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Abstract—In this paper, we implement an optical fiber commu-
nication system as an end-to-end deep neural network, including
the complete chain of transmitter, channel model, and receiver.
This approach enables the optimization of the transceiver in a sin-
gle end-to-end process. We illustrate the benefits of this method by
applying it to intensity modulation/direct detection (IM/DD) sys-
tems and show that we can achieve bit error rates below the 6.7%
hard-decision forward error correction (HD-FEC) threshold. We
model all componentry of the transmitter and receiver, as well as
the fiber channel, and apply deep learning to find transmitter and
receiver configurations minimizing the symbol error rate. We pro-
pose and verify in simulations a training method that yields robust
and flexible transceivers that allow—without reconfiguration—
reliable transmission over a large range of link dispersions. The
results from end-to-end deep learning are successfully verified for
the first time in an experiment. In particular, we achieve infor-
mation rates of 42 Gb/s below the HD-FEC threshold at distances
beyond 40 km. We find that our results outperform conventional
IM/DD solutions based on two- and four-level pulse amplitude mod-
ulation with feedforward equalization at the receiver. Our study is
the first step toward end-to-end deep learning based optimization
of optical fiber communication systems.
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I. INTRODUCTION

T
HE application of machine learning techniques in commu-

nication systems has attracted a lot of attention in recent

years [1], [2]. In the field of optical fiber communications, var-

ious tasks such as performance monitoring, fiber nonlinearity

mitigation, carrier recovery and modulation format recognition

have been addressed from the machine learning perspective

[3]–[5]. In particular, since chromatic dispersion and nonlinear

Kerr effects in the fiber are regarded as the major information

rate-limiting factors in modern optical communication sys-

tems [6], the application of artificial neural networks (ANNs),

known as universal function approximators [7], for channel

equalization has been of great research interest [8]–[12]. For

example, a multi-layer ANN architecture, which enables deep

learning techniques [13], has been recently considered in [14]

for the realization of low-complexity nonlinearity compensation

by digital backpropagation (DBP) [15]. It has been shown that

the proposed ANN-based DBP achieves similar performance

than conventional DBP for a single channel 16-QAM system

while reducing the computational demands. Deep learning

has also been considered for short-reach communications. For

instance, in [16] ANNs are considered for equalization in PAM8

IM/DD systems. Bit-error rates (BERs) below the forward

error correction (FEC) threshold have been experimentally

demonstrated over 4 km transmission distance. In [17], deep

ANNs are used at the receiver of the IM/DD system as an

advanced detection block, which accounts for channel memory

and linear and nonlinear signal distortions. For short reaches

(1.5 km), BER improvements over common feed-forward

linear equalization were achieved.

In all the aforementioned examples, deep learning techniques

have been applied to optimize a specific function in the fiber-

optic system, which itself consists of several signal process-

ing blocks at both transmitter and receiver, each carrying out

an individual task, e.g., coding, modulation and equalization.

In principle, such a modular implementation allows the system

components to be analyzed, optimized and controlled separately

and thus presents a convenient way of building the communi-

cation link. Nevertheless, this approach can be sub-optimal,

especially for communication systems where the optimum re-

ceivers or optimum blocks are not known or not available due

to complexity reasons. As a consequence, in some systems, a

block-based receiver with one or several sub-optimum modules
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does not necessarily achieve the optimal end-to-end system per-

formance. Especially if the optimum joint receiver is not known

or too complex to implement, we require carefully chosen

approximations.

Deep learning techniques, which can approximate any nonlin-

ear function [13], allow us to design the communication system

by carrying out the optimization in a single end-to-end process

including the transmitter and receiver as well as the commu-

nication channel. Such a novel design based on full system

learning avoids the conventional modular structure, because the

system is implemented as a single deep neural network, and has

the potential to achieve an optimal end-to-end performance. The

objective of this approach is to acquire a robust representation of

the input message at every layer of the network. Importantly, this

enables a communication system to be adapted for information

transmission over any type of channel without requiring prior

mathematical modeling and analysis. The viability of such an

approach has been introduced for wireless communications [18]

and also demonstrated experimentally with a wireless link [19].

Such an application of end-to-end deep learning presents the

opportunity to fundamentally reconsider optical communication

system design.

Our work introduces end-to-end deep learning for design-

ing optical fiber communication transceivers. The focus in this

paper is on IM/DD systems, which are currently the preferred

choice in many data center, access, metro and backhaul applica-

tions because of their simplicity and cost-effectiveness [20]. The

IM/DD communication channel is nonlinear due to the combina-

tion of photodiode (square-law) detection and fiber dispersion.

Moreover, noise is added by the amplifier and the quantization

in both the digital-to-analog converters (DACs) and analog-to-

digital converters (ADCs). We model the fiber-optic system as

a deep fully-connected feedforward ANN. Our work shows that

such a deep learning system including transmitter, receiver, and

the nonlinear channel, achieves reliable communication below

FEC thresholds. We experimentally demonstrate the feasibility

of the approach and achieve information rates of 42 Gb/s beyond

40 km. We apply re-training of the receiver to account for the

specific characteristics of the experimental setup not covered by

the model. Moreover, we present a training method for realiz-

ing flexible and robust transceivers that work over a range of

distance. Precise waveform generation is an important aspect in

such an end-to-end system design. In contrast to [18], we do not

generate modulation symbols, but perform a direct mapping of

the input messages to a set of robust transmit waveforms.

The goal of this paper is to design, in an offline process,

transceivers for low-cost optical communication system that can

be deployed without requiring the implementation of a training

process in the final product. During the offline training process,

we can label the set of data used for finding the parameters of

the ANN and hence use supervised training. This is a first step

towards building a deep learning-based optical communication

system. Such a system will be optimized for a specific range

of operating conditions. Eventually, in future work, an online

training may be incorporated into the transceiver, which may

still work in a supervised manner using, e.g., pilot sequences, to

cover a wider range of operating conditions. Building a complete

unsupervised transceiver with online training will be a signifi-

cantly more challenging task and first requires a thorough un-

derstanding of the possibilities with supervised training. Hence,

we focus on the supervised, offline training case in this paper.

