u]= 1) then
Eadded := Eadded \ {(v i,v)}
for each u∈v i.acl do v .counter [u] := v .counter [u] − 1

EK,T := EK,T ∪ Eadded

Fig. 7. Procedure for covering material vertices and removing redundant edges

the set of users who can derive v .key; v .counter [] is an array with one component
for each user u in v .acl such that v .counter [u] is equal to the number of direct
ancestors of v whose acls contain user u (as we will see, this information will be
used to detect redundant edges).

The algorithm starts by creating the material vertices and by properly initializing
the variables associated with them. The algorithm is logically partitioned in three
phases: i) cover vertices adds edges to the graph in such a way to satisfy both the
local cover property and the non-redundancy property (Section 3.1), ii) factorize
common ancestors adds non material vertices for reducing the number of edges in
the graph (Section 3.2), and iii) generate encryption policy creates an encryption
policy corresponding to the graph calculated in the previous two phases. We now
describe these three phases more in details.

Phase 1: Cover vertices. To create a key and token graph that satisfies the
local cover and the non-redundancy properties, the algorithm proceeds bottom up,
from level l = |U| to 2, and for each material vertex v at level l, calls procedure
cover vertex in Figure 7. Procedure cover vertex takes as input a vertex v and
a set tocover of users, corresponding to v .acl. The procedure first initializes two
local variables: Eadded, representing the set of edges that need to be added to the
graph, is set to the empty set; and l, representing the level of candidate direct
ancestors for v , is set to level(v)−1. At each iteration of the outermost while loop,
the procedure computes the set Vl of vertices at level l whose acl is a subset of v .acl,
and the innermost while loop checks if there are vertices in Vl that can be part of
the set covering for v . To this purpose, the procedure randomly extracts a vertex
v i from Vl and if v i.acl has at least a user in common with tocover , it removes
from tocover the set of common users appearing in v i.acl, and adds edge (v i,v) to
Eadded. Also, for each user u in v i.acl, the procedure increases v .counter [u] by
one. The innermost while loop terminates when tocover becomes empty or when

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

16 · S. De Capitani di Vimercati et al.

FACTORIZE(v i)
for each vj∈{v |∃va, (va,v i)∈EK,T ∧ (va,v)∈EK,T } do /* children of v i’s direct ancestors */

Eadded := ∅
Eremoved := ∅
CommonAnc := {va| (va,v i)∈EK,T ∧ (va,vj)∈EK,T } /* common direct ancestors */
if |CommonAnc| > 2 then

/* create a new common ancestor for v i and vj */
U :=

⋃{va.acl|va∈CommonAnc}
find the vertex v∈VK,T with v .acl=U
case v of

6= v i ∧ 6= vj : Eadded := Eadded ∪ {(v ,v i), (v ,vj)}
for each va∈CommonAnc do

Eremoved := Eremoved ∪ {(va,v i),(va,vj)}
= v i: Eadded := Eadded ∪ {(v i,vj)}

for each va∈CommonAnc do
Eremoved := Eremoved ∪ {(va,vj)}

= vj : Eadded := Eadded ∪ {(vj ,v i)}
for each va∈CommonAnc do

Eremoved := Eremoved ∪ {(va,v i)}
undef: create vertex v ′

v ′.acl := U
v ′.label := null
v ′.key := null
for each u∈v ′.acl do

v ′.counter [u] := 0
VK,T := VK,T ∪ {v ′}
Eadded := Eadded ∪ {(v ′,v i),(v

′,vj)}
for each va∈CommonAnc do

Eadded := Eadded ∪ {(va,v ′)}
Eremoved := Eremoved ∪ {(va,v i),(va,vj)}

/* update counters */
for each (v l,vh)∈Eadded do

for each u∈v l.acl do vh.counter [u] := vh.counter [u] + 1
for each (v l,vh)∈Eremoved do

for each u∈v l.acl do vh.counter [u] := vh.counter [u] − 1
EK,T := EK,T ∪ Eadded \ Eremoved

Fig. 8. Procedure for factorizing the common ancestors between vertices

all vertices in Vl have been processed. Local variable l is then decreased by one
and the process is repeated until tocover becomes empty. The procedure checks if
Eadded contains redundant edges. For each edge (v i,v) in Eadded, if there does not
exist a user u in v i.acl such that v .counter [u]=1 (remember that v .counter [u] is
the number of direct ancestors of v with user u in their acls), then edge (v i,v) is
redundant; it is removed from Eadded; and, for each user u in v i.acl, v .counter [u]
is decreased by one. The set Eadded of non-redundant edges is then added to EK,T .

Phase 2: Factorize acls. The key and token graph resulting from the previous
phase guarantees that each user can derive the keys of the resources she is authorized
to access. The algorithm now verifies if it is possible to add vertices to reduce the
number of edges in the graph. To this purpose, for each level l from |U| to 2 and
for each vertex v i at level l, the algorithm calls procedure factorize in Figure 8
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Encryption Policies for Regulating Access to Outsourced Data · 17

on v i. For each vertex v j having at least a common direct ancestor with v i (first
for loop), procedure factorize first initializes two local variables: Eadded and
Eremoved, representing the set of edges that need to be added to and removed
from the graph, respectively, are both initialized as empty. Procedure factorize
then determines set CommonAnc of direct ancestors common to v i and v j . If
CommonAnc contains more than two vertices, v i and v j can be covered by a vertex
that factorizes all vertices in CommonAnc. In this way, 2 · |CommonAnc| edges are
removed from the graph and at most 2+ |CommonAnc| edges are added. Procedure
factorize therefore computes the union U among the acls associated with vertices
in CommonAnc. The procedure checks if the graph already includes a vertex v
whose acl is equal to U and detects the edges that have to be added to, or removed
from, the graph. Three cases may occur. First case: vertex v already exists and
coincides neither with v i nor with v j . The two edges from v to v i and from v to
v j are inserted in Eadded, and all edges from the vertices in CommonAnc to v i and
to v j are inserted in Eremoved. Second case: vertex v coincides with v i (v j , resp.).
The procedure inserts a new edge from v i to v j (from v j to v i, resp.) in Eadded
and all edges from the vertices in CommonAnc to v j (v i, resp.) are inserted in
Eremoved. Third case: vertex v does not exist in the graph. The procedure creates
a new vertex v′ and initializes v′.acl to U and both v′.label and v′.key to null.
The new vertex is then inserted in the graph and the edges from the vertices in
CommonAnc to v′ are inserted in Eadded along with the two edges from the new
vertex v′ to v i and to v j . The edges from all the vertices in CommonAnc to v i

and to v j are inserted in Eremoved. The procedure then properly updates variables
v .counter [u] for all edges (v l,vh) in Eadded and Eremoved. Finally, set EK,T of
edges is updated by adding edges in Eadded and by removing edges in Eremoved.

Phase 3: Generate encryption policy E. The last phase of the algorithm gen-
erates the encryption policy corresponding to the key and token graph computed
in the previous phases. To this purpose, the algorithm calls procedure gener-
ate encryption policy in Figure 9. First, the procedure initializes the set K of
keys, the set L of labels, and the set T of tokens to empty. Then, for each ver-
tex v in VK,T , the procedure generates a key k and a label l and inserts them
in K and L, respectively. Also, for each edge (v i,v j) in EK,T , procedure gener-
ate encryption policy computes token ti,j , which is inserted in T and uploaded
on the server by inserting a corresponding tuple in table Tokens. Finally, the
procedure defines the key assignment and encryption schema φ based on the labels
previously generated. For each user u , φ(u) is defined as the label of the vertex rep-
resenting the singleton set {u}, and for each resource r , φ(r) is defined as the label
of the vertex representing acl(r) in the graph. Also, each resource r is encrypted
with the key of the vertex corresponding to φ(r) and uploaded on the server; table
Labels in the catalog is updated accordingly.

Example 4.1. Figure 10 presents the execution, step by step, of the algorithm
in Figure 6, applied to the authorization policy in Figure 2. The algorithm first
generates 10 material vertices: v1, . . . , v6 represent the singleton sets of users {A},
. . . ,{F}, respectively; v7 represents {BC}; v8 represents {ADEF}; v9 represents
{BDEF}; and v10 represents {ABCDEF}.

Figure 10(a) illustrates the key and token graph obtained after the first phase of
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

18 · S. De Capitani di Vimercati et al.

GENERATE ENCRYPTION POLICY()
K := ∅; L := ∅; T := ∅
/* generate keys */
for each v ∈ VK,T do

generate key k
v .key := k
generate label l
v .label := l
K := K ∪ {v .key}
L := L ∪ {v .label}

/* compute tokens */
for each (v i,vj) ∈ EK,T do

ti,j := vj .key ⊕ h(v i.key,vj .label)
T := T ∪ {ti,j}
upload token ti,j on the server by adding it to table Tokens

/* define key assignment and encryption schema */
for each u ∈ U do

find the vertex v∈VK,T with v .acl={u}
φ(u) := v .label

for each r ∈ R do
find the vertex v∈VK,T with v .acl=acl(r)
encrypt r with key v .key
upload the encrypted version rk of r on the server
φ(r) := v .label
update table Labels on the server

Fig. 9. Procedure for creating an encryption policy

the algorithm. As an example of how this graph has been obtained, consider vertex
v10. Procedure cover vertex inserts in Eadded first edges (v8, v10) and (v9, v10),
and then edge (v7, v10). Edge (v9, v10) then becomes redundant since all users in
v9.acl can derive v10.key passing through v7 or v8. The procedure therefore removes
such an edge. It is easy to see that the key and token graph satisfies the local cover
property and the non-redundancy property.

Figure 10(b) illustrates the graph obtained after the second phase of the algorithm.
Here, material vertices are represented with solid lines, while non material vertices
are represented with dotted lines. Note that the graph has a new vertex, v11, which
has been inserted by procedure factorize since vertices v8 and v9 in the graph in
Figure 10(a) have three common direct ancestors (i.e., v4, v5, and v6). In this way,
the total number of tokens/edges has been decreased by one.

Finally, Figure 10(c) illustrates the key assignment and encryption schema for
users in U , and tables Labels and Tokens uploaded on the server by procedure
generate encryption policy.

4.1 Correctness and complexity

In [Atallah et al. 2005] the authors have proved that the token-based derivation
technique is sound, that is, it is secure against key recovery attacks even in presence
of collusion: if an adversary compromises a key, she can derive only those keys that
are derivable from it; also, no subset of users can collude to gain access to the
keys that they cannot already derive. In this section, we prove the correctness
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Encryption Policies for Regulating Access to Outsourced Data · 19

º¹ ¸·³´ µ¶v1[A] //º¹ ¸·³´ µ¶v8[ADEF]

%%KKKKKKKKKK
º¹ ¸·³´ µ¶v2[B] //

$$JJJJJJJJJJJJJJJJ º¹ ¸·³´ µ¶v7[BC]

,,YYYYYYYYYYYYY

º¹ ¸·³´ µ¶v3[C]

77oooo º¹ ¸·³´ µ¶v10[ABCDEF]

º¹ ¸·³´ µ¶v4[D]

,,XXXXXXXXXX

::tttttttttttttttt

º¹ ¸·³´ µ¶v5[E] //

=={{{{{{{{{{{{{{{{{{ º¹ ¸·³´ µ¶v9[BDEF]

º¹ ¸·³´ µ¶v6[F]

33ffffffffff

@@£££££££££££££££££££££

º¹ ¸·³´ µ¶v1[A] //º¹ ¸·³´ µ¶v8[ADEF]

%%KKKKKKKKKK
º¹ ¸·³´ µ¶v2[B] //

((RRRRRRRRRRRRRRRRRRRRRR º¹ ¸·³´ µ¶v7[BC]

--[[[[[[[[[[[[[[[[[[[[[

º¹ ¸·³´ µ¶v3[C]

77oooo º¹ ¸·³´ µ¶v10[ABCDEF]

º¹ ¸·³´ µ¶v4[D]

++XXXXXXXXXX

º¹ ¸·³´ µ¶v5[E] // v11[DEF] //

DDªªªªªªªªªªªªªªª º¹ ¸·³´ µ¶v9[BDEF]

º¹ ¸·³´ µ¶v6[F]

33ffffffffff

(a) Key and token graph after Phase 1 (b) Key and token graph after Phase 2

u φ(u)

A v1.label
B v2.label
C v3.label
D v4.label
E v5.label
F v6.label

Labels

res id label

r1 v4.label
r2 v4.label
r3 v7.label
r4 v7.label
r5 v7.label
r6 v8.label
r7 v8.label
r8 v9.label
r9 v10.label

Tokens

source destination token value

v1.label v8.label t1,8

v2.label v7.label t2,7

v2.label v9.label t2,9

v3.label v7.label t3,7

v4.label v11.label t4,11

v5.label v11.label t5,11

v6.label v11.label t6,11

v7.label v10.label t7,10

v8.label v10.label t8,10

v11.label v8.label t11,8

v11.label v9.label t11,9

(c) Function φ and catalog after Phase 3

Fig. 10. An example of algorithm execution

and complexity of algorithm A2E . The correctness of the algorithm ensures that
the hierarchy defined by A2E will enable derivation of only authorized keys and
therefore that each user will be able to decrypt all and only the resources that she
is authorized to access according to the authorization policy (i.e., the two policies
are equivalent). The correctness of A2E together with the soundness of the key
derivation method guarantee the security of the system.

To prove that the encryption policy generated by algorithm A2E is equivalent to
a given authorization policy, we first introduce some lemmas. First, we prove that
users are assigned distinct keys.

Lemma 4.1 User key uniqueness. Let A=〈U ,R,P〉 be an authorization pol-
icy. Algorithm A2E creates a key and token graph GK,T =〈VK,T , EK,T 〉 and the cor-
responding encryption policy E=〈U ,R,K,L, φ, T 〉 such that ∀ui, uj ∈ U , i 6= j =⇒
φ(ui) 6= φ(uj).

We also prove that both Definition 3.4 and Definition 3.6 are satisfied by the
encryption policy graph generated by the algorithm in Figure 6.

Lemma 4.2 Local cover and non-redundancy. Let A=〈U ,R,P〉 be an
authorization policy. Algorithm A2E creates a key and token graph
GK,T =〈VK,T , EK,T 〉 and the corresponding encryption policy E=〈U ,R,K,L, φ, T 〉
such that GE satisfies the local cover property (Definition 3.4) and is non-redundant
(Definition 3.6).

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

20 · S. De Capitani di Vimercati et al.

By combining Lemma 4.1 and in Lemma 4.2, we can conclude that the encryption
policy generated by the algorithm in Figure 6 is equivalent to the authorization
policy provided in input.

Theorem 4.3 Policy equivalence. Let A=〈U ,R,P〉 be an authorization pol-
icy. Algorithm A2E creates a key and token graph GK,T =〈VK,T , EK,T 〉 and the
corresponding encryption policy E=〈U ,R,K,L, φ, T 〉 such that A ≡ E.

