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Figure 1: Left to right: A) Camera coverage with five color-coded camera contributions. B-D) Three views of a live capture session. E) A 3D
virtual object (circuit board) is incorporated into a live 3D capture session and appropriately occludes real objects.

ABSTRACT

This paper introduces a proof-of-concept telepresence system that
offers fully dynamic, real-time 3D scene capture and continuous-
viewpoint, head-tracked stereo 3D display without requiring the
user to wear any tracking or viewing apparatus. We present
a complete software and hardware framework for implementing
the system, which is based on an array of commodity Microsoft
KinectTMcolor-plus-depth cameras. Novel contributions include an
algorithm for merging data between multiple depth cameras and
techniques for automatic color calibration and preserving stereo
quality even with low rendering rates. Also presented is a solu-
tion to the problem of interference that occurs between Kinect cam-
eras with overlapping views. Emphasis is placed on a fully GPU-
accelerated data processing and rendering pipeline that can apply
hole filling, smoothing, data merger, surface generation, and color
correction at rates of up to 100 million triangles/sec on a single
PC and graphics board. Also presented is a Kinect-based marker-
less tracking system that combines 2D eye recognition with depth
information to allow head-tracked stereo views to be rendered for
a parallax barrier autostereoscopic display. Our system is afford-
able and reproducible, offering the opportunity to easily deliver 3D
telepresence beyond the researcher’s lab.

Keywords: teleconferencing, virtual reality, sensor fusion, cam-
era calibration, color calibration, surface fitting, filtering, parallel
processing, computer vision, tracking, object recognition, three-
dimensional displays

Index Terms: H.4.3 [Information Systems Applications]: Com-
munications Applications—Computer conferencing, teleconferenc-
ing, and videoconferencing

1 INTRODUCTION

A long-standing goal [21] of telepresence has been to unite distant
workspaces through a shared virtual window, allowing remote col-
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laborators to see into each other’s environments as if these were
extensions of their own.

In 2002, UNC/UPenn researches created an early realization of
this goal by combining a static 3D model of an office with near-
real-time 3D acqusition of a remote user and displaying the result
in head-tracked stereo at interactive rates. Since then, several im-
proved 3D capture and display systems have been introduced. In
2004, the MERL 3DTV [14] system offered a glasses and tracker-
free capture and display system using an array of 16 cameras and
a lenticular autostereo display. However, framerate was low (12
Hz) and the number of viewing zones was limited and repeating.
In 2008, the Fraunhofer Institute and the Heinrich-Hertz Institute
introduced 3DPresence [22], an improved lenticular-display based
system. The system supported multiple views for several partici-
pants seated around a table, but like in the MERL system, the num-
ber of views was limited and only horizontal parallax was available.
In 2009, USC ICT researchers presented a telepresence system [9]
that used structured light for 3D acquisition and a volumetric 3D
display. The system provided real-time capture, nearly continuous
points of view and required no tracking markers or glasses, but cap-
ture and display were limited to a head-size volume. In 2010, Holo-
grafika introduced a compelling system [2] consisting of a large ar-
ray of projectors and cameras offering fully dynamic real-time 3D
capture and tracker-less autostereo display. The system, however,
featured only a moderate capture rate (10-15 Hz) and did not of-
fer fully continuous points of view – interpolation was performed
between a linear array of densely placed 2D cameras and only hor-
izontal parallax was provided. Featuring 27 cameras, 3 PCs, and
scores of projectors, it was also a very expensive system to build.
Also noteworthy are a group of systems [7, 12, 1, 20] with the al-
ternate goal of placing users in a shared virtual space rather than
capturing and presenting users within their physical environments.

In this paper, we aim to overcome some of the limitations of
previous telepresence systems. Our system is fully dynamic, pre-
senting a live view of remote users as well as their environments,
allowing users to enhance communication by utilizing surround-
ing objects. Continuous viewpoints are supported, allowing users
to look around a remote scene from exactly the perspective corre-
sponding to their head position, rather than from a single or set of
fixed vantages. This grants users the ability to see around obstruc-
tions and gain more information about the remote scene. Gaze is



Figure 2: Two users in 3D scene.

preserved, allowing participants to make eye contact; research [18]
has shown the absence of correct gaze can cause a loss of nonverbal
communication. Stereo views are provided, which have been shown
to increase the sense of shared presence [18]. Finally, tracking and
viewing apparatuses have been eliminated – 3D glasses obstruct eye
contact between participants and shutter glasses have been found to
be “disruptive” to over 90% of users [18]. We believe our system
is the first to incorporate all of these characteristics: fully dynamic
3D scene capture, continuous look-around ability with full paral-
lax, gaze preservation, and stereo display without the use of any
encumbrances.

2 BACKGROUND AND CONTRIBUTIONS

Our system is based on the Microsoft KinectTMsensor, a widely
available, inexpensive ($150) device that provides color image, in-
frared image, depth map, and audio capture. Depth data is acquired
using imperceptible structured light techniques; a static dot pat-
tern projected with an IR laser is captured with an IR camera and
compared to a known pattern [6]. Depth images are provided at
640×480 resolution at 30 Hz; color and IR images may be captured
at this resolution and rate or at 1280× 1024 and approximately 10
Hz. The unit provides a 58◦× 45◦ field of view and a depth accu-
racy rated as 1 cm at 1 m, with a 0.8 m to 3.5 m range1. (Our units
return depth readings for surfaces as near as 0.5 m.)

Utilizing several strategically placed and calibrated Kinect sen-
sors, there is an opportunity to capture an entire room-sized scene
in real-time. This scene could be rendered from exactly the re-
mote user’s perspective, providing for correct gaze and continuous
viewpoints. Eye position tracking is required to provide for con-
tinuous viewpoints; 2D eye detection combined with the Kinect’s
depth data provides a markerless tracking solution.