The rest of the manuscript is structured as follows:

Section II introduces the main concepts behind the deep learn-

ing techniques used in this work. The IM/DD communication

channel and system components are described mathematically

in Sec. III. The architecture of the proposed ANN along with

the training method is also presented in this section. Section IV

reports the system performance results in simulation. Section V

presents the experimental test-bed and validation of the key sim-

ulation results. Section VI contains an extensive discussion on

the properties of the transmit signal, the advantages of training

the system in an end-to-end manner, and the details about the

experimental validation. Finally, Sec. VII concludes the work.

II. DEEP FULLY-CONNECTED FEED-FORWARD ARTIFICIAL

NEURAL NETWORKS

A fully-connected K-layer feed-forward ANN maps an input

vector s0 to an output vector sK = fANN(s0) through iterative

steps of the form

sk = αk (Wksk−1 + bk ), k = 1, ..,K. (1)

Where sk−1 ∈ R
Nk −1 is the output of the (k − 1)-th layer, sk ∈

R
Nk is the output of the k-th layer, Wk ∈ R

Nk ×Nk −1 and bk ∈
R

Nk are respectively the weight matrix and the bias vector of

the k-th layer and αk is its activation function. The set of layer

parameters Wk and bk is denoted by

θk = {Wk ,bk}. (2)

The activation function αk introduces nonlinear relations be-

tween the layers and enables the approximation of nonlinear

functions by the network. A commonly chosen activation func-

tion in state-of-the-art ANNs is the rectified linear unit (ReLU),

which acts individually on each of its input vector elements

by keeping the positive values and equating the negative to

zero [21], i.e., y = αReLU(x) with

yi = max(0, xi), (3)

where yi , xi denote the i-th elements of the vectors y and x,

respectively. Compared to other popular activation functions

such as the hyperbolic tangent and sigmoid, the ReLU function

has a constant gradient, which renders training computationally

less expensive and avoids the effect of vanishing gradients. This

effect occurs for activation functions with asymptotic behavior

since the gradient can become small and consequently decelerate

the convergence of the learning algorithm [13, Sec. 8.2].

The final (decision) layer of an ANN often uses the softmax

activation function, where the elements yi of the output y =
softmax (x) are given by

yi =
exp(xi)

∑

j exp(xj )
. (4)

The training of the neural network can be performed in a su-

pervised manner by labeling the training data. This defines a
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pairing of an input vector s0 and a desired output vector s̃K .

Therefore, the training objective is to minimize, over the set of

training inputs S, the loss L(θ), with respect to the parameter

sets θ of all K layers, given by

L(θ) =
1

|S|

∑

(s0 , i ,s̃K , i )∈S

ℓ(fANN(s0,i), s̃K,i) (5)

between an ANN output sK,i = fANN(s0,i) corresponding to the

input s0,i processed by all K layers of the ANN, and the desired,

known output s̃K,i . In (5), ℓ(x,y) denotes the loss function and

|S| denotes the cardinality of the training set (i.e., the size of

the training set) containing 2-tuples (s0,i , s̃K,i) of inputs and

corresponding outputs. The loss function we consider in this

work is the cross-entropy, defined as

ℓ(x,y) = −
∑

i

xi log(yi). (6)

A common approach for optimization of the parameter sets θ

in (5), which reduces computational demands, is to operate on

a small batch S (called mini-batch) of the set of training data

and perform the stochastic gradient descent (SGD) algorithm

initialized with random θ [13], which is iteratively updated as

θt = θt−1 − η∇L(θt−1), (7)

where η is the learning rate of the algorithm and ∇L(θ) is the

gradient of the loss function of the mini-batch defined by

L(θ) =
1

|S|

∑

(s0 , i ,s̃K , i )∈S

ℓ(fANN(s0,i), s̃K,i). (8)

In modern deep learning, an efficient computation of the gradient

in (7) is achieved by error backpropagation [13], [22]. A state-

of-the-art algorithm with enhanced convergence is the Adam

optimizer which dynamically adapts the learning rate η [23].

The Adam algorithm is used for optimization during the train-

ing process in this work. All numerical results in the manuscript

have been generated using the deep learning library Tensor-

Flow [24].

III. PROPOSED END-TO-END COMMUNICATION SYSTEM

We implement the complete fiber-optic communication sys-

tem and transmission chain including transmitter, receiver and

channel as a complete end-to-end ANN, as suggested in [18],

[19]. To show the concept, we focus on an IM/DD system, but

we emphasize that the general method is not restricted to this

scheme and can be easily extended to other, eventually more

complex models. In the following we explain all the compo-

nents of the transceiver chain as well as the channel model in

detail. The full, end-to-end neural network chain is depicted in

Fig. 1.

A. Transmitter Section

We use a block-based transmitter as it has multiple advan-

tages. Firstly, it is computationally simple, making it attractive

for low-cost, high-speed implementations. Secondly, it allows

massive parallel processing of the single blocks. Each block en-

codes an independent message m ∈ {1, . . . , M} from a set of

M total messages into a vector of n transmit samples, forming

a symbol. Each message represents an equivalent of log2(M)
bits.

The encoding is done in the following way: The message m is

encoded into a one-hot vector of size M , denoted as 1m ∈ R
M ,

where the m-th element equals 1 and the other elements are

0. Such one-hot encoding is the standard way of representing

categorical values in most machine learning algorithms [13] and

facilitates the minimization of the symbol error rate. An inte-

ger encoding would for instance impose an undesired ordering

of the messages. The one-hot vector is fed to the first hidden

layer of the network, whose weight matrix and bias vector are

W1 ∈ R
M ×2M and b1 ∈ R

2M , respectively. The second hid-

den layer has parameters W2 ∈ R
2M ×2M and b2 ∈ R

2M . The

ReLU activation function (3) is applied in both hidden layers.

