Czechoslovak Mathematical Journal

Norbert Polat

End-faithful spanning trees of countable graphs with prescribed sets of rays

Czechoslovak Mathematical Journal, Vol. 51 (2001), No. 1, 45-53
Persistent URL: http://dml.cz/dmlcz/127625

Terms of use:

© Institute of Mathematics AS CR, 2001

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

END-FAITHFUL SPANNING TREES OF COUNTABLE GRAPHS WITH PRESCRIBED SETS OF RAYS

Norbert Polat, Lyon

(Received May 20, 1997)

Abstract. We prove that a countable connected graph has an end-faithful spanning tree that contains a prescribed set of rays whenever this set is countable, and we show that this solution is, in a certain sense, the best possible. This improves a result of Hahn and Širáň [2, Theorem 1].

1. Introduction

In 1964 Halin [3] introduced the concept of the end-faithful subgraph. This is a subgraph H of a graph G such that each end of G contains exactly one end of H as a subset. He proved [3, Satz 3] that any countable connected graph contains an end-faithful spanning tree, and asked if the same holds for any connected graph. This question was answered in the negative in 1991 by Seymour and Thomas [8], and later but independently by Thomassen [10].

In this paper we explore a natural extension of Halin's result by considering the following problem:

Given a countable connected graph G, a set \mathcal{A} of ends of G, and, for each end τ in \mathcal{A}, a ray R_{τ} representing τ, is there an end-faithful spanning tree of G that contains a tail (i.e., a subray) of R_{τ} for every $\tau \in \mathcal{A}$?

A set $\left\{R_{\tau}: \tau \in \mathcal{A}\right\}$, where $R_{\tau} \in \tau$ for all $\tau \in \mathcal{A}$, will be called a representing set of \mathcal{A}. Hahn and Širáň [2] already gave a solution to the problem by showing that such a tree exists if every end in \mathcal{A} can separated from the set of all other elements of \mathcal{A} by deleting a finite set of vertices. Note that such a set \mathcal{A} is necessarily countable. We will improve this result by proving the existence of such a tree assuming the countability of \mathcal{A} only. More precisely, we will obtain the following result:

Theorem A. Let G be a countable connected graph, \mathcal{A} a countable set of ends of G, and Π a representing set of \mathcal{A}. Then G has an end-faithful spanning tree which contains a tail of each element of Π.

In addition we will show that this solution is, in a certain sense, the best possible.

Theorem B. There exist a countable connected graph G and a set \mathcal{A} of ends of G of cardinality \aleph_{1} such that, for any representing set Π of \mathcal{A}, there is no end-faithful spanning tree of G that contains a tail of each element of Π.

These two results show in particular that, unless the end set of a graph G is countable, one cannot generally hope to construct inductively an end-faithful tree of G by putting together rays from different ends one by one.