The following theorem proves that the encryption policy generated by algorithm
A2E has a total number of keys and tokens that is much less than the number
of users, resources, and permissions composing a given authorization policy, thus
greatly reducing the overhead on the users in deriving the keys of the resources
they are entitled to access, as also the experiments in Section 9 show.

Theorem 4.4. Let A=〈U ,R,P〉 be an authorization policy. Algorithm A2E cre-
ates a key and token graph GK,T =〈VK,T , EK,T 〉 and the corresponding encryption
policy E=〈U ,R,K,L, φ, T 〉 such that | K ∪ T |<<| U ∪ R ∪ P |.

Finally, we prove that the proposed algorithm has polynomial time complexity.

Theorem 4.5. Let A=〈U ,R,P〉 be an authorization policy. Algorithm A2E
creates an encryption policy E = 〈U ,R,K,L, φ, T 〉 such that A ≡ E in time
O((|R|+ |VK,T |2) · |U|).
5. POLICY UPDATES

Since the authorization policy is likely to change over time, the corresponding
encryption policy needs to be re-arranged accordingly. The possible policy update
operations are: 1) insertion/deletion of a user; 2) insertion/deletion of a resource;
and 3) grant/revoke of a permission. We note that the insertion/deletion of users
has an impact on the encryption policy only when the users gain permissions. In
this case, inserting (deleting, resp.) a user implies granting (revoking, resp.) all
the permissions in which the user is involved. Analogously, the insertion/deletion
of resources has an impact on the encryption policy only when the resources are
made accessible to users. Therefore, inserting (deleting, resp.) a resource implies
granting (revoking, resp.) all the authorizations in which the resource is involved.
For this reason, we focus on the grant and revoke operations. Also, we assume that
each operation always refers to a single user u and a single resource r ; extension
to sets of users and resources is immediate.

The grant and revoke operations on the authorization policy A are translated
into operations that properly update the encryption policy graph to guarantee that
E is equivalent to A also after grant/revoke operations. Creating from scratch the
encryption policy graph every time there is a grant or revoke operation is obviously
too expensive, since it requires to re-generate the whole set of keys and tokens and
to re-encrypt all the resources in the system. Therefore, we propose a strategy that
updates the existing encryption policy graph, changing only the portions of the
graph that are affected by the grant or revoke operation.

5.1 Grant and revoke

Every grant/revoke request for a user u on a resource r has the effect of changing
the set of users that can access r and always requires the data owner to decrypt and
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Encryption Policies for Regulating Access to Outsourced Data · 21

GRANT REVOKE(u ,r ,operation)
/* update the access control list of r */
find the vertex vold with vold.label = φ(r)
case operation of

‘grant’: acl(r) := vold.acl ∪ {u}
‘revoke’: acl(r) := vold.acl \ {u}

find the vertex vnew with vnew.acl = acl(r)
if vnew=undef then

vnew := create new vertex(acl(r)) /* see Figure 12 */
φ(r) := vnew.label
/* re-encrypt resource r */
download the encrypted version rk of r from the server
decrypt rk with key vold.key to retrieve the original resource r
encrypt r with key vnew.key
upload the new encrypted version rk of r on the server
update table Labels on the server
delete vertex(vold) /* see Figure 12 */

Fig. 11. Procedure for granting or revoking permission 〈u , r 〉

to re-encrypt the resource with a new key that should be (directly or indirectly)
derivable only by the users that belong to the new access control list. Figure 11
illustrates procedure grant revoke that implements the grant and revoke opera-
tions. The procedure takes as input a user u , a resource r , and the type of operation
that has to be executed, which can be either ‘grant’ or ‘revoke’, and modifies the
encryption policy accordingly. First, the procedure retrieves vertex vold whose acl
corresponds to the current acl of r and sets acl(r) to the old acl with user u added
(grant) or removed (revoke). Since, according to our approach (see Section 3), each
resource has to be encrypted with the key associated with the vertex that represents
its acl , the procedure checks the existence of a vertex vnew in the encryption policy
graph representing the new value of acl(r). If such a vertex does not exist, vertex
vnew is created and inserted in the graph (function create new vertex). The
procedure then downloads the resource from the server, decrypts it with vold.key,
re-encrypts it with vnew.key, and uploads the new encrypted version of r on the
server. Finally, the procedure calls delete vertex on vertex vold that checks if
vertex vold is still needed or if can be removed from the graph.

The insertion and removal of vertices in the encryption policy graph are re-
alized through function create new vertex in and procedure delete vertex in
Figure 12. Note that function create new vertex and procedure delete vertex
are based on the same operations (i.e., cover vertex and factorize) used by the
algorithm in Figure 6 for initially generating the encryption policy graph. The only
difference is that in Figure 12 these operations work locally to the vertex inserted
in or removed from the graph.

Function create new vertex receives as input a set U of users and returns
the vertex v , representing U, inserted in the graph. The function first copies the
current sets VK,T of vertices and EK,T of edges in two local variables V and E,
respectively. This copy is needed to easily compute the vertices and edges inserted
into, or removed from, VK,T and EK,T , respectively, to modify the encryption policy
accordingly. In fact, the presence of a new vertex requires the generation of a new

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

22 · S. De Capitani di Vimercati et al.

CREATE NEW VERTEX(U)
/* initial key and token graph

vertices and edges */
V := VK,T
E := EK,T
/* create the new vertex */
create vertex v
v .acl := U
v .key := null
v .label := null
for each u ∈ v .acl do

v .counter [u] := 0
/* cover v , remove redundancies,

and factorize common ancestors */
cover vertex(v ,v .acl)
factorize(v)
/* update encryption policy

(see Figure 13) */
update encryption policy(V ,E)
for each v i∈{vj |(vj ,vh)∈(E\EK,T)} do

delete vertex(v i)
return(v)

DELETE VERTEX(v)
if (|v .acl| > 1)∧(@r∈R:φ(r)=v .label) then

/* direct ancestors and descendants of v */
Anc := {v i|(v i,v)∈EK,T }
Desc := {v i|(v ,v i)∈EK,T }
if (|Desc| · |Anc|)≤(|Desc|+ |Anc|)) then

/* initial key and token graph vertices and edges */
V := VK,T
E := EK,T
/* update the key and token graph */
EK,T := EK,T \ ({(v ,v i)∈EK,T }∪{(v i,v)∈EK,T })
for each (v ,v i):v i∈Desc do

for each u∈v .acl do
v i.counter [u] := v i.counter [u]−1

tocover := {u |u∈v i.acl ∧ v i.counter [u]=0}
cover vertex(v i,tocover)
factorize(v i)

VK,T := VK,T − {v }
/* update encryption policy (see Figure 13) */
update encryption policy(V ,E)
for each v i∈{vj |(vj ,vh)∈(E\EK,T)} do

delete vertex(v i)

Fig. 12. Function that inserts a new vertex representing U and procedure for deleting vertex v

key and label and the removal of a vertex requires the deletion of the corresponding
key and label. Analogously, the presences of a new edge requires the generation of
the corresponding token, which is then stored in table Tokens, and the removal of
an edge requires the deletion of the corresponding token from table Tokens. Func-
tion create new vertex then creates a vertex v for which v .acl is set to U while
v .key and v .label are both set to null. Vertex v is then covered by other vertices
in the graph by calling: 1) procedure cover vertex on v and v .acl, to ensure that
the vertex is inserted without introducing redundant edges and in such a way that
the local cover property is satisfied; and 2) procedure factorize, which determines
whether the new vertex has more than two direct ancestors in common with other
vertices in the graph and possibly factorizes them by adding a non-material vertex.
Function create new vertex then calls procedure update encryption policy
in Figure 13. This procedure takes as input the copies of the old sets of vertices
and edges stored in V and E, respectively, and updates the encryption policy by
generating and adding the new keys and labels associated with the new vertices
(i.e., vertices in VK,T \V), by: i) computing and adding the new tokens correspond-
ing to the new edges (i.e., edges in EK,T \E), and ii) removing the keys, labels, and
tokens that are not needed anymore (i.e., vertices in V \VK,T and edges in E\EK,T).
Finally, for each vertex v i that appears as starting point of a removed edge, cre-
ate new vertex calls procedure delete vertex to check whether vertex v i can be
removed from the graph. Note that we do not call procedure delete vertex on
the vertices appearing as ending points of removed edges since, by definition, they
correspond to material vertices or have at least two incoming edges and therefore
are always useful (or, in the worst case, ineffective) for reducing the number of
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Encryption Policies for Regulating Access to Outsourced Data · 23

UPDATE ENCRYPTION POLICY(V,E)
for each v∈(VK,T \V) do /* new vertices */

generate key k
v .key := k
generate label l
v .label := l
K := K ∪ {v .key}
L := L ∪ {v .label}

for each (v i,vj)∈(EK,T \E) do /* new edges */
ti,j := vj .key ⊕ h(v i.key,vj .label)
T := T ∪ {ti,j}
upload token ti,j on the server by adding it to table Tokens

for each v∈(V\VK,T) do /* vertices removed */
K := K \ {v .key}
L := L \ {v .label}

for each (v i,vj)∈(E\EK,T) do /* edges removed */
T := T \ {ti,j}
remove ti,j from table Tokens on the server

Fig. 13. Procedure for updating the encryption policy

tokens in the encryption policy graph.
Procedure delete vertex receives as input a vertex v and removes it from the

graph if it is neither necessary for policy enforcement nor useful for reducing the
number of tokens. Hence, if the key associated with v is no longer used for en-
crypting any resource and the vertex is no longer needed for factorizing common
ancestors, vertex v and all its ingoing and outgoing edges are removed. At this
point, the key and token graph violates the local cover property since, by con-
struction (see Lemma 4.2), the graph has no redundant edges and therefore all
vertices in Desc (i.e., the direct descendants of v) are no more properly covered.
For each direct descendant v i of v , procedure delete vertex first calls procedure
cover vertex on v i and on the set of users that do not belong to any other di-
rect ancestor of v i, and then calls procedure factorize on v i. Like for procedure
create new vertex, the encryption policy is then updated by calling procedure
update encryption policy. Finally, for each vertex v i that appears as starting
point of a removed edge, delete vertex recursively calls itself to check if vertex v i

can be removed from the graph and possibly removes it.

Example 5.1. Consider the encryption policy illustrated in Figures 10(b)
and (c). Figure 14 illustrates the key and token graph and table Labels result-
ing from granting to D access to r3 and revoking from F access to r8. (Note that
for all users u∈U , we do not report φ(u) since grant/revoke operations do not
change it.)

—grant revoke(D,r3,grant). First, the procedure identifies the vertex whose key is
necessary for decrypting r3, which is v7. Then, acl(r3) is updated by inserting D.
Since there is not a vertex representing {BCD}, procedure create new vertex
is called with U={BCD} as a parameter. The procedure creates, and inserts in
the graph, a new vertex v12, with v12.acl={BCD}. Then, r3 is downloaded from
the server, decrypted with v7.key, encrypted with v12.key, and then uploaded on
the server. Finally, procedure delete vertex is called with v7 as a parameter

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

24 · S. De Capitani di Vimercati et al.

º¹ ¸·³´ µ¶v1[A] //º¹ ¸·³´ µ¶v8[ADEF]

$$IIIIIIIIIII

º¹ ¸·³´ µ¶v2[B] //

((QQQQQQQQQQQQQQQQQQQQQQQQQ º¹ ¸·³´ µ¶v7[BC]

--[[[[[[[[[[[[[[[[[[[[[[[

((QQQQQQ

º¹ ¸·³´ µ¶v3[C]

77ppppp º¹ ¸·³´ µ¶v12[BCD] º¹ ¸·³´ µ¶v10[ABCDEF]

º¹ ¸·³´ µ¶v4[D]

++WWWWWWWWWWWW

33gggggggggggg

º¹ ¸·³´ µ¶v5[E] // v11[DEF] //

EE®®®®®®®®®®®®®®®®® º¹ ¸·³´ µ¶v9[BDEF]

º¹ ¸·³´ µ¶v6[F]

33gggggggggggg

Labels

res id label
r1,r2 v4.label

r3 v12.label
r4,r5 v7.label
r6,r7 v8.label

r8 v9.label
r9 v10.label

(a) grant revoke(D,r3,grant)

º¹ ¸·³´ µ¶v1[A] //º¹ ¸·³´ µ¶v8[ADEF]

%%KKKKKKKKKK
º¹ ¸·³´ µ¶v2[B] //

!!CC
CC

CC
CC

CC
CC

CC
CC

CC
º¹ ¸·³´ µ¶v7[BC]

--[[[[[[[[[[[[[[[[[[[[[

""EE
EE

EE
EE

E
º¹ ¸·³´ µ¶v3[C]

77oooo º¹ ¸·³´ µ¶v10[ABCDEF]

º¹ ¸·³´ µ¶v4[D]

((QQQQQQQQQQQQQ

66llllllllllllllllllllll //º¹ ¸·³´ µ¶v12[BCD]

º¹ ¸·³´ µ¶v5[E]

++XXXXXXXXXX

88qqqqqqqqqqqqqqqqqqqqqqqqq

º¹ ¸·³´ µ¶v6[F]

::uuuuuuuuuuuuuuuuuuuuuuuuuuu º¹ ¸·³´ µ¶v13[BDE]

Labels

res id label
r1,r2 v4.label

r3 v12.label
r4,r5 v7.label
r6,r7 v8.label

r8 v13.label
r9 v10.label

(b) grant revoke(F ,r8, revoke)

Fig. 14. Examples of grant and revoke operations

and, since v7.key is used to encrypt r4 and r5, vertex v7 is not removed from the
graph.

—grant revoke(F ,r8,revoke). First, the procedure identifies the vertex whose key
is necessary for decrypting r8, which is v9. Then, acl(r8) is updated by re-
moving F . Since there is not a vertex representing {BDE}, procedure cre-
ate new vertex is called with U={BDE} as a parameter. The procedure cre-
ates, and inserts in the graph, a new vertex v13, with v13.acl={BDE}. Then,
r8 is downloaded from the server, decrypted with v9.key, encrypted with v13.key,
and uploaded on the server. Then, procedure delete vertex is called with v9 as
a parameter. Since v9.key was only used for encrypting r8, v9 is no longer a
useful vertex and it is removed from the graph. The procedure recursively calls
itself first with v2 and then with v11 as a parameter. Vertex v2 is not removed
from the graph since it corresponds to user B, while vertex v11 is removed.

5.2 Correctness

We now prove that the procedure implementing the grant and revoke operations
(Figure 11) preserves the policy equivalence between the resulting authorization and
encryption policies. We first prove that procedure delete vertex (Lemma 5.1) and
function create new vertex (Lemma 5.2) modify the encryption policy graph by
preserving both the local cover property and the non-redundancy property. This
implies that the equivalence of the resulting encryption policy with the given au-
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Encryption Policies for Regulating Access to Outsourced Data · 25

thorization policy is preserved.