However, as a device not designed for general purpose 3D scene
capture or tracking, the Kinect presents some challenges for our
intended purposes. Since each sensor projects a fixed structured
light pattern at roughly the same wavelength, inter-unit interfer-
ence is a major problem. The device, as controlled with the drivers
currently available, provides auto-white balance and exposure that
cannot be disabled, presenting difficultly for seamlessly integrating
color-matched data between cameras. The capture frame rate, 30
Hz, is suitable for scene acquisition but is inadequate for respon-
sive tracking.

This paper aims to provide solutions to these challenges as well
as introduce an eye position tracking system based on the Kinect
that is used with an autostereo display. Our specific contributions
are as follows:

1http://www.primesense.com/
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Figure 3: System Layout. Top: Demonstrated proof-of-concept sys-
tem configuration. Bottom: Proposed ideal configuration.

1. A software solution to the Kinect interference problem that
provides hole filling and smoothing

2. A visibility-based algorithm to merge data between cameras

3. A visibility-based method for dynamic color matching be-
tween color-plus-depth cameras

4. A system for combining 2D eye recognition with depth data
to provide 3D eye position tracking

5. A technique for preserving high-quality head-tracked stereo
viewing on fixed parallax barrier displays even at low render-
ing rates

We also present a GPU-accelerated software framework that im-
plements hole filling, smoothing, data merging, surface generation,
and color correction at interactive rates for five depth cameras on a
single PC and graphics board.

3 SYSTEM OVERVIEW

3.1 Physical Layout

Figure 3 shows the layout of our system. The two spaces are phys-
ically separated, but a view of the other space can be seen through
the display as if the spaces were aligned with a shared hole in the
wall. The bottom of the figure shows our “ideal” configuration – 3D
capture and 3D display are supported on both sides (spaces C,D).

The top of Figure 3 shows the actual configuration used for our
proof-of-concept system. The system utilizes two office cubicles
(approximately 1.9 m × 2.4 m). Space A offers 3D capture and 2D
display of space B, while space B features 2D capture and head-
tracked 3D display of space A. This configuration allowed us to
demonstrate 3D capture, 3D display, and eye gaze preservation (for
one side) while requiring only the single autostereo display that we
had available.

3.2 Hardware Configuration

Both spaces in our proof-of-concept system share a single PC with a
4-core Intel Core i7-960 CPU, 6GB of RAM and an Nvidia GeForce
GTX 295 graphics board. Six Microsoft Kinect sensors are con-
nected to the PC. The 2D display side features a 30 in LCD monitor,
while the 3D display side uses a 40 in X3D Technologies autostereo
display.

We avoided networking and audio in our proof-of-concept sys-
tem since both spaces are run from a single PC and are in close
proximity. We plan to address these omissions in a future system.

3.3 Software Overview

Operating System and APIs Our test system runs on 64-

bit Linux (Ubuntu 10.10) and uses the OpenNI2 API along with

2http://www.openni.org/
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Figure 4: Data Processing and Rendering Pipeline

a Kinect driver3 to communicate with the sensors. OpenGL is used
for rendering, the OpenGL shader language (GLSL) is used for pro-
grammable GPU operations, and GLUT is used for windowing and
user input. The OpenCV4 computer vision library was utilized for
camera calibration and tracking.

Data Processing and Rendering Pipeline The following
rendering pipeline is used in our system (Figure 4):

1. When new data is available, read color and depth images from
Kinect units and upload to GPU

2. Smooth and fill holes in depth image.

3. For each Kinect’s data, form triangle mesh using depth data.

4. For each Kinect’s data, apply color texture to triangle mesh
and estimate quality at each rendered pixel; render from the
tracked user’s current position, saving color, quality, and
depth values.

5. Merge data for all Kinect units using saved color, quality and
depth information.

6. Repeat steps 3-5 for other eye’s view

7. Assemble the two stereo viewpoints into pattern required by
autostereo display, draw to screen.

8. While next 3D scene is being generated, periodically redraw
pattern required by autostereo display using the last rendered
frame and the new estimated eye position.

GPU Acceleration Overview To maximize performance,
all real-time graphics-related data processing algorithms are per-
formed on the GPU (using the OpenGL Shader Language) to re-
duce CPU/GPU memory transfer overhead and take advantage of
GPU parallelism. CPU/GPU memory transfers are kept to a mini-
mum: the five Kinects’ color and depth images are uploaded to the
GPU, but no other major data transfers take place.

System Component Rates Since our entire system does not
run at the desirable rate of ≥60 Hz on our current hardware, we
allow three rates in our system to run asynchronously to allow for
interactive rendering and high stereo quality. The first is the recon-
struction rate, the rate at which new data is incorporated into the
rendered scene, which involves uploading new color and depth data
to the GPU, hole filling, smoothing, and surface generation. The
second rate is the rendering rate, the pace at which the scene is
rendered from a new viewing perspective. In our system, this also
includes our data merger algorithm, which is visibility-based. The

3https://github.com/avin2/SensorKinect
4http://opencv.willowgarage.com/

final rate is the parallax barrier pattern generation rate, the rate at
which new patterns are generated for our autostereo display from
new estimated eye positions.

The independence of the reconstruction rate from the rendering
rate helps to keep the system running at interactive rates as more
cameras are added to the system; a study by Meehan [16] found a
positive correlation between framerate and sense of presence as the
former was increased from 10 to 30fps. The independent parallax
barrier pattern generation rate preserves stereo quality during head
motion even if the rendering rate decreases. (See Section 5.3.)

Tracking We combine 2D eye detection, depth data, and mo-
tion tracking to create an unencumbered 3D eye position tracker.
Initial eye detection is performed on a color image and eyes are
then tracked using pattern matching. Once the 2D eye position is
obtained, Kinect depth data is used to transform the position into
3D. A Kalman filter is used to improve accuracy and interpolate the
position of the eyes between sensor updates.