The following layer prepares the data for transmission and its

parameters are W3 ∈ R
2M ×n and b3 ∈ R

n , where n denotes

the number of waveform samples representing the message. The

dimensionality of this layer determines the oversampling rate of

the transmitted signal. In our work, 4× oversampling is consid-

ered and thus the message is effectively mapped onto a symbol

of n/4 samples. As fiber dispersion introduces memory between

several consecutive symbols, multiple transmitted blocks need

to be considered to model realistic transmission. Hence, the out-

put samples of N neighboring blocks (that encode potentially

different inputs) are concatenated by the serializer to form a se-

quence of N · n samples ready for transmission over the chan-

nel. All these N ANN blocks have identical weight matrices

and bias vectors. The system can be viewed as an autoencoder

with an effective information rate R = log2(M) bits/symbol.

We consider unipolar signaling and the ANN transmitter has to

limit its output values to the Mach-Zehnder modulator (MZM)

relatively linear operation region [0;π/4]. This is achieved by

applying the clippling activation function for the final layer

which combines two ReLUs as follows

αClipping(x) = αReLU (x − ǫ) − αReLU

(

x −
π

4
+ ǫ

)

, (9)

where the term ǫ = σq/2 ensures the signal is within the MZM

limits after quantization noise is added by the DAC. The variance

σ2
q of the quantization noise is defined below.

B. Communication Channel

The main limiting factor in IM/DD systems is the intersymbol

interference (ISI) as a result of optical fiber dispersion [25].

Moreover, in such systems, simple photodiodes (PDs) are used

to detect the intensity of the received optical field and perform

opto-electrical conversion, so called square-law detection. As a

consequence of the joint effects of dispersion and square-law

detection, the IM/DD communication channel is nonlinear and

has memory.

In our work, the communication channel model includes

low-pass filtering (LPF) to account for the finite bandwidth of

transmitter and receiver hardware, DAC, ADC, MZM, photo-

conversion by the PD, noise due to amplification and optical

fiber transmission. The channel is considered part of the system

implemented as an end-to-end deep feedforward neural network
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Fig. 1. Schematic of the IM/DD optical fiber communication system implemented as a deep fully-connected feedforward neural network. Optimization is
performed between the input messages and the outputs of the receiver, thus enabling end-to-end deep learning of the complete system.

shown in Fig. 1. The signal that enters the section of the ANN

after channel propagation can be expressed as (neglecting the

receiver LPF for ease of exposition)

r(t) = |u(t)|2 + nRec.(t), (10)

where u(t) = ĥ{x(t)} is the waveform after fiber propagation,

x(t) is the transmit signal, ĥ{·} is an operator describing the

effects of the electrical field transfer function of the modula-

tor and the fiber dispersion, nRec.(t) is additive Gaussian noise

arising, e.g., from the trans-impedance amplifier (TIA) circuit.

We select the variance of the noise to match the signal-to-noise

ratios (SNRs) after photodetection obtained in our experimental

setup. Further details on the SNR values at the examined dis-

tances are presented below in Sec. V. We now discuss in more

detail the system components.

Chromatic dispersion in the optical fiber is mathematically

expressed by the partial differential equation [25]

∂A

∂z
= −j

β2

2

∂2A

∂t2
, (11)

where A is the complex amplitude of the optical field envelope,

t denotes time, z is the position along the fiber and β2 is the dis-

persion coefficient. Equation (11) can be solved analytically in

the frequency domain by taking the Fourier transform, yielding

the dispersion frequency domain transfer function

D(z, ω) = exp

(

j
β2

2
ω2z

)

, (12)

where ω is the angular frequency. In our work, fiber dispersion

is applied in the frequency domain on the five-fold zero-padded

version of the signal stemming from N concatenated blocks.

The FFT and IFFT necessary for conversion between time and

frequency domain form part of the ANN and are provided by

the TensorFlow library [24].

The MZM is modeled by its electrical field transfer function,

a sine which takes inputs in the interval [−π/2;π/2] [26]. This

is realized in the ANN by using a layer that consists just of the

MZM function αMZM(x) = sin(x), where the sine is applied

element-wise. The DAC and ADC components introduce ad-

ditional quantization noise due to their limited resolution. We

model this noise nDAC(t) and nADC(t) as additive, uniformly dis-

tributed noise with variance determined by the effective number

of bits (ENOB) of the device [27]

σ2
q = 3P · 10−(6.02·ENOB+1.76)/10 , (13)

where P is the average power of the input signal. Low-pass

filtering is applied before the DAC/ADC components to restrict

the bandwidth of the signal. Note that both LPF stages and
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the chromatic dispersion stage can be modeled as purely linear

stages of the ANN, i.e., a multiplication with a correspondingly

chosen matrix Wk . The MZM and PD stages are modeled by a

purely nonlinear function αk .

C. Receiver Section

After square-law detection, amplification, LPF, and ADC, the

central block is extracted for processing in the receiver section

of the neural network. The architecture of the following layers

is identical to those at the transmitter side in a reverse order.

The parameters of the first receiver layer are W4 ∈ R
n×2M ,

b4 ∈ R
2M with ReLU activation function (3). The next layer

has parameters W5 ∈ R
2M ×2M , b5 ∈ R

2M , also with ReLU

activation function. The parameters of the final layer in the ANN

are W6 ∈ R
2M ×M and b6 ∈ R

M . The final layer’s activation

is the softmax function (4) and thus the output is a probability

vector y ∈ R
M with the same dimension as the one-hot vec-

tor encoding of the message. At this stage, a decision on the

transmitted message is made and a block (symbol) error occurs

when m �= argmax(y), where m is the index of the element

equal to 1 in the one-hot vector (1m ) representation of the input

message. Then the block error rate (BLER) can be estimated as

BLER =
1

|S|

∑

i∈S

1 {mi �= argmax(yi)} , (14)

where |S| is the cardinality of the set of messages S and 1 is the

indicator function, equal to 1 when the condition in the brackets

is satisfied and 0 otherwise.