2. Preliminaries

The terminology will be that of [6] and [7]. Moreover, in order to get a more self-contained paper, we will recall the results of $[5,6,7]$ that we will need.
2.1. Graphs considered in this paper are undirected and contain neither loops nor multiple edges. For a set A of vertices of a graph G we denote by $G[A]$ the subgraph of G induced by A. If B is any set of vertices and H any graph, we define $G-B:=$ $G[V(G)-B]$ and $G-H:=G-V(H)$. The union of a family $\left(G_{i}\right)_{i \in I}$ of graphs is the graph $\bigcup_{i \in I} G_{i}$ given by $V\left(\bigcup_{i \in I} G_{i}\right)=\bigcup_{i \in I} V\left(G_{i}\right)$ and $E\left(\bigcup_{i \in I} G_{i}\right)=\bigcup_{i \in I} E\left(G_{i}\right)$. The intersection is defined analogously. If $\left(G_{i}\right)_{i \in I}$ is a family of subgraphs of a graph G , the subgraph induced by the union of this family will be denoted by $\bigvee_{i \in I} G_{i}$. For $x \in V(G)$ the set $V(x ; G):=\{y \in V(G):\{x, y\} \in E(G)\}$ is the neighbourhood of x in G. If H is a subgraph of G and X a nonempty subgraph of $G-H$, the boundary of H with X is the set $\mathcal{B}(H, X):=\{x \in V(H): V(x ; G) \cap V(X) \neq \emptyset\}$. The set of components of G is denoted by \mathcal{C}_{G}, and if x is a vertex, then $\mathcal{C}_{G}(x)$ is the component of G containing x. If H is an induced subgraph of a graph G and N an induced subgraph of a component X of $G-H$, then we set $N+(H):=N \vee G[\mathcal{B}(H, X)]$. A path $P=\left\langle x_{0}, \ldots, x_{n}\right\rangle$ is a graph with $V(P)=\left\{x_{0}, \ldots, x_{n}\right\}, x_{i} \neq x_{j}$ if $i \neq j$, and $E(P)=\left\{\left\{x_{i}, x_{i+1}\right\}: 0 \leqslant i<n\right\}$. A ray is a one-way infinite path $R:=\left\langle x_{0}, x_{1}, \ldots\right\rangle$. A subray of a ray R is called a tail of R.
2.2. The ends of a graph G (a concept introduced by Freudenthal [1] and Hopf [4] to study discrete groups, and independently by Halin [3]) are the classes of the equivalence relation \sim_{G} defined on the set of all rays of G by: $R \sim_{G} R^{\prime}$ if and only
if there is a ray $R^{\prime \prime}$ whose intersections with R and R^{\prime} are infinite; or equivalently, if and only if $\mathcal{C}_{G-S}(R)=\mathcal{C}_{G-S}\left(R^{\prime}\right)$ for any finite $S \subseteq V(G)$ (where $\mathcal{C}_{G-S}(R)$ denotes the component of $G-S$ containing a tail of R). We will denote by $[R]_{G}$ the class of a ray R of G modulo \sim_{G}, by $\mathfrak{T}(G)$ the set of all ends of G, and for $\tau \in \mathfrak{T}(G)$ and any finite $S \subseteq V(G)$, by $\mathcal{C}_{G-S}(\tau)$ the component of $G-S$ which contains some ray belonging to τ. Notice that if G is a tree, then two rays of G are equivalent modulo \sim_{G} if and only if they have a common tail; hence two disjoint rays of a tree correspond to different ends of the tree.

A subgraph H of G is end-respecting (end-faithful) if the map $\varepsilon_{H G}: \mathfrak{T}(H) \rightarrow \mathfrak{T}(G)$ given by $\varepsilon_{H G}\left([R]_{H}\right)=[R]_{G}$ for every ray R of H is injective (resp. bijective). We denote by $\mathfrak{T}_{H}(G)$ the image of $\varepsilon_{H G}$, i.e., the set of ends of G having the rays of H as elements. Furthermore, for $\mathcal{A} \subseteq \mathfrak{T}(G)$ we set $\mathcal{A}(H):=\mathcal{A} \cap \mathfrak{T}_{H}(G)$.
2.3. Throughout this paper we will assume that the end set $\mathfrak{T}(G)$ of a graph G is endowed with the topology, called the end topology, for which the closure of a subset \mathcal{A} of $\mathfrak{T}(G)$ is the set

$$
\begin{aligned}
\overline{\mathcal{A}}:=\{ & \tau \in \mathfrak{T}(G): \text { for every finite } S \subseteq V(G) \\
& \text { there is } \left.\tau^{\prime} \in \mathcal{A} \text { such that } \mathcal{C}_{G-S}(\tau)=\mathcal{C}_{G-S}\left(\tau^{\prime}\right)\right\},
\end{aligned}
$$

i.e., $\overline{\mathcal{A}}$ is the set of all ends which cannot be separated by a finite $S \subseteq V(G)$ from \mathcal{A}.