4 IMPLEMENTATION

4.1 Camera Placement, Calibration, and Error Measure-
ment

Camera Placement When placing cameras as shown in the
top left of Figure 3, the following factors were considered:

1. Coverage: for our application, coverage is only necessary for
surfaces that can be seen by the remote user.

2. Redundancy: Redundant coverage allows preservation of sur-
faces that are occluded from the viewpoint of a single depth
camera, but are still visible by the remote user (e.g. an oc-
cluded chest behind a raised hand).

3. Resolution and Accuracy: the resolution available varies with
angle and distance (discussion in Section 4.4).

4. Kinect Depth Range: approximately 0.5 m-3.5 m.

5. Kinect Depth Interference: discussion in Section 4.2.

6. Kinect Depth Error: perceived depth error is reduced if cam-
era is near line of sight of user

Camera Calibration To calibrate the Kinect sensors, we used
the OpenCV camera calibration routines, which are based on
Zhang’s method [26]. The routines compute camera intrinsic pa-
rameters (focal length, center of projection, radial and tangential
distortion coefficients) from two or more images of a detected pla-
nar pattern, taken from different orientations. Extrinsic parameters
(relative positions and orientations) between two cameras are com-
puted using one or more pairs of images of a detected pattern seen
from each camera, along with the intrinsic parameters. Since the
Kinect driver is able to register the depth image to the color image,
only calibration of the color camera is necessary.

For our test system, camera intrinsics and extrinsics were com-
puted using a checkerboard pattern. For extrinsic computation, we
calibrate each camera to a master ceiling-mounted camera, whose
viewing frustum conveniently overlaps the frustum of each of the
other cameras.

Depth Error Measurement Since our mesh generation and
data merger techniques rely on knowledge of the relationship be-
tween the distance of a surface from a Kinect depth camera and
measurement error, it is beneficial to characterize this relationship.
We expect the depth resolution to fall off quadratically with dis-
tance.

To verify this, we positioned a planar target parallel to the IR
camera’s image plane and recorded a 100×100 grid of depth mea-
surements at the center of the depth image. We performed this ex-
periment at distances of 0.5 m (device minimum range) to 3.0 m
(beyond maximum range used in our system) at intervals of 0.5 m.



Figure 5: Kinect depth sensor precision with distance. Measured
values show quadratic relationship between the distance to the depth
camera and the range and standard deviation of depth values.

Figure 6: Kinect interference problem. First column: IR images show-
ing combined projected dot pattern from camera 1 (red dots) and
camera 2 (blue dots). Second column: depth images with no inter-
ference. Third column: depth images with interference from other
camera. Fourth column: Difference of second and third columns.

Figure 5 shows the min-max range and standard deviation at
each test distance from 0.5 m to 3.0 m, fitting closely to a quadratic
falloff.

4.2 Multi-Kinect Interference Problem and Solution

The Multi-Kinect Interference Problem Since each Kinect
unit projects the same dot pattern at the same wavelength, each
Kinect unit is able to see the projected patterns of all other units
and may have trouble distinguishing other units’ patterns from its
own.

This problem is illustrated in Figure 6. A box was placed near
the minimum depth range (0.6 m) of two Kinect units; their pro-
jected patterns overlap prominently and cause interference. Al-
though significant interference is shown in the third column of the
figure (there many small areas of missing data, or “holes”), we find
several promising aspects of these results. The difference between
the depth image with and without interference corresponds mostly
to the missing data, not differences in depth values; one needs pri-
marily to fill missing points rather than correct erroneous depth val-
ues. Additionally, one can see in the third column of the figure that
the missing data varies between depth cameras – to some extent,
redundant coverage between units allows depth cameras to fill in
each other’s holes.

Hardware Solutions We considered, but rejected several
hardware solutions to the multi-Kinect interference problem. We
contemplated installing a set of alternating synchronized shutters
over each unit’s IR projector and camera so that each unit would see
only its own dot pattern. A serious disadvantage of this approach
is that it would reduce frame rate or reduce the light available to
the IR camera, depending on how the shutters are used. Another
technique considered, but also ruled out, was IR filtering. We mea-
sured a group of eight Kinect units with a spectrometer and found
that the peak-to-peak range of wavelengths was 2.6 nm, which we
found too close to filter practically.

Software Solutions As we did not find a suitable hardware
solution to the Kinect interference problem, we looked to software
solutions. As mentioned, it is fortunate that the Kinect generally
returns no data rather than erroneous data when interference occurs.
However, there are other situations in which the sensor returns no
depth data. Due to the offset between the IR projector and camera,
there are typically some surfaces “in shadow” that can be seen by
the camera but receive no projected pattern from the IR laser due
to occlusion. Additionally, surfaces may not be seen by the depth
camera if they reflect little infrared light or are highly specular. An
effective software solution should be able to fill small holes (making
the assumption that they are part of a continuous surface), while
ignoring large missing surfaces. We hope that the missing large
surfaces are captured by another camera that observes the surface
from a different location. Also, Kinect interference causes a small
amount of high frequency depth noise that should be smoothed.

Hole Filling and Smoothing We aimed for a solution that fills
small holes and smoothes depth, but leaves alone large missing sur-
faces. The obvious starting point for such an approach is a simple
smoothing filter (such as Gaussian, box, median, or bilateral), but
our application induces additional requirements:

1. Measurement preservation: we do not want to introduce new
depth values. Naive smoothing could result in depth values
floating in space.

2. Edge preservation: our depth image is aligned to a color tex-
ture, so color and depth edges should coincide. A small depth
edge shift could cause a texture to be assigned to a physically
distant surface. Depth edges at missing data boundaries must
be preserved or geometry may expand or contract.

