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Abstract

The magnetic field at the entrance of a wiggler magnet in a Free Electron Laser (FIl,)

determines the character of the electron orbits and influences the FEL gain. To obtain the desired

adiabatic entrance conditions, it is necessary to investigate different methods of connecting leads

to the wiggler as well as methods of gradually reducing the wiggler field. The field of a current

driven, finite length bifilar helical wiggler magnet is derived and is used to investigate the magnetic

field end perturbations. For a limited range of wiggler parameters, flaring the wiggler end produces

an adiabatic entrance region. Alternately, gradually terminating the wiggler current at the wiggler

entrance is shown to produce an adiabatic entrance for a larger range of parameters.
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Section I-Introduction

Free electron laser gain is dependent on the quality of the electron orbits. A poor quality, high

temperature beam will force an FEL from the Raman towards the Compton regime, substantially

reducing the gain of the device.' Several authors have shown that beam quality is dependent on

the magnetic field profile at the entrance of the wiggler.2 ',' 4 11e formula for the field of a current

driven, infinitely long bifilar helical wiggler is, in cylindircal coordinates (Fig. 1)5,6

B = - bpo V { sin H cos p(4 - k- z)K'(pkx b)I,(pkxr)}, (1)

where I and K are modified Bessel functions,7 i is the current, k, = 2ir/X, X is the wiggler

period, and b is the radius of the helix. The appearance4 of large magnetic field spikes at the ends

of finite wigglers obviously cannot be predicted by this formula. In the section 2 of this paper,

an exact expression is derived for the magnetic field of a finite length wiggler magnet. End effect

magnetic field spikes are discussed in the third section. The entrance field profile is often tailored

by flaring the windings outward at the end of the wiggler magnet. This technique and its limits

are discussed in the section 4. An alternate method of tailoring the magnetic field is to gradually

decrease the current at the end of the wiggler by inserting current dividers every half period.

Section 5 discusses this method, which is valid over a larger parameter regime than the flaring

method.

Section 2-Finite Length Wiggler Field

The magnetic field of a finite length bifilar wiggler magnet can be represented as a magnetic

scalar potential expressed as a Fourier-Bessel series. If the current in the windings of a wiggler is

assumed to flow in a current sheet of current density K at radius r = b, then the wiggler field

can be found by applying appropriate boundary conditions to a scalar magnetic potential. Using

the standard > notation with < denoting the solid cylindrical region 0 < r < b and > denoting

the hollow cylindrical region b < r < oo, then

B - O , V 2 , =0 (2)

where 0, satisfies the boundary condition for the normal and tangential field components:

7 (, - , = 0 (3)

-P X V(0> - 0-)1,-b =AOK. (4)

The general solution to Laplace's equation in cylindrical coordinates (r, 4, z) is 8 (Fig. 1)

, = A sin pA sin vz + B' sin AO cos vz

VIA +(5)
+ C/, cos p4 sinez + Dv<) cos pu cosvz '$(Lr)
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where

R'((vr) _= K4(vr), ,(r) I()

and where I and K are modified Bessel functions. Periodicity in 0 implies that A is restricted to

integers values. If the system is assumed to have a spatial period k, equation (5) can be rewritten

= = (Anm sin m4 sin nkz + Bn'm sin mo coo nkz
< n(6)

+ C Mcos m4 sin nkz + Dn~m cos mO cos nkz) R (nkr).

In cylindrical coordinates, the boundary condition (3) implies

0= fnk(AnmK'(nkr) - AmI'(nkr)) sin mO sin nkzl,_, (7)
nm

or

= I'm(nkb) (8)
K'(nkb)Anm

with similar equations for B, C, and D. Assuming that the current in the current sheet can be

represented in a Fourier series of the form

K = Z(Anm sin mo sin nkz + Bm sin mo cos nkz

+ Cnm cos mo sin nkz + Dnm coo m/ cos nkz),

and, using the Wronskian for modified Bessel functions, the boundary condition (4) becomes

1o0K = E m kbK 'm -(kb) An, cos mO sin nkz - Bnm cos mo cos nkz

+ Cn, sin mo sin nkz + Dnm sin m/ coo nkz) (10)
+Z bK',(kb)(Anm sin m/ cos nkz - Bnm sin mo sin nkz

+ Cnm cos mo cos nkz - Dnm coo mo sin nkz).