Lemma 5.1. Let A = 〈U ,R,P〉 be an authorization policy and
E=〈U ,R,K,L, φ, T 〉 be an encryption policy such that A ≡ E. Procedure
delete vertex generates a new encryption policy E ′=〈U ,R,K′,L′, φ′, T ′〉 such
that A ≡ E ′.

Lemma 5.2. Let A = 〈U ,R,P〉 be an authorization policy and
E=〈U ,R,K,L, φ, T 〉 be an encryption policy such that A ≡ E. Function
create new vertex generates a new encryption policy E ′=〈U ,R,K′,L′, φ′, T ′〉
such that A ≡ E ′.

By combining Lemma 5.1 and Lemma 5.2, we conclude that the encryption policy
modified by procedure grant revoke in Figure 11 is equivalent to the authorization
policy modified by the same procedure through a grant or revoke operation.

Theorem 5.3. Let A = 〈U ,R,P〉 be an authorization policy and
E=〈U ,R,K,L, φ, T 〉 be an encryption policy such that A ≡ E. Procedure
grant revoke generates a new authorization policy A′ = 〈U ,R,P ′〉 and a new
encryption policy E ′=〈U ,R,K′,L′, φ′, T ′〉 such that A′ ≡ E ′.

6. TWO-LAYER ENCRYPTION FOR POLICY OUTSOURCING

The model described in the previous sections assumes that keys and tokens are
computed, on the basis of the existing authorization policy, prior to sending the
encrypted resources to the server. As described in Section 5, when permissions are
updated by the data owner, the data owner interacts with the service provider for
modifying the catalog and for re-encrypting the resources involved in the update.
Even if the computation and communication overhead caused by policy updates
is limited, the data owner may not have the computational or bandwidth resource
availability for managing policy changes.

To further reduce the data owner’s overhead, we put forward the idea of outsourc-
ing to the server, besides the resource storage, the authorization policy management
as well. Note that this delegation is possible since the server is considered trust-
worthy to properly carry out the service. Recall, however, that the server is not
trusted with confidentiality (i.e., it is honest but curious). For this reason, our
solution has been designed taking into account, and therefore minimizing, the risk
that the server colludes with users to breach data confidentiality (see Section 8).
The solution we propose enforces policy changes on encrypted resources themselves,
without need of decrypting them, and can then be performed by the server.

6.1 Two-layer encryption

To delegate policy changes enforcement to the server, avoiding re-encryption for the
data owner, we adopt a two-layer encryption approach. The owner encrypts the
resources and sends them to the server in encrypted form; the server can impose
another layer of encryption, following directions by the data owner. In terms of
efficiency, the use of a double layer of encryption does not appear as a significant
computational burden. Experience shows that current systems have no significant
delay when managing encryption on data coming from either the network or local

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

26 · S. De Capitani di Vimercati et al.

disks, as also testified by the widespread use of encryption on network traffic and
for protecting the storage of data on local file systems [Schneier et al. 1998].

We then distinguish two layers of encryption.

—Base Encryption Layer (BEL), performed by the data owner before transmit-
ting the resources to the server. It enforces encryption on the resources according
to the policy existing at initialization time.

—Surface Encryption Layer (SEL), performed by the server over the resources
already encrypted by the data owner. It enforces the dynamic changes over the
policy.

Both layers enforce encryption by means of a set of symmetric keys and a set of
public tokens between these keys (see Section 2), although some adaptations are
necessary, as explained below.

Base Encryption Layer. Compared with the model presented in Section 2, at the
BEL we distinguish two kinds of keys: derivation keys and access keys. Access keys
are actually used to encrypt resources, while derivation keys are used to provide the
derivation capability via tokens, that is, tokens can be defined only with derivation
keys as starting points. Each derivation key k is always associated with an access
key ka obtained by applying a secure hash function to k, that is, ka = h(k). In other
words, keys at the BEL always go in pairs 〈k, ka〉. Note that the derivation and the
access keys are associated with a unique label, l and la, respectively. The rationale
for this evolution is to distinguish the two roles associated with keys, namely: en-
abling key derivation (by applying the corresponding tokens) and enabling resource
access. The reason for which such a distinction is needed will be clear in Section 7.

The BEL is characterized by an encryption policy Eb=〈U ,R,Kb,Lb, φb, Tb〉, where
U , R, and Tb are as described in Section 2, Kb is the set of (derivation and access)
keys defined at the BEL, and Lb is the set of publicly available labels associated with
derivation and access keys. The key assignment and encryption schema φb : U ∪
R 7→ Lb associates with each user u∈U the label l corresponding to the derivation
key released to the user by the data owner, and with each resource r∈R the label
la corresponding to the access key with which the resource is encrypted by the data
owner.

The set Kb of keys and the set Tb of tokens can be graphically represented through
the corresponding key and token graph, which now has a vertex b characterized by:
a derivation key along with the corresponding label, denoted b.key and b.label,
respectively; and an access key along with the corresponding label, denoted b.keya

and b.labela, respectively. For each token in Tb that allows the derivation of either
kj or kja from ki, there is an edge (bi, bj) in the graph. Graphically, a vertex is
simply represented by b and tokens leading to derivation keys are distinguished from
tokens leading to access keys by using dotted lines for the latter. The corresponding
encryption policy Eb is graphically represented by an encryption policy graph GEb

,
as described in Section 2, where notation u Eb−→r indicates that there exists a path
connecting u with r , either following tokens or applying secure hash function h.
Note that dotted edges can only appear as the last step of a path in the graph
(since they allow the derivation of access keys only). Figure 15(a) illustrates an
example of the BEL key and token graph and of the key assignment and encryption
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Encryption Policies for Regulating Access to Outsourced Data · 27

º¹ ¸·³´ µ¶b1 //º¹ ¸·³´ µ¶b8

""EEEEEEEE
º¹ ¸·³´ µ¶b2 //

((RRRRRRRRRRRRRRRRRRRRRRRR º¹ ¸·³´ µ¶b7

--[[[[[[[[[[[[[[[[[[[[[[

º¹ ¸·³´ µ¶b3

66mmmmmmm º¹ ¸·³´ µ¶b10

º¹ ¸·³´ µ¶b4

,,XXXXXXXXXXXXXX

º¹ ¸·³´ µ¶b5 // b11 //

EE®®®®®®®®®®®®®® º¹ ¸·³´ µ¶b9

º¹ ¸·³´ µ¶b6

22ffffffffffffff

u φb(u)
A b1.label
B b2.label
C b3.label
D b4.label
E b5.label
F b6.label

r φb(r)
r1,r2 b4.labela

r3,r4,r5 b7.labela
r6,r7 b8.labela

r8 b9.labela
r9 b10.labela

(a) BEL

º¹ ¸·³´ µ¶s1[A]

º¹ ¸·³´ µ¶s2[B]

º¹ ¸·³´ µ¶s3[C]

º¹ ¸·³´ µ¶s4[D]

º¹ ¸·³´ µ¶s5[E]

º¹ ¸·³´ µ¶s6[F]

u φs(u)
A s1.label
B s2.label
C s3.label
D s4.label
E s5.label
F s6.label

r φs(r)
r1,. . . ,r9 null

(b) Delta SEL

º¹ ¸·³´ µ¶s1[A] //º¹ ¸·³´ µ¶s8[ADEF]

%%KKKKKKKKKK
º¹ ¸·³´ µ¶s2[B] //

((RRRRRRRRRRRRRRRRRRRRRR º¹ ¸·³´ µ¶s7[BC]

--[[[[[[[[[[[[[[[[[[[[[

º¹ ¸·³´ µ¶s3[C]

77oooo º¹ ¸·³´ µ¶s10[ABCDEF]

º¹ ¸·³´ µ¶s4[D]

++XXXXXXXXXX

º¹ ¸·³´ µ¶s5[E] // s11[DEF] //

DDªªªªªªªªªªªªªªª º¹ ¸·³´ µ¶s9[BDEF]

º¹ ¸·³´ µ¶s6[F]

33ffffffffff

u φs(u)
A s1.label
B s2.label
C s3.label
D s4.label
E s5.label
F s6.label

r φs(r)
r1,r2 s4.label

r3,r4,r5 s7.label
r6,r7 s8.label

r8 s9.label
r9 s10.label

(c) Full SEL

Fig. 15. An example of BEL and SEL combination with the Delta SEL and the Full SEL approaches

schema enforcing the authorization policy in Figure 2. In this example, all tokens
lead to derivation keys.

Surface Encryption Layer. At the SEL there is no distinction between derivation
and access keys (intuitively a single key carries out both functions). The SEL
is therefore characterized by an encryption policy Es=〈U ,R,Ks,Ls, φs, Ts〉 that is
defined and graphically represented as described in Section 2. Hence, as illustrated
in Section 2, the set Ks of keys and the set Ts of tokens are graphically represented
through a key and token graph having a vertex s for each pair 〈k ,l 〉 defined at
the SEL and an edge (si, sj) if there is a token in Ts allowing the derivation of
kj from ki. Each vertex s in the graph is characterized by: a key, denoted s.key,
and corresponding label, denoted s.label; and the set of users, denoted s.acl, who
can derive s.key. The corresponding encryption policy Es is graphically represented
by an encryption policy graph as described in Section 2, where notation u Es−→r
indicates that there is a path connecting u with r .

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

28 · S. De Capitani di Vimercati et al.

BEL and SEL combination. In the two-layer approach, each resource can then be
encrypted twice: at the BEL first, and then at the SEL. Users can access resources
only passing through the SEL. Each user u receives two keys: one to access the
BEL and the other to access the SEL.4 Users will be able to access resources for
which they know both the keys (BEL and SEL) used for encryption.

The consideration of the two layers requires to restate the definition of policy
equivalence, which is now defined as follows.

Definition 6.1 Policy equivalence with two-layer encryption. Let A = 〈U ,R,P〉
be an authorization policy, Eb = 〈U ,R,Kb,Lb, φb, Tb〉 be a BEL encryption policy,
and Es = 〈U ,R,Ks,Ls, φs, Ts〉 be a SEL encryption policy. A and the pair 〈Eb, Es〉
are equivalent , denoted A ≡ 〈Eb, Es〉, iff the following conditions hold:

—∀u ∈ U , r ∈ R : u Eb−→r ∧ u Es−→r =⇒ u A−→r

—∀u ∈ U , r ∈ R : u A−→r =⇒ u Eb−→r ∧ u Es−→r

In principle, the encryption policies at the BEL and at the SEL can be arbitrarily
defined, as long as their combination is equivalent to the authorization policy. Let
A be the authorization policy at the initialization time and let Eb be the encryp-
tion policy at the BEL, which is equivalent to A (i.e., A ≡ Eb). We envision two
approaches that can be followed in the construction of the two layers.

Full SEL. The SEL encryption policy is initialized to reflect exactly (i.e., to re-
peat) the BEL encryption policy: for each derivation key in BEL, a corresponding
key is defined in SEL; for each token in BEL, a corresponding token is defined in
SEL. Note that the set Ks of keys and the set Ts of tokens form a key and token
graph which is isomorphic to the one existing at the BEL and, therefore, also GEs is
isomorphic to GEb

. The key assignment and encryption schema assigns to each user
u a unique label φs(u)=vs.label (and therefore a unique key vs.key) correspond-
ing to φb(u)=v b.label (i.e., let f be the isomorphism between GEb

and GEs , then
vs=f(v b)). Also, it assigns to each resource r a unique label φs(r)=vs.label (and
therefore a unique key vs.key) corresponding to φb(r)=v b.labela. The SEL encryp-
tion policy models exactly the BEL encryption policy, and hence, by definition, is
equivalent to the authorization policy (i.e., A ≡ Es).

Delta SEL. The SEL policy is initialized to not carry out any over-encryption.
Each user u is assigned a unique label φs(u)=vs.label, and therefore a unique key
vs.key, where vs.acl={u}. No encryption is performed on resources, that is, ∀r ∈
R, φs(r) = null. Here, the SEL itself does not provide any additional protection
at start time, but it does not modify the accesses allowed by BEL.

We note that a third approach could be possible, where the authorization pol-
icy enforcement is completely delegated at the SEL and the BEL simply applies a
uniform encryption (i.e., with the same key released to all users) to protect the
plaintext content from the server’s eyes. We do not consider this approach as it
presents a significant exposure to collusion (see Section 8).

4To simplify key management, the user key for SEL can be obtained by the application of a secure
hash function from the user key for BEL. In the initialization phase, the data owner can send to
the server the SEL keys.

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Encryption Policies for Regulating Access to Outsourced Data · 29

All the approaches described produce a correct two layer encryption, that is,
given a correct encryption policy at the BEL, the approaches produce a SEL such
that the authorization policy A and the pair 〈Eb,Es〉 are equivalent.

The reason for considering both the Full SEL and Delta SEL approaches is the
different performance and protection guarantees that they enjoy. In particular,
Full SEL always requires double encryption to be enforced (even when permissions
remain unvaried), thus doubling the decryption load of users for each access. By
contrast, the Delta SEL approach requires double encryption only when actually
needed to enforce a change in the permissions. However, as we will see in Section 8,
the Delta SEL is characterized by greater information exposure than the Full SEL
approach. The choice between one or the other can then be a trade-off between
costs and resilience to attacks.

We close this section with a remark on the implementation. In the illustration
of our approach, we always assume over-encryption to be managed with a direct
and complete encryption and decryption of the resource, as needed. We note how-
ever that the server can, at the SEL, apply a lazy encryption approach, similar to
the copy-on-write (COW) strategy used by most operating systems, and actually
over-encrypt the resource when it is first accessed (and then storing the computed
encrypted representation). The server may choose also to always store the BEL
representation and then dynamically apply the encryption driven by the SEL when
users access the resource.

7. POLICY UPDATES IN TWO-LAYER ENCRYPTION

While in the basic model described in Section 2 policy updates are enforced by
the owner (Section 5), the two-layer approach enables the enforcement of policy
updates without the need for the owner to re-encrypt and to resend resources to
the server. By contrast, the owner just adds (if necessary) some tokens at the BEL
and delegates policy changes to the SEL by possibly requesting the server to over-
encrypt some resources. The SEL (enacted by the server) receives over-encryption
requests by the BEL (under the control of the data owner) and operates accordingly,
adjusting tokens and possibly encrypting (and/or decrypting) resources.

Before analyzing grant and revoke operations in this new scenario, we first de-
scribe the working of over-encryption at the SEL.

