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Abstract

Rechargeable batteries are critical components for the performance of portable electron-

ics and electric vehicles. The long term health performance of rechargeable batteries is

characterized by state of health which can be quantified by end of performance (EOP) and

remaining useful performance. Focusing on EOP prediction, this paper first proposes an ac-

celerated testing version of the trend-renewal process model to address this decision problem.

The proposed model is also applied to a real case study. Finally, a NASA dataset is used

to address the prediction performance of the proposed model. Comparing with the existing

prediction methods and time series models, our proposed procedure has better performance

in the EOP prediction.
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1 Introduction

Rechargeable batteries are critical components for the performance of portable electronics

and electric vehicles. The long term health performance of rechargeable batteries is char-

acterized by a key parameter called state of health (SOH). SOH denotes the remaining

performance of a battery over its whole life cycle, which is quantified by end of performance

(EOP) and remaining useful performance (RUP). This paper investigates the modeling of

accelerated testing and prediction of EOP for lithium rechargeable batteries.

1.1 EOP Prediction of Battery Performance

Battery capacity is a most common index to describe the battery performance. Technically,

EOP of battery is defined as the cycle time when the capacity ratio (the ratio of the discharge

capacity of battery to its rated capacity, CR) is reduced to a specific threshold and it is

considered to be failed if its CR reaches this threshold, which is usually defined at 80%

(Spotnitz (2003), Saha et al. (2007)). Moreover, RUP is defined as the duration between

current time and EOP.

A review of lithium-ion battery prognostics and health management (PHM) were given
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in Zhang and Lee (2011). Nowadays, there are two common approaches for battery PHM:

physics-of-failure (PoF) models and data-driven approaches. PoF models take into account

the knowledge of a battery’s life cycle loading conditions, geometry, material properties, and

failure mechanisms to estimate its RUP and/or EOP (Gu et al. (2007), Pecht and Dasgupta

(1995), He et al. (2011)). Although PoF models are accurate, they are not appropriate to

online applications due to size limitations, high cost, high requirement for computation and

strict environmental variables (Xing et al., 2013).

In contrast, data-driven approaches do not require any knowledge of failure mechanisms,

they estimate the RUP and/or EOP only relying on the capacity data. He et al. (2011) de-

veloped an exponential model consisting of two exponential functions to capture the battery

capacity fade. Micea et al. (2011) proposed an empirical second-order polynomial model

to predict the capacity function. Pattipati et al. (2011) used the support vector regression

(SVR) to estimate the RUP. Xing et al. (2013) proposed an ensemble model by combining

exponential and polynomial regression models to predict the RUP based on particle filtering.

Other research for EOP and/or RUP prediction can be found in Long et al. (2013), Miao et

al. (2013), Tang et al. (2014), Lu et al. (2014), Cheng et al. (2015), and Xu et al. (2016).

Nowadays, the product’s lifetime may be extensive. Under this situation, accelerated life

testing is an efficient way to shorten the life-testing time, since environmental conditions

have a big impact on the battery degradation. However, most existing data-driven models

were constructed under a specific discharge rate or a fixed temperature to implement the

EOP and/or RUP prediction. For the purpose of improving the experiment efficiency, it

is important to develop an accelerated testing model for capturing the battery degradation
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under more severe environment conditions such as higher discharge rates or temperatures.

Ng et al. (2014) studied a naive Bayes model for RUP prediction of batteries under different

operating conditions and ambient temperatures by formulating a data-driven classification

method (the naive Bayes classification). In this paper, we will develop a model to capture the

battery capacity function under the accelerated testing, and further obtain the EOP and/or

RUP based on extrapolated prediction on use condition. In the following, we propose a

repairable system model to characterize the battery degradation under accelerated testing.

1.2 The Trend-Renewal Process

The trend-renewal process (TRP) is originally designed to be a model for failure events

of repairable systems, first presented in Lindqvist et al. (2003). It is by definition a time-

transformed renewal process. The time transformation is the cumulative version of a so-called

trend function, λ(t), similar to the intensity function of a non-homogeneous Poisson process

(NHPP), while the (latent) renewal process (RP) is characterized by the inter-arrival distri-

bution, F , called the renewal distribution of the TRP. In some sense the TRP is constructed

as the “least common multiple” of the NHPP and the RP. The advantage of using a TRP

instead of an RP is its ability to represent a possible trend in the inter-failure times. This

makes the TRP a powerful tool, despite its simple structure.

The present paper is concerned with the fitting of TRP models to cycle times of a

rechargeable battery. Typically, these cycle times will be (stochastically) decreasing with

time, making the i.i.d. assumption of an RP inappropriate. On the other hand, the addition

of a trend function, as is exactly what is done in the TRP, will enable the modeling of such
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a decrease.

Until now, the TRP has mostly been used to model events occurring in time, see,

Lindqvist et al. (2003), Cook and Lawless (2007, Ch. 5.2), Jokiel-Rokita and Magiera (2012),

and Franz et al. (2014), for examples. An interesting application to occurrence of earthquakes

is found in Bebbington (2010). The precise mathematical definition of the TRP is given in

Section 3, where also a heterogeneous version based on observation of several processes under

different stresses is considered.