Once the coefficients for the current density A, B, C, and D, are known, the above boundary

condition can be readily used to determine the scalar potential coefficients A, B, C, and D.

For an infinite wiggler it is generally assumed that the current in the current sheet flows in

infinitesimally thin wires that can be represented by 9

( ikx(o + -)6(r - b) ( - kxz+ + 27rj) - (- kxz - + 27rj) (11)

where i is the current, kx = 27r/X and X is the wiggler period. Since the current is divergenceless,

the finite wiggler current circuit must include the wiggler termination. The total current is

divided into two components, with the wiggler component K, representing the current in the

3



helical windings, and with the termination component Kt representing the current due to a loop

termination between the two wires in the helix (Figure 2). For computational simplicity a periodic

system of wigglers is assumed, each wiggler having a length of 2MX and a center to center

separation of 2NX (Figure 3). Thus the system spatial period k is equal to k,/2N. With these

definitions the current becomes:

K = Kt + K (12)

where

Kt = iq6(r - b)(u(+ ) -U( - -

x E (6(z - (I + 2Lh)) - 6(z - (-I + 2Lh))) (13)
h--co

K, =ikx(4 + 6 (- b) , [u(z -(-I + 2Lh)) - u(z - (I + 2Lh))]
h--co

x E (o -kxz + + 21j) -6(o - kz-- + 21j), (14)

and u is the unit step function, L = NX and I = MX.

Evaluation of the termination component Kt is straightforward. By symmetry, A'm = Btm =

D', = 0, and

_t 4io rnrM . mv(5
Cnm - S. (15)

The integrals for the wiggler components are standard, but involved. For example,

AW'" = M( + do sin mo sin n( + + 2rj) - sin (o - + 27r

2N 
2

nm T Z),b E 72N- *2 -N 2+ 1/ sinm sin I(+-+21M)

- d sin m sin (O - + 2 M)

(16)

These integrals were evaluated using the symbolic manipulation program Macsyma. 10 The answers

are

Afm = Dsi 0, B si = 9n , C'o"' = -m
nm n m 2N 9nCnm = Mnm
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G'. = ± + - 2 - 2 /4N2 sin 2 sin . (17)

Using the boundary condition (10) to match the coefficients of K to the coefficients in @ and

rearranging the terms gives

= en. cos(m - n kxz) + fn, cos(mo + njkx z) Im( kxr), (18)

with

- _ 1 -1m
n = m - n/2N hnm =m+ n/2N hym

h =2i" n/2N bK' kxb) si r -niM .hn =rL m M2N- _2 ~

The magnetic field is then found by using (2).

Section 3-End Effects

In numerical examples the field obtained from (18) was checked with the results obtained

from the Biot-Savart law. Figure 4 gives the on-axis field for two typical examples. Note that for

b/X = .5, the end spike magnitude is only about thirty percent greater than the wiggler amplitude,

while for b/X = 1 the end spike magnitude is about five times larger than the wiggler amplitude.

Figure 5 graphs the Fourier coefficients for a typical wiggler. The infinite wiggler would have a

single non-zero coefficient corresponding to a spatial frequency of k = k>; instead in the finite case

there is a distribution of spatial frequencies around k, and another, new set of spatial frequencies

around k = r/NX m:: 0.

The graphs of the wiggler field clearly show a large spike at the end of the wiggler. This

spike has two sources: (a) the loop termination at z = 0 (Figure 2) contributes:"

B (19)
2w (bP +Z 2)3I

The large ±z limit for B is

B = F 2 z. (20)

The second spike source is (b) the lack of helical symmetry at the end of the wiggler. This

contribution may be investigated with the formula

B= d I + ze sinG- -cosG -0 sin 0+zecos 0 (21)

which represents the on-axis field of an unterminated wiggler extending from z = 0 to z = 00.