In our work, the bit-error rate (BER) is examined as an indi-

cator of the system performance. For computing the BER, we

use an ad hoc bit mapping by assigning the Gray code to the

input m ∈ {1, . . . , M}. Whenever a block is received in error,

the number of wrong bits that have occurred are counted. Note

that this approach is sub-optimal as the deep learning algorithm

will only minimize the BLER and a symbol error may not nec-

essarily lead to a single bit error. In our simulation results, we

will hence provide a lower bound on the achievable BER with

an optimized bit mapping by assuming that at most a single bit

error occurs during a symbol error.

Note that the structure we propose is only able to compensate

for chromatic dispersion within a block of n receiver samples, as

there is no connection between neighboring blocks. The effect

of dispersion from neighboring blocks is treated as extra noise.

The block size n (and m) will hence limit the achievable dis-

tance with the proposed system. However, we could in principle

extend the size of the receiver portion of the ANN to jointly

process multiple blocks to dampen the influence of dispersion.

This will improve the resilience to chromatic dispersion at the

expense of higher computation complexity.

D. Training

The goal of the training is to obtain an efficient autoen-

coder [13, Ch. 14], i.e., the output of the final ANN softmax layer

should be ideally identical to the one-hot input vector. Such an

autoencoder will minimize the end-to-end BLER. In this work,

the ANN is trained with the Adam optimizer [23] on a set of

TABLE I
SIMULATIONS PARAMETERS

|S|=25·106 randomly chosen messages (and messages of the

neighboring transmit blocks) and mini-batch size |S|=250, cor-

responding to 100 000 iterations of the optimization algorithm.

It is worth noting that in most cases, convergence in the loss and

validation symbol error rate of the trained models was obtained

after significantly less than 100 000 iterations, which we used as

a fixed stopping criterion. During training, noise is injected into

the channel layers of the ANN, as shown in Fig. 1. A truncated

normal distribution with standard deviation σ = 0.1 is used for

initialization of the weight matrices W. The bias vectors b are

initialized with 0. Validation of the training is performed during

the optimization process every 5000 iterations. The validation

set has the size |Sv |=15 · 106 . Good convergence of the valida-

tion BLER and the corresponding BER is achieved. The trained

model is saved and then loaded separately for testing which is

performed over a set of different |St |=15 · 108 random input

messages. The BER results from testing are shown in the figures

throughout this manuscript. We have confirmed the convergence

of the results as well for mini-batch sizes of |S|=125 and 500,

and also when the training set was increased to |S|=50·106 .

When designing ANNs, the choice of hyper-parameters such

as the number of layers, number of nodes in a hidden layer,

activation functions, mini-batch size, learning rate, etc. is im-

portant. The optimization of the hyper-parameters was beyond

the scope of our investigation. In this work they were chosen

with the goal to keep the networks relatively small and hence

the training effort manageable. Better results in terms of perfor-

mance and its trade-off with complexity can be obtained with

well-designed sets of hyper-parameters.

IV. SYSTEM PERFORMANCE

Table I lists the simulation parameters for the end-to-end

deep-learning-based optical fiber system under investigation.

We assume a set of M = 64 input messages which are encoded

by the neural network at the transmitter into a symbol of 48

samples at 336 GSa/s in the simulation. This rate corresponds

to the 84 GSa/s sampling rate of the DAC used in experiment

multiplied by the oversampling factor of 4, which we assume

in simulation. The bandwidth of the signal is restricted by a

32 GHz low-pass filter to account for the significantly lower

bandwidth of today’s hardware. Thus the information rate of

the system becomes R = 6 bits/sym. Symbols are effectively

transmitted at 7 GSym/s and thus the system operates at a bit
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Fig. 2. Bit error rate as a function of transmission distance for systems trained
at a fixed nominal distance of (20 + i · 10) km, with i ∈ {0, . . . , 6}. The hor-
izontal dashed line indicates the 6.7% HD-FEC threshold. Thin dashed lines
below the curves give a lower bound on the achievable BER when optimal bit
mapping, such that a block error results in a single bit error, is assumed.

rate of 42 Gb/s. Figure 2 shows the BER performance at differ-

ent transmission distances. For this set of results, the ANN was

trained for 7 different distances in the range 20 to 80 km in steps

of 10 km and the distance was kept constant during training.

During the testing phase, the distance was swept. BERs below

the 6.7% hard decision FEC (HD-FEC) threshold of 4 · 10−3

are achieved at all examined distances between 20 and 50 km.

Moreover, up to 40 km the BER is below 10−4 . Systems trained

at distances longer than 50 km achieve BERs above 10−2 . The

figure also displays the lower bound on the achievable BER for

each distance. This lower bound is obtained by assuming that a

block error gives rise to a single bit error. An important obser-

vation is that the lowest BERs are obtained at the distances for

which the system was trained and there is a rapid increase in

the BER when the distance changes. Such a behavior is a direct

consequence of the implemented training approach which opti-

mizes the system at a particular distance without any incentive

of robustness to variations. As the amount of dispersion changes

with distance, the optimal neural network parameters differ ac-

cordingly and thus the BER increases as the distance changes.

We therefore require a different optimization method that yields

ANNs that are robust to distance variations and hence offer new

levels of flexibility.

To address these limitations of the training process, we train

the ANN in a process where instead of fixing the distance, the

distance for every training message is randomly drawn from a

Gaussian distribution with a mean µ and a standard deviation σ.

During optimization, this allows the deep learning to converge

to more generalized ANN parameters, robust to certain variation

of the dispersion. Figure 3 shows the test BER performance of

the system trained at a mean distance µ = 40 km and differ-

ent values of the standard deviation. We see that for both cases

Fig. 3. Bit error rate as a function of transmission distance for systems where
the training is performed at normally distributed distances with mean µ and
standard deviation σ. The horizontal dashed line indicates the 6.7% HD-FEC
threshold.

of σ = 4 and σ = 10 this training method allows BER values

below the HD-FEC threshold in wider ranges of transmission

distances than for σ = 0. For instance, when σ = 4, BERs be-

low the 4 · 10−3 threshold are achievable between 30.25 km and

49.5 km, yielding a range of operation of 19.25 km. The distance

tolerance is further increased when σ = 10 is used for training.

