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END-FAITHFUL SPANNING TREES OF COUNTABLE GRAPHS

WITH PRESCRIBED SETS OF RAYS

Norbert Polat, Lyon

(Received May 20, 1997)

Abstract. We prove that a countable connected graph has an end-faithful spanning tree
that contains a prescribed set of rays whenever this set is countable, and we show that
this solution is, in a certain sense, the best possible. This improves a result of Hahn and
Širáň [2, Theorem 1].

1. Introduction

In 1964 Halin [3] introduced the concept of the end-faithful subgraph. This is a
subgraph H of a graph G such that each end of G contains exactly one end of H

as a subset. He proved [3, Satz 3] that any countable connected graph contains an
end-faithful spanning tree, and asked if the same holds for any connected graph.

This question was answered in the negative in 1991 by Seymour and Thomas [8],
and later but independently by Thomassen [10].

In this paper we explore a natural extension of Halin’s result by considering the
following problem:

Given a countable connected graph G, a set A of ends of G, and, for each end τ in

A, a ray Rτ representing τ , is there an end-faithful spanning tree of G that contains

a tail (i.e., a subray) of Rτ for every τ ∈ A?
A set {Rτ : τ ∈ A}, where Rτ ∈ τ for all τ ∈ A, will be called a representing set

of A. Hahn and Širáň [2] already gave a solution to the problem by showing that such
a tree exists if every end in A can separated from the set of all other elements of A
by deleting a finite set of vertices. Note that such a set A is necessarily countable.
We will improve this result by proving the existence of such a tree assuming the
countability of A only. More precisely, we will obtain the following result:
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Theorem A. Let G be a countable connected graph, A a countable set of ends
of G, and Π a representing set of A. Then G has an end-faithful spanning tree which

contains a tail of each element of Π.

In addition we will show that this solution is, in a certain sense, the best possible.

Theorem B. There exist a countable connected graph G and a set A of ends of
G of cardinality ℵ1 such that, for any representing set Π of A, there is no end-faithful
spanning tree of G that contains a tail of each element of Π.

These two results show in particular that, unless the end set of a graph G is

countable, one cannot generally hope to construct inductively an end-faithful tree of
G by putting together rays from different ends one by one.

2. Preliminaries

The terminology will be that of [6] and [7]. Moreover, in order to get a more
self-contained paper, we will recall the results of [5, 6, 7] that we will need.

2.1. Graphs considered in this paper are undirected and contain neither loops nor
multiple edges. For a set A of vertices of a graph G we denote by G[A] the subgraph
of G induced by A. If B is any set of vertices and H any graph, we define G−B :=

G[V (G) − B] and G−H := G− V (H). The union of a family (Gi)i∈I of graphs is

the graph
⋃
i∈I

Gi given by V
( ⋃

i∈I

Gi

)
=

⋃
i∈I

V (Gi) and E
( ⋃

i∈I

Gi

)
=

⋃
i∈I

E(Gi). The

intersection is defined analogously. If (Gi)i∈I is a family of subgraphs of a graph
G, the subgraph induced by the union of this family will be denoted by

∨
i∈I

Gi. For

x ∈ V (G) the set V (x;G) := {y ∈ V (G) : {x, y} ∈ E(G)} is the neighbourhood of x
in G. If H is a subgraph of G and X a nonempty subgraph of G−H , the boundary
of H with X is the set B(H, X) := {x ∈ V (H) : V (x;G) ∩ V (X) �= ∅}. The set of
components of G is denoted by CG, and if x is a vertex, then CG(x) is the component

of G containing x. If H is an induced subgraph of a graph G and N an induced
subgraph of a component X of G−H , then we set N + (H) := N ∨G[B(H, X)]. A

path P = 〈x0, . . . , xn〉 is a graph with V (P ) = {x0, . . . , xn}, xi �= xj if i �= j, and
E(P ) = {{xi, xi+1} : 0 � i < n}. A ray is a one-way infinite path R := 〈x0, x1, . . .〉.
A subray of a ray R is called a tail of R.