In the limit of large -z this equation converges to
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B:, jgib (22)
27rz2

Since the i contributions from the unterminated wiggler and from the loop termination are equal

and opposite in the limit- of large z, the end spike in the I direction is much smaller than might

otherwise be expected.

Another plausible termination is to extend each wire to ±oo (Figure 6); this termination

contributes:

B= Uo 1 - 1 . (23)2wz '2-2

This termination does not possess the appropriate large z limit and results in a much larger spike

in the 1 direction. Figure 7 compares the fields due to the two types of terminations.

Without the cancellation from the loop termination, the spike in the ! direction is larger

than the spike in the 9 direction. With the loop termination, the 9 spike is dominant. In the limit

of large z, (21) shows that By goes to zero as the inverse third power of z. However this limit is

only valid where By is negligible. At z = 0, (21) can be evaluated for By exactly: 12

By = 2 ibk {[I(kxb) - Lo(kxb)]+ r [I1(kxb) - L-(kb) - , (24)

where L, is a modified Struve function.7 The small b/X limit is

By = -tf. ikx 1 - 37rk,b + 2(kxb)2 - 5r(kx b)... . (25)

The large b/X limit can be expressed as an asymptotic series in inverse powers of b/X. Since the

position of the maximum in By is very close to the end of the wiggler, an accurate sense of the

end spike magnitude can be found by evaluating these formulas for By at z = 0.

The strength of an infinite wiggler is

14oibk2
1BI T K'(kxb), (26)

and since k>b is usually greater than unity, 1BI is proportional to exp(-kxb). However, (24) shows

that for b/X greater than one, the end spike decreases as an inverse power of b. Thus the ratio of

the end spike amplitude to the wiggler amplitude increases exponentially for large b/X. This ratio

is graphed in Figure 8.

Section 4-Flared Wigglers

The wiggler entrance field can be shaped by flaring the winding radius b outwards as a

function of z at the entrance of the wiggler magnet. Since 1B is proportional to exp(-kxb), if b

is increased from some b, in the central, constant magnitude section of the wiggler to
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bf b, - In R (27)

at the end of the wiggler, then the ratio of the end field strength to the central field strength is

approximately R. Clearly the radius must not be increased too rapidly, or the helical symmetry

of the wiggler will be destroyed. Without helical symmetry in the flare, the wiggler will effectively

terminate at the small, b - bi end of the flare, and the spiral character of the wiggler field in the

entrance region will be lost.

Even when the radius is increased slowly, the range of values of bi for which this technique

is effective is limited by the end spike discussed in Section 3. For values of bf/X greater than

one, the end spike will mask the desired wiggler field. Thus in order to achieve a large wiggler

amplitude reduction factor R the constant radius section of the wiggler must have a value of bi/X

small enough so that the value of bf /X, as defined by (27), is less than one. Since bi/X is often

not small, this condition effectively limits the size of the the wiggler amplitude reduction factor

R. Figure 9a graphs the field of a flared wiggler with an appropriately small value of bi/X, while

Figure 9b graphs the field of flared wiggler with a larger value of bi/X. In both cases R = 1/100

and bf was determined by (27). The figures show that even when the bf /X condition is met, there

is still a significant perturbation at the end of the wiggler. Increasing the number of periods in

the flare does not remove the problem.

Section 5-Staggered Tennination Wigglers

By slowly decreasing the current at the wiggler end, the magnetic field can be made to

follow a desired profile. Loop terminators like those shown in Figure 2 inserted every half period

are used to reduce the current in discrete steps. The configuration is drawn in Figure 10. The

fraction of the current terminated in each loop, and the consequent entrance magnetic field profile,

are controlled by individual external loads. If the impedance of each load is greater than the

impedance of a half period of the wiggler' 3 , the current in each termination loop can be adjusted

freely. Typically a reactance of ten milli-ohms is sufficient. The fields from a wiggler with a six

period termination region for two different values of b/X are shown in Figure 11. This method

works so long as the wiggler meets the criterion that b/X is less than one. Since there is no flare,

this criterion is much less restrictive than in the case of a flared wiggler. Advantages of this method

include smooth, adjustable field profiles, and ease of fabrication.