7.1 Over-encrypt

The SEL regulates the update process by over-encrypting of resources. It receives
from the BEL requests of the form over encrypt(U,R) to make the set R of re-
sources accessible only to users U . Note that the semantics is different in the two
different encryption modes. In the Full SEL approach, over-encryption must reflect
the actual authorization policy existing at any given time. In other words, it must
reflect, besides the - dynamic - policy changes (not reflected at the BEL), also the
BEL policy itself. In the Delta SEL approach, over-encryption is demanded only
when additional restrictions (with respect to those enforced by the BEL) need to
be enforced. As a particular case, in the Delta SEL approach the set U of users
may be all when while processing a grant operation the BEL determines that its
protection is sufficient and therefore requests the SEL not to enforce any restriction
and to possibly remove an over-encryption previously imposed.

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

30 · S. De Capitani di Vimercati et al.

Let us then see how the procedure works. Procedure over encrypt takes a
set U of users and a set R of resources as input. First, it determines vertex s
such that s.label=φs(r ′), with r ′ a resource in R (note that since all resources
in R share the same key, it is sufficient to check the condition on s.label on any
resource r′ in R). If such a vertex s exists and s.acl=U , resources in R are over-
encrypted with a key (s.key) that all and only users in the current acl of resource
in R can compute and therefore the procedure terminates. Otherwise, if such a
vertex s exists and s.acl 6=U, the resources in R are first decrypted with s.key and
then procedure over encrypt calls delete vertex on s. At this point, procedure
over encrypt verifies whether the set of users that should be allowed access to the
resources in R by the SEL is different from all. In this case, over-encryption is
necessary. (No operation is executed otherwise, since U=all is the particular case
of Delta SEL approach discussed above.) The procedure checks then the existence
of a vertex s such that the set of users that can derive key s.key (i.e., belonging to
s.acl) corresponds to U . If such a vertex does not exist, it is created and inserted
in the encryption policy graph at the SEL by function create new vertex. Then,
for each resource r in R, the procedure encrypts r with s.key and updates φs(r)
and table Labels accordingly.

7.2 Grant and revoke

Let us first consider procedure grant in Figure 16, which handles a request to
grant user u access to resource r . The BEL starts and regulates the update process
as follows. First, acl(r) is updated to include u . Then, the procedure retrieves
the vertex bj whose access key bj.keya is the key with which r is encrypted. If
the resource’s access key cannot be derived by u , then a new token from from key
bi.key of the user, with bi the vertex such that φb(u)=bi.label, to bj.keya is generated
and added to the token catalog. Note that the separation between derivation and
access keys for each vertex allows us to add a token only giving u access to the
key used to encrypt resource r, thus limiting the knowledge of u to the information
strictly needed to guarantee equivalence with the authorization policy. Indeed,
knowledge of bj.keya is a necessary condition to make r accessible to u . Even if
the knowledge of bj.keya does not allow u to further derive keys and therefore to
access resources with an acl different from acl(r), there may be other resources that
are encrypted with the same key bj.keya and which should not be made accessible
to u . Since releasing bj.keya would make them accessible to u , they need to be
over-encrypted so to make them accessible to users in their acls only. Then, the
procedure determines if such a set of resources R′ exists. If R′ is not empty, the
procedure partitions R′ in sets such that each set S ⊆ R′ includes all resources
characterized by the same acl , denoted aclS . For each set S, the procedure calls
over encrypt(aclS , S) to demand SEL to execute an over-encryption of S for users
in aclS . In addition, the procedure requests the SEL to synchronize itself with the
policy change. Here, the procedure behaves differently depending on the encryption
model assumed. In the case of Delta SEL, the procedure first controls whether the
set of users that can reach the resource’s access key (i.e., the set of users u∈U
such that u Eb−→bi) corresponds to acl(r). If so, the BEL encryption suffices and no
protection is needed at the SEL, and therefore a call over encrypt(all, {r }) is
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Encryption Policies for Regulating Access to Outsourced Data · 31

BEL SEL

GRANT(u ,r)

acl(r) := acl(r) ∪ {u}
find vertex bj with bj .labela = φb(r)

if u
Eb6−→r then

find vertex bi with bi.label = φb(u)
ti,j := bj .keya ⊕ h(bi.key,bj .labela)
Tb := Tb ∪ {ti,j}
upload token ti,j on the server by storing it

in table Tokens

R′ := {r ′ |r ′ 6=r∧φb(r
′)=φb(r)∧∃u∈U :u

Eb−→r∧u 6∈acl(r ′)}
if R′ 6= ∅ then

Partition R′ in sets such that each set S
contains resources with the same acl aclS
for each set S do

over encrypt(aclS ,S)
case encryption model of

Delta SEL: if {u |u∈U :u
Eb−→bi}=acl(r) then

over encrypt(all,{r })
else

over encrypt(acl(r),{r })
Full SEL: over encrypt(acl(r),{r })

REVOKE(u ,r)

acl(r) := acl(r) − {u}
over encrypt(acl(r),{r })

OVER ENCRYPT(U,R)

let r′ be a resource in R
find vertex s with s.label=φs(r ′)
if (s 6=undef∧s.acl=U) then

exit
else

if s6=undef then
for each r∈R do

decrypt r with s.key
delete vertex(s)

if U6=all then
find vertex s with s.acl=U
if s=undef then

s := create new vertex(U)
for each r∈R do

φs(r) := s.label
encrypt r with s.key
update Labels on the server

Fig. 16. Procedures for granting and revoking permission 〈u ,r 〉

requested. Otherwise, a call over encrypt(acl(r),{r }) requests the SEL to make
r accessible only to users in acl(r). In the case of Full SEL, procedure grant always
calls over encrypt(acl(r), r), requesting the SEL to synchronize its policy so to
make r accessible only by the users in acl(r).

Let us now consider procedure revoke in Figure 16, which revokes from user
u access to resource r . The procedure updates acl(r) to remove user u and calls
over encrypt(acl(r),{r }) to demand the SEL to make r accessible only to users
in acl(r).

In terms of performance, the grant and revoke procedures only require a direct
navigation of the BEL and SEL structures and they determine the requests to be
sent to the server in a time which, in typical scenarios, will be less than the time
required to send the messages to the server.

Example 7.1. Consider the two layer encryption policy in Figure 15. Figures 17
and 18 illustrate the evolution of the corresponding key and token graphs and of
φb(r) and φs(r) for resources in R when the grant and revoke operations listed below
are executed. Note that we do not report φb(u) and φs(u) for users in U since they
never change upon grant/revoke operations. Note also that in the Full SEL scenario
the key and token graph at SEL evolves exactly as described in Example 5.1.

—grant(D,r3). First, acl(r3) is updated by inserting D. Then, since access key
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

32 · S. De Capitani di Vimercati et al.

º¹ ¸·³´ µ¶b1 //º¹ ¸·³´ µ¶b8

""EEEEEEEE
º¹ ¸·³´ µ¶b2 //

((RRRRRRRRRRRRRRRRRRRRRRRR º¹ ¸·³´ µ¶b7

--[[[[[[[[[[[[[[[[[[[[[[

º¹ ¸·³´ µ¶b3

66mmmmmmm º¹ ¸·³´ µ¶b10

º¹ ¸·³´ µ¶b4

,,XXXXXXXXXXXXXX

==

º¹ ¸·³´ µ¶b5 // b11 //

EE®®®®®®®®®®®®®® º¹ ¸·³´ µ¶b9

º¹ ¸·³´ µ¶b6

22ffffffffffffff

r φb(r)
r1,r2 b4.labela

r3,r4,r5 b7.labela
r6,r7 b8.labela

r8 b9.labela
r9 b10.labela

grant(D,r3)

º¹ ¸·³´ µ¶s1[A]

º¹ ¸·³´ µ¶s2[B] //º¹ ¸·³´ µ¶s7[BC]

º¹ ¸·³´ µ¶s3[C]

77oooo

º¹ ¸·³´ µ¶s4[D]

º¹ ¸·³´ µ¶s5[E]

º¹ ¸·³´ µ¶s6[F]

r φs(r)
r1,. . . ,r3 null

r4,r5 s7.label
r6,. . . ,r9 null

Delta SEL - over encrypt(BC,{r4,r5})
over encrypt(all,r3)

º¹ ¸·³´ µ¶s1[A] //º¹ ¸·³´ µ¶s8[ADEF]

%%KKKKKKKKKK
º¹ ¸·³´ µ¶s2[B] //

((RRRRRRRRRRRRRRRRRRRRRR º¹ ¸·³´ µ¶s7[BC]

--[[[[[[[[[[[[[[[[[[[[[
((RRRRR

º¹ ¸·³´ µ¶s3[C]

77oooo º¹ ¸·³´ µ¶s12[BCD] º¹ ¸·³´ µ¶s10[ABCDEF]

º¹ ¸·³´ µ¶s4[D]

++XXXXXXXXXX

33ffffffffff

º¹ ¸·³´ µ¶s5[E] // s11[DEF] //

DDªªªªªªªªªªªªªªª º¹ ¸·³´ µ¶s9[BDEF]

º¹ ¸·³´ µ¶s6[F]

33ffffffffff

r φs(r)
r1,r2 s4.label

r3 s12.label
r4,r5 s7.label
r6,r7 s8.label

r8 s9.label
r9 s10.label

Full SEL - over encrypt(BC,{r4,r5})
over encrypt(BCD,{r3})

Fig. 17. An example of grant operation

b7.keya used to encrypt r3 cannot be derived from the derivation key of vertex
b4 corresponding to φb(D), a token allowing computation of b7.keya from b4.key
is added to BEL. Since b7.keya is also used to encrypt resources r4 and r5,
which D is not authorized to view, these resources have to be over-encrypted
so to make them accessible only to users B and C. In the Delta SEL scenario,
over encrypt creates a new vertex s7, with s7.acl={BC}, for resources r4 and
r5; the protection of resource r3 at BEL level is instead sufficient and no over-
encryption is needed (i.e., procedure over encrypt is called with U=all). In
the Full SEL scenario, resources r4 and r5 are already correctly protected, r3 is
instead over-encrypted with the key of vertex s12, which is created and inserted
in the graph by function create new vertex; finally, procedure delete vertex
is called with s7 as a parameter and, since s7.key is used to encrypt r4 and r5,
vertex s7 is not removed from the graph.

—revoke(F ,r8). First, acl(r8) is updated by removing F . Since acl(r8) becomes
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Encryption Policies for Regulating Access to Outsourced Data · 33

º¹ ¸·³´ µ¶b1 //º¹ ¸·³´ µ¶b8

""EEEEEEEE
º¹ ¸·³´ µ¶b2 //

((RRRRRRRRRRRRRRRRRRRRRRRR º¹ ¸·³´ µ¶b7

--[[[[[[[[[[[[[[[[[[[[[[

º¹ ¸·³´ µ¶b3

66mmmmmmm º¹ ¸·³´ µ¶b10

º¹ ¸·³´ µ¶b4

,,XXXXXXXXXXXXXX

==

º¹ ¸·³´ µ¶b5 // b11 //

EE®®®®®®®®®®®®®® º¹ ¸·³´ µ¶b9

º¹ ¸·³´ µ¶b6

22ffffffffffffff

r φb(r)
r1,r2 b4.labela

r3,r4,r5 b7.labela
r6,r7 b8.labela

r8 b9.labela
r9 b10.labela

revoke(F ,r8)

º¹ ¸·³´ µ¶s1[A]

º¹ ¸·³´ µ¶s2[B] //

!!B
BB

BB
BB

BB
BB

BB
BB

BB
B º¹ ¸·³´ µ¶s7[BC]

º¹ ¸·³´ µ¶s3[C]

77oooo

º¹ ¸·³´ µ¶s4[D]

((QQQQQQQQQQQQQ
º¹ ¸·³´ µ¶s5[E]

++XXXXXXXXXX

º¹ ¸·³´ µ¶s6[F] º¹ ¸·³´ µ¶s13[BDE]

r φs(r)
r1,. . . ,r3 null

r4,r5 s7.label
r6,r7 null

r8 s13.label
r9 null

Delta SEL - over encrypt(BDE,{r8})

º¹ ¸·³´ µ¶s1[A] //º¹ ¸·³´ µ¶s8[ADEF]

%%KKKKKKKKKK
º¹ ¸·³´ µ¶s2[B] //

!!B
BB

BB
BB

BB
BB

BB
BB

BB
B º¹ ¸·³´ µ¶s7[BC]

--[[[[[[[[[[[[[[[[[[[[[

""EEEEEEEE
º¹ ¸·³´ µ¶s3[C]

77oooo º¹ ¸·³´ µ¶s10[ABCDEF]

º¹ ¸·³´ µ¶s4[D]

((QQQQQQQQQQQQQ

66llllllllllllllllllllll //º¹ ¸·³´ µ¶s12[BCD]

º¹ ¸·³´ µ¶s5[E]

++XXXXXXXXXX

88qqqqqqqqqqqqqqqqqqqqqqqqq

º¹ ¸·³´ µ¶s6[F]

::uuuuuuuuuuuuuuuuuuuuuuuuuuu º¹ ¸·³´ µ¶s13[BDE]

r φs(r)
r1,r2 s4.label

r3 s12.label
r4,r5 s7.label
r6,r7 s8.label

r8 s13.label
r9 s10.label

Full SEL - over encrypt(BDE,{r8})

Fig. 18. An example of revoke operation

{BDE}, resource r8 has to be over-encrypted with a key that only this set of users
can compute. Consequently, in both the Delta SEL and the Full SEL scenario, a
new vertex s13 representing {BDE} is created and its key is used to encrypt r8.
Also, in the Full SEL scenario, procedure delete vertex is called with s9 as a
parameter. Since s9 is no longer a useful vertex, it is removed from the graph.
The procedure recursively calls itself with s2 and with s11 as a parameter. Vertex
s2 is not removed from the Full SEL graph since it corresponds to user B while
vertex s11 is removed.

7.3 Correctness

We now prove that the procedures implementing the grant and revoke operations
preserve policy equivalence.

Theorem 7.1. Let A = 〈U ,R,P〉 be an authorization policy,
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

34 · S. De Capitani di Vimercati et al.

Server’s view User’s view

r

BEL

SEL

r

BEL

SEL

r

BEL

SEL

r

BEL

SEL

r

BEL

SEL

open locked sel locked bel locked
(a) (b) (c) (d) (e)

Fig. 19. Possible views on resource r

Eb=〈U ,R,Kb,Lb, φb, Tb〉 be an encryption policy at the BEL, and
Es=〈U ,R,Ks,Ls, φs, Ts〉 be an encryption policy at the SEL such that A ≡ 〈Eb,Es〉.
The procedures in Figure 16 generate a new Eb

′ = 〈U ,R,Kb
′,Lb

′, φb
′, Tb

′〉,
Es
′ = 〈U ,R,Ks

′,Ls
′, φs

′, Ts
′〉, and A′ such that A′ ≡ 〈Eb

′, Es
′〉.

8. PROTECTION EVALUATION

Since the BEL and SEL encryption policies are jointly equivalent to the authorization
policy at initialization time, the correctness of the procedures in Figure 16 ensures
that the authorization policy A and the pair 〈Eb, Es〉 are equivalent. In other words,
at any point in time, users will be able to access only resources for which they have
- directly or indirectly - the necessary keys both at the BEL and at the SEL.