2.2. The ends of a graph G (a concept introduced by Freudenthal [1] and Hopf [4]

to study discrete groups, and independently by Halin [3]) are the classes of the
equivalence relation �G defined on the set of all rays of G by: R �G R′ if and only
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if there is a ray R′′ whose intersections with R and R′ are infinite; or equivalently, if

and only if CG−S(R) = CG−S(R′) for any finite S ⊆ V (G) (where CG−S(R) denotes
the component of G − S containing a tail of R). We will denote by [R]G the class
of a ray R of G modulo �G, by T(G) the set of all ends of G, and for τ ∈ T(G)

and any finite S ⊆ V (G), by CG−S(τ) the component of G− S which contains some
ray belonging to τ . Notice that if G is a tree, then two rays of G are equivalent

modulo �G if and only if they have a common tail; hence two disjoint rays of a tree
correspond to different ends of the tree.

A subgraphH of G is end-respecting (end-faithful) if the map εHG : T(H)→ T(G)
given by εHG([R]H) = [R]G for every ray R of H is injective (resp. bijective). We

denote by TH(G) the image of εHG, i.e., the set of ends of G having the rays of H
as elements. Furthermore, for A ⊆ T(G) we set A(H) := A∩ TH(G).

2.3. Throughout this paper we will assume that the end set T(G) of a graph G is

endowed with the topology, called the end topology, for which the closure of a subset
A of T(G) is the set

A := {τ ∈ T(G) : for every finite S ⊆ V (G)

there is τ ′ ∈ A such that CG−S(τ) = CG−S(τ ′)},

i.e., A is the set of all ends which cannot be separated by a finite S ⊆ V (G) from A.
By [6, Theorem 4.8] the end space T(G) of a graph G is scattered (i.e., contains no

non-empty subset which is dense in itself) if and only if G has no subdivision of the
binary tree as an end-respecting subgraph. Furthermore, by [6, Proposition 4.7], the

end space of the binary tree is homeomorphic with the Cantor space 2ω. Therefore,
the cardinality of the end set of a countable graph G is at most ℵ0 or exactly 2ℵ0 if
T(G) is scattered or not, respectively.

2.4. For A ⊆ T(G) we define m(A) := sup{|R| : R is a set of pairwise disjoint
elements of

⋃A}. For τ ∈ T(G) we write m(τ) for m({τ}), and if H is a subgraph
of G, we set mH(τ) := m(ε−1HG(τ)). By the remark in 2.2 about ends of trees, notice
that if H is a tree, then H is end-respecting (end-faithful) if and only if mH(τ) � 1
(resp. = 1) for every end τ of G.

2.5. We will denote by D (or by DG if necessary) the relation between V (G) and
T(G) defined by xDτ if x ∈ V (CG−S(τ)) for any finite S ⊆ V (G−x), or equivalently

if there exists an infinite set of paths joining x to the vertex set of a ray R ∈ τ

and having pairwise only x in common. If xDτ then we will say that the vertex x

dominates the end τ , or that τ is dominated by x. For τ ∈ T(G) we will denote by
D−1(τ) the set of all vertices that dominate τ .
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2.6. An infinite subset S of V (G) is concentrated in G if there is an end τ such that

S−V (CG−F (τ)) is finite for any finite F ⊆ V (G) (we also say that S is concentrated
in τ).

For example, the vertex set of any ray of a graph G is concentrated in G. Note
that every infinite subset of a concentrated set is also concentrated.

2.7. A set S of vertices of G is dispersed if it has no concentrated subset.

2.8. An induced subgraph M of a graph G is called a multi-ending of G if it
satisfies the following properties:

M1. M is connected.

M2. The boundary of M with every component of G−M is finite.

M3. Any infinite subset of V (M) which is concentrated in G is also concentrated

in M .

M4. D−1
M (τ) = D−1

G (εMG(τ)) for any end τ of M .

M5. For any family (Ri)i∈I of pairwise disjoint rays of G such that {[Ri]G : i ∈
I} ⊆ TM (G), there is a family (R′

i)i∈I of pairwise disjoint rays of M such

that Ri ∩R′
i is infinite for every i ∈ I.