In this case, the obtained BERs are higher due to the compro-

mise taken, but still below the HD-FEC threshold for a range of

27.75 km, between 24 km up to 51.75 km. A practical imple-

mentation of the proposed fiber-optic system design is expected

to greatly benefit from such a training approach as it introduces

both robustness and flexibility of the system to variations in the

link distance. As a consequence of generalizing the learning

over varied distance, the minimum achievable BERs are higher

compared to the system optimized at a fixed distance, presented

in Fig. 2, and there exists a trade-off between robustness and

performance.

So far we examined an end-to-end deep learning optical fiber

system where an input message carrying 6 bits of information

(M = 64) is encoded into a band-limited symbol of 48 samples

(n = 48 with an oversampling factor of 4) at 336 GSa/s. Thus,

the result is an autoencoder operating at the bit rate of 42 Gb/s.

In the following, we examine different rates by varying the

size of M and n and thus the size of the complete end-to-end

neural network. For this investigation, we fixed the sampling

rate of the simulation to 336 GSa/s. In Figure 4 solid lines show

the BER performance of the system at different rates when

the number of symbols used to encode the input message is

decreased, in particular we use n = 24, thus yielding a symbol

rate of 14 GSym/s. In such a way bit rates of 42 Gb/s, 56 Gb/s

and 84 Gb/s are achieved for M = 8, M = 16, and M = 64,

respectively. We see that the BER at 84 Gb/s rapidly increases

with distance and error rates below the HD-FEC can be achieved
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Fig. 4. Bit error rate as a function of transmission distance for systems with
different information rates. The training is performed at a fixed nominal distance.

only up to 20 km. On the other hand, 42 Gb/s and 56 Gb/s can

be transmitted reliably at 30 km. An alternative to decreasing

the transmitted samples in a block is to increase the information

rate of the system by considering input messages with a larger

information content. Dashed lines in Fig. 4 show the cases of

M = 64, n = 48 and M = 256, n = 48, corresponding to bit

rates of 42 Gb/s and 56 Gb/s. In comparison to the case where

n = 24, such systems have an extended operational reach below

the BER threshold, due to the larger block size and the reduce

influence of chromatic dispersion. For example, the 56 Gb/s

system can achieve BER below the HD-FEC at 40 km, while for

42 Gb/s, this distance is 50 km. Thus increasing the information

rates by assuming larger M enables additional reach of 10 km

and 20 km at 56 Gb/s and 42 Gb/s, respectively. However,

a drawback of such a solution is the larger ANN size, thus

increasing the computational and memory demands as well as

training times. Figure 4 shows that the general approach of

viewing the optical fiber communication system as a complete

end-to-end neural network can be applied for designing systems

with different information rates and gives an insight on the

possible implementation approaches.

V. EXPERIMENTAL VALIDATION

To complement the simulation results, we built an optical

transmission system to demonstrate and validate experimentally

the results obtained for the end-to-end deep learning IM/DD

system operating at 42 Gb/s. Moreover, we utilize the proposed

training method and train our models at the examined distances

of 20, 40, 60, or 80 km with a standard deviation of σ = 4.

Figure 5 illustrates the experimental setup. The SNRs after pho-

todetection assumed in the end-to-end training process during

generation of the transmit waveforms are 19.41 dB, 6.83 dB,

5.6 dB and 3.73 dB at 20, 40, 60 and 80 km, respectively, cor-

responding to measured values for the 42 Gbaud PAM2 system,

which is described in this section and used for comparison rea-

sons. Since the training for the experiment is performed at dis-

tances with a certain standard deviation, linear interpolation is

used to find the SNR values at distances different from the above.

The transmit waveforms were obtained by feeding a ran-

dom sequence to the transmitter ANN, filtering by a LPF with

32 GHz bandwidth, downsampling and DAC (after standard

linear finite-impulse response (FIR) DAC pre-emphasis). In the

experiment, we downsample by a factor of 4 the resulting fil-

tered concatenated series of symbols, each now containing 12

samples. Because of LPF, there is no loss of information, since

the original series of symbols, at 48 samples each and running

at 336 GSa/s, can be exactly regenerated from this downsam-

pled series of symbols, 12 samples per symbol at 84 GSa/s.

The waveform is then used to modulate an MZM, where the

bias point is meticulously adjusted to match the one assumed

in simulations. The optical signal at 1550 nm wavelength is

propagated over a fixed fiber length of 20, 40, 60, or 80 km

and through a Tunable Dispersion Module (TDM), which is de-

ployed to allow sweeping the dispersion around a given value.

The received optical waveform is direct detected by a PIN+TIA

and real-time sampled and stored for the subsequent digital sig-

nal processing. There is no optical amplification in the testbed.

After synchronization, proper scaling and offset of the digi-

tized photocurrent, the upsampled received waveforms are fed

block-by-block to the receiver ANN. After fine-tuning of the

receiver ANN parameters, the BLER and BER of the system

are evaluated. In the experiment, 40 · 106 blocks are transmit-

ted and received for each dispersion value. This is achieved by

transmitting 1000 sequences of 40 · 103 blocks. To compare our

system with conventional IM/DD schemes operating at 42 Gb/s,

we perform experiments at the examined distances for two ref-

erence systems: the first operating at 42 Gbaud with PAM2 and

raised cosine pulses (roll-off of 0.99); the second operating at

21 Gbaud with PAM4 and raised cosine pulses (roll-off of 0.4).

Both reference system use feedforward equalization (FFE) with

13 taps (T/2-spaced) at the receiver. It is easy to see that the com-

putational complexity of this simple linear equalization scheme

is lower than the complexity of a deep ANN-based receiver.

Nevertheless, we use the comparison to emphasize on the via-

bility of implementing the optical fiber system as an end-to-end

deep ANN. Hence, possible complexity reductions in the design

are beyond the scope of the manuscript.

While carrying out the experiment, we found that the ANN

trained in the simulation was not fully able to compensate distor-

tions from the experimental setup. Hence, we decided to retrain

the receiver ANN (while keeping the transmitter ANN fixed) to

account for the experimental setup. Retraining has been carried

out for every measured distance. For the retraining of the re-

ceiver ANN, we used a set of |S|=30 · 106 (75% of all block

traces) received blocks, while validation during this process is

performed with a set of |Sv |=5 · 106 (12.5% of all block traces)

different blocks (from different measurements). The fine-tuned

model is tested over the remaining |St |=5 · 106 (12.5% of all

block traces) (these were not used for training and validation).