The key derivation process is proved to be secure [Atallah et al. 2005]. We also
assume that all the encryption functions and the tokens are robust and cannot
be broken, even combining the information available to many users. Moreover, we
assume that each user correctly manages her keys, without the possibility for a user
to steal keys from another user.

It still remains to evaluate whether the approach is vulnerable to attacks from
users who access and store all information offered by the server, or from collusion
attacks, where different users (or a user and the server) combine their knowledge to
access resources they would not otherwise be able to access. Note that for collusion
to exist, both parties should gain in the exchange (as otherwise they will not have
any incentive in colluding).

To model exposure, we first examine the different views that one can have on
a resource r by exploiting a graphical notation with resource r in the center and
with fences around r denoting the barriers to the access imposed by the knowledge
of the keys used for r’s encryption at the BEL (inner fence) and at the SEL (outer
fence). The fence is continuous if there is no knowledge of the corresponding key
(the barrier cannot be passed); it is discontinuous otherwise (the barrier can be
passed). Figure 19 illustrates the different views that can exist on the resource. On
the left, Figure 19(a), there is the view of the server itself, which knows the key at
the SEL but does not have access to the key at the BEL. On the right, there are
the different possible views of users, for whom the resource can be:

—open: the user knows the key at the BEL as well as the key at the SEL (Fig-
ure 19(b));

—locked: the user knows neither the key at the BEL nor the key at the SEL (Fig-
ure 19(c));

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Encryption Policies for Regulating Access to Outsourced Data · 35

r

BEL

SEL

r

BEL

SEL
r

BEL

SEL

open

locked

sel_locked

(a)

r

BEL

SEL

r

BEL

SEL

r

BEL

SEL

open

bel_locked

sel_locked

r

BEL

SEL

locked

(b)

Fig. 20. View transitions in the Full SEL (a) and in the Delta SEL (b)

—sel locked: the user knows only the key at the BEL but does not know the key at
the SEL (Figure 19(d));

—bel locked: the user knows only the key at the SEL but does not know the key
at the BEL (Figure 19(e)). Note that this latter view corresponds to the view of
the server itself.

By the authorization policy and encryption policy equivalence (Theorem 7.1),
the open view corresponds to the view of authorized users, while the remaining
views correspond to the views of non authorized users.

8.1 Exposure risk

We now discuss possible information exposure, with the conservative assumption
that users are not oblivious (i.e., they have the ability to store and keep indefinitely
all information they were entitled to access).

Full SEL. In the Full SEL approach, at initialization time, BEL and SEL are com-
pletely synchronized. For each user, a resource is then protected by both keys or
by neither: authorized users will have the open view, while non authorized users
will have the locked view. Figure 20(a) summarizes the possible view transitions
starting from these two views.

Let us first examine the evolution of the open view. Since resources at the BEL
are not re-encrypted, the view of an authorized user can change only if the user
is revoked the permission. In this case, the resource is over-encrypted at the SEL,
then becoming sel locked for the user. The view can be brought back to be open if
the user is granted the permission again (i.e., over-encryption is removed).

Let us now examine the evolution of the locked view. For how the SEL is con-
structed and maintained in the Full SEL approach, it cannot happen that the SEL
grants a user an access that is blocked at the BEL, and therefore the bel locked view
can never be reached. The view can instead change to open, if the user is granted
the permission to access the resource; or to sel locked, if the user is given the access
key at the BEL but she is not given that at the SEL. This latter situation can
happen if the release of the key at the BEL is necessary to make accessible to the
user another resource r′ that is, at the BEL, encrypted with the same key as r. To
illustrate, suppose that at initialization time resources r and r′ are both encrypted

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

36 · S. De Capitani di Vimercati et al.

BEL

SEL

BEL

SEL

locked sel_locked

r r’ r’ r

open

grant(r’,u)

Fig. 21. From locked to sel locked views

with the same key and they are not accessible by user u (see the leftmost view in
Figure 21). Suppose then that u is granted the permission for r′. To make r′ ac-
cessible at the BEL, a token is added to make the key corresponding to label φb(r)
derivable by u, where however φb(r)=φb(r′). Hence, r′ will be over-encrypted at the
SEL and the key corresponding to label φs(r′) made derivable by u. The resulting
situation is illustrated in Figure 21, where r′ is open and r results sel locked.

We now analyze what are the possible views of users that may collude. Users
having the open and the locked view need not be considered as they have nothing
to gain in colluding. Also, recall that, as noted above, in the Full SEL approach
nobody (but the server) can have a bel locked view. This leaves us only with users
having the sel locked view. Since users having the same views will not gain anything
in colluding, the only possible collusion can happen between the server (who has
a bel locked view) and a user who has a sel locked view. In this situation, the
knowledge of the server allows lowering the outer fence, while the knowledge of the
user allows lowering the inner fence: merging their knowledge, they would then be
able to bring down both fences and enjoy the open view on the resource. The risk
of collusion then arises on resources for which a user holds a sel locked view and the
user never had the permission to access the resource (i.e., the user never belonged
to the acl of the resource). Indeed, if a user would get access to a resource she
previously had permission for, the user has no gain in colluding with the server.

Besides collusion between different parties, we also need to consider the risk of
exposure due to a single user (or server) merging her own views on a resource at
different points in time. It is easy to see that, in the Full SEL approach, where all
non authorized users start with a locked view on the resource (and transitions are
as illustrated in Figure 20(a)), there is no risk of exposure. Trivially, if the user is
released the key at the SEL (i.e., it is possible for her to bring down the outer fence)
it is because the user has the permission for r at some point in time and therefore
she is (or has been) authorized for the resource. There is therefore no exposure
risk.

Delta SEL. In the Delta SEL approach, users not authorized to see a resource
have, at initialization time, the bel locked view on it. From there, the view can
evolve to be sel locked, open, or locked. The view evolves from bel locked to open
for a user u if she is given the permission for the resource. The view evolves from
bel locked to locked for a user u if a user u ′, with the bel locked view on r , is given
the permission for a resource r ′ encrypted, at the BEL, with the same key as r . In
this case, r is over-encrypted with a SEL key that neither u nor u ′ know. View
transitions are illustrated in Figure 20(b). It is easy to see that, in this case, a single
user by herself can then hold, at different points in time, the two different views:
sel locked and bel locked. In other words a (planning-ahead) user could retrieve the
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Encryption Policies for Regulating Access to Outsourced Data · 37

resource at initialization time, when she is not authorized, getting and storing at
her side r’s bel locked view. If, at a later point in time the user is released the key
corresponding to label φ(r) to make accessible to her another resource r′, she will
acquire the sel locked view on r. Merging this with the past bel locked view, she
can enjoy the open view on r. Note that the set of resources potentially exposed to
a user coincides with the resources exposed to collusion between that user and the
server in the Full SEL approach.

It is important to note that in both cases (Full SEL and Delta SEL), this exposure
only impacts resources that have been involved in a policy split to make other
resources, encrypted with the same BEL key, available to the user. Exposure is
therefore limited and well identifiable. This allows the owner to counteract it,
when the owner feels specific risks have to be minimized, via explicit selective re-
encryption or by proper design (as discussed in the next section).

The collusion analysis clarifies why we did not consider the third possible encryp-
tion scenario illustrated in Section 6, that is, the scenario where the authorization
policy enforcement is completely delegated at the SEL and the BEL simply applies
a uniform encryption (i.e., with the same key released to all users) to protect the
plaintext content from the server’s eyes. In this scenario, all users non authorized to
access a resource would always have the sel locked view on it and could potentially
collude with the server. The fact that the BEL key is the same for all resources
would make all the resources exposed (as the server would just need to collude with
one user to be able to access all resources).

8.2 Design considerations

From the analysis above, we can make the following observations on the Delta SEL
and the Full SEL approaches.

—Exposure protection. The Full SEL approach provides superior protection, as it
reduces the risk of exposure, which is limited to collusion with the server. By
contrast, the Delta SEL approach exposes also to single (planning-ahead) users.

—Performance. The Delta SEL approach provides superior performance, as it im-
poses over-encryption only when required by a change in permissions. By con-
trast, the Full SEL approach always imposes a double encryption on the resources,
and therefore an additional load.

From these observations we can draw some criteria that could be followed by a
data owner when choosing between the use of Delta SEL or Full SEL. If the data
owner knows that:

—the access policy will be relatively static, or
—sets of resources sharing the same acl at initialization time represent a strong

semantic relationship rarely split by policy evolution, or
—resources are grouped at the BEL in fine granularity components where most of

the BEL vertices are associated with a single or few resources,

then the risk of exposing the data to collusion is limited also in the Delta SEL
approach, which can then be preferred for performance reasons.

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

38 · S. De Capitani di Vimercati et al.

By contrast, if permissions have a more dynamic and chaotic behavior, the
Full SEL approach can be preferred to limit exposure due to collusion. Also, the
collusion risk can be minimized by a proper organization of the resources to re-
duce the possibility of policy splits. This could be done either by producing a finer
granularity of encryption and/or better identifying resource groups characterized
by a persistent semantic affinity (in both cases, using at the BEL different keys for
resources with identical acl).

9. EXPERIMENTAL RESULTS

An important issue for the success of the presented techniques is their scalability.
The potential for their adoption would be greatly compromised if they were not
applicable in large-scale scenarios. We performed two series of experiments. The
first series of experiments evaluate the number of tokens needed for representing
an authorization policy. Such a metric allows us to estimate the load in terms of
storage required server-side to support the authorization policy. The second series
of experiments evaluate the performance of over-encryption in terms of the time
required for deriving keys and for downloading and decrypting resources.

9.1 Evaluation of the number of tokens

A natural verification of the adaptability of the presented techniques to large con-
figurations could start from the extraction of a complex authorization policy from
a large system, with the goal of computing an equivalent encryption policy using
the approach presented above. Unfortunately, there is no large scale access control
system available today that would allow us to produce a significant test. The most
structurally rich authorization policies are today those that characterize large en-
terprise scenarios, but these policies typically exhibit a relatively poor structure,
which can be represented in our system with a limited number of tokens and almost
no effort on the part of the construction algorithm. We then need to follow a dif-
ferent strategy to obtain a robust guarantee on the ability of the proposed system
to scale well, building a simulated scenario exhibiting large scale and articulated
policies. As we describe later, a single experiment was not sufficient and we de-
signed two series of experiments, covering different configurations that solicited the
system in two distinct ways.

The first scenario starts from the premise that data outsourcing platforms are
used to support the exchange and dissemination of resources among the members of
a user community. The idea then is to use a description of the structure of a large
social network to derive a number of resource dissemination requests. We identified
as a source for the construction of a large social network the coauthor relationship
represented within the DBLP bibliography index. DBLP [DBLP Bibliography] is
a well-known bibliographic database that currently indexes more than one million
articles. The assumption at the basis of the first series of experiments is that each
paper represents a resource that must be accessible by all its authors.

The social network of DBLP coauthors has been the subject of several investi-
gations (e.g., [Cormode et al. 2008; Nascimento et al. 2003]); this network has a
structure representative of that of other social networks, synthetically classified as a
power-law or self-similar structure, with a sparse graph, and non-random structure
of links. We implemented a C++ program that starts from a random author and
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Encryption Policies for Regulating Access to Outsourced Data · 39

 3500

 3000

 2500

 2000

 1500
 2000 1750 1500 1250

N
um

be
r

of
 T

ok
en

s

Number of Users

only material vertices
with non material vertices

(a)

 75000

 50000

 25000

 0
 2000 1500 1000 500

N
um

be
r

of
 T

ok
en

s

Number of Users

only material vertices
with non material vertices

(b)

Fig. 22. Number of tokens for the DBLP scenario (a) and for the championship scenario (b)

considers all his/her publications and coauthors; then, one of the coauthors is ran-
domly chosen and his/her publications and corresponding coauthors are iteratively
retrieved, extending the user population and the set of resources. We then built
a token-based encryption policy corresponding to the authorization policy, where
every author has access to all the papers that he/she has authored or co-authored.

The first metric we considered in the experiments is the number of tokens required
for the representation of the authorization policy. The graph in Figure 22(a) illus-
trates how the number of tokens increases with the number of users. We observe
that the growth is linear and that the number of tokens remains low (with 2000
authors, we have 3369 tokens).

Another important metric was the one evaluating the impact of the vertices
factorization process on the number of tokens. The optimization presented a very
limited benefit in the DBLP scenario, as visible from Figure 22(a) (18 tokens gained
out of 3369, thanks to the introduction of 12 non material vertices). The rationale
is that the structure of the social network is relatively sparse. As it has been
demonstrated by other investigations, self-similar networks are characterized by a
few nodes which present a high level of connectedness, whereas most of the network
nodes are loosely connected with a few other nodes and form small strictly con-
nected communities. Then, the construction of a token-based encryption policy for
a situation like this, produces a relatively simple graph, with relatively few tokens.
This is a positive and important property, which demonstrates that our approach
is immediately applicable to large social networks, with an efficient construction.

Taking into account the behavior emerging from the above experimental scenario,
it became interesting to test the behavior of the system in a more difficult config-
uration, with a complex authorization policy. We were specifically interested in
evaluating the benefit produced by the application of the optimizations introduced
in the paper. As representative of a potential selective dissemination scenario, we
consider the case study, also analyzed in [Damiani et al. 2007], of a sport news
database. The chosen service manages a system with t teams, where each team is
composed by pt players and is coordinated by one manager. The service is supposed
to be used by s team supporters, referred in the following as subscribers. Moreover,

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

40 · S. De Capitani di Vimercati et al.

a set of reporters follows the league and uses the service to work with tr teams.
The reporters are grouped into sets of rm elements, each of which coordinated by
one manager. In the considered scenario, each user (team manager, reporter, re-
porter manager, and subscriber) can subscribe (i.e., gain read permission) to any
number of resources, partitioned between player news and team news. Consistently
with [Damiani et al. 2007], the set of permissions granted to subscribers is modeled
to be quite large to evaluate our approach in a significant scenario. The number
of team news accessed by each subscriber, along with the player news of the same
team, follows a Zipf distribution that increases with the number s of subscribers.
The results of the experiments, presented in Figure 22(b), (continuous line) show
the number of tokens required for the representation of the policy. It is easy to ob-
serve that the number of tokens required per user is significantly higher than in the
DBLP scenario, because of the more intricate structure of the policy in this exper-
imental setup. Still, the number of tokens after the application of the optimization
techniques increases linearly with the increase in the number of users, with no sign
of divergence for extremely large configurations. The graph in Figure 22(b) shows
the advantage produced by the identification of non material vertices, that is, by
the factorization process. The advantage is significant, with an average reduction
of 82% on the number of tokens.