By M3, a multi-ending of G is an end-respecting subgraph of G. By M5, m(τ) =

m(εMG(τ)) for any end τ ofM . A multi-ending which is rayless is called a 0-ending.
A 0-endingM is then a connected induced subgraph ofG whose vertex set is dispersed

and whose boundary with any component of G −M is finite. A multi-ending M is
an ending if |T(M)| = 1; it is a discrete multi-ending if TM (G) is a discrete subspace

of T(G).

For any subset A of T(G) we denote by � (A) the set of all multi-endings M of G
such that A = TM (G).

2.9 [7, 6.5.(ii) and 7.9]. � (A) �= ∅ if and only if A is a closed set.

In particular, � ({τ}) �= ∅ for every end τ , since the end topology is Hausdorff.

2.10 ([6, 4.15] and [7, 6.11]). Let G be a graph. For any closed discrete subspace

Ω of T(G) there exists a 0-ending M of G which pairwise separates the elements of

Ω, i.e., CG−S(τ) �= CG−S(τ ′) for every pair {τ, τ ′} of distinct elements of Ω.

2.11. Let τ ∈ T(G), M ∈ � (τ ) and R ∈ τ . Then N :=M ∪R satisfies M3.

�����. By M5, since R ∈ τ , N has exactly one end, ε−1NG(τ). Let A be an

infinite subset of V (N) which is not concentrated in N . Since N is one-ended and
since every infinite subset of V (R) is obviously concentrated, the set A∩V (M) must
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be infinite and not concentrated in N , thus not concentrated in M . Therefore, by

M3 since M is an ending of G, A ∩ V (M), and a fortiori A, is not concentrated
in G. �

2.12 [7, 6.10 and 6.15]. For every induced subgraph H of G satisfying M3 there

exists a multi-ending M of G which contains H and satisfies TM (G) = TH(G).

An immediate consequence of this result and the fact that, if some cofinite subset

of a set S is concentrated, then S is concentrated as well, is the following.

2.13. For every multi-ending N of G and every finite A ⊆ V (G) there exists a

multi-ending M of G such that A ∪ V (N) ⊆ V (M) and TM (G) = TN(G).

2.14 [7, 6.17]. Let H be a connected induced subgraph of a graph G whose

boundary with any component of G−H is finite. Then any multi-ending of H is a

multi-ending of G.

2.15 [7, 6.19]. Let M be a multi-ending of a graph G, and X a component of

G−M . Then any induced subgraph N of X satisfying Axiom M3 can be extended
to a multi-ending N ′ of X with the following properties:

(i) N ′ contains a neighbour of each element of B(M, X);
(ii) TN ′(G) = TN (G);

(iii) N ′ + (M) is a multi-ending of X + (M).

2.16 [7, 6.18]. LetN be a multi-ending of G and, for every component X of G−N ,

letNX be a multi-ending ofX+(N) containing B(N, X). ThenM := N∨ ⋃
X∈CG−N

NX

is a multi-ending of G such that TM (G) = TN(G) ∪
⋃

X∈CG−N

TNX (G).

2.17. An expansion of a connected graph G is a sequence (Gn)n�0 of subgraphs
of G satisfying the following conditions. For every n � 0,
E1. Gn ⊆ Gn+1.

E2. Gn is a multi-ending of G.
E3. G0 is discrete and, for any component X of G − Gn, the subgraph M :=

Gn+1 ∩X is a discrete multi-ending of X which contains a neighbour of each
element of B(Gn, X) and with the property that M + (Gn) is a multi-ending

of X + (Gn).
E4. G =

⋃
n�0

Gn.
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3. End-faithful spanning trees with prescribed rays

3.1. Hahn and Širáň [2, Theorem 1] proved that, given a countable graph G, if A
is a discrete subspace of T(G)—which they called a “free set of ends”—and if Π is

a representative set of A, then G has an end-faithful spanning tree which contains
a tail of each element of Π. Theorem A extends their result to any countable set of

ends. To prove it, we will need another lemma.

3.2 [5, 3.2]. LetG be a one-ended connected graph having an end-faithful spanning
tree. Then any end-faithful tree of G is included in an end-faithful spanning tree

of G.