Section 6-Conclusions

The field of a finite wiggler has a number of undesirable features not present in an infinite

wiggler. Careful attention to the wiggler end region and to the wiggler termination is necessary

to mitigate these features. For a limited range of wiggler configurations, flaring the wiggler end

outward produces an adequately smooth entrance. Gradually decreasing the wiggler current at the

wiggler end produces a smooth entrance over a wider range of parameters.
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Figure 1. Cylindrical Coordinate Space, (r, 0, z)

Current flows only in a current sheet at r = b.

Figure 2. Loop Termination Wiggler

Helical windings are - - -, and , Loop Termination is

Figure 3. Wiggler System

Every wiggler has 2M periods, and the wiggler centers are separated by 2NX.

Figure 4a. Wiggler End Fields
B, =-, By =- - -, X = 3.3cm, b = 1.65cm. Note that the B,

end spike is larger than the B. end spike. With b/X = .5, the magnitude of the spike is 30 percent larger

than the magnitude of the wiggler.

Figure 4b. Wiggler End Fields
B. = , B,=- - -, X = 3.3cm. b = 3.3cm. With b/X = 1, the magnitude of the end

spike is 5 times greater than the magnitude of the wiggler.

Figure 5a. e.i, fni vs. n
Normalized m= 1 Fourier coefficients for a typical

wiggler. = c,, w = fn, X = 3.3cm, b = 2cm. The peak in fnI for large n contains the infinite wiggler

terms. All other terms are due to the finite length of the wiggler.

Figure 5b. e ,n vs. n,m

Normalized Fourier coefficients for a typical wiggler.
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Figure 6. Lead Termination Wiggler

Helical windings are - - -, and , Lead Termination is - .

Figure 7. B. vs. z for two types of terminations
= Loop Termination Wiggler, - - - = Lead Termination Wiggler. The Lead

Termination Wiggler suffers from a larger end spike and a slowly decaying bias.

Figure 8. End Spike normalized by wiggler magnitude vs. b/X
* = s spike, . = 9 spike. The j spike is larger than the I end spike and grows exponentially for b/X

greater than one.

Figure 9a. B vs. z for a flared wiggler.
B - -B,

IBlactual =-- - -, Bidesired - -, X = 3.3cm, final b = .55cm, entrance

b = 2.97cm. The flare satisfies the condition b/X < 1. The field follows the desired linearly increasing field

reasonably well with a discrepancy at the beginning of the flare of about ten percent.

Figure 9b. B vs. z for a flared wiggler.
B. - - B, = , JBlactual =- - -- -, JB~desired - - - -,

X = 3.3cm, final b = 1.65cm, entrance b = 4.06cm. The flare does not satisfy the condition b/X < 1. The

end discrepancy is about thirty percent.

Figure 10a. Staggered Termination Wiggler

Helical windings are - - -, and , Terminations are - .

Figure 10b. Staggered Termination Wiggler Equivalent Circuit
Z. is half the impedance of a half period of the wiggler, Z, is the impedance of each terminator, and

ZL is the impedance of the external load of terminator n. By adjusting each ZLn, the currents i, can be

controlled. For simplicity, the helix has been untwisted.
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Figure 1Ia. B vs. z for a Staggered Termination Wiggler

B= - -, B,= , IBactual=- - -,X = 3.3cm, b = .55cm.

Figure 11b. B vs. z for a Staggered Termination Wiggler
Bz =- - -, Bv = , |Blactual =- - -

N = 3.3cm, b = 1.65cm. The field follows the desired linearly increasing field with no major discrepancies.

The ripple in the increasing wiggler magnitude is about three percent of the final wiggler magnitude.
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