Overall, the experiments allow us to make two important claims. First, the
approach presented in the paper is able to manage large scenarios, particularly
when the authorization policy presents a structure analogous to that exhibited by
social networks. Second, for complex authorization policies that present a complex
structure and would otherwise require a significant number of tokens per user, the
use of the optimization techniques introduced in this paper is able to provide a
significant reduction in the complexity, keeping at a manageable level the total
number of tokens required for the representation of the policy.

9.2 Evaluation of the performance of over-encryption

We also run another series of experiments to investigate the run time costs. We
implemented a prototype of a Web-based file sharing application, with a Java server
answering requests originated in the client by a Firefox plugin. The extension was
integrated with the XUL model underlying the Firefox interface, uses JavaScript
to control the interaction with the user, and invokes the services offered by a bi-
nary library (originally written in C++) to realize the encryption functions. Open
source implementations of the SHA-1 hash function and of the AES algorithm have
been used. The extension is multi-platform (Windows, MacOs X, Linux).
The experiments have been executed using two distinct machines as server and
client. The two computers were common PCs running Linux on the server and
Windows XP SP2 on the client. The two PCs were connected by a local 100Mb/s
Ethernet connection. The experiments have considered requests on resources vary-
ing in size from 1KB to 100MB, with a 10X increase at each step. The values
reported in the graphs in Figure 23(a) and Figure 23(b) illustrate the average com-
puted from 128 file retrieval requests, with length of the token chain on average
equal to 2.5 (values chosen to be consistent with the analysis of large scale token
configurations reported in [De Capitani di Vimercati et al. 2008]).
Figure 23(a) shows the time required to complete the retrieval of a resource. The
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Encryption Policies for Regulating Access to Outsourced Data · 41

(a) (b)

Fig. 23. Total time required for retrieving keys and resources with single layer encryption and
Full SEL over-encryption (a), and times required for retrieving keys and for retrieving resources
with Full SEL over-encryption

graph compares the time required to complete the request with a system using only
BEL protection and a system using over-encryption with the Full SEL mode. As
the graph shows, for small resources the time required is doubled, whereas for large
resources there is a 36% increase. The motivation is that for small resources the
dominant factor is the retrieval of tokens and key derivation, which is executed
twice when using over-encryption. For large resources, the difference is due to the
prototype writing on disk the result of the SEL decryption before applying the BEL
decryption (if the resource had been kept in memory, the difference would have
been negligible). Confirming this analysis, Figure 23(b) splits the execution time
for resource retrieval when using over-encryption into the time required for obtain-
ing the key (sum of the time required to retrieve tokens from the server and the
time required to compute the hash functions and derive the keys in the chain) and
the time required to transfer and twice decrypt the resource. The graph clearly
shows that the time required for key derivation is, as expected, independent of re-
source size, whereas the time required to transfer and decrypt the resource grows
linearly with the increase in the resource size and is bound by the performance of
the network connection. In this local network configuration, the time required to
transfer and decrypt the resource is the dominant factor for resources of size larger
than 1MB. Considering a geographic network, with lower bandwidth, the overhead
introduced by token computation becomes irrelevant even for smaller resources.

10. RELATED WORK

Previous work close to our is in the area of “database-as-a-service”
paradigm [Hacigümüs et al. 2002(a); Hacigümüs et al. 2002(b)], which considers the
problem of database outsourcing. Its intended purpose is to enable data owners to
outsource distribution of data on the Internet to service providers. Different security
aspects of the outsourced scenario have been addressed in the last few years (e.g.,
execution of queries on encrypted outsourced data, inference exposure, integrity,

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

42 · S. De Capitani di Vimercati et al.

physical security measures). The majority of existing efforts on this topic focuses
on techniques allowing the execution of queries on encrypted outsourced data, trying
to support all SQL clauses and different kinds of conditions over attributes [Agrawal
et al. 2004; Ceselli et al. 2005; Hacigümüs et al. 2002(a); Hacigümüs et al. 2002(b);
Shmueli et al. 2005; Wang and Lakshmanan 2006]. One of the first proposals in
this direction [Hacigümüs et al. 2002(a); Hacigümüs et al. 2002(b)] is based on
the definition of indexing information that is stored together with the encrypted
database and is used by the DBMS to select the data to be returned in response to
a query. In [Ceselli et al. 2005] the authors propose a hash-based index technique
for equality queries, together with a B+ tree technique applicable to range queries.
They also provide an evaluation of the inference exposure in encrypted databases
enriched with indexing information. The work demonstrates that even a limited
number of indexes can greatly facilitate the task for an adversary that aims at vio-
lating the confidentiality provided by encryption. In [Wang and Lakshmanan 2006]
the authors propose an indexing method that exploits B-trees for supporting both
equality and range queries, while reducing inference exposure due to an almost flat
distribution of the frequencies of index values.

In addition to the application-based approaches above-mentioned, hardware-
based approaches to the problem of secure outsourced storage have been investi-
gated [Bouganim and Pucheral 2002]. The basic idea is to use a security hardware
component, which can support secure computations at both client and server sides.

A related effort [Mykletun et al. 2006] focuses on the design of mechanisms for
protecting the integrity and authenticity of data from both malicious outsider at-
tacks and the service provider itself. In [Sion 2005] the authors propose an approach
for proving the correct execution of queries on outsourced data. Another interest-
ing problem considered is privacy of queries, supported by Private Information
Retrieval (PIR) techniques [Chor et al. 1998; Kushilevitz and Ostrovsky 1997].
PIR techniques could complement our solution for providing resource integrity and
query correctness. However, PIR techniques unfortunately are today still too inef-
ficient to be applicable in real systems, particularly for large data collections.

A different, but related, line of work has addressed the protection of sensitive
associations existing among attributes of a relational table to be stored at ex-
ternal servers. Essentially, these proposals protect sensitive associations breaking
them by storing data in separate tables that cannot be joined (i.e., that are stored
at non-communicating servers or that have no attributes in common). The first
proposal suggesting the protection of sensitive associations via fragmentation has
been presented in [Aggarwal et al. 2005], and a more recent proposal is described
in [Ciriani et al. 2007]. In [Aggarwal et al. 2005] sensitive associations are protected
by splitting the involved attributes over two independent and non-communicating
database servers, thus enforcing a fragmentation with at most two fragments, and
resorting to encryption whenever necessary. In [Ciriani et al. 2007] the authors
propose an alternative solution that removes the assumption of the servers be non-
communicating and allows for multiple fragments, thus limiting the need to resort
to encryption.

A few research efforts have directly tackled the issues of access control in an out-
sourced scenario. In [Miklau and Suciu 2003] the authors first present a framework
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Encryption Policies for Regulating Access to Outsourced Data · 43

for enforcing access control on published XML documents by using different cryp-
tographic keys over different portions of the XML tree and by introducing special
metadata nodes in the structure. Our work is complementary to this proposal, as
we look at the problems of exploiting key derivation techniques [Akl and Taylor
1983; Atallah et al. 2005; Crampton et al. 2006; Sandhu 1987] for access control en-
forcement and of outsourcing, besides the data, the management of policy changes.

The two-layer approach for policy management in outsourced encrypted
databases presented in this paper has been first introduced in [De Capitani di
Vimercati et al. 2007]. The paper considerably extends this prior work presenting
a complete framework for policy management via encryption in outsourcing scenar-
ios, introducing the novel problem of translating an authorization policy into an
equivalent encryption policy and addressing it from its formalization and resolution
to the experimental results.

11. CONCLUSIONS

We addressed the problem of enforcing access control in a scenario where data are
outsourced to external servers that, while trusted for data management, are not
authorized to read the data content (honest but curious servers). Our solution puts
forward a novel approach combining authorizations and encryption. We provided
a formal characterization of the problem of translating authorization policies into
equivalent encryption policies, while minimizing the overhead in terms of storage
and computation needed for the enforcement. We also described a novel solution
that allows the data owner to outsource the complete management of the autho-
rization policy by providing two layers of encryption. These two layers allow the
server to directly enforce policy changes demanded by the data owner, avoiding
resource transfer and re-encryption that would otherwise be required.

Our experimental results show that the solution presented in this paper is effi-
cient and can manage complex situations. Our solution can therefore be immedi-
ately used in all database-centered scenarios and, more in general, in all scenarios
where sensitive data have to be distributed and made available through a variety
of external servers. We are confident that approaches that implement our proposal
can have an important role in the design of the security infrastructure of future
network-based information systems.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Li-
brary by visiting the following URL: http://www.acm.org/pubs/citations/
journals/tods/20YY-V-N/p1-URLend.

REFERENCES

Aggarwal, G., Bawa, M., Ganesan, P., Garcia-Molina, H., Kenthapadi, K., Motwani, R.,
Srivastava, U., Thomas, D., and Xu, Y. 2005. Two can keep a secret: A distributed archi-
tecture for secure database services. In Proc. of CIDR’05. VLDB Endowment, 186–199.

Agrawal, R., Kierman, J., Srikant, R., and Xu, Y. 2004. Order preserving encryption for
numeric data. In Proc. of ACM SIGMOD’04. ACM, New York, 563–574.

Akl, S. and Taylor, P. 1983. Cryptographic solution to a problem of access control in a hierarchy.
ACM Trans. Comput. Syst. 1, 3 (Aug.), 239–248.

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

44 · S. De Capitani di Vimercati et al.

Atallah, M., Frikken, K., and Blanton, M. 2005. Dynamic and efficient key management for
access hierarchies. In Proc. of ACM CCS’05. ACM, New York, 190–202.

Ateniese, G., De Santis, A., Ferrara, A.L., and Masucci, B. 2006. Provably-secure time-
bound hierarchical key assignment schemes. In Proc. of ACM CCS’06. ACM, New York,
288–297.

Baralis, E., Paraboschi, S., and Teniente, E. 1997. Materialized views selection in a multidi-
mensional database. In Proc. of VLDB’97. Morgan Kaufmann Publishers Inc., San Francisco,
156–165.

Bouganim, L. and Pucheral, P. 2002. Chip-secured data access: Confidential data on untrusted
servers. In Proc. of VLDB’02. VLDB Endowment, 131–142.

Ceselli, A., Damiani, E., De Capitani di Vimercati, S., Jajodia, S., Paraboschi, S., and
Samarati, P. 2005. Modeling and assessing inference exposure in encrypted databases. ACM
Trans. on Information and System Security 8, 1 (Feb.), 119–152.

Chor, B., Kushilevitz, E., Goldreich, O., and Sudan, M. 1998. Private information retrieval.
Journal of the ACM 45, 6 (Nov.), 965–981.

Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., and
Samarati, P. 2007. Fragmentation and encryption to enforce privacy in data storage. In Proc.
of ESORICS’07. Springer, Berlin/Heidelberg, 225–239.

Cormode, G., Srivastava, D., Yu, T., and Zhang, Q. 2008. Anonymizing bipartite graph data
using safe groupings. In Proc. of VLDB’08. VLDB Endowment, 833–844.

Crampton, J., Martin, K., and Wild, P. 2006. On key assignment for hierarchical access
control. In Proc. of IEEE CSFW’06. IEEE Computer Society, Washington, 98–111.

Damiani, E., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., and
Samarati, P. 2007. An experimental evaluation of multi-key strategies for data outsourcing.
In Proc. of IFIP SEC’07. Springer, Boston, 385–396.

De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Pelosi, G., and
Samarati, P. 2008. Preserving confidentiality of security policies in data outsourcing. In Proc.
of WPES’08. ACM, New York, 75–84.

De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., and Samarati, P.
2007. Over-encryption: Management of access control evolution on outsourced data. In Proc.
of VLDB’07. VLDB Endowment, 123–134.

De Santis, A., Ferrara, A.L., and Masucci, B. 2004. Cryptographic key assignment schemes
for any access control policy. Inf. Process. Lett. 92, 4 (Nov.), 199–205.

Gudes, E. 1980. The design of a cryptography based secure file system. IEEE Trans. Softw.
Eng. 6, 5 (Sept.), 411–420.

Hacigümüs, H., Iyer, B., and Mehrotra, S. 2002(a). Providing database as a service. In Proc.
of ICDE’02. IEEE Computer Society, Washington, 29–39.

Hacigümüs, H., Iyer, B., Mehrotra, S., and Li, C. 2002(b). Executing SQL over encrypted
data in the database-service-provider model. In Proc. of ACM SIGMOD’02. ACM, New York,
216–227.

Harn, L. and Lin, H. 1990. A cryptographic key generation scheme for multilevel data security.
Computers and Security 9, 6 (Oct.), 539–546.

Hwang, M. and Yang, W. 2003. Controlling access in large partially ordered hierarchies using
cryptographic keys. J. Syst. Softw. 67, 2 (Aug.), 99–107.

Kushilevitz, E. and Ostrovsky, R. 1997. Replication is not needed: Single database,
computationally-private information retrieval. In Proc. of IEEE FOCS’97. IEEE Computer
Society, Washington, 364.

Liaw, H., Wang, S., and Lei, C. 1989. On the design of a single-key-lock mechanism based on
Newton’s interpolating polynomial. IEEE Trans. Softw. Eng. 15, 9 (Sept.), 1135–1137.

MacKinnon, S., P.Taylor, Meijer, H., and Akl, S. 1985. An optimal algorithm for assigning
cryptographic keys to control access in a hierarchy. IEEE Trans. Comput. 34, 9 (Sept.), 797–
802.

Miklau, G. and Suciu, D. 2003. Controlling access to published data using cryptography. In
Proc. of VLDB’03. VLDB Endowment, 898–909.

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Encryption Policies for Regulating Access to Outsourced Data · 45

Mykletun, E., Narasimha, M., and Tsudik, G. 2006. Authentication and integrity in outsourced
databases. ACM Trans. Storage 2, 2 (May), 107–138.

Nascimento, M., Sander, J., and Pound, J. 2003. Analysis of SIGMOD’s co-authorship graph.
ACM SIGMOD Records 32, 3 (Sept.), 8–10.

Olson, L., Rosulek, M., and Winslett, M. 2007. Harvesting credentials in trust negotiation
as an honest-but-curious adversary. In Proc. of ACM WPES’07. ACM, New York, 64–67.

Samarati, P. and De Capitani di Vimercati, S. 2001. Access control: Policies, models, and
mechanisms. In Foundations of Security Analysis and Design, R. Focardi and R. Gorrieri, Eds.
Springer-Verlag, London, 137–196.

Sandhu, R. 1987. On some cryptographic solutions for access control in a tree hierarchy. In Proc.
of the 1987 Fall Joint Computer Conf. on Exploring Technology: Today and Tomorrow. IEEE
Computer Society Press, Los Alamitos, 405–410.

Sandhu, R. 1988. Cryptographic implementation of a tree hierarchy for access control. Inf.
Process. Lett. 27, 2 (Feb.), 95–98.

Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., and Ferguson, N. 1998. On
the twofish key schedule. In Proc. of SAC’98. Springer, Berlin/Heidelberg, 27–42.