By [6, Theorem 4.8] the end space $\mathfrak{T}(G)$ of a graph G is scattered (i.e., contains no non-empty subset which is dense in itself) if and only if G has no subdivision of the binary tree as an end-respecting subgraph. Furthermore, by [6, Proposition 4.7], the end space of the binary tree is homeomorphic with the Cantor space 2^{ω}. Therefore, the cardinality of the end set of a countable graph G is at most \aleph_{0} or exactly $2^{\aleph_{0}}$ if $\mathfrak{T}(G)$ is scattered or not, respectively.
2.4. For $\mathcal{A} \subseteq \mathfrak{T}(G)$ we define $m(\mathcal{A}):=\sup \{|\mathcal{R}|: \mathcal{R}$ is a set of pairwise disjoint elements of $\bigcup \mathcal{A}\}$. For $\tau \in \mathfrak{T}(G)$ we write $m(\tau)$ for $m(\{\tau\})$, and if H is a subgraph of G, we set $m_{H}(\tau):=m\left(\varepsilon_{H G}^{-1}(\tau)\right)$. By the remark in 2.2 about ends of trees, notice that if H is a tree, then H is end-respecting (end-faithful) if and only if $m_{H}(\tau) \leqslant 1$ (resp. $=1$) for every end τ of G.
2.5. We will denote by \mathcal{D} (or by \mathcal{D}_{G} if necessary) the relation between $V(G)$ and $\mathfrak{T}(G)$ defined by $x \mathcal{D} \tau$ if $x \in V\left(\mathcal{C}_{G-S}(\tau)\right)$ for any finite $S \subseteq V(G-x)$, or equivalently if there exists an infinite set of paths joining x to the vertex set of a ray $R \in \tau$ and having pairwise only x in common. If $x \mathcal{D} \tau$ then we will say that the vertex x dominates the end τ, or that τ is dominated by x. For $\tau \in \mathfrak{T}(G)$ we will denote by $\mathcal{D}^{-1}(\tau)$ the set of all vertices that dominate τ.
2.6. An infinite subset S of $V(G)$ is concentrated in G if there is an end τ such that $S-V\left(\mathcal{C}_{G-F}(\tau)\right)$ is finite for any finite $F \subseteq V(G)$ (we also say that S is concentrated in $\tau)$.

For example, the vertex set of any ray of a graph G is concentrated in G. Note that every infinite subset of a concentrated set is also concentrated.
2.7. A set S of vertices of G is dispersed if it has no concentrated subset.
2.8. An induced subgraph M of a graph G is called a multi-ending of G if it satisfies the following properties:

M1. M is connected.
M2. The boundary of M with every component of $G-M$ is finite.
M3. Any infinite subset of $V(M)$ which is concentrated in G is also concentrated in M.
M4. $\mathcal{D}_{M}^{-1}(\tau)=\mathcal{D}_{G}^{-1}\left(\varepsilon_{M G}(\tau)\right)$ for any end τ of M.
M5. For any family $\left(R_{i}\right)_{i \in I}$ of pairwise disjoint rays of G such that $\left\{\left[R_{i}\right]_{G}: i \in\right.$ $I\} \subseteq \mathfrak{T}_{M}(G)$, there is a family $\left(R_{i}^{\prime}\right)_{i \in I}$ of pairwise disjoint rays of M such that $R_{i} \cap R_{i}^{\prime}$ is infinite for every $i \in I$.
By M3, a multi-ending of G is an end-respecting subgraph of G. By M5, $m(\tau)=$ $m\left(\varepsilon_{M G}(\tau)\right)$ for any end τ of M. A multi-ending which is rayless is called a 0 -ending. A 0 -ending M is then a connected induced subgraph of G whose vertex set is dispersed and whose boundary with any component of $G-M$ is finite. A multi-ending M is an ending if $|\mathfrak{T}(M)|=1$; it is a discrete multi-ending if $\mathfrak{T}_{M}(G)$ is a discrete subspace of $\mathfrak{T}(G)$.

For any subset \mathcal{A} of $\mathfrak{T}(G)$ we denote by $\mathbb{M}(\mathcal{A})$ the set of all multi-endings M of G such that $\mathcal{A}=\mathfrak{T}_{M}(G)$.
$\mathbf{2 . 9}[7,6.5$.(ii) and 7.9]. $\mathbb{M}(\mathcal{A}) \neq \emptyset$ if and only if \mathcal{A} is a closed set.
In particular, $\mathbb{M}(\{\tau\}) \neq \emptyset$ for every end τ, since the end topology is Hausdorff.
2.10 ([6, 4.15] and [7, 6.11]). Let G be a graph. For any closed discrete subspace Ω of $\mathfrak{T}(G)$ there exists a 0 -ending M of G which pairwise separates the elements of Ω, i.e., $\mathcal{C}_{G-S}(\tau) \neq \mathcal{C}_{G-S}\left(\tau^{\prime}\right)$ for every pair $\left\{\tau, \tau^{\prime}\right\}$ of distinct elements of Ω.
2.11. Let $\tau \in \mathfrak{T}(G), M \in \mathbb{M}(\tau)$ and $R \in \tau$. Then $N:=M \cup R$ satisfies M 3 .