3. Scale independence: from observation, depth noise appears at
a higher spatial frequency than holes. Smoothing should take
place on a smaller scale than hole filling.

A standard median filter meets some of these requirements (mea-
surement preservation and edge preservation – although not pixel-
exact). We devised a fast modified median filter (Algorithm 1) that
is effective at hole filling while supporting the requirements above.

To allow for scale independence, a two-pass approach is used.
In the first pass, an expanded filtering window is used to fill larger
holes, but no smoothing is applied (i.e. only missing values are
modified). In the second pass, a smaller window is to used to fill any
remaining small holes and smooth the depth image. This method is
similar to that used in [17], but we use different criteria to determine
when the filter is applied.

To ensure that edges are preserved precisely and non-holes are
ignored, we apply three constraints to the filtering window: a mini-
mum amount of valid data must be present (tc), a minimum amount
of data must be present at the window edges (te), and the range of
values in the window must be within a threshold (tr). At each pixel,
if the window constraints are not met, the pixel is left unmodified.
These thresholds and heuristics were determined by applying a con-
ventional median filter to sample depth data and inspecting cases
that did not meet our requirements listed above.



Algorithm 1 Modified Two-Pass Median Filter for Hole Filling

for pass = 1 to 2 do
for i = 1 to numPixels do

depth out[i]← depth in[i]
if depth in[i] = 0 or pass = 2 then

count← 0,enclosed← 0
v←{},n← neighbors(depth in[i],radiuspass)
min← min(n),max← max(n)
for j = 1 to n.length do

if n[ j] 6= 0 then
count← count +1
v[count]← n[ j]
if on edge( j) then

enclosed← enclosed +1
end if

end if
end for
if max−min≤ tr and count ≥ tc and enclosed≥ te then

sort(v)
depth out[i]← v[v.length/2]

end if
end if

end for
if pass = 1 then

depth in← depth out
end if

end for

GPU Implementation Our enhanced median filter implemen-
tation is based on a conventional median filter implementation by
McGuire [15], which uses a branchless hardcoded selection algo-
rithm to obtain the median for fixed radii. To provide high perfor-
mance for larger radii, we find the approximate median by sam-
pling over the filtering window. The median filter is written as a
fragment shader in the OpenGL Shading Language, using textures
to exchange data between passes.

4.3 Mesh Generation

The Kinect provides per-pixel depth readings that are generally too
sparse to render directly as small fixed-size points. Therefore it is
useful to create a surface representation using the depth data. Our
requirements for surface generation are as follows:

1. Must be continuous if physical surface is continuous

2. Must work in situations with missing data, as is common with
Kinect

3. Must detect and preserve depth discontinuities at edges

4. Must be fast (5 Kinects generate >45M depth readings/sec)

Although approaches exist [10] for directly rendering points
from multiple depth images, we chose a triangle mesh surface rep-
resentation as it meets these requirements and is also supported na-
tively by graphics hardware. We use a simple meshing technique
which is described in Algorithm 2. The depth values from the
Kinect sensor are used to extrude vertices from a template trian-
gle mesh. Any triangle associated with a vertex that corresponds to
a missing depth value is rejected, as are those with a pair of vertices
that exceeds a maximum depth threshold. Since the Kinect provides
depth data that varies in accuracy with depth, our depth threshold
varies with depth as well.

GPU Implementation Our implementation of the simple
mesh algorithm takes advantage of the connectivity of a depth im-
age, requiring no geometry to be transferred to the GPU after pro-
gram initialization. At program start we generate a triangulated
plane at the Kinect’s depth resolution and store it in GPU memory.

Algorithm 2 Mesh generation algorithm

for each candidate triangle do
t ← threshdepth discontinuity + fdepth err(min(depthvi

)) +
fdepth err(max(depthvi

))

{Transform vertices from normalized image coordinates to
camera coordinates in physical units}
if depthvi

6= 0 and abs(depthvi
−depthv j

)≤ t then

vix ←
(vix−center pro jx)depthvi

f ocalx

viy ←
(viy−center pro jy)depthvi

f ocaly

viz ← depthvi

else
reject triangle

end if
end for

For each new frame, a vertex shader shapes the template plane us-
ing camera intrinsics and Kinect depth values, which are accessed
through a texture map. A geometry shader is used to reject triangles
corresponding to missing depth values or discontinuous surfaces as
described in Algorithm 2.

This approach is very bandwidth-efficient – it requires only 16
bits of depth information for each pair of triangles generated and
uses the depth map already transferred to GPU memory for the hole
filling process. The approach is also fast as all vertex positions are
generated on the GPU in parallel.

4.4 Data Merger

Overview A goal of our system is to provide coverage of all
surfaces that can be seen from the perspective of a remote user. A
single Kinect is not able to provide adequate coverage and there-
fore a means to merge data between multiple units is necessary.
When generating meshes we did not discuss a means to merge over-
lapping surfaces geometrically. Approaches used in stereo vision,
such as the visibility-based depth image fusion method of Merrell
et al. [17], generally assume high levels of error and inconsisten-
cies (outliers) between maps that must be resolved. The Kinect’s
structured-light based depth readings, however, are generally free
of such outliers and have a low error at near range. In our appli-
cation, Kinect sensors are used at close proximity and we expect
lower and predictable error based on the angle and distance to the
camera and measured calibration error. Therefore, we assume that
the surfaces have enough fidelity that we can simply draw them on
top of each other, avoiding the need for a geometric merger algo-
rithm. This has several performance advantages: the computational
expense of performing the merge is spared, runtime varies linearly
with the number of cameras, surfaces for all cameras can be pro-
cessed in parallel, and a fast mesh generation technique (Section
4.3) can be used.