Shen, V. and Chen, T. 2002. A novel key management scheme based on discrete logarithms and
polynomial interpolations. Computer and Security 21, 2 (Mar.), 164–171.

Shmueli, E., Waisenberg, R., Elovici, Y., and Gudes, E. 2005. Designing secure indexes for
encrypted databases. In Proc. of IFIP DBSec’05. Springer, Berlin/Heidelberg, 54–68.

Sion, R. 2005. Query execution assurance for outsourced databases. In Proc. of VLDB’05. VLDB
Endowment, 601–612.

Sion, R. 2007. Secure data outsourcing. In Proc. of VLDB’07. VLDB Endowment, 1431–1432.

Sion, R. and Winslett, M. 2007. Regulatory-compliant data management. In Proc. of VLDB’07.
VLDB Endowment, 1433–1434.

The DBLP Computer Science Bibliography. The DBLP computer science bibliography.
http://dblp.uni-trier.de.

Wang, H. and Lakshmanan, L. V. S. 2006. Efficient secure query evaluation over encrypted
XML databases. In Proc. of VLDB’06. VLDB Endowment, 127–138.

XML Encryption Syntax and Processing, W3C Rec. 2002. http://www.w3.org/TR/xmlenc-
core/.

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Encryption Policies for Regulating Access to Outsourced Data · App–1

This document is the online-only appendix to:

Encryption Policies for Regulating Access to Outsourced Data
SABRINA DE CAPITANI DI VIMERCATI, SARA FORESTI
Università degli Studi di Milano
SUSHIL JAJODIA
George Mason University
STEFANO PARABOSCHI
Università degli Studi di Bergamo
and
PIERANGELA SAMARATI
Università degli Studi di Milano

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY, Pages 1–45.

A. ACCESS TO RESOURCES

The catalog stored on the server and created by algorithm A2E contains the neces-
sary information (i.e., the set T of tokens and the encryption schema φ(r) over R)
that users query whenever they wish to access a resource r . As a matter of fact, to
access a resource r , a user u needs first to retrieve a chain of tokens that, starting
from her own key k , ends in the one used to encrypt r . Figure 1 illustrates the
algorithm that receives as input the resource identifier r , the key k of u , and the
label φ(u) associated with k , and computes the key kdest with which resource r is
encrypted. The algorithm is basically composed of two steps.

The first step is performed server-side and consists in executing function
Find Path that, given a label φ(u) and a resource r , retrieves the shortest to-
ken chain from φ(u) to φ(r) by querying table Tokens. Function Find Path first
determines φ(r) by querying table Labels and then computes the shortest path
in the key and token graph through a shortest path algorithm (an improved ver-
sion of Dijkstra working on DAGs), which exploits the topological order of vertices.
The function then builds backward the path from current=φ(r) to φ(u). At each
iteration of the while loop, the function follows pred[current], which is an array
that contains the label of the predecessor of vertex current in the path previously
computed, and adds to stack chain the token in Tokens from pred[current] to
current.

The second step is evaluated user-side and consists in deriving keys following
the chain of tokens (if not empty) returned by Find Path and stored in stack
chain, and terminating with the derivation of the key used for encrypting resource

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0362-5915/20YY/0300-0001 $5.00

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

App–2 · S. De Capitani di Vimercati et al.

INPUT
resource r to be accessed
user’s key k
label φ(u) of the user’s key

OUTPUT
key kdest with which r is encrypted

MAIN
/* server-side query */
chain := Find Path(φ(u),r)
/* user-side computation */
ksource := k
if chain 6= ∅ then /* user u is authorized to access r */

t := Pop(chain)
repeat
kdest := t[token value]⊕h(ksource,t[destination])
ksource := kdest

t := Pop(chain)
until t=null
return(kdest)

FIND PATH(from,r)
let t ∈ Labels | t[res id]=r
to := t[label]
topologically sort VK,T in GK,T
for each v∈VK,T do

dist[v] := ∞
pred[v] := null

dist[from] := 0
for each v i∈VK,T do /* visit vertices in topological order */

for each (v i,vj)∈EK,T do /* the weight of each arc is 1 */
if dist[vj]>dist[v i]+1 then

dist[vj] := dist[v i]+1
pred[vj] := v i.label

chain := ∅
current := to
while current6=from ∧ current6=null do

let t ∈ Tokens | t[source]=pred[current] ∧ t[destination]=current
Push(chain,t)
current := pred[current]

if current=null then return(∅)
else return(chain)

Fig. 1. Key derivation process

r . For instance, consider the catalog in Figure 10(c) and suppose that C, with
φ(C) = v3.label, wants to access r9. Function Find Path(v3.label,r9) first queries
table Labels for retrieving the label associated with resource r9, which is φ(r9) =
v10.label, and then finds the shortest path from v3 to v10, thus setting pred[v10] to v7

and pred[v7] to v3. The returned chain is composed of two tokens, corresponding
to tuples (v7.label,v10.label,t7,10) and (v3.label,v7.label,t3,7), respectively, of table
Tokens. The algorithm then derives key k7 through user’s secret key k3 and
token (v3.label,v7.label,t3,7); it then derives k10 (i.e., the key used for encrypting
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Encryption Policies for Regulating Access to Outsourced Data · App–3

r9) through the just computed k7 and token (v7.label,v10.label,t7,10), extracted from
chain.

B. NP-HARDNESS ANALYSIS

Theorem 3.3. The Min-EP problem is NP-hard.

Proof. The considered problem is NP-hard since it can be reduced to the Min-
imum Set Cover (MSC) problem, which can be formulated as follows: given a
universal set Uset= {a1, . . . , an} and a set of subsets of Uset, S = {S1,. . . ,Sm},
find the smallest subset C of S such that

⋃
Si∈C Si =Uset .

Given a universal set Uset and a set S of its subsets, we define a corresponding
authorization policy A = 〈U ,R,P〉 in polynomial time as follows. For each ai in
Uset , there is a user ui in U . For each subset Sj = {aj,1, . . . , aj,mj} in S, there is
a resource r j in R with acl(r j)={uj,1, . . . , uj,mj

} and a set Rj of mj − 1 resources
r j,k, k = 1, . . . , mj − 1, with acl(r j,k)={uj,1, . . . , uj,k}. Finally, a further resource
r⊥ with acl(r⊥)={u1, . . . , un} is added to R.

A possible encryption policy E=〈U ,R,K,L, φ, T 〉 equivalent to A can be char-
acterized by a key and token graph GK,T with: a vertex for each user, whose key
is known to the user herself; a vertex for each acl , whose key is used to encrypt
the resources characterized by the acl ; and a path from each vertex representing
a user u to each vertex representing an acl containing u . This implies that, each
vertex v in GK,T but vertices representing singleton users must have at least two
incoming edges in the graph (i.e., tokens) and that the sets of users represented
by the direct ancestors must cover all users represented by v . By construction, for
each vertex v representing a set {u1, . . . , uk} of users but the vertex representing
U , there is a vertex v ′ representing {u1, . . . , uk−1}. Therefore, the direct ancestors
of v are v ′ and the vertex representing {uk}. A minimum encryption policy is then
the encryption policy minimizing the number of incoming edges/tokens in vertex
v⊥ representing U (for all other vertices, the number of incoming edges is already
minimum). Note also that the addition of further vertices in GK,T does not produce
any benefit.

The solution to the minimum set covering problem is obtained from the solution
of the corresponding Min-EP problem as follows. For each edge (v ,v⊥), v can either
represent a subset of U belonging to S or not. In the latter case, v is substituted
with its nearest descendant representing a subset belonging to S. Such a descendant
must exist since, by construction, for each Sj we create vertices representing only
subsets of the sets in S. Since the set of direct ancestors of v⊥ represents a cover
for U , then the subsets they represent are a minimum set cover for Uset .

Theorem 3.5. Let A be an authorization policy and E be an encryption policy.
If E is equivalent to A, the encryption policy graph GE= 〈VE ,EE〉 over E, with VE=
VK,T ∪ U ∪ R, satisfies the local cover property (Definition 3.4).

Proof. By induction, we prove that ∀v i ∈ VK,T the local cover property is
satisfied.

—For all v i such that |v i.acl|= 1, v i is correctly covered by definition.
—Let us suppose that for all v i such that |v i.acl|≤ n, v i is correctly covered. We

now prove that also all vertices v j with |v j .acl|= n + 1 are correctly covered.
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

App–4 · S. De Capitani di Vimercati et al.

By definition, ∀u ∈ v j .acl, there exists a path in GE from u to v j , that is,
there exists a path from the vertex v , such that v .acl={u}, to v j . Therefore,
there exists an edge (v ′, v j) ∈ EK,T such that u∈v ′.acl. Since, by construction,
v ′.acl⊂v j .acl (i.e., |v ′.acl|< n) and, by hypothesis, v ′ is correctly covered, we
can conclude that v j is correctly covered.

C. CORRECTNESS AND COMPLEXITY OF ALGORITHM A2E
Lemma 4.1 User key uniqueness. Let A=〈U ,R,P〉 be an authorization pol-

icy. Algorithm A2E creates a key and token graph GK,T =〈VK,T , EK,T 〉 and the cor-
responding encryption policy E=〈U ,R,K,L, φ, T 〉 such that ∀ui, uj ∈ U , i 6= j =⇒
φ(ui) 6= φ(uj).

Proof. During the initialization phase, algorithm A2E creates a distinct ver-
tex for each user u in U . Since the algorithm never removes vertices from the
graph, when the algorithm calls procedure generate encryption policy such
vertices are again in the graph. Also, since we assume that procedure gener-
ate encryption policy correctly generates keys (i.e., avoiding duplicates), at each
iteration of the first for loop the procedure assigns a unique key and a unique label
to each vertex v in the graph, and therefore also to vertices representing singleton
sets of users. The key assignment and encryption schema function φ is then defined
based on the keys associated with the vertices representing singleton sets of users.
For each user u , the procedure sets φ(u) to v .key, where v is the unique vertex in
the graph such that v .acl={u}. Consequently, we have the guarantee that different
users are associated with different labels and, also, with different keys.

Lemma 4.2 Local cover and non-redundancy. Let A=〈U ,R,P〉 be an
authorization policy. Algorithm A2E creates a key and token graph
GK,T =〈VK,T , EK,T 〉 and the corresponding encryption policy E=〈U ,R,K,L, φ, T 〉
such that GE satisfies the local cover property (Definition 3.4) and is non-redundant
(Definition 3.6).

Proof. We first prove that procedure cover vertex(v ,tocover) terminates and
that vertex v is properly covered without redundant edges. Then, we prove that
procedure factorize(v i) terminates and modifies the key and token graph without
violating the local cover and non-redundancy properties of the key and token graph.

During the initialization phase, for each material vertex v and for each user u
in v .acl, algorithm A2E sets variable v .counter [u] to 0. For each material vertex
v in VK,T the algorithm first calls procedure cover vertex with v and v .acl as
parameters, respectively.

Procedure cover vertex. The procedure first initializes local variables Eadded
and l to ∅ and level(v)−1, respectively, finds a correct cover for v , and then removes
redundant edges. The computation of a cover for v is implemented through two
nested while loops. The innermost while loop analyzes the set Vl of vertices at
level l that represent subsets of v .acl. For each vertex v i randomly extracted from
Vl, v i.acl is removed from tocover only if v i.acl∩tocover6= ∅. In this case, edge
(v i,v) is inserted in Eadded and for each user u in v i.acl, v .counter [u] is increased
by one. Therefore, at each iteration of the innermost while loop, the size of Vl

always decreases by one and the size of tocover possibly decreases. Since both Vl

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Encryption Policies for Regulating Access to Outsourced Data · App–5

and tocover are two finite sets, the innermost while loop terminates. Since at each
iteration of the outermost while loop l is decreased by one, in the worst case l
will also assume the value 1. When l becomes 1, the innermost while loop iterates
on the set Vl of vertices representing singleton sets of users. It is then easy to see
that tocover will become empty during the iterations on this set of vertices. We
can then conclude that also the outermost while loop terminates and that v is
correctly covered since a user u is removed from tocover iff an edge (v i,v) has been
inserted in Eadded where u ∈ v i.acl.

Redundant edges are detected through a for loop that processes each edge (v i,v)
in Eadded. Since the first two nested while loops terminate, Eadded contains a finite
number of edges and therefore also the for loop on Eadded terminates. Edge (v i,v)
is removed from Eadded (and therefore not inserted in EK,T) only if for each user
u in v i.acl, v .counter [u] is greater than 1, meaning that there is at least another
direct ancestor v j of v (besides v i) such that u belongs to v j .acl. When (v i,v) is
removed from Eadded, for each user u in v i.acl, v .counter [u] is decreased by one to
keep the counter v .counter [u] consistent with the number of direct ancestors of v
that include u . Also, since all incoming edges of v belong to Eadded and each edge
in Eadded is evaluated by the procedure, the non-redundancy property is satisfied
for v .

Procedure factorize. For each material vertex v i in VK,T the algorithm calls
procedure factorize with v i as parameter.

The first for loop of the procedure evaluates each vertex v j in VK,T having at
least a common direct ancestor with v i. Since the number of vertices in VK,T is
finite, also the set of vertices with at least a common ancestor with v i is finite
and therefore the for loop terminates. Analogously, the for loops inside the case
instruction terminates since they iterate on a finite set CommonAnc of vertices as
well as the last two for loops of the procedure, since they operate on Eadded and
Eremoved that are two finite sets. For each pair of vertices v i and v j , procedure
factorize changes the set of direct ancestors of v i and v j iff they have more than
2 common ancestors. In this case, the edges from the common ancestors, say
v1, . . . , vm, to v i and v j are removed and replaced by two edges from v′ to v i and
v j , where v′ is a vertex such that v′.acl = v1.acl ∪ . . .∪ vm.acl, and by the edges
from the common ancestors v1, . . . , vm to v′. It immediately follows that the local
cover property for v i and v j is satisfied as well as for vertex v′, which is covered
by v1, . . . , vm that, by definition, form a cover for v′. The same discussion applies
when vertex v′ coincides with v i or v j .

For each new edge (v l,vh) in Eadded and for each removed edge (v l,vh) in
Eremoved , variables vh.counter [u], with u in v l.acl, are updated accordingly.

We can conclude that, since both cover vertex and factorize are called on each
vertex v in VK,T and since these procedures guarantee that vertex v is properly
covered without redundant edges, GE satisfies both the local cover and the non-
redundancy properties.

Theorem 4.3 Policy equivalence. Let A=〈U ,R,P〉 be an authorization pol-
icy. Algorithm A2E creates a key and token graph GK,T =〈VK,T , EK,T 〉 and the
corresponding encryption policy E=〈U ,R,K,L, φ, T 〉 such that A ≡ E.

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

App–6 · S. De Capitani di Vimercati et al.

Proof.