The rest of this article is organized as follows. Section 2 considers a real example to

motivate the study. Section 3 develops a preliminary analysis for this motivated example by

using TRP model. Section 4 introduces the problem formulation of an accelerated testing

version of TRP (and hereafter denoted by ATRP) model and the corresponding statistical

inference, including a method for the EOP prediction. Section 5 applies the proposed pro-

cedure to analyse the battery example stated in Section 2. Section 6 uses two examples to

compare the prediction performances between the proposed ATRP model and some existing

models (including linear regression with time series errors model). Section 7 gives another

version of ATRP model. Finally, some concluding remarks are addressed in Section 8.

2 Motivating Example

In the following experiment, we have 9 lithium-ion batteries which are tested under the

charge and discharge processes. During the charging process, all samples are fully charged

at a constant current of 1C rate (where 1C is defined as a current that will discharge the

rated capacity of the battery in 1 hour); while in the discharging process, three discharge
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rates (1C, 3C, 5C) are adopted to shorten the life testing time. Note that the normal use

condition for the discharge rate is 0.5C. (In Section 6, the information of extra batteries

under normal use will be used for the purpose of model validation). For each discharge rate,

we have 3 batteries and their CRs were recorded up to 520 cycle times. Figure 1 shows the

plots of CRs of these samples. The plots demonstrate that CR increases in the beginning

and then decreases gradually. This is a common phenomenon in a rechargeable battery. In

our study, the first stage with 70 cycle times is omitted for analysis as it is not so helpful

on predicting EOP. Therefore, we trim the observations into 450 (=520-70) cycle times. In

addition, from the plot, it is seen that one degradation path (which is highlighted with red

color) in 5C is completely different from that of the other two batteries. This behavior may

be due to either an outlier sample or incorrect calibration of metrology equipment. Hence,

we delete this sample in the following analysis.
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Figure 1: The CR plots under three discharge rates.
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To simplify our problem, we put 10 cycle times into a group and simply call it a g-

cycle time. In addition, we define CRg as the summation of 10 capacity ratios in a group.

The CRg plots of 8 samples with respect to g-cycle time are shown in Figure 2. The plot

demonstrates that CRg and g-cycle have a very high linear relationship. Therefore, we may

consider to adopt a linear regression model to extrapolate the EOP performance under use

condition 0.5C. However, battery data are typically time-dependent (time series) data. The

i.i.d. assumption in the error term of regression model is hence not valid. We will further

address this issue via linear regression model with a time series error later in Section 6.1.
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Figure 2: The CRg plots of 8 samples over g-cycle time.

In the following, note that CRg is a proportional function of cumulative total discrarge

times in a g-cycle time. Hence, we use a recurrent approach to model the observed CRg of
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the battery dataset, illustrated in Figure 3. Here the CRg are represented as the inter-arrival

times of an artificial recurrent event process.

Since the inter-arrival times of events (CRgs) are slightly decreasing over g-cycle times,

the i.i.d. assumption of an RP inappropriate. To overcome the weakness of RP, Lindqvist et

al. (2003) proposed the TRP model, in which the addition of a trend function enables one to

model such a correlation structure. Therefore, in the next section, we will apply TRP model

to fit the rechargeable battery dataset. The “time-scale” of this process will hence be the

CRg-scale, and we shall let Zi denote the ith observed CRg, which is now the inter-arrival

time of ith event in T -process (before transformation).

Figure 3: Recurrent event processes for the rechargeable battery dataset.
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3 Preliminary Analysis

Given a specific discharge rate S, the TRP model can easily be introduced via Figure 4

(which is slightly modified from Lindqvist et al. (2003)), where Ti (Zi) denotes the arrival

(inter-arrival) time of ith event in the original process (T -process) for i = 1, 2, · · · , while

Λ(Ti) (Xi) denotes the arrival (inter-arrival) of ith event in the transformed process (Λ(T )-

process). Lindqvist et al. (2003) assumed that the inter-arrival time of transformed process

(Λ(T )-process) will follow a sequence of i.i.d. random variables with distribution function F .

In addition, to avoid non-identifiability issue, we require an additional condition that the

mean of F is 1. That is, Xi
i.i.d.
∼ F , where E(Xi) = 1 and Xi = Λ(Ti)−Λ(Ti−1), i = 1, 2, · · · .

Furthermore, if there exists λ(t) such that Λ(t) =
∫ t

0
λ(u)du, then the T -process T1, T2, . . . is

denoted as TRP(F, λ(t)), and λ(t) is called the trend function of TRP model.

Figure 4: The illustration of the TRP.