However, even though geometry is sufficiently accurate for our
purposes, texture image quality may be poor. Z-fighting between
overlapping surfaces with textures that vary in resolution, color bal-
ance, and alignment yields unpleasing results. Ideally, we want to
utilize only the data from the camera with the highest resolution
depth and color information available at a given surface, with a
seamless transition to data from adjacent cameras.

Our approach addresses the problem of data merger in image
space using a visibility-based approach. The data from each camera
is rendered independently for the desired viewpoint, and color in-
formation is saved along with a depth and a quality estimate at each
pixel. When renderings for all cameras are complete, the depth val-
ues are used to determine which cameras can see the front surface.
At each pixel, the color values of cameras with a view of the front
surface are weighted by the quality estimates.



Texture Quality and Depth Error Estimation Since our ap-
proach relies on the notion of a “quality” measurement at each
pixel, we provide an estimate based on resolution – the area on the
image sensor available to determine the pixel’s color or position.
The area is estimated using the cosine of the angle between the sur-
face normal of the pixel and the squared distance from the pixel to
the image sensor. The relationship between area and resolution is
straightforward for a color image, and we saw previously that the
Kinect depth error increases quadratically. We approximate quality
by assuming that both color and depth error increase quadratically,
yielding the quality value in Equation 1.

quality =

(

cosθnormal→camera

distance2

)2

(1)

Note that this formulation is similar to a diffuse lighting calcula-
tion with attenuation (for a light positioned at the sensor’s location)
that can rapidly be performed on almost any graphics hardware.

Our approach also requires determination of which pixels repre-
sent the closest surface with respect to viewing position. We store
the depth values at each pixel, but due to calibration and depth sen-
sor error the values corresponding to the front surface do not coin-
cide exactly. Equation 2 is used to estimate the range of each depth
position, so that the range of depths corresponding to the front sur-
face can be determined.

[−errcalib− fdepth err(depth),errcalib + fdepth err(depth)] (2)

Calibration error (errcalib) can be estimated using the re-
projection error that is returned by the camera calibration routine.
Depth error ( fdepth err) can be estimated using the data from Figure
5.

Data Merger Algorithm Algorithm 3 describes the process of
merging the renderings for each camera. At each pixel, the front
surface tolerance is determined by finding the closest depth value
that represents the far end of any pixel’s estimated depth range.
The color values for all pixels with this depth value or nearer are
weighted by quality to obtain the final pixel color.

Algorithm 3 Data merger algorithm

for each output pixel p do
depth f ar← ∞

for each camera c do
d f ar← depthcp

+ errcalib + fdepth err(depthcp
)

if d f ar < depth f ar then
depth f ar← d f ar

end if
end for
colorsum← 0,qualitysum← 0
for each camera c do

if depthcp
<= depth f ar then

colorsum← colorsum +qualitycp
colorcp

qualitysum← qualitysum +qualitycp

end if
end for
colorout put ← colorsum/qualitysum

end for

GPU Implementation Our fast GPU implementation supports
calculation of depth, quality, and color values in one pass per cam-
era and allows all cameras’ renderings to be merged at once in a
second pass. When generating the triangle mesh in an OpenGL
geometry shader, we compute the distance to the camera and the
angle between the camera and surface normal and save these val-
ues as vertex attributes. During rasterization, an OpenGL fragment

shader computes a color value and a quality value (using Equation
1) at each pixel, storing the quality value in the alpha channel and
the depth value from the Z-buffer in a separate texture. When the
renderings for all cameras are complete, all data is merged in an
OpenGL fragment shader according to Algorithm 3.

4.5 Multiple Camera Color Matching

Overview The need for color matching is common for many
camera systems, as even the same model device may exhibit dif-
ferent color gamuts [8]. This need is exacerbated in inexpensive
devices like the Kinect sensor, which allows only automatic color
and exposure control (with present drivers), yielding color values
that may vary dramatically between adjacent cameras. Here tradi-
tional color matching techniques, such as adjusting color to match
a physical target seen by each camera, are ineffective because au-
tomatic control may alter color balances at any time. We present
an automatic color matching technique that uses depth information
to find color correspondences between cameras, which can be used
to build a color matching function. We believe this technique may
be useful when manual color adjustment is unavailable, or as a fast
approximate alternative to conventional matching techniques.

Obtaining Color Correspondences To build a set of color
correspondences between cameras, we first find pairs of points from
two cameras that correspond to approximately the same point in
3D space. We assume that each pair of points represents the same
point on a diffuse surface in physical space, and therefore should
agree in color. To find these point correspondences, we refer to our
previously described visibility-based data merger algorithm. The
algorithm rendered the scene individually for each Kinect camera
and examined corresponding depth values to determine which rep-
resented the front surface. For color matching, if two cameras have
depth values that represent the front surface at a given pixel, we add
their color values to a list of correspondences.

Since this approach is visibility-based, the color correspon-
dences obtained are sensitive to the position of the virtual camera.
If the same virtual camera position is used for color matching and
rendering, color matching is tailored to the colors actually seen by
the user. However, if a pair of cameras have few surfaces in com-
mon from the viewpoint used for rendering, or if these surfaces have
a limited range of colors, there many be too few correspondences
to build a robust color matching function. In this case, point corre-
spondences can be computed from a reference view (such as a bird’s
eye view), rather than from the view used for rendering. To build
more robust color correspondences, additional techniques could be
used. For example, the color correspondences could be built from
renderings from several viewpoints, or could be collected over time.

Building a Color Matching Function There are many ad-
vanced techniques for building color matching functions from a set
of color correspondences, such as that of Ilie and Welsh [8]. To
demonstrate our approach, we used a simple method – color corre-
spondences were fit to a linear model. Since our color correspon-
dences were noisy (small errors in surface position may result in
a large difference in color), we used the RANSAC [5] method for
fitting, which is robust to outliers. Figure 7 shows a plot of actual
color correspondences (for one channel) and the fitted linear color
matching function.