E =⇒ A.
Procedure generate encryption policy defines an encryption policy E that is
based on the key and token graph created by the first two phases of algorithm
A2E . In particular, the procedure defines an encryption policy such that: for each
user u , φ(u) corresponds to the label of vertex v i representing the singleton set
{u} (i.e., v i.acl = {u}); and for each resource r , φ(r) corresponds to the label of
vertex v j representing acl(r) (i.e., v j .acl = acl(r)). Consider now the encryption
policy graph corresponding to the encryption policy E created by procedure
generate encryption policy and suppose that u E−→r . This is equivalent to say
that the key and token graph includes a path from the vertex v i with label φ(u)
to the vertex v j with label φ(r). Also, since the key and token graph satisfies the
local cover property (Lemma 4.2), we know that u belongs to v j .acl = acl(r) and
therefore the authorization policy A includes permission 〈u ,r 〉.

E ⇐= A.
Suppose that u A−→r . During the initialization phase, algorithm A2E inserts in the
key and token graph a vertex for each user in the system and for each acl value
for the resources in the system. Therefore, there is a material vertex v i such that
v i.acl = {u}, and there is a material vertex v j such that v j .acl = acl(r) in the key
and token graph. Since the algorithm never removes vertices and creates a key and
token graph that satisfies the local cover property (Lemma 4.2), it is immediate to
conclude that the key and token graph includes a path from v i to v j and that the
encryption policy graph obtained by defining an encryption policy complementing
the key and token graph by means of procedure generate encryption policy
includes a path from u to r .

Theorem 4.4. Let A=〈U ,R,P〉 be an authorization policy. Algorithm A2E cre-
ates a key and token graph GK,T =〈VK,T , EK,T 〉 and the corresponding encryption
policy E=〈U ,R,K,L, φ, T 〉 such that | K ∪ T |<<| U ∪ R ∪ P |.

Proof. Since all the sets involved in the union operations are disjoint, we need
to prove that |K | + |T |<<|U | + |R| + |P |.

The number of keys created by the algorithm is equal to the number of vertices
in the key and token graph while the number of tokens is equal to the number of
edges. With respect to the vertices, the algorithm creates a vertex for each user
in U , for each acl associated with resources in R, plus some additional vertices
inserted by procedure factorize (Phase 2). Since two or more resources may share
the same acl , it is easy to see that we need to prove that the number of vertices
inserted by procedure factorize plus the number of tokens is less than the number
of permissions. First, consider the graph created after Phase 1, where there are
only the material vertices. Each material vertex v representing the acl of one or
more resources has a number of incoming edges that, in the worst case, is equal to
|acl |. Therefore, in the worst case, the number of tokens is equal to the number of
permissions. However, if there are m resources with the same acl that is composed
by n users, the number of tokens is n against the n ·m permissions. Consider now
Phase 2. Here, procedure factorize adds a vertex iff the pair of vertices currently
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Encryption Policies for Regulating Access to Outsourced Data · App–7

analyzed have n > 2 common parents. In this case, 2 · n edges are removed from
the graph and at most n + 2 edges are inserted. This means that the number of
tokens decreases at least by one and that the number of additional vertices plus the
number of tokens remains lower than the number of permissions.

Theorem 4.5. Let A=〈U ,R,P〉 be an authorization policy. Algorithm A2E
creates an encryption policy E = 〈U ,R,K,L, φ, T 〉 such that A ≡ E in time
O((|R|+ |VK,T |2) · |U|).

Proof. The complexity of the algorithm is obtained by evaluating the com-
plexity of the operations performed during the initialization and the three phases
composing it.

Initialization. The for loop composing the initialization phase requires time
proportional to |U | + |R| · |U |, since the inner most for loop has constant cost
for vertices representing singleton sets of users.

Phase 1. The algorithm calls procedure cover vertex for each material vertex
v in VK,T . In the worst case, the two nested while loops check all vertices v i in
VK,T such that level(v i)<level(v). The computational cost is then proportional to
|VK,T |2 · |U |.

The following for loop checks each edge (v i,v)∈Eadded and evaluates and possi-
bly updates the value of variable v .counter [u] for each u in acl(v i). In the worst
case, the cost of this loop is proportional to |EK,T | · |U |.

Since | EK,T | is upperbounded by | VK,T |2, the overall complexity of the first
phase of the algorithm is proportional to |VK,T |2 · |U |.

Phase 2. The algorithm calls procedure factorize for each vertex v i in VK,T .
The first for loop checks all vertices with at least a common ancestor with v i,
which in the worst case are all vertices in VK,T . The procedure then finds the
common direct ancestors by considering the edges incident in v i and v j . Since the
maximum number of direct ancestors of a vertex v i is equal to |v i.acl|, the costs of
this operation is proportional to |U|. The for loops nested in the case instruction
evaluate all the vertices in CommonAnc, which are at most |U|. Since both Eadded
and Eremoved are filled in by these loops, they contain a number of elements linear
in |U|.

The overall complexity of the second phase of the algorithm is therefore
proportional to |VK,T |2 · |U |.

Phase 3. The algorithm finally calls procedure generate encryption policy,
which is composed of four for loops, checking vertices, edges, users, and resources
in the order.

The overall complexity of the third phase of the algorithm is therefore propor-
tional to |VK,T |2 + |U | + |R|.

If we assume that all operations performed by procedures cover vertex, fac-
torize, and generate encryption policy have a constant cost and cmax is the

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

App–8 · S. De Capitani di Vimercati et al.

maximum cost, the overall time complexity is in O(cmax((|R| + |VK,T |2) · |U|)) =
O((|R|+ |VK,T |2) · |U|).

D. CORRECTNESS OF POLICY UPDATES

Lemma 5.1. Let A = 〈U ,R,P〉 be an authorization policy and
E=〈U ,R,K,L, φ, T 〉 be an encryption policy such that A ≡ E. Procedure
delete vertex generates a new encryption policy E ′=〈U ,R,K′,L′, φ′, T ′〉 such
that A ≡ E ′.

Proof. Since we assume that A ≡ E , when procedure delete vertex is called
on vertex v , we need to consider only the keys and tokens updated by the pro-
cedure. First, we note that procedure delete vertex can remove vertex v iff v
is non material. Therefore, if v is removed, it is non material and it is no more
useful for reducing the number of tokens. In this case, the effect of its removal
is that all direct descendants of v are no more properly covered. To this reason,
for each direct descendant v i of v , procedure delete vertex calls cover vertex
on v i and tocover, where tocover contains the subset of users in v i.acl such that
v i.counter [u]=0 (since v i.counter [u] always correctly represents the number of di-
rect ancestors of v i such that u belongs to their acls, it is not necessary to cover
the users for which the corresponding counter is greater than or equal to one). Pro-
cedure delete vertex then calls factorize on v i. The updates on GK,T are then
translated from procedure update encryption policy in equivalent updates on
E . Since procedure delete vertex preserves the local cover and non-redundancy
property of GK,T , we can conclude that after the removal of vertex v , the key and
token graph obtained represents an encryption policy equivalent to A.

Lemma 5.2. Let A = 〈U ,R,P〉 be an authorization policy and
E=〈U ,R,K,L, φ, T 〉 be an encryption policy such that A ≡ E. Function
create new vertex generates a new encryption policy E ′=〈U ,R,K′,L′, φ′, T ′〉
such that A ≡ E ′.

Proof. Since we assume that A ≡ E , when function create new vertex is
called, we need to consider only the keys and tokens updated by the function. In
particular, we need to prove that the insertion of a new vertex representing a set U
of users is performed in such a way that the local cover and non-redundancy prop-
erties of GK,T are satisfied. To this purpose, we first note that create new vertex
removes vertices only through procedure delete vertex, which preserves the equiv-
alence between the authorization policy and the encryption policy (Lemma 5.1).
create new vertex calls procedures cover vertex and factorize on the new ver-
tex v , thus enforcing the local cover and non-redundancy on v (Lemma 4.2). The
updates on GK,T are then translated from procedure update encryption policy
in equivalent updates on E . Since procedure create new vertex preserves the lo-
cal cover and non-redundancy properties, we can conclude that after the insertion
of vertex v , the corresponding graph represents an encryption policy equivalent to
A.

Theorem 5.3. Let A = 〈U ,R,P〉 be an authorization policy and
E=〈U ,R,K,L, φ, T 〉 be an encryption policy such that A ≡ E. Procedure
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Encryption Policies for Regulating Access to Outsourced Data · App–9

grant revoke generates a new authorization policy A′ = 〈U ,R,P ′〉 and a new
encryption policy E ′=〈U ,R,K′,L′, φ′, T ′〉 such that A′ ≡ E ′.

Proof. Since we assume that A ≡ E when procedure grant revoke is called, we
need to consider only users and resources for which the encryption and authorization
policies change.

Grant.
E ′ =⇒ A′
Consider user u and resource r . From the procedure, it is easy to see that r is
encrypted with a key such that from the key of the vertex with label φ′(u) it is
possible to derive the key of the vertex with label φ′(r) through T ′, since φ′(r)
is set to vnew.label, where vnew.key is the key that can be reached from v={u}
(Lemma 5.2). Therefore, we have that u A′−→r .

E ′ ⇐= A′
Consider user u and resource r . From the insertion of u in acl(r), we have that

u A′−→r . Also, r is encrypted with a key such that the key of the vertex with label
φ′(r) can be derived from the key of the vertex with label φ′(u), for the correct-

ness of function create new vertex (Lemma 5.2). Therefore, we have that u E′−→r .

Revoke.
E ′ =⇒ A′
Consider user u and resource r . From the procedure, it is easy to see that r is
encrypted with a key such that from the key of the vertex with label φ′(u) it is not
possible to derive the key of the vertex with label φ′(r) through T ′, since φ′(r) is
set to vnew.label, which cannot be reached from v={u} (Lemma 5.1). Therefore,

we have that u
A′
6−→r .

E ′ ⇐= A′
Consider user u and resource r . From the removal of u from acl(r), we have that

u
A′
6−→r . Also, r is encrypted with a key such that the key of the vertex with label

φ′(r) cannot be derived from the key of the vertex with label φ′(u) (Lemma 5.1).

Therefore, we have that u
E′
6−→r .

E. CORRECTNESS OF THE TWO-LAYER ENCRYPTION

Theorem 7.1. Let A = 〈U ,R,P〉 be an authorization policy,
Eb=〈U ,R,Kb,Lb, φb, Tb〉 be an encryption policy at the BEL, and
Es=〈U ,R,Ks,Ls, φs, Ts〉 be an encryption policy at the SEL such that A ≡ 〈Eb,Es〉.
The procedures in Figure 16 generate a new Eb

′ = 〈U ,R,Kb
′,Lb

′, φb
′, Tb

′〉,
Es
′ = 〈U ,R,Ks

′,Ls
′, φs

′, Ts
′〉, and A′ such that A′ ≡ 〈Eb

′, Es
′〉.

Proof. Since we assume that A ≡ 〈Eb, Es〉 when procedures grant and revoke
are called, we need to consider only users and resources for which the encryption
and authorization policies change. Grant and revoke are based on the correctness
of the over-encryption operations. We then examine it first.

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

App–10 · S. De Capitani di Vimercati et al.

Over-encrypt. We need to prove that over encrypt(U,R) possibly encrypts
all resources in R with a key in such a way that a user u′ can derive such a
key if and only if u′ ∈ U . If the condition in the first if statement is evaluated
to true, resources in R are already correctly protected and since the procedure
terminates, the result is correct. Otherwise, resources in R are first possibly
decrypted and then encrypted. The only case we need to consider for encryption
is when the set of users U is different from all (when U = all, resources in R are
not needed to be over-encrypted). If U 6=all, resources in R are encrypted with
the correct key s.key or with a key assigned to vertex s created through function
create new vertex(U). The correctness is guaranteed by the correctness of both
function create new vertex and procedure delete vertex (Lemmas 5.1 and 5.2).

Grant.
〈Eb

′, Es
′〉 =⇒ A′

Consider user u and resource r. From the pseudocode in Figure 16, it is easy to see
that φ′b(r) = φb(r) and also that there is a (set of) token allowing to derive the key
of the vertex with label φ′b(r) from the key of the vertex with label φ′b(u). From the
case instruction and by the correctness of over encrypt, either φ′s(r) = null or r
is over-encrypted with a key such that from the key of the vertex with label φ′s(u)
it is possible to derive the key of the vertex with label φ′s(r) through Ts

′ (user u is
included in the current acl(r)). Since the key of the vertex with label φ′b(r) can be
derived from the key of the vertex with label φ′b(u) and the key of the vertex with
label φ′s(r) can be derived from the key of the vertex with label φ′s(u), we have that

u A′−→r .
Consider now the set of resources R′ and suppose that R′ is not empty. For each

subset S of resources in R′ characterized by the same acl, denoted aclS , user u
can now derive the key used to encrypt such a set of resources. This implies that
∀r′ ∈ S, φ′b(r

′) = φb(r′) whose corresponding key can be computed starting from
the key of the vertex with label φ′b(u). By the correctness of over encrypt, a call
over encrypt(aclS ,S) guarantees that all resources r′ in S are over-encrypted
with a key such that ∀r′ ∈ S, the key of the vertex with label φ′s(r

′) is not deriv-
able from the key of the vertex with label φ′s(u) because aclS does not include user u.

〈Eb
′, Es

′〉 ⇐= A′
Consider user u and resource r. From the first instruction in the procedure,

we have that u A′−→r . From the pseudocode in Figure 16, it is easy to see that
φ′b(r) = φb(r) and that the corresponding key can be computed from the key of the
vertex with label φ′b(u). Also, from the case instruction and by the correctness
of over encrypt, either φ′s(r) = null or r is over-encrypted with the key of the
vertex with label φ′s(r) that can be derived from the key of the vertex with label
φ′s(u).

Revoke.
〈Eb

′, Es
′〉 =⇒ A′

Consider user u and resource r. A call over encrypt(acl(r),{r }) is requested to
demand the SEL to make r accessible only to users in the current acl(r). We know
ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

Encryption Policies for Regulating Access to Outsourced Data · App–11

that u
E′b−→r . Also, from the over encrypt correctness, it is easy to see that the

key of the vertex with label φ′s(r) cannot be computed from the key of the vertex
with label φ′s(u).

〈Eb
′, Es

′〉 ⇐= A′
Consider user u and resource r. From the first instruction in the procedure we

have that u
A′
6−→r . The subsequent call over encrypt(acl(r),{r }) makes resource r

no more accessible to user u because r is over-encrypted with a key that is no more
derivable by u (this property is a consequence of the over encrypt correctness),
that is, the key of the vertex with label φ′b(r) is still derivable from the key of the
vertex with label φ′b(u) but the key of the vertex with label φ′s(r) is not derivable
from the key of the vertex with label φ′s(u).

ACM Transactions on Database Systems, Vol. V, No. N, M 20YY.