The subdivision of the experimental data into training, valida-

tion and testing sets is in accordance to the guidelines given

in [13, Sec. 5.3]. Training was carried out over 4 epochs over
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Fig. 5. Schematic of the experimental setup for system validation.

Fig. 6. Experimental BER performance for systems trained at (20, 4) km and
(40, 4) km.

the experimental data, which was enough to see good conver-

gence. In a single epoch each of the received blocks for training

is used once in the optimization procedure, yielding a single

pass of the training set |S| through the algorithm. Realization

of 4 epochs improved convergence and further ensured that we

perform enough training iterations to observe convergence (see

Sec. III-D). For retraining the receiver ANN, the layer parame-

ters are initialized with the values obtained in simulation prior

to the experiment. The output of the receiver ANN is optimized

with respect to the labeled experimental transmit messages, fol-

lowing the same procedure as described in Sec. II. Again, a

mini-batch size of |S|=250 has been used. Experimental BER

results are then obtained on the testing set only and are presented

in what follows.

Figure 6 shows the experimental results for a fiber of length

20 km and 40 km. The TDM dispersion value was swept be-

tween −40 ps and +40 ps, resulting in effective link distances

in the ranges of 17.65 − 22.35 km and 37.65 − 42.35 km, re-

spectively. For the system around 20 km, BERs below 10−5

have been achieved experimentally at all distances. In par-

ticular, the lowest BER of 3.73 · 10−6 has been obtained at

21.18 km. For comparison, the PAM2 system experimentally

achieves 7.77 · 10−4 BER at 20 km and is therefore signifi-

Fig. 7. Experimental BER performance for systems trained at (60, 4) km and
(80, 4) km.

cantly outperformed by the end-to-end deep learning optical

system. At 40 km, the proposed system outperforms both the

42 Gbaud PAM2 and the 21 Gbaud PAM4 schemes, as neither

of these can achieve BERs below the HD-FEC threshold. On

the other hand, the ANN-based system achieved BERs below

1.4 · 10−3 at all distances in the examined range. In particular,

BERs of 1.05 · 10−3 at 40 km and a lowest BER of 5.75 · 10−4 at

38.82 km have been obtained. Furthermore, we see that both sets

of experimental results at 20 km and at 40 km are in excellent

agreement with the simulation results.

Figure 7 shows the experimental results at 60 km and 80 km

fiber length and TDM dispersion swiped between −40 ps

and +40 ps, yielding effective link distances in the ranges

57.65 − 62.35 km and 77.65 − 82.35 km, respectively. For both

systems we see that BERs below the HD-FEC threshold can-

not be achieved by the end-to-end deep learning approach, as

predicted by the simulation. Nevertheless, at 60 km the system

still outperforms the PAM2 and PAM4 links. However, for the

80 km, link the thermal noise at the receiver becomes more

dominant due to the low signal power levels without optical

amplification. In combination with the accumulated dispersion,

whose effects at 80 km extend across multiple blocks and cannot

be compensated by the block-by-block processing, this results
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in operation close to the sensitivity limits of the receiver which

ultimately restricts the achievable BERs.

To further investigate the impact of received signal power on

the performance of the system, we included an erbium-doped

fiber amplifier (EDFA) in the deep learning-based test-bed for

pre-amplification at the receiver. Thereby, the received power

is increased from −13 and −17 dBm at 60 km and 80 km,

respectively to −7 dBm. The obtained BERs at these distances

are shown as well in Fig. 7. We see that by changing the link

to include an extra EDFA, the end-to-end deep learning sys-

tem achieves significantly improved performance. In particular,

at 60 km, a BER of 3.8 · 10−3 , slightly below the HD-FEC

threshold, can be achieved. Due to dispersion and block-based

processing, there is a significant impact at 80 km as well, where

the obtained BER is 2.8 · 10−2 . These results highlight the great

potential for performance improvement by including different

link configurations inside the end-to-end learning process.

VI. DISCUSSION

A. Transmitted Signal Characteristics

In our end-to-end optimization of the transceiver, the trans-

mitter learns waveform representations which are robust to the

optical channel impairments. In the experiment, we apply ran-

dom sequences to the transmitter ANN, followed by 32 GHz

LPF to generate the transmit waveforms. We now exemplify

the temporal and spectral representations of the transmit signal.

Figure 8 (top) shows the filtered output of the neural network,

trained at (40, 4) km, for the representative 10-symbol message

sequence (mt)
10
t=1 = (2, 36, 64, 40, 21, 53, 42, 41, 34, 13), with

mt ∈ {1, . . . , 64} denoting the input message to the ANN at

time/block t. Each symbol carries 6 bits of information, con-

sists of 48 samples, and is transmitted at 7 GSym/s, yielding

a symbol duration T ≈ 143 ps. We observe that, as an effect

of the clipping layer in our transmitter ANN, the waveform

amplitude is limited in the linear region of operation of the

Mach-Zehnder modulator with small departure from the range

[0; π
4 ] due to the filtering effects. Figure 8 (bottom) also shows

the un-filtered 48 samples for each symbol in the sub-sequence

(mt)
7
t=6 = (53, 42). These blocks of samples represent the di-

rect output of the transmitter ANN. The trained transmitter can

be viewed as a look-up table which simply maps the input mes-

sage to one of M = 64 optimized blocks. Figure 9 illustrates

the 48 amplitude levels in each of these blocks. Interestingly,

we see that the extremal levels 0 and π
4 are the prevailing levels.

It appears that the ANN tries to find a set of binary sequences

optimized for end-to-end transmission. However, some interme-

diate values are also used. Unfortunately, it is not easy to say if

this is intended by the deep learning optimization or an artefact.