For the trend function λ(t), log-linear function (aebt) and power-law function (abtb−1)

are widely used in TRP model. In addition, log-normal, Weibull and normal distributions

are widely used models for F . Therefore, under the restriction of mean 1, we adopted

F1 = LN(−α2/2, α2), F2 = Weib(1/Γ((β)−1 + 1), β) and F3 = N(1, σ2) in the following

study, where α, β and σ are the logarithmic scale, shape and scale parameters of log-normal,
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Weibull and normal distributions, respectively. Under these two trend functions and three

distributions, we first calculate, using our data, the maximum log-likelihood for the model

selections of 6 possible candidates under 3 different settings of stress, and Table 1 shows

the results of maximum values of log-likelihood for all combinations. From Table 1, we

find that the ”log-linear” trend function has better performance than that of ”power-law”.

In addition, log-normal and normal distributions outperform Weibull distribution in log-

likelihood performances, while the log-likelihood performances of log-normal and normal

distributions are compatible.

Table 1: Maximum log-likelihood for F and λ(t) in TRP model.

distribution
power-law log-linear

1C 3C 5C 1C 3C 5C

Weibull 91.50480 75.96159 38.95450 255.73305 228.97714 144.06864

log-normal 71.29970 59.90468 27.56702 264.84722 231.45690 144.79353

normal 72.14140 60.69355 28.17432 264.81415 231.49726 144.83904

Therefore, we then use the log-linear trend function to calculate ML estimates for a, b,

α, β and σ of all 8 batteries and their corresponding maximum log-likelihood as shown in

Table 2. Furthermore, the scatter plots of these estimates with respect to discharge rate are

shown in Figure 5. Figure 5 shows that â, b̂, α̂, β̂ and σ̂ have very good linear relationship

with stress S. In addition, from Table 2, all log-likelihood performances are very close and

compatible. Considering the setting of accelerated testing, the mean and variance of the

normal distribution are easier to implement than the two others. Therefore, in the following
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study, we adopt the normal distribution for the renewal distribution and the relationships

of a(S), b(S) and σ(S) vis S can be reasonably modelled by

a(S) = a0 + a1S;

b(S) = b0 + b1S; (1)

σ(S) = c0 + c1S.

That is, considering higher stress S, TRP with discharge rate S can be denoted as accelerated

testing version of TRP model and hereafter, we call it as ATRP(F |S, λ(t|S)). In addition,

we adopt F |S = N(1, σ2(S)) and λ(t|S) = a(S)eb(S)t in this study.
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Table 2: ML estimates of a, b, α, β and σ in the preliminary analysis.

Discharge Rate Sample â(∗10−2) b̂(∗10−4) α̂(∗10−3) log-likelihood

log-normal

1C

1 9.219 2.182 2.340 103.832

2 9.269 2.215 2.080 109.405

3 9.235 2.258 1.783 116.212

3C

4 9.422 2.435 3.359 88.746

5 9.503 2.394 2.519 102.032

6 9.434 2.449 2.541 101.380

5C
7 9.649 2.771 3.946 82.860

8 9.638 2.582 4.054 81.399

Discharge Rate Sample â(∗10−2) b̂(∗10−4) β̂(∗102) log-likelihood

Weibull

1C

1 9.222 2.164 5.565 107.050

2 9.276 2.286 5.307 108.017

3 9.237 2.245 7.002 118.609

3C

4 9.418 2.447 3.696 90.719

5 9.510 2.361 4.544 101.801

6 9.433 2.455 4.533 101.117

5C
7 9.641 2.812 2.839 82.143

8 9.620 2.662 3.046 82.983

Discharge Rate Sample â(∗10−2) b̂(∗10−4) σ̂(∗10−3) log-likelihood

normal

1C

1 9.219 2.182 2.339 103.858

2 9.269 2.215 2.080 109.405

3 9.235 2.258 1.782 116.233

3C

4 9.422 2.435 3.357 88.777

5 9.503 2.394 2.518 102.044

6 9.434 2.449 2.541 101.387

5C
7 9.649 2.771 3.944 82.875

8 9.638 2.583 4.053 81.416

Remark : Lindqvist et al. (2003) and Lindqvist (2006) introduced heterogeneity into the

TRP model, called HTRP, by using unobservable random variables to multiply the trend

function. That is, the differences between sample performances are modeled by assuming

that the trend function λ(·) vary from sample to sample. The results in Table 2 demonstrate

that the variation of â within each discharge rate are very small. From this observation, the
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effect of heterogeneity will be ignored in this study.

4 Problem Formulation and its Statistical Inference

Suppose that normal use discharge rate is S0 and ω is a known threshold. Under S0, suppose

the observed events t1, t2, . . . follow ATRP(F |S0, λ(t|S0)), and let Zi denote the inter-arrival

time of ith event in T -process, where F |S0 = N(1, σ2(S0)), λ(t|S0) = a(S0)e
b(S0)t, and a(·),

b(·) and σ(·) are given in Eq.(1). Then a random variable Y can be defined as time-to-failure

of battery if

Y = inf {i : Zi ≤ ω} .

The goal of this study is to estimate the EOP which is the expected value of time-to-

failure distribution and is given by EOP = E(Y ). However, it is not easy to find the exact

distribution of Y . Therefore, in this study, we slightly modify the definition of EOP as

follows:

EOP = inf {i : E(Zi) ≤ ω} . (2)

Note that the EOP of a highly-reliable rechargeable battery may be very large. Therefore,

in the following, an accelerated testing procedure is adopted to shorten the life testing time.