Proof. By M5, since $R \in \tau, N$ has exactly one end, $\varepsilon_{N G}^{-1}(\tau)$. Let A be an infinite subset of $V(N)$ which is not concentrated in N. Since N is one-ended and since every infinite subset of $V(R)$ is obviously concentrated, the set $A \cap V(M)$ must
be infinite and not concentrated in N, thus not concentrated in M. Therefore, by M3 since M is an ending of $G, A \cap V(M)$, and a fortiori A, is not concentrated in G.
$\mathbf{2 . 1 2}[7,6.10$ and 6.15]. For every induced subgraph H of G satisfying M3 there exists a multi-ending M of G which contains H and satisfies $\mathfrak{T}_{M}(G)=\mathfrak{T}_{H}(G)$.

An immediate consequence of this result and the fact that, if some cofinite subset of a set S is concentrated, then S is concentrated as well, is the following.
2.13. For every multi-ending N of G and every finite $A \subseteq V(G)$ there exists a multi-ending M of G such that $A \cup V(N) \subseteq V(M)$ and $\mathfrak{T}_{M}(G)=\mathfrak{T}_{N}(G)$.
2.14 [7, 6.17]. Let H be a connected induced subgraph of a graph G whose boundary with any component of $G-H$ is finite. Then any multi-ending of H is a multi-ending of G.
2.15 [7, 6.19]. Let M be a multi-ending of a graph G, and X a component of $G-M$. Then any induced subgraph N of X satisfying Axiom M3 can be extended to a multi-ending N^{\prime} of X with the following properties:
(i) N^{\prime} contains a neighbour of each element of $\mathcal{B}(M, X)$;
(ii) $\mathfrak{T}_{N^{\prime}}(G)=\mathfrak{T}_{N}(G)$;
(iii) $N^{\prime}+(M)$ is a multi-ending of $X+(M)$.
$2.16[7,6.18]$. Let N be a multi-ending of G and, for every component X of $G-N$, let N_{X} be a multi-ending of $X+(N)$ containing $\mathcal{B}(N, X)$. Then $M:=N \vee \underset{X \in \mathcal{C}_{G-N}}{\bigcup} N_{X}$ is a multi-ending of G such that $\mathfrak{T}_{M}(G)=\mathfrak{T}_{N}(G) \cup \underset{X \in \mathcal{C}_{G-N}}{\bigcup} \mathfrak{T}_{N_{X}}(G)$.
2.17. An expansion of a connected graph G is a sequence $\left(G_{n}\right)_{n \geqslant 0}$ of subgraphs of G satisfying the following conditions. For every $n \geqslant 0$,

E1. $G_{n} \subseteq G_{n+1}$.
E2. G_{n} is a multi-ending of G.
E3. G_{0} is discrete and, for any component X of $G-G_{n}$, the subgraph $M:=$ $G_{n+1} \cap X$ is a discrete multi-ending of X which contains a neighbour of each element of $\mathcal{B}\left(G_{n}, X\right)$ and with the property that $M+\left(G_{n}\right)$ is a multi-ending of $X+\left(G_{n}\right)$.
E4. $G=\bigcup_{n \geqslant 0} G_{n}$.

3. End-faithful spanning trees with prescribed rays

3.1. Hahn and Širáň [2, Theorem 1] proved that, given a countable graph G, if \mathcal{A} is a discrete subspace of $\mathfrak{T}(G)$-which they called a "free set of ends"-and if Π is a representative set of \mathcal{A}, then G has an end-faithful spanning tree which contains a tail of each element of Π. Theorem A extends their result to any countable set of ends. To prove it, we will need another lemma.
3.2 [5, 3.2]. Let G be a one-ended connected graph having an end-faithful spanning tree. Then any end-faithful tree of G is included in an end-faithful spanning tree of G.

Note that this result can also be obtained as a consequence of a result of Širáň [9, Theorem 4].
3.3. Proof of Theorem A. In the following, an end-faithful spanning tree satisfying the condition of the theorem will be called a Π-end-faithful spanning tree. Furthermore, for any subgraph X of G that contains a tail of the representing ray $R_{\tau} \in \Pi$ of each end $\tau \in \mathcal{A}(X)$, we will set

$$
\Pi_{X}:=\left\{R_{\tau}^{\prime}: \tau \in \mathcal{A}(X)\right\},
$$

where R_{τ}^{\prime} is the largest ray contained in $R_{\tau} \cap X$. Finally, note that, by Halin's theorem [3, Satz 3], since G is countable, any connected subgraph of G has an endfaithful spanning tree.
(a) Let \mathcal{C} be a non-empty closed discrete subspace of $\mathfrak{T}(G)$.
(a.1) We will first show that there exists a multi-ending $M \in \mathbb{M}(\mathcal{C})$ which contains a tail of the representing ray R_{τ} for each end $\tau \in \mathcal{A} \cap \mathcal{C}$. For each $\tau \in \mathcal{C}$, choose a ray $R_{\tau} \in \tau$ such that $R_{\tau} \in \Pi$ if $\tau \in \mathcal{A}$.