To bring more clarity, we visualize the constellation of modu-

lation format by using state-of-the-art dimensionality reduction

machine learning techniques such as t-Distributed Stochastic

Neighbor Embedding (t-SNE) [28]. Figure 10 shows the two-

dimensional t-SNE representation of the un-filtered ANN out-

puts of Fig. 9. We can see that the 64 different waveforms are

well-separated in the t-SNE space and can hence be discrimi-

nated well enough.

Figure 11 shows the spectrum of the real-valued electrical

signal at the transmitter. Because of the low-pass filtering the

spectral content is confined within 32 GHz. The LPFs at both

transmitter and receiver ensure that the signal bandwidth does

not exceed the finite bandwidth of transmitter and receiver hard-

ware. We can further observe that, as a result of the block-based

transmission, the signal spectrum consists of strong harmonics

at frequencies that are multiples of the symbol rate. After DAC,

modulation of the optical carrier, fiber propagation and direct

detection by a PIN+TIA circuit, the samples of the distorted

received waveforms are applied block-by-block as inputs to the

receiver ANN for equalization.

B. Comparison With Receiver-Only and Transmitter-Only

ANN-Processing

In contrast to systems with transmitter-only and receiver-only

ANNs, the proposed end-to-end deep learning-based system

enables joint optimization of the message-to-waveform map-

ping and equalization functions. To highlight the advantages of

optimizing the transceiver in a single end-to-end process we

compare—in simulation—our end-to-end design with three dif-

ferent system variations: (i) a system that deploys PAM2/PAM4

modulation and ANN equalization at the receiver; (ii) a system

with ANN-based transmitter and a simple linear classifier at the

receiver and (iii) a system with individually trained ANNs at

both transmitter and receiver. In this section, we provide a de-

tailed discussion on the implementation of each of these bench-

mark systems and relate their performance to the end-to-end

deep learning approach. For a fair comparison all systems have

a bit rate of 42 Gb/s and 6 bits of information are mapped to a

block of 48 samples (including oversampling by a factor 4). All

simulation parameters are as in Table I. All hyper-parameters

of the ANNs, such as hidden layers, activation functions, etc. as

well as the other system and training parameters are identical to

those used in the end-to-end learning system in Sec. IV.

1) PAM Transmitter & ANN-Based Receiver: The PAM2

transmitter directly maps 6 bits into 6 PAM2 symbols

({0;π/4}). The PAM4 transmitter uses the best (6,3) linear

code over GF(4) [29] to map the 6 bits into 6 PAM4 sym-

bols ({0;π/12;π/6;π/4}). The symbols are pulse-shaped by

a raised-cosine (RC) filter with roll-off 0.25 and 2 samples per

symbol. The waveform is further oversampled by a factor of 4 to

ensure that a block of 48 samples is transmitted over the channel

(as in the reference setup). The first element of the channel is

the 32 GHz LPF. The received block of distorted samples is

fed to the ANN for equalization. Training of the receiver ANN

is performed using the same framework as in Sec. IV by la-

beling the transmitted PAM sequences. Figure 12 compares the

symbol error rate performance of the described PAM2/PAM4

systems and the system trained in an end-to-end manner (curves

“TX-PAMx & RX-ANN”). For training distances of 20 km and

40 km, the end-to-end ANN design significantly outperforms

its PAM2 and PAM4 counterparts. In particular, at 20 km the

symbol error rate of the end-to-end system is below 10−6 , while

the PAM2 and PAM4 systems achieve 5.5 · 10−4 and 2.9 · 10−3 ,

respectively. At distances beyond 40 km, the PAM-based sys-
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Fig. 8. Top: Output of the transmitter ANN, trained at (40,4) km, after filtering with 32 GHz Brickwall LPF for the representative random sequence of 10
symbols (mt )

10
t=1 = (2, 36, 64, 40, 21, 53, 42, 41, 34, 13) transmitted at 7 GSym/s, i.e. T ≈ 143 ps. Bottom: Un-filtered ANN output samples, 48 per symbol,

for the sub-sequence (mt )
7
t=6 = (53, 42).

Fig. 9. All 64 possible outputs (m = 1 to m = 64, upper left to bottom right) of the transmitter ANN before low-pass filtering.

tems with receiver-only ANN cannot achieve symbol error rates

below 0.1.

2) ANN-Based Transmitter & Linear Receiver: In order to

implement a system where the main ANN processing com-

plexity is based at the transmitter, we employ the same ANN-

based transmitter as in Fig. 1. At the receiver, we impose a

simple linear classifier as shown in Fig. 13. This receiver is a

linear classifier with M classes, a so-called multiclass-

perceptron and carries out the operation y = softmax(WRx +

bR), with WR ∈ R
n×M and bR ∈ R

M . The decision is

made by finding the largest element of y, i.e., m̂ =
arg maxm∈{1,...,64} ym . The receiver thus employs only a single

fully-connected layer with softmax activation to transform the

block of n = 48 received samples into a probability vector of

size M = 64 (i.e. the size of the input one-hot vector, see Sec.

III-A,C). At the transmitter, we use the exact same structure as

in our deep ANN-based end-to-end design. Both the transmit-

ter ANN parameters and the receiver parameters WR and bR
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Fig. 10. t-SNE representation of the multi-dimensional waveforms output of
the transmitter ANN on the two-dimensional plane. The points are labeled with
their respective message number m.

Fig. 11. Spectrum of the 32 GHz Brickwall low-pass filtered waveform at the
output of the transmitter ANN, trained at (40,4) km.

are optimized in an end-to-end learning process. Hence, such a

system exclusively benefits from the ANN-based pre-distortion

of the transmitted waveform and has a low-complexity receiver.

Figure 12 also shows the performance of this system trained

at distances 20 km and 40 km (“TX-ANN & RX-linear”). The

system trained at 20 km achieves symbol error rate performance

close to our deep learning-based end-to-end design. Moreover,

we can see that it exhibits slightly better robustness to distance

variations. This may be accounted to the absence of a deep ANN

at the receiver, whose parameters during training are optimized

specifically at the nominal distance and thus hinder the tolerance

to distance changes. However, when the training is performed at

40 km, this system exhibits a significantly inferior performance

Fig. 12. Symbol error rate as a function of transmission distance for (i)
PAM2/PAM4 systems with ANN-based receiver, (ii) deep ANN-based trans-
mitter and a multiclass-perceptron receiver, (iii) ANN-based transmitter with
ANN-based receiver optimized for PAM2 transmission and (iv) end-to-end deep
ANN-based system. Training is performed at a fixed nominal distance of 20 km
(left) or 40 km (right).