Suppose that (S0 <)S1 < · · · < SK denote K increasingly high discharge rates, and

there are nk samples tested under stress Sk. Therefore, we assume that the events T1jk, T2jk,

. . . , Tmjkjk (obtained from the jth sample under stress Sk) follow ATRP(F |Sk, λ(t|Sk)), where

j = 1, · · · , nk, k = 1, · · · , K, and mjk is denoted as the total number of events in this
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situation. Based on Section 3, we take F |Sk = N(1, σ2(Sk)) and λ(t|Sk) = a(Sk)e
b(Sk)t,

where the relations of a(·), b(·) and σ(·) are given in Eq.(1). Let Zijk be the inter-arrival

time of the ith events in T -process T1jk, T2jk, . . . with Zijk = Tijk−Ti−1,jk. Figure 6 illustrates

the formulations for clarity.

Figure 6: The TRP formulation for the battery recurrent data.

4.1 Goal of This Study

Now, based on the observed data in the above-mentioned accelerated testing, {Zijk}, 1 ≤ i ≤

mjk, 1 ≤ j ≤ nk, and 1 ≤ k ≤ K, we will provide a systematic approach to make inference

of the EOP of rechargeable battery. Some typical decision problems are as follows:

(1) how can we estimate the unknown parameters θ = (a0, a1, b0, b1, c0, c1)?

(2) how can we predict the EOP under S0?

(3) how can we obtain the confidence interval of θ and EOP?

In the following, we will address these decision problems in sequence.
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4.2 Point Estimation for θ

For a fixed Sk (k = 1, . . . , K), suppose that the jth sample has observations at tjk = (t1jk, t2jk,

. . . , tmjk,j,k) and follows ATRP(F |Sk, λ(t|Sk)). Based on the expression of (6) in Lindqvist

et al.(2003) (last part can be ignored in this study), the corresponding likelihood function is

given by

mjk∏

i=1

f
(
Λ(tijk|Sk;θ)− Λ(ti−1,jk|Sk;θ)|Sk;θ

)
× λ(tijk|Sk;θ),

where f is the density function corresponding to N(1, σ2(Sk)) and λ(t|Sk) = a(Sk)e
b(Sk)t.

Suppose that the i.i.d. assumption holds among nk samples. Then the likelihood function

given data tk = (t1k, . . . , tnkk) can be expressed as

L(θ|tk;Sk) =

nk∏

j=1

(
mjk∏

i=1

f
(
Λ(tijk|Sk;θ)− Λ(ti−1,jk|Sk;θ)|Sk;θ

)
× λ(tijk|Sk;θ)

)
.

Hence, the total likelihood function of θ for the proposed ATRP model can be expressed as

L(θ) =
K∏

k=1

L(θ|tk;Sk). (3)

By using the built-in R function optim() to maximize Eq.(3), the maximum likelihood estima-

tion (MLE) for unknown parameters θ can be directly obtained to be θ̂ = (â0, â1, b̂0, b̂1, ĉ0, ĉ1).

4.3 Point Estimation for EOP

Under S0, we have λ(t|S0) = a(S0)e
b(S0)t, and Λ(t|S0) = a(S0)

b(S0)
(eb(S0)t − 1). Let Xl0 denote

the lth inter-arrival time of Λ(T )-process under S0. That is, Xl0 follows i.i.d. N(1, σ2(S0)).
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Therefore, the c.d.f. of Ti (the ith arrival time of T -process under S0) can be obtained by

FTi
(t) = P (Ti ≤ t) = P (Λ(Ti|S0) ≤ Λ(t|S0))

= P

(
Λ(Ti|S0)− i√

iσ2(S0)
≤

Λ(t|S0)− i√
iσ2(S0)

)
= Φ

(
Λ(t|S0)− i√

iσ2(S0)

)
,

due to the fact of Λ(Ti|S0) =
∑i

l=1 Xl0 ∼ N(i, iσ2(S0)). Moreover, the p.d.f. of Ti can be

given by

fTi
(t) =

d

dt
FTi

(t) = φ

(
Λ(t|S0)− i√

iσ2(S0)

)
λ(t|S0)√
iσ2(S0)

,

where φ(·) is p.d.f. of the standardized normal. However, it is not easy to obtain the expec-

tation of Ti directly. Therefore, we then consider the approximation of Taylor expansion for

E(Ti). First, because Ti can be expressed as

Ti = Λ−1

(
i∑

l=1

Xl0|S0

)
=

1

b(S0)
log

(
1 +

b(S0)

a(S0)

i∑

l=1

Xl0

)
,

set Yi = 1+ b(S0)
a(S0)

(∑i
l=1 Xl0

)
, then E(Yi) = µY = 1+i∗ b(S0)

a(S0)
and Var(Yi) = i∗σ2(S0)∗(

b(S0)
a(S0)

)2.