By 2.10 , there is a 0 -ending N (which is empty if $|\mathcal{C}|=1$) of G which pairwise separates the elements of \mathcal{C}. Let Γ be the set of components X of $G-N$ such that $\mathcal{C}(X) \neq \emptyset$. Since N separates the elements of $\mathcal{C}, \mathcal{C}(X)$ has a unique element, which will be denoted by τ_{X}. Since $\mathcal{B}(N, X)$ is finite, X contains a tail of $R_{\tau_{X}}$. By 2.9, there exists an ending H of X such that $\mathfrak{T}_{H}(G)=\left\{\tau_{X}\right\}$. By $2.11, H \vee R_{\tau_{X}}$ satisfies Axiom M3. Hence, by $2.15, H \vee R_{\tau_{X}}$ can be extended to an ending N_{X} of X which contains a neighbour of each element of $\mathcal{B}(N, X)$, and with the property that $N_{X}+(N)$ is a multi-ending of $X+(N)$. Then, by $2.16, M:=N \vee \bigcup_{X \in \Gamma} N_{X}$ is a multiending of $N \vee \bigcup_{X \in \Gamma} X$, hence of G by 2.14 , such that $\mathfrak{T}_{M}(G)=\mathfrak{T}_{N}(G) \cup \bigcup_{X \in \Gamma} \mathfrak{T}_{N_{X}}(G)=$ $\left\{\tau_{X}: X \in \Gamma\right\}=\mathcal{C}$, and which contains a tail of R_{τ} for each $\tau \in \mathcal{A} \cap \mathcal{C}$. Such a multiending will be said to be Π-compatible.
(a.2) We now construct a Π_{M}-end-faithful spanning tree of M. Since N is a 0 ending, it has a rayless spanning tree T_{N}. Let $X \in \Gamma$. By Halin's result [3, Satz 3] and by 3.2 , the ending N_{X} has an end-faithful spanning tree T_{X} that contains this tail. Now, denote by e_{X} an edge joining X with N. Then clearly $T:=T_{N} \vee \bigcup_{X \in \Gamma} T_{X} \cup\left\{e_{X}\right\}$ is a Π_{M}-end-faithful spanning tree of M.
(b) We now consider the general case.
(b.1) Let $\left(\tau_{n}\right)_{n \geqslant 0}$ be such that $\mathcal{A}=\left\{\tau_{n}: n \geqslant 0\right\}$, and let $\left(x_{n}\right)_{n \geqslant 0}$ be an enumeration of $V(G)$. We will construct an expansion $\left(G_{n}\right)_{n \geqslant 0}$ of G such that G_{n} is a Π-end-faithful multi-ending with $x_{n} \in V\left(G_{n}\right)$ and $\tau_{n} \in \mathfrak{T}_{G_{n}}(G)$, as follows.