Note that this result can also be obtained as a consequence of a result of Širáň [9,
Theorem 4].

3.3. ����� �� Theorem A. In the following, an end-faithful spanning tree
satisfying the condition of the theorem will be called a Π-end-faithful spanning tree.

Furthermore, for any subgraph X of G that contains a tail of the representing ray
Rτ ∈ Π of each end τ ∈ A(X), we will set

ΠX := {R′
τ : τ ∈ A(X)},

where R′
τ is the largest ray contained in Rτ ∩ X . Finally, note that, by Halin’s

theorem [3, Satz 3], since G is countable, any connected subgraph of G has an end-

faithful spanning tree.
(a) Let C be a non-empty closed discrete subspace of T(G).
(a.1) We will first show that there exists a multi-ending M ∈ � (C) which contains

a tail of the representing ray Rτ for each end τ ∈ A ∩ C. For each τ ∈ C, choose a
ray Rτ ∈ τ such that Rτ ∈ Π if τ ∈ A.
By 2.10, there is a 0-ending N (which is empty if |C| = 1) of G which pairwise

separates the elements of C. Let Γ be the set of components X of G − N such
that C(X) �= ∅. Since N separates the elements of C, C(X) has a unique element,
which will be denoted by τX . Since B(N, X) is finite, X contains a tail of RτX .
By 2.9, there exists an ending H of X such that TH(G) = {τX}. By 2.11, H ∨RτX

satisfies Axiom M3. Hence, by 2.15, H ∨RτX can be extended to an ending NX of X
which contains a neighbour of each element of B(N, X), and with the property that

NX+(N) is a multi-ending of X+(N). Then, by 2.16,M := N ∨ ⋃
X∈Γ

NX is a multi-

ending of N∨ ⋃
X∈Γ

X , hence ofG by 2.14, such that TM (G) = TN(G)∪
⋃

X∈Γ
TNX (G) =

{τX : X ∈ Γ} = C, and which contains a tail of Rτ for each τ ∈ A ∩ C. Such a multi-
ending will be said to be Π-compatible.
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(a.2) We now construct a ΠM -end-faithful spanning tree of M . Since N is a 0-

ending, it has a rayless spanning tree TN . LetX ∈ Γ. By Halin’s result [3, Satz 3] and
by 3.2, the ending NX has an end-faithful spanning tree TX that contains this tail.
Now, denote by eX an edge joining X with N . Then clearly T := TN∨

⋃
X∈Γ

TX∪{eX}
is a ΠM -end-faithful spanning tree of M .

(b) We now consider the general case.

(b.1) Let (τn)n�0 be such that A = {τn : n � 0}, and let (xn)n�0 be an enu-
meration of V (G). We will construct an expansion (Gn)n�0 of G such that Gn is a
Π-end-faithful multi-ending with xn ∈ V (Gn) and τn ∈ TGn(G), as follows.

Let T0 be a closed discrete subspace of T(G) that contains τ0. By (a) and 2.13,
there is G0 ∈ � (T0 ) that is Π-compatible and that contains x0. Suppose that

G0, . . . , Gn have already been constructed. Let X ∈ CG−Gn . If A(X) = ∅, let
MX := X . If A(X) �= ∅, denote by p(X) the least integer p such that τp ∈ A(X),
and let TX be a closed discrete subspace of T(G) that contains τp(X). Then, by (a.1),
there is a Π-compatible multi-ending MX of X such that TMX (G) = TX . Moreover,

by 2.13 and 2.15, we can choose MX such that it contains xn+1 if xn+1 ∈ V (X),
as well as a neighbor of each element of B(Gn, X), and such that MX + (Gn) is

a multi-ending of X + (Gn). Therefore, by 2.16, Gn+1 := Gn ∨
⋃

X∈CG−Gn

MX is a

Π-compatible multi-ending of G with xn+1 ∈ V (Gn+1) and τn+1 ∈ TGn+1(G).