We can approximate log Yi by Taylor expansion about µY and we have the following result:

Ti =
1

b(S0)
log Yi ≈

1

b(S0)

(
lnµY +

(Yi − µY )

µY

−
(Yi − µY )

2

2µ2
Y

)
.

Therefore, we have the expectation of Ti given θ

E(Ti|θ) ≈
1

b(S0)

(
lnµY −

Var(Yi)

2µ2
Y

)

≈
1

b(S0)

(
log

(
1 +

i ∗ b(S0)

a(S0)

)
−

i ∗ σ2(S0)

2(i+ a(S0)/b(S0))2

)
,

and

E(Zi|θ) = E(Ti|θ)− E(Ti−1|θ)

≈
1

b(S0)

(
log

(
i+ a(S0)

b(S0)

(i− 1) + a(S0)
b(S0)

)
+

σ2(S0)

2

(
i− 1

(i− 1 + a(S0)
b(S0)

)2
−

i

(i+ a(S0)
b(S0)

)2

))
. (4)
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Now, let â(S0), b̂(S0) and σ̂(S0) denote the MLEs of a(S0), b(S0) and σ(S0), respectively, in

Section 4.2. By plugging MLEs θ̂ into Eq.(4), the estimation of EOP can be expressed as

follows:

ÊOP(ω) = inf{i : E(Zi|θ̂) ≤ ω}. (5)

4.4 Confidence Intervals for θ and EOP

We adopt the parametric bootstrap method (Efron, 1979) to estimate standard errors of

the MLEs and to obtain 100(1 − α)% approximate confidence intervals for EOP and each

parameter. For the parametric bootstrap method, first we use the definition of the TRP

model to generate bootstrap samples from the estimated model using θ̂. The confidence

intervals based on the parametric bootstrap method can be described as follows:

1. Set r = 1.

2. Simulate a dataset with stresses S1, S2, . . . , SK , denotedD
(r) = {t

(r)
ijk : 1 ≤ i ≤ mjk, 1 ≤

j ≤ nk, 1 ≤ k ≤ K}, from estimates θ̂, respectively.

3. Compute the estimates θ̃(r) from D
(r) by Eq.(3).

4. Calculate the EOP estimation ẼOP
(r)

by Eq.(5).

5. Repeat steps 2-4 R times to obtain θ̃ = {θ̃(r); r = 1, · · · , R} and ẼOP = {ẼOP
(r)
; r =

1, · · · , R}

The standard errors for the θ̂ and ÊOP are estimated by bootstrap sample standard devi-

ation. Thus, the corresponding 100(1 − α)% approximate confidence intervals are the α/2

and (1− α/2) quantiles of ordered θ̃ and ẼOP.
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5 Rechargeable Battery Data Revisited

In practice, the EOP of battery is usually set as the cycle time when CR is reduced to 80%.

Thus, the threshold value for g-cycle times is ω = 8 in our study. To revisit the rechargeable

battery dataset, we have K = 3, (n1, n2, n3) = (3, 3, 2) and mjk = 45, for all j, k. By

adopting the proposed ATRP model, the point estimates and 95% confidence intervals for

θ and EOP (with R = 1000 bootstrap samples) are as shown in Table 3. The results of the

95% CIs for a1, b1 and c1 support that we necessarily consider the effect of accelerated testing

in the TRP model. Furthermore, reconsidering the discard of first 7 g-cycle times, the final

estimate of EOP, denoted by EOP0, is 161 (=154+7) g-cycle times, and its corresponding

95% CI is [159,164]. Note that the bootstrap approach for constructing 95% CI in this study

is quite similar to that of the conventional MLE approach:[161±1.96*1.54]=[158,164].

Table 3: MLEs, standard errors and 95% confidence intervals for θ and EOP.

Parameter MLE SE 95% CI

a0 9.14×10−2 7.05×10−5 [9.13×10−2,9.16×10−2]

a1 1.02×10−3 2.65×10−5 [9.60×10−4,1.06×10−3]

b0 2.10×10−4 2.87×10−6 [2.04×10−4,2.16×10−4]

b1 1.12×10−5 1.08×10−6 [9.30×10−6,1.34×10−5]

c0 2.92×10−3 2.76×10−4 [2.35×10−3,3.42×10−3]

c1 4.42×10−4 1.03×10−4 [2.36×10−4,6.42×10−4]

EOP 154 1.54 [152,157]

EOP0 161 1.54 [159,164]
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5.1 Model Checking and Residual Analysis

First, we use the residual plots to detect the model fit. Let residuals be (tijk − t̂i,k), where

t̂i,k is the estimate of ith events under stress Sk. Thus, we plot the residuals against g-cycle

times for each discharge rate, respectively, as shown in Figure 7. The results demonstrate

that there is no clear inappropriate pattern.
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Figure 7: The residual plots for ATRP models.

Moreover, we need to check whether the inter-arrival times of the transformed process will

follow i.i.d. assumption for all {Sk}
3
k=1. That is, X̂ijk = Λ̂(ti,j,k)−Λ̂(ti−1,j,k)

i.i.d
∼ N(1, σ̂2(Sk)).