Fig. 13. Schematic of the multiclass-perceptron used as receiver when having
a deep ANN at the transmitter only.

compared to the proposed end-to-end deep learning-based

design.

3) ANN-Based Transmitter & ANN-Based Receiver, Sep-

arately Trained: Our final benchmark system deploys deep

ANNs at both transmitter and receiver, which, in this case, are

trained individually as opposed to performing a joint end-to-end

optimization. For this comparison we fix the receiver ANN,

whose parameters were previously optimized for PAM2

transmission, and aim to optimize only the transmitter ANN to

match this given receiver in the best possible way. Training is

carried out in the same end-to-end manner as detailed in Sec. IV,

however, we keep the receiver ANN parameters fixed. Figure 12

shows the symbol error rate performance of such a system

(“TX-ANN & PAM2-opt. RX-ANN”). For training at the nom-

inal distance of 20 km, this system design achieves a symbol

error rate of 2.67 · 10−6 . Interestingly, one can clearly observe

the benefits of the ANN-based waveform pre-distortion, which

significantly lowers the error rate compared to the PAM2 system
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Fig. 14. Comparison of the experimental BER performance for systems
trained at (20, 4) km and (40, 4) km (i) without re-training of the receiver
ANN, (ii) re-training the receiver ANN by fine-tuning, (iii) training the receiver
ANN by randomization.

with receiver-only ANN. For systems trained at 40 km however,

the individually trained transmitter and receiver ANNs cannot

outperform our proposed, jointly trained, end-to-end system.

C. Further Details on the Experimental Validation

As explained in Sec. V, after propagation of the optimized

waveforms during the experiment, the receiver ANN was fine-

tuned (re-trained) to account for the discrepancies between the

channel model used for training and the real experimental set-

up. Re-training can be carried out in two different ways: In the

first approach, denoted “fine-tuning”, we initialize the receiver

ANN parameters with the values previously obtained in simula-

tion and then carry out re-training using the labeled experimental

samples. In the second approach, denoted “randomization”, we

initialize the receiver ANN parameters with randomly initialized

parameters sampled from a truncated normal distribution before

re-training. Figure 14 shows the experimental BER curves at 20

and 40 km for the two re-training approaches and compares them

with the raw experimental results, obtained by applying the ini-

tial Rx ANN acquired from the simulation ’as is’ without any

fine-tuning. We can observe that accounting for the difference

between the real experimental environment and the assumed

channel model by re-training improves performance at both dis-

tances. Moreover, expectedly, we confirm that both re-training

solutions converge to approximately the same BER values at all

examined distances. Although we kept the number of training

iterations for the two approaches equal, initializing the ANN pa-

rameters with pre-trained values had the advantage of requiring

less iterations to converge for most of the presented values. It is

also worth noting that the BER performance of the system with-

out any re-training is well below the HD-FEC threshold around

20 km, achieving a minimum value of 4.2 · 10−4 at 20.59 km.

More accurate and detailed channel models used during training

will likely further reduce this BER.

It is important to point out that for the experimental eval-

uation of ANN-based transmission schemes and hence in the

framework of our work, the guidelines given in [12] need to

be meticulously followed to avoid learning representations of a

sequence (e.g., PRBS) used in the experiment and hence bias-

ing the error rates towards too low values. In our work, during

the offline training, we continuously generate new random in-

put messages using a random number generator with a long

sequence (e.g., Mersenne twister). In the experimental valida-

tion, we generated a long random sequence (not a PRBS, as

suggest in [12]) which is processed by the transmitter ANN

to generate a waveform, loaded (after filtering and resampling)

into the DAC, and transmitted multiple times, to capture differ-

ent noise realizations. For re-training the receiver ANN, mini-

batches are formed by picking randomly received blocks from

a subset of the database of experimental traces (combining mul-

tiple measurements). Finally, in order to obtain the results pre-

sented throughout the manuscript, we use the trained and stored

models to perform testing on a disjoint subset of the database

of experimental traces, having no overlap with the subset used

for training. This procedure ensures that the presented experi-

mental results are achieved with independent data. Finally note

that, due to the long memory of the fiber, it is not possible to

capture the interference effects of all possible sequences of sym-

bols preceding and succeeding the symbol under consideration

in the experiment. Hence, it is possible that the results after re-

training under-estimate the true error rate as the re-trained ANN

may learn to adapt to the interference pattern of the sequence.

Hence, the performance of all such ANN-based (re-trained) re-

ceivers can be considered to be a lower bound on the true system

performance. We closely studied the effects of re-training based

on repeated sequences and verified that a sufficiently large set

of different experimental traces was captured.

VII. CONCLUSION

For the first time, we studied and experimentally verified the

end-to-end deep learning design of optical communication sys-

tems. Our work highlights the great potential of ANN-based

transceivers for future implementation of IM/DD optical com-

munication systems tailored to the nonlinear properties of such a

channel. We experimentally show that by designing the IM/DD

system as a complete end-to-end deep neural network, we can

transmit 42 Gb/s beyond 40 km with BERs below the 6.7%

HD-FEC threshold. The proposed system outperforms IM/DD

solutions based on PAM2/PAM4 modulation and conventional

receiver equalization for a range of transmission distances. Fur-

thermore, we proposed and showed in simulations a novel train-

ing method that yields transceivers robust to distance variations

that offer a significant level of flexibility. Our study is the first

attempt towards the implementation of end-to-end deep learn-

ing for optimizing neural network based optical communication

systems. As a proof of concept, we concentrated on IM/DD sys-

tems. We would like to point out that the method is general and

can be extended to other, eventually more complex models and

systems.
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