Implementation For our test setup, we matched the colors of
each camera to our ceiling-mounted master camera. We elected not
to run the color matching function on every frame, as small varia-
tions in color matching functions resulted in a color cycling effect.
Instead a new color matching function was built whenever the user
pressed a function key. As real-time performance was not needed,
we implemented color matching functionality on the CPU. We be-
lieve our implementation could be improved by performing bundle
adjustment across cameras and by running the color matching func-



Figure 7: Color matching using 3D point correspondences. Plot
shows color correspondences between a pair of cameras for one
color channel and the RANSAC-fitted linear color matching function.

tion automatically when some criteria is met.

4.6 Eye Position Tracking

Overview To allow our system to render a set of correct stereo
viewpoints from the user’s position, we need to obtain the position
of the viewer’s eyes in 3D space. Many approaches to tracking
have been devised, such as measuring the magnetic field around
a marker, segmenting and triangulating the position of reflective
markers as seen by an array of cameras, and using computer vision
techniques to recognize objects in images. The latter approach has
been used to obtain the 3D positions of eyes with a conventional
2D camera, but assumptions or measurements must be made of the
face. We aim to improve these techniques by incorporating depth
information. One impressive recent approach [3] used depth in-
formation to build a deformable mesh that was tracked to a user’s
face in real-time, but required a 6.7 second initialization time and
achieved only moderate real-time performance (10-12 Hz). Since
we require higher performance and do not need tracking of the en-
tire face, we look to an alternate approach – performing 2D eye
detection and transforming the detected position into 3D using the
Kinect’s depth data.

Requirements Our tracking system should meet the follow-
ing requirements for use in our telepresence system:

1. Accuracy: at a 1 m distance, 15 mm of lateral movement
causes the eye to sweep over one display subpixel seen
through the barrier of our autostereo display; for best qual-
ity results tracking accuracy should be ±7.5mm.

2. Speed, Latency: we do not anticipate rapid head movements
in our application. To support the modest movement of 25
cm/sec, framerate must be > 33.3 Hz and latency must be
< 30ms to meet the accuracy requirements above.

2D Eye Tracking To perform 2D eye detection on the color
image, we use Viola [24] and Lienhart’s [13] approach of boosted
Haar classifiers, as implemented in OpenCV. First the face is de-
tected (using a classifier from Leinhart), and then eyes are de-
tected in the facial region (using classifiers from Castrillon [4]).
Once the eyes are found, their pattern is saved and subsequent eye
searches are performed using normalized cross correlation. An im-
age pyramid is used to accelerate the cross correlation search. If
the strongest response to cross correlation falls below a threshold,
detectors are again used to locate facial features. The face is first
searched for in the region surrounding the last known eye position;
if not found the entire image is again searched. All detection and
tracking operations were performed in the CPU, as it was not heav-
ily utilized elsewhere in our system. A single Kinect unit, mounted
above the autostereo display, was used for tracking.

Using Depth to Obtain 3D Eye Position Once the center of
both eyes have been detected, the 2D position is transformed into
3D using the Kinect’s depth information and measured camera in-
trinsics and extrinsics. To reduce the effects of noise and missing
data, depth values are averaged over a small radius around the eye
position. A Kalman filter was used to improve the accuracy and
stability of the 3D tracked eye positions as well as predict the loca-
tions of the eyes between sensor readings. Although our tracking
system requires no prior measurements of the user’s face, accuracy
can be improved if the true interpupillary distance (IPD) is known.
If the system is utilized by a single user over a capture session, an
accurate IPD estimate can be learned over time.

Discussion Our tracking system offers several advantages
over existing systems. It uses inexpensive hardware (the Kinect
sensor) and allows the same device to be used for both tracking and
3D capture at the same time. Since the eyes are tracked indepen-
dently, our system allows correct calculation of 3D eye positions
without measurements or assumptions of face size or IPD.

We believe our system could be improved with a more robust set
of feature detectors – our current system allows for only moderate
head rotations and does not work well with glasses. Depth data
could also be further utilized to improve speed; for example, the
face search area could be restricted to depths that are within the
range of a seated user. Multiple cameras could be utilized to offer
better coverage of a rotated head or to improve the accuracy of the
system.

4.7 Stereo Display

Overview As mentioned, research [18] has shown that stereo
displays can increase the sense of shared presence, although sys-
tems requiring 3D glasses obstruct eye contract and have been
found to be disruptive to most users. Therefore, we want an au-
tostereo display for our system.

Display Selection Our display system should meet the fol-
lowing requirements for use in our telepresence system:

1. Preservation of full captured color and detail.

2. Large enough to allow remote scene to be observed as life-
sized at proper viewing distance.

3. Support for continuous viewpoints and horizontal and vertical
parallax.

4. Support for a range of movement typical of a seated user.

5. Interactive update rates that meet our tracking requirements.

We were in possession of a fixed parallax barrier display that
met these requirements – an X3D-40 display by X3D technolo-
gies (circa 2004). The display measures 40 in diagonally and has
a 1280×768 pixel resolution and a 60 Hz update rate. Since the
display supports only a limited number of views, tracking was em-
ployed. In a future system, we intend to utilize a display that sup-
ports multiple users, such as the Random Hole display of Ye et
al [25].

Rendering for the Display Since our system uses head track-
ing, we rendered views for the display using off-axis frustra be-
tween the eyes and the display. The position of the eyes was de-
termined using the tracking system, and the position of the moni-
tor was measured using our 3D capture system. An OpenGL frag-
ment shader was used to generate the diagonally interleaved pattern
needed by our parallax barrier display for each pair of stereo views.