We first apply Q-Q plots and the Kolmogorov-Smirnov (K-S) test to check the “normality

assumption” for all {Sk}
3
k=1, and the results are shown in Figure 8 and Table 4, respectively.

Note that all the fitted curves are close to the expected diagonal line and the p-values of

K-S test support that the normal distribution can be reasonably used to characterize the

underlying distribution of inter-arrival times of the transformed process. Furthermore, the

Mann-Kendall (M-K) rank test is used to the “independence” and the results are shown in

Table 4. Note that all p-values in Table 4, except one, are larger than 0.1 and hence there is
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not no strong evidence to reject the “independence” of the inter-arrival of the transformed-

process in the proposed ATRP model.
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Figure 8: Q-Q plots for ATRP models.

Table 4: P-values for Kolmogorov-Smirnov (K-S) test and Mann-Kendall (M-K) rank test.

1C 3C 5C

B1 B2 B3 B4 B5 B6 B7 B8

K-S test 0.6705 0.3362 0.3831

M-K rank test 0.1003 0.6956 0.1044 0.6387 0.2998 0.8602 0.0199 0.1423

5.2 Simulation Study of the Effects of n and m

EOP prediction of the proposed ATRP model may depend on the number of testing batteries

and testing g-cycle times. Therefore, we also conducted a simulation study to illustrate the

performance of the ATRP model under various combinations of sample size n and number m

of g-cycle times. For illustrative purposes, in the following, we treat the estimates in Table

3 as the true process parameters of ATRP model. Under the specific combinations of (n,
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m), n = 1, . . . , 5, m = 10, 20, . . . , 50, we first generated 1C, 3C and 5C accelerated battery

data and use the proposed ATRP model to predict the 0.5C EOP. With 1000 simulations,

the average of 0.5C EOP prediction, ÊOP(n,m), can be obtained directly and a relative bias

(RB) is defined as follows:

R̂B(n,m) =
ÊOP(n,m)− EOP

EOP
× 100%,

where EOP=153.4837 is the true EOP value based on 10000 simulations from the proposed

ATRP model with the parameter settings shown in Table 3. This index can be used to

measure the accuracy of EOP prediction and the results are shown in Table 5. We found

that all RBs are very small, except for the cases of (n,m) = (1, 10) or (n,m) = (2, 10).

Specifically, the RB will be less than 0.82% with m ≥ 20 and n ≥ 2 in this study. It means

that letting each stress level have two testing batteries and each battery have 200 testing

cycle times will be a good strategy for arranging a 3-level accelerated battery experiment if

we want to control the RB to be less than 0.82%.

Table 5: The relative biases (R̂B(n,m)) for EOP.

n \m 10 20 30 40 50

1 4.83% 1.10% 0.69% 0.56% 0.64%

2 2.28% 0.82% 0.65% 0.56% 0.58%

3 1.80% 0.75% 0.57% 0.54% 0.57%

4 1.32% 0.71% 0.68% 0.57% 0.52%

5 1.31% 0.57% 0.53% 0.55% 0.53%
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6 Justification and Comparison of EOP Performance

In the following, we use two examples to address the prediction performance of the proposed

ATRP procedure with that of other competing models. Specifically, we will compare the

EOP prediction of battery dataset by the proposed ATRP model and linear regression model

with time series errors in Sections 6.1 and 6.2. In addition, the NASA battery dataset in

Sections 6.3 is used to compare the prediction performance of the proposed model with other

competing models proposeed by Ng et al. (2014), Xu et al. (2016) and Cheng et al. (2015).

6.1 Model Fitting of Battery Data by Regression Model with

Time Series Errors and the ATRP Model

The observed CRg in the battery dataset is a sequence of time series data. Therefore, a

linear regression model with time series errors (LRWTSE, Tsay, 1984) is a potential model

to analyze this dataset. The LRWTSE model can be written as follow:

yt = β0 + β1t+ ǫt,

where ǫt follows an ARMA(p,q) model. That is, ǫt−φ1ǫt−1−· · ·−φpǫt−p = zt−θ1zt−1−· · ·−

θqzt−q, where zt
i.i.d.
∼ N(0, σ2

0). We found that all battery data are well fitted by the linear

regression model with AR(1) error and the results are shown in Table 6, where β̂0, β̂1, φ̂ and

σ̂2
0 are the estimates of the parameters, respectively. By using one-step-ahead forecasting,

we obtained the predictions of CRg for all batteries and the results are shown in the left

hand side (LHS) of Figure 9. For example, the 30th g-cycle CRg predictions for 8 batteries

(B1∼B8) are (10.14, 10.08, 10.11, 9.87, 9.80, 9.86, 9.56, 9.63). Therefore, by adopting the
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linear relationship between CRg predictions and discharge rate, the 0.5C 30th g-cycle CRg

prediction is 10.17 which can be obtained via extrapolation and the results are shown in

right hand side (RHS) of Figure 9. Hence, ith g-cycle CRg prediction under 0.5C can be

obtained directly, for all i = 1, 2, . . ..