(b.2) We now construct a Π-end-faithful spanning tree of G. For n � 0, denote by
Γn the set of components of Gn−Gn−1 with G−1 := ∅, and let Γ := ⋃

n�0
Γn. By (b.1)

X ∈ Γn is a multi-ending of G−Gn−1 which is either discrete and Π-compatible, or

such that A(X) = ∅. Hence, (a.2) in the first case and [3, Satz 3] in the second imply
that X has a ΠX -end-faithful spanning tree TX . If X ∈ Γn for some n > 0, denote

by eX an edge of G joining X with Gn−1 −
⋃{Gi : i < n − 1 and X /∈ CGn−Gi}.

Such an edge exists because X contains a neighbour of each element of B(Gn−1, X).

Therefore T := TG0 ∨
⋃

X∈Γ
TX ∪ {eX} is a spanning tree of G which contains a tail of

each element of Π.

We have to prove that T is an end-faithful subgraph of G. Let τ be an end of G.

If τ ∈ ⋃
n�0

TGn(G), then τ ∈ TX(G) for some X ∈ Γn and n � 0; thus mT (τ) = 1.

Assume now that τ /∈ ⋃
n�0

TGn(G), then τ ∈ ⋃
n�0

TGn(G) since G =
⋃

n�0
Gn. For

all n � 0 there is a unique component Yn of G − Gn−1 such that τ ∈ TYn(G). Let

Xn := Yn ∩Gn. By the construction of T there is a ray of T originating in G0 that
contains all edges eXn , n � 0. This ray belongs to the end τ , since the set

⋃
n�0

eXn is

concentrated in τ by the definition of Xn. Thus mT (τ) � 1. Moreover, two rays of
T belonging to τ must contain the edges eXn for all n greater than some integer p.
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Hence they have a common tail. This proves that mT (τ) = 1. Consequently, T is

end-faithful, thus it is a Π-end-faithful spanning tree of G. �

3.4. ����� �� Theorem B. (a) Let T be the binary tree rooted at a vertex x0.
For every vertex x, denote by Tx the subtree of T induced by the vertices which are

greater than or equal to x, with respect to the natural order on V (T ), where x0 is
the least element. Furthermore, let Ax ⊆ TTx(T ) be such that |Ax| = ℵ1. Then the
set A := ⋃

x∈V (T )
Ax of cardinality ℵ1 has the property that A(Tx) is dense in TTx(T )

for every x ∈ V (T ).

Now let {Rτ : τ ∈ A} be a representing set of A. Since T is countable and

|A| = ℵ1, there exists a subtree A of T with A ⊆ ⋃
τ∈A

Rτ such that TA(T ) is

uncountable. Thus |TA(T )| = 2ℵ0 , i.e., A contains a subdivision of the binary tree
(cf. 2.3).

Consider another subset B of T(T ) disjoint from A, with |B(Tx)| = ℵ1 for every
x ∈ V (T ). Clearly B(A) = TA(T ). Thus, as above, for any representing set {Rτ : τ ∈
B} of B there exists a subtree B ⊆ ⋃

τ∈B(A)
Rτ of A which contains a subdivision of

the binary tree. Therefore there are 2ℵ0 ends of T which have representing rays in

each of the subgraphs
⋃

τ∈A
Rτ and

⋃
τ∈B

Rτ .

(b) Now let G be the cartesian product of T with the complete graph K2. Denote
by T0 and T1 the two copies of T in G, and let AG and BG be the sets of ends

of G corresponding to the preceding sets A and B, respectively. Let {Rτ : τ ∈
AG} (resp. {Rτ : τ ∈ BG}) be a representing set of AG (resp. BG) with Rτ ⊆ T0

(resp. Rτ ⊆ T1) for every τ ∈ AG (resp. τ ∈ BG). Then, by (a), for any tail R′
τ of

Rτ , τ ∈ AG ∪BG, there are 2ℵ0 ends of G that have representing rays in each of the

subgraphs
⋃

τ∈AG

R′
τ and

⋃
τ∈BG

R′
τ of T0 and T1, respectively. Consequently, no tree of

G that contains a tail of each Rτ , τ ∈ AG ∪ BG, is end-respecting. �
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