Tracking Problem and Intra-Frame Rendering While using
our fixed parallax barrier display, a user may see an incorrect view
or significant artifacts (dark black bands or fuzziness) if out of the
expected viewing position. If the rendering update rate is lower
than the rate required by our tracking system, a user may experience
these effects if moving, resulting in poor stereo perception.



This problem has been addressed previously for dynamic bar-
rier displays [19] by generating the parallax barrier stripes asyn-
chronously at higher rates than rendering takes place. For fixed
barrier displays, we developed a new technique to address this prob-
lem – rendering barrier display patterns at a higher rate while new
frames are rendered more slowly offscreen.

Since the time it takes to generate a parallax barrier pattern for a
new eye position is very short and fixed with our implementation,
we can draw one or more new barrier patterns while in the process
of rendering a frame for the next viewing perspective. These intra-
frame barrier patterns use the new estimated eye position and the
last rendered viewing position, saved in textures. Using OpenGL,
we are able to draw to the screen mid-frame by switching between
multiple frame buffers. To keep our parallax barrier generation rate
and rendering rate independent, we stop to draw a new barrier pat-
tern whenever a fixed amount of time has elapsed during rendering,
periodically flushing the pipeline to allow for better time granularity
between asynchronous GL calls. The result is a high fixed barrier
display rate, independent of rendering rate, at the expense of a small
decrease in rendering rate. Specific rates are listed in Section 5.4

5 RESULTS

5.1 Camera Coverage and Calibration Results

Camera Coverage Our camera arrangement (shown in upper
left of Figure 3), includes most of the surfaces seen by a seated re-
mote user, as shown in Figure 1A. Overlapping camera coverage
preserves large surfaces on the rear wall, which would otherwise be
occluded by the seated user. Redundant coverage also helps pre-
vent self shadowing. For example, in Figures 1B-1D the coffee cup
occludes part of the user’s chest with respect to camera 1, but the
missing surfaces are filled with data from camera 2.

3D Positional Error Table 1 shows the 3D positional error be-
tween cameras at two positions, measured by placing a 4 cm physi-
cal ball in the environment and measuring the difference in location
between cameras. To determine the position of the ball, a virtual
ball was moved over the physical one in 1 mm increments over each
axis until it aligned as closely as possible. Cameras pairs not listed
in the tables were not able to see the ball in a common position.

Our measured 3D positional error, which includes contributions
from both camera calibration and depth sensor error, is fairly sig-
nificant. However, since most of the depth cameras share the same
general line of sight as would a remote participant, the perceived
error contributed from depth sensor Z-error is reduced.

Table 1: 3D Error (cm)

Accuracy near front of cubicle (≈ 0.7 m from front cameras):

Cam 2 (Front) Cam 3 (Front)

Cam 1 (Ceiling) 1.86 3.03

Cam 2 (Front) – 1.86

Accuracy near rear of cubicle (≈1.8 m from front):

Cam 3 (Front) Cam 4 (Rear) Cam 5 (Rear)

Cam 2 (Front) 2.61 1.53 0.64

Cam 3 (Front) – 3.63 2.71

Cam 4 (Rear) – – 1.75

* Camera numbers correspond to labels in upper left of Figure 3

5.2 Data Processing and Rendering Results

Mesh Generation All images in Figure 8 show the result of
mesh generation. Our requirements are met: the mesh offers a con-
tinuous surface, discontinuous surfaces (such as from the body to

Figure 8: Data processing results. 1: No enhancements applied. 2:
All enhancements except hole filling. 3: All enhancements except
color matching. 4: All enhancements except quality weighted data
merger. 5: All enhancements applied. (“All enhancements” includes
to hole filling, data merger, and color matching)

Figure 9: Data merger results. A1: No merger applied, meshes
drawn on top of each other. A2: Merger with simple average. A3:
Merger with quality weighting. B1: Color coded camera contribu-
tions with no merger. B2: Camera contributions with quality-weighted
merger.

the rear wall) are properly separated, and missing data (small area
under chin) is tolerated. An area for improvement is the edges of
the mesh at discontinuous surfaces, which are ragged due to noise.

Hole Filling Image 5 of Figure 8 (as compared to image 2 of
Figure 8) shows the result of the application of the hole filling and
smoothing filter on a scene with four overlapping cameras. In this
example, 100% of holes caused by interference were filled while
textures remained aligned to the mesh (rates of > 90% are typi-
cal). The mesh edges were generally maintained, although a small
amount of overfilling is present on the right shoulder and under the
left arm causing the geometry to expand.

Data Merger Image 5 of Figure 8 (as compared to image 4 of
Figure 8) and all of Figure 9 show the result of the data merger algo-
rithm on four cameras, which is cleaner and smoother than meshes
simply drawn over each other or averaged. In image B1 of Fig-
ure 9, one can see in the unmerged example that the mesh of the
right-front camera (tinted blue) is drawn entirely over the data from
the left-front camera (tinted red). These surfaces should coincide
exactly, but a small calibration error places the surface from right-
front camera closer to the viewer. In image B2 of Figure 9, one can
see that the quality-weighted merger algorithm smoothly transitions
between camera data across the face.

Color Matching Image 5 of Figure 8 (as compared to image 3
of Figure 8) shows the result of color matching in a scene with four
cameras. The unmodified image shows moderate color inconsis-
tencies between the front cameras (on the face, shirt, and arms) and
significant inconsistencies between the four cameras that overlap in
the background. The automatic color matching algorithm mostly
resolved the color deviations in the foreground, and made a signifi-
cant improvement in color calibration the the background, although
the camera coverage boundaries are still visible.



Table 2: Tracking performance over 1600 frames.