Table 6: The estimates of parameters in the linear regression model with AR(1) error.

Battery β̂0 β̂1 φ̂ σ̂2
0

B1 10.7511 -0.0205 0.9062 1.5×10−4

B2 10.7515 -0.0223 0.7971 2.2×10−4

B3 10.7754 -0.0223 0.8475 1.4×10−4

B4 10.5746 -0.0234 0.8233 4.7×10−4

B5 10.5047 -0.0235 0.6793 4.6×10−4

B6 10.5793 -0.0241 0.7432 3.9×10−4

B7 10.3555 -0.0265 0.5400 8.0×10−4

B8 10.3600 -0.0245 0.7540 7.3×10−4

Generally speaking, the battery data in this study are not able to justify the quality of

the EOP prediction at 80%. The main reason is that our battery data did not collect enough

CR observations that truly crossed the given threshold 80%. As mentioned in Section 2, for

the purpose of model validation, this battery experiment also provided the CR values of two

batteries under normal use condition 0.5C. After taking the summation of 10 capacity ratios,

their CRg values are around 9.9 at the end of 45 g-cycle testing times. Therefore, we adopt

the training data with 30 and 35 g-cycle times of 1C, 3C and 5C to predict the CRg values

in 0.5C with ω = 9.9. Figure 10 shows the 0.5C predicted curves from ATRP model and

LRWTSE model. The corresponding sum of square errors (SSEs) of these two prediction
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Figure 9: Forecasts and prediction from LRWTSE model.

models are also shown in Table 7. The results demonstrate that both models provide well

fittings in the training data with 30 and 35 g-cycles. However, the SSE of the proposed

ATRP model is much smaller than that of the LRWTSE model.

Table 7: SSEs of ATRP and LRWTSE models under the training data with 30 and 35 g-cycle

times.

training data ATRP LRWTSE

Sample 1
30 0.0196 0.0605

35 0.0068 0.0102

Sample 2
30 0.0214 0.0711

35 0.0070 0.0105
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Figure 10: Justification of CRg predictions from ATRP and LRWTSE models in 0.5C.

6.2 Comparison of EOP Predictions Between the ATRP and LRWTSE

Models

By using 0.5C real data (stated in Section 6.1) for the purpose of model validation, Figure 11

shows the performance comparisons of our ATRP prediction with that of LRWTSE model.
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Figure 11: Predictions of ATRP and LRWTSE models in 0.5C.

It indicates that the short-term prediction makes no difference between both prediction

curves. However, in the long-term prediction, LRWTSE is very similar to the case of a

linear regression (with white noise) model, while the prediction by the ATRP model demon-

strates a convex curve. The reason can be briefly stated as follow. Note that Eq.(4) can be

approximately reduced to:

E(Zi|θ̂) ≈
1

b̂(S0)


log




i+ â(S0)

b̂(S0)

(i− 1) + â(S0)

b̂(S0)




 , (6)

since σ̂2(S0) ≈ 10−8. In addition, it is easy to see that d2

d i2
E(Zi|θ̂) > 0 for all i. Therefore, the

convexity of E(Zi|θ̂) follows directly. Hence, the time-dependent structure can be suitably

captured by our proposed model. On the other hand, the EOP prediction by LRWTSE will

be approximately underestimated about 13.6%.
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6.3 EOP Performance Comparisons By Using NASA Dataset

The NASA battery dataset was collected by NASA Ames Prognostics Center of Excellence.

This dataset has been widely used in Ng et al. (2014), Xu et al. (2016) and Cheng et al.

(2015). We choose the batteries “B0005” and “B0006” (both batteries have 138 observa-

tions) to illustrate the performance of our proposed model. The main reason for choosing

these two datasets is due to the fact that these batteries are tested under the same operating

conditions (with temperatures (24◦C) and discharge rate (2A)). Furthermore, their degra-

dation paths have crossed the threshold (say 1.3 Ahr) and it allows us to have their true

lifetime information.

Note that these two datasets did not have an accelerating variable, therefore, we only use

TRP model (non-accelerated version of ATRP, M1) to address the prediction performances,

in comparing with the following well-known models:

M2: exponential model (He et al. , 2011): Ci = α0e
α1i + α2e

α3i,

M3: second-order polynomial model (Micea et al. , 2011): Ci = α0 + α1i+ α2i
2,

M4: exponential and polynomial model (Xing et al. , 2013): Ci = α0 + α1i
2 + α2e

α3i,

M5: simple linear regression model (LM): Ci = α0 + α1i,

where Ci denotes the observed capacity of ith cycle in NASA dataset and all coefficients

{αi}
3
i=1 are unknown. The comparisons of prediction performance of these 4 models together

with TRP model are shown in Figure 12.

Note that the vertical (dotted) lines in the plots denote two different settings for the

training data with 90 and 110 cycles (previous 90 or 110 cycles among 138 cycles); while

the horizontal line at 1.3 denotes the threshold of the capacity. From the plots of battery
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Figure 12: Comparisons of EOP prediction with observations 90 and 110.