Let \mathcal{T}_{0} be a closed discrete subspace of $\mathfrak{T}(G)$ that contains τ_{0}. By (a) and 2.13, there is $G_{0} \in \mathbb{M}\left(\mathcal{T}_{0}\right)$ that is Π-compatible and that contains x_{0}. Suppose that G_{0}, \ldots, G_{n} have already been constructed. Let $X \in \mathcal{C}_{G-G_{n}}$. If $\mathcal{A}(X)=\emptyset$, let $M_{X}:=X$. If $\mathcal{A}(X) \neq \emptyset$, denote by $p(X)$ the least integer p such that $\tau_{p} \in \mathcal{A}(X)$, and let \mathcal{T}_{X} be a closed discrete subspace of $\mathfrak{T}(G)$ that contains $\tau_{p(X)}$. Then, by (a.1), there is a Π-compatible multi-ending M_{X} of X such that $\mathfrak{T}_{M_{X}}(G)=\mathcal{T}_{X}$. Moreover, by 2.13 and 2.15 , we can choose M_{X} such that it contains x_{n+1} if $x_{n+1} \in V(X)$, as well as a neighbor of each element of $\mathcal{B}\left(G_{n}, X\right)$, and such that $M_{X}+\left(G_{n}\right)$ is a multi-ending of $X+\left(G_{n}\right)$. Therefore, by $2.16, G_{n+1}:=G_{n} \vee \underset{X \in \mathcal{C}_{G-G_{n}}}{\bigcup} M_{X}$ is a Π-compatible multi-ending of G with $x_{n+1} \in V\left(G_{n+1}\right)$ and $\tau_{n+1} \in \mathfrak{T}_{G_{n+1}}(G)$.
(b.2) We now construct a Π-end-faithful spanning tree of G. For $n \geqslant 0$, denote by Γ_{n} the set of components of $G_{n}-G_{n-1}$ with $G_{-1}:=\emptyset$, and let $\Gamma:=\bigcup_{n \geqslant 0} \Gamma_{n}$. By (b.1) $X \in \Gamma_{n}$ is a multi-ending of $G-G_{n-1}$ which is either discrete and Π-compatible, or such that $\mathcal{A}(X)=\emptyset$. Hence, (a.2) in the first case and [3, Satz 3] in the second imply that X has a Π_{X}-end-faithful spanning tree T_{X}. If $X \in \Gamma_{n}$ for some $n>0$, denote by e_{X} an edge of G joining X with $G_{n-1}-\bigcup\left\{G_{i}: i<n-1\right.$ and $\left.X \notin \mathcal{C}_{G_{n}-G_{i}}\right\}$. Such an edge exists because X contains a neighbour of each element of $\mathcal{B}\left(G_{n-1}, X\right)$. Therefore $T:=T_{G_{0}} \vee \bigcup_{X \in \Gamma} T_{X} \cup\left\{e_{X}\right\}$ is a spanning tree of G which contains a tail of each element of Π.

We have to prove that T is an end-faithful subgraph of G. Let τ be an end of G. If $\tau \in \bigcup_{n \geqslant 0} \mathfrak{T}_{G_{n}}(G)$, then $\tau \in \mathfrak{T}_{X}(G)$ for some $X \in \Gamma_{n}$ and $n \geqslant 0$; thus $m_{T}(\tau)=1$. Assume now that $\tau \notin \bigcup_{n \geqslant 0} \mathfrak{T}_{G_{n}}(G)$, then $\tau \in \overline{\bigcup_{n \geqslant 0} \mathfrak{T}_{G_{n}}(G)}$ since $G=\bigcup_{n \geqslant 0} G_{n}$. For all $n \geqslant 0$ there is a unique component Y_{n} of $G-G_{n-1}$ such that $\tau \in \mathfrak{T}_{Y_{n}}(G)$. Let $X_{n}:=Y_{n} \cap G_{n}$. By the construction of T there is a ray of T originating in G_{0} that contains all edges $e_{X_{n}}, n \geqslant 0$. This ray belongs to the end τ, since the set $\bigcup_{n \geqslant 0} e_{X_{n}}$ is concentrated in τ by the definition of X_{n}. Thus $m_{T}(\tau) \geqslant 1$. Moreover, two rays of T belonging to τ must contain the edges $e_{X_{n}}$ for all n greater than some integer p.

Hence they have a common tail. This proves that $m_{T}(\tau)=1$. Consequently, T is end-faithful, thus it is a Π-end-faithful spanning tree of G.
3.4. Proof of Theorem B. (a) Let T be the binary tree rooted at a vertex x_{0}. For every vertex x, denote by T_{x} the subtree of T induced by the vertices which are greater than or equal to x, with respect to the natural order on $V(T)$, where x_{0} is the least element. Furthermore, let $\mathcal{A}_{x} \subseteq \mathfrak{T}_{T_{x}}(T)$ be such that $\left|\mathcal{A}_{x}\right|=\aleph_{1}$. Then the set $\mathcal{A}:=\bigcup_{x \in V(T)} \mathcal{A}_{x}$ of cardinality \aleph_{1} has the property that $\mathcal{A}\left(T_{x}\right)$ is dense in $\mathfrak{T}_{T_{x}}(T)$ for every $x \in V(T)$.