Case # % Avg Time(ms)

Eyes found (full frame face/eye detect) 3 0.19 140.5

Eyes found (partial frame face/eye detect) 9 0.56 19.8

Eyes found (pattern search) 1585 99.06 2.3

Eyes not found 3 0.19 13.6

Figure 10: 3D Eye tracking performance. Plot shows measured de-
viations from a known inter-pupil distance.

5.3 Eye Tracking and Stereo Display Results

Eye Detection Rate and Speed Table 2 shows the tracking
performance typical of a seated user over a 1600 frame sequence.
For the sequence, the user was seated centered 1 m from the dis-
play and tracking camera and moved his head left, right, forward
and backward over a range of±0.5 m. The average head movement
speed was 48 cm/s, measured using the detected 3D eye positions.
Positive eye detection occurred on >99% of the frames at an aver-
age rate of 2.7 ms. In the worst case, when the face was lost and the
entire frame had to be searched, a noticeable delay of 140.5 ms on
average occurred.

Tracking Performance Figure 10 provides a measure of the
performance of the eye tracking by comparing the 3D distance be-
tween a pair of tracked eyes and the true measured interpupillary
distance (IPD). IPD was used as the ground truth for accuracy as we
were not in possession of equipment that would allow us to measure
our positional accuracy directly. This metric was measured over a
sequence of 1761 frames, in which a user seated 1 m from the track-
ing camera moved his head to the left, right, forward and backward
over a range of ±0.5 m. 85.6% of measurements were within ±5
mm of the true IPD, and 96.4% were within ±10 mm.

Tracking Accuracy and Stereo Quality Since our tracking
system is designed to support a stereo display, it is useful to test the
two systems together. To demonstrate that our tracking system is
fast and accurate enough to support our parallax barrier autostereo
display with good quality, we shot video of our system through a
tracking target (shown in the right of Figure 11). Our tracking sys-
tem is able to detect the target as if it were a real face and thus one
of the stereo views will be generated from the correct perspective
of the camera placed behind an eye. Using this setup, the target
and camera were positioned 1.25 m from the tracking camera and
display and were moved at a rate of approximately 24 cm/sec.

Without tracking prediction and intra-frame rendering enabled,
the rendering and parallax barrier pattern generation rate was 21
Hz in our four camera test setup. As seen in the left of Figure 11,
results were very poor; the tracking and rendering could not keep
up with the target as it moved into the viewing zone intended for
the other eye and thus both views could be seen prominently and

Figure 11: Head-tracked stereo in motion. Left: Tracking prediction,
intra-frame rendering disabled. Center: Prediction, intra-frame ren-
dering enabled. (Note: faint image on right side is reflection of pho-
tographer). Right: Head cutout used to test eye tracking, with camera
behind eye.

Table 3: Display rates (frames per second)

# Capture Depth Cameras

Single View w/ Selected Enhancements 1 2 3 4 5

Meshing 177 95 64 49 41

Meshing, Hole Filling 167 84 54 41 34

Meshing, Hole Filling, Data Merger 163 78 50 38 31

Stereo Views w/ All Enhancements 1 2 3 4 5

Head-Tracked 75 40 28 21 17

Head-Tracked w/Prediction (Render Rate) 73 35 23 18 16

Head-Tracked w/Prediction (Barrier Rate) 73 57 52 48 48

simultaneously. With tracking prediction and intra-frame rendering
enabled (center of Figure 11), the rendering rate dropped slightly
to 18 Hz but the barrier generation rate more than doubled to 48
Hz. Results were much improved – the view seen by the camera
is crisp and only very faint ghosting can be seen to the right of the
mannequin head and box.

Gaze Preservation As can be seen in all images of Figure 8,
the seated user whose gaze is directed forward appears to be looking
directly at the remote user.

5.4 System Performance

Table 3 lists the performance achieved with our test system in var-
ious configurations. When rendering for a single view, the system
was able to maintain frame rates >30 Hz for up to five depth cam-
eras with all enhancements (meshing, hole filling, quality-weighted
data merger) enabled. For tracked stereo configurations, rendering
rates fell to >15 Hz, but parallax barrier pattern rates of ≥48 Hz
preserve smooth head tracking and stereo quality.

6 CONCLUSIONS AND FUTURE WORK

We have presented solutions to several issues related to building a
capture system using multiple depth cameras: resolving interfer-
ence, data merging, and color matching between units. We have
also introduced an eye position tracking system using depth sensors
and demonstrated effective stereo display using rendering rates that
would not usually support significant head motion.

Using these solutions, we have demonstrated a telepresence sys-
tem that is able to capture a fully dynamic 3D scene the size of a
cubicle while allowing a remote user to look around the scene from
any viewpoint. The system preserves eye gaze and does not require
the user to wear any encumbrances. Using a single PC and graph-
ics card, our system was able to render head-tracked stereo views at
interactive rates and maintained stereo percept even with moderate
head movement speeds.



Although our test system is functional, there are areas that we
would like to improve, notably image quality. Our meshing ap-
proach left many captured objects with a ragged edge that could be
smoothed with more advanced depth image filtering, such as a Joint
Bilateral filtering [11] with the color image. Color calibration could
be enhanced by combining our color correspondence-building algo-
rithm with more robust color matching functions. Tracking support
for faster head movement would also improve our user experience.

We also intend to expand our test setup into the “ideal” system
shown in the bottom of Figure 3 by supporting 3D capture and 3D
display for multiple users in both spaces. As seen in Figure 2, we
already support 3D capture of multiple users. In this future system,
we intend to add support for multiple tracked users on both sides,
provide a larger display that emulates the large “virtual window”
of [23], and support a larger office-sized capture area.

Finally, we would like to expand the communication ability of
our system by adding support for virtual objects that can be manip-
ulated naturally by persons in the scene. Figure 1E shows an early
experiment.
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