“B0005”, no matter 90 or 110 cycles is used, the prediction performance of TRP model is

better than the other four models in the EOP prediction. For the case of battery “B0006”,

comparing with TRP model, it seems the EOP prediction of the other 4 models are very bad

and the main reason may be due to the fact that all these regression models did not take
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auto-correlated structure of the process into consideration. Furthermore, the root-mean-

square errors (RMSEs) for all models are given to measure the prediction performance and

the results are shown in Table 8. We found that the RMSE of M1 has the smallest RMSE,

except for the case of RMSE110 at M3. The results are consistent with the plots shown in

Figure 12. It means that our proposed model, in general, outperforms the existing methods

in the EOP prediction.

Table 8: RMSEs for five candidate models under training data=90 and 110.

Battery Root-mean-square error
Models

M1 M2 M3 M4 M5

B0005
RMSE90 0.023 0.044 0.038 0.280 0.077

RMSE110 0.026 0.027 0.021 0.190 0.068

B0006
RMSE90 0.029 0.090 0.142 0.291 0.092

RMSE110 0.020 0.075 0.102 0.158 0.047

*RMSE90 =
√

∑

138

i=91
(Ĉi − Ci)2/48 and RMSE110 =

√

∑

138

i=111
(Ĉi − Ci)2/28

7 Another Version of ATRP Model

Following the concept of Lindqvist et al. (2003), we always set the expectation of F |S as 1 to

avoid the non-identifiability issue of ATRP model. For example, we adopt F |S = N(1, σ2(S))

in our study. However, based on the fundamental criterion of the accelerated testing, we

may consider that the mean is usually a function of S, while keeping the standard deviation

unchanged. That is, the new formulation for ATRP model has F |S = N(µ(S), 1) and

λ(t|S) = a∗(S)eb
∗(S)t.

Similar to the preliminary analysis in Section 3, we need to check the relationships be-
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tween model parameters a∗(S), b∗(S), µ(S) and stress S. Figure 13 supports that parameters

a∗(S), b∗(S) still have good linear relationship with stress S, and µ(S) is recommended to

have a log-linear relationship with S. Therefore, a∗(S), b∗(S) and µ(S) can be reasonably

expressed as a∗(S) = a∗0 + a∗1S; b
∗(S) = b∗0 + b∗1S; and log µ(S) = c∗0 + c∗1S.
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Figure 13: The scatter plot of â, b̂ and log µ̂ versus S.

Table 9 summarizes a detailed comparisons of these two ATRP models. From Table 9, it

is seen that the EOP predictions are the same for both models. It means that arranging the

mean or the standard deviation as the function of testing stress did not have a significant

effect on the EOP prediction. From the log-likelihood criterion, the LL of ATRP Model 1

is slightly larger than that of ATRP Model 2. However, from the viewpoint of acceleration,

it seems that ATRP model 2 provides us a better explanation in practical applications.

8 Concluding Remarks

“How to obtain an accurate EOP prediction for rechargeable battery” is a great challenge

to the manufacturers of information and communication technology industry. Traditionally,
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Table 9: Summary of two ATRP models.

Model ATRP Model 1 ATRP Model 2

F |S N(1, σ2(S)) N(µ(S), 1)

Stress relationship σ(S) = c0 + c1S log µ(S) = c∗0 + c∗1S

λ(t|S) a(S)eb(S)t a∗(S)eb
∗(S)t

Maximum log-likelihood LL1=639.95 LL2=630.15

EOP Prediction ÊOP1 = 154 ÊOP2 = 154

explanation not easy to explain easy to explain

regression prediction models (linear, second-order polynomial and exponential) are widely

used in rechargeable battery datasets. However, these models are, in general, not capable

of achieving better EOP prediction due to the fact that the time-dependent structure is

not taken into consideration. In this article, based on a TRP model under the scenario

of accelerated testing, we propose a novel approach to address this important problem.

The advantage of our proposed ATRP model is that the auto-correlated structure can be

appropriately characterized in comparing with the linear regression model with time series

errors model (Tsay, 1984). Furthermore, the procedures of EOP prediction and its 95% CI

are developed. Finally, we also use NASA battery dataset to compare the performance of

EOP prediction with the existing methods, and the result shows that our proposed model is

quite robust in EOP prediction.

At the end of this study, some concluding remarks are addressed as follows:

(a) We did not consider the heterogeneous TRP (HTRP) model due to the fact that the
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unit-to-unit process variations are not significant. For practical applications, when the

variations can not be ignored, the development of an accelerated testing version of

HTRP model shall be an interesting topic for the future research.

(b) In this study, we only focus on a constant-stress accelerated degradation test for the

purpose of the EOP lifetime prediction of rechargeable batteries. In real applications,

however, the time-varying stress (or even cycle-testing) operational condition is very

popular. Therefore, the modeling of a step-stress degradation path of dynamic dis-

charge shall be an interesting and challenging issue for the future research.
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