Now let $\left\{R_{\tau}: \tau \in \mathcal{A}\right\}$ be a representing set of \mathcal{A}. Since T is countable and $|\mathcal{A}|=\aleph_{1}$, there exists a subtree A of T with $A \subseteq \bigcup_{\tau \in \mathcal{A}} R_{\tau}$ such that $\mathfrak{T}_{A}(T)$ is uncountable. Thus $\left|\mathfrak{T}_{A}(T)\right|=2^{\aleph_{0}}$, i.e., A contains a subdivision of the binary tree (cf. 2.3).

Consider another subset \mathcal{B} of $\mathfrak{T}(T)$ disjoint from \mathcal{A}, with $\left|\mathcal{B}\left(T_{x}\right)\right|=\aleph_{1}$ for every $x \in V(T)$. Clearly $\overline{\mathcal{B}(A)}=\mathfrak{T}_{A}(T)$. Thus, as above, for any representing set $\left\{R_{\tau}: \tau \in\right.$ $\mathcal{B}\}$ of \mathcal{B} there exists a subtree $B \subseteq \bigcup_{\tau \in \mathcal{B}(A)} R_{\tau}$ of A which contains a subdivision of the binary tree. Therefore there are $2^{\aleph_{0}}$ ends of T which have representing rays in each of the subgraphs $\bigcup_{\tau \in \mathcal{A}} R_{\tau}$ and $\bigcup_{\tau \in \mathcal{B}} R_{\tau}$.
(b) Now let G be the cartesian product of T with the complete graph K_{2}. Denote by T_{0} and T_{1} the two copies of T in G, and let \mathcal{A}_{G} and \mathcal{B}_{G} be the sets of ends of G corresponding to the preceding sets \mathcal{A} and \mathcal{B}, respectively. Let $\left\{R_{\tau}: \tau \in\right.$ $\left.\mathcal{A}_{G}\right\}$ (resp. $\left\{R_{\tau}: \tau \in \mathcal{B}_{G}\right\}$) be a representing set of \mathcal{A}_{G} (resp. \mathcal{B}_{G}) with $R_{\tau} \subseteq T_{0}$ (resp. $R_{\tau} \subseteq T_{1}$) for every $\tau \in \mathcal{A}_{G}$ (resp. $\tau \in \mathcal{B}_{G}$). Then, by (a), for any tail R_{τ}^{\prime} of $R_{\tau}, \tau \in \mathcal{A}_{G} \cup \mathcal{B}_{G}$, there are $2^{\aleph_{0}}$ ends of G that have representing rays in each of the subgraphs $\bigcup_{\tau \in \mathcal{A}_{G}} R_{\tau}^{\prime}$ and $\bigcup_{\tau \in \mathcal{B}_{G}} R_{\tau}^{\prime}$ of T_{0} and T_{1}, respectively. Consequently, no tree of G that contains a tail of each $R_{\tau}, \tau \in \mathcal{A}_{G} \cup \mathcal{B}_{G}$, is end-respecting.

References

[1] H. Freudenthal: U̇ber die Enden diskreter Räume und Gruppe. Comment. Math. Helv. 17 (1944), 1-38.
[2] G. Hahn and J. Širáñ: Three remarks on end-faithfulness. Finite and Infinite Combinatorics in Sets and Logic (N. Sauer et al., eds.). Kluwer, 1993, pp. 125-133.
[3] R. Halin: Über unendliche Wege in Graphen. Math. Ann. 157 (1964), 125-137.
[4] H. Hopf: Enden offener Raüme und unendliche diskontinuierliche Gruppen. Comm. Math. Helv. 15 (1943), 27-32.
[5] N. Polat: Développements terminaux des graphes infinis I. Arbres maximaux coterminaux. Math. Nachr. 107 (1982), 283-314.
[6] N. Polat: Ends and multi-endings. I. J. Combin. Theory Ser. B 67 (1996), 86-110.
[7] N. Polat: Ends and multi-endings. II. J. Combin. Theory Ser. B 68 (1996), 56-86.
[8] P. Seymour and R. Thomas: An end-faithful spanning tree counterexample. Discrete Math. 95 (1991), 321-330.
[9] J. Širáñ: End-faithful forests and spanning trees in infinite graphs. Discrete Math. 95 (1991), 331-340.
[10] C. Thomassen: Infinite connected graphs with no end-preserving spanning trees. J. Combin. Theory Ser. B 54 (1992), 322-324.

Author's address: I.A.E., Université Jean Moulin (Lyon 3), 6 cours Albert Thomas, 69372 Lyon cedex 08, France, e-mail: polat@jonas.univ-lyon1.fr.

