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Abstract—Critical monitoring applications can use wireless 

sensor networks to transport delay sensitive data. This data may 

demand bounded delays in order to be considered useful by the 

receiver. In these cases, an accurate and real-time estimation of 

the end-to-end delay could be used to anticipate the data 

usefulness prior to sending it. 

A novel real-time and end-to-end delay estimation mechanism 

is proposed in this paper, which considers processing times and 

two new RPL metrics. Results show that our proposal is more 

accurate than the ETT-based solution for delay estimation, and it 

does not significantly degrade the network performance. 
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I.  INTRODUCTION 

Wireless Sensor Networks (WSN) can be used to transport 
data of monitoring applications. Critical monitoring 
applications can generate traffic flows with QoS requirements 
such as delay, loss, or throughput. If a particular flow is 
sensitive to delay, the WSN should deliver the packets of this 
flow to the destination within a delay that enables the data to be 
useful for the application. 

From the communications point of view, a WSN node may 
generate data, forward data from other nodes, or consume data. 
A typical interaction between WSN nodes is presented in Fig. 
1. For a flow generated in a given node, the End-to-End Delay 
(EED) can be defined as the time elapsed since data is 
generated at the application layer of the source node until this 
data arrives to the destination application in the sink node. 

 

In order to ensure an EED for a flow in a WSN scenario 
QoS mechanisms could be used. However, traditional QoS 
architectures such as integrated or differentiated services seem 
to be not suitable to WSN due to the additional functionality 
they would introduce in sensor nodes, such as traffic shaping, 
classification, policing, scheduling or resource reservation. 
Thus, a simpler but still accurate EED estimation mechanism 
needs to be defined. This mechanism could be applied to flows 

that are sensitive to delay but not to packet loss, and would be 
used to classify the data packets that will miss the application 
delay deadlines, and avoid their transmission to the network.  

Current research efforts on quality of service characterize 
EED estimation by using probabilistic estimation of delays, 
network calculus, or routing metrics. Regarding routing 
metrics, the Expected Transmission Time (ETT) or ETT-based 
metrics have been proposed. 

Our proposal consists of a novel EED estimation 
mechanism that combines path delays and node processing 
delays. Its novelty comes from considering in-node delays with 
two new RPL metrics. This solution provides an EED 
estimation which is more accurate than the ETT-based 
solution. 

The structure of this paper is as follows. Section II surveys 
work related to our proposal. Section III describes the proposed 
EED estimation mechanism. Section IV presents the hardware 
and simulation environment used to validate our solution. 
Section V provides the results obtained and discusses them. 
Section VI concludes paper and addresses future work. 

II. RELATED WORK 

According to the taxonomy presented in [1], current efforts 
to measure or estimate EED can be divided in three types: 
queuing models or network calculus; active probing using 
messages and protocols; piggy-backing delay information into 
normal traffic or in routing protocol messages. In [2] is 
presented a probabilistic routing metric based on the estimation 
of the EED distribution. In [3] the authors developed a model 
to evaluate QoS by analyzing EED. In [4] network calculus 
was used to obtain the deterministic upper bound of EED in 
WSN. In [5] are used arrival and service curves for stochastic 
network calculus, used to derive the EED envelopes. The 
above proposals aim to obtain EED limits or bounds prior to 
WSN deployment, and do not obtain EED estimation in real 
time. The proposals using probe packets or piggy-back 
information in data packets have the undesired effect of 
introducing additional traffic in the WSN, contributing to 
consume energy and processing resources.  

The research proposals using routing protocol messages are 
based on ETT or ETT-related metrics, which can either be 
obtained by using probe packets or by deriving it from metrics 
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Fig. 1. WSN nodes and End-to-End Delay 
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such as the Expected Transmission Count (ETX). According to 
[6], ETT can be derived from ETX by calculating: 

 
D

S
ETXETT ´=  (1) 

where ETX is the expected number of transmission 
attempts required for successfully transmitting a packet, S is 
the packet size, and D is the data rate of the link. A 
performance study regarding the use of ETX-based metrics can 
be found in [7]. In [8] a metric named Improved ETT is 
proposed, which focuses on the routing efficiency under 
various link conditions. In [9] the ETT metric is adapted to 
improve the estimation of transmission time by including the 
actual load of different nodes. In [10] the authors recommend 
that the queuing and transmission delay should be considered 
simultaneously in order to minimize EED. In [11] the authors 
present a novel ETT derived metric which takes into account 
the time between transmissions in each node in order to 
increase average network throughput in Wireless Mesh 
Networks. The research efforts presented above use ETT or 
ETT-based metrics to enhance performance, but the accuracy 
of these metrics was not discussed in any of these papers. Also, 
none of these proposals considers the processing delay which, 
in sensor nodes, may be relevant. 

III. END-TO-END DELAY ESTIMATION MECHANISM 

Let us assume 3 nodes: a generator, a forwarder and a sink. 
The forwarder node forwards packets from other nodes but also 
generates packets. The sink node is the destination of all 
packets. These nodes are represented in Fig. 2 where the 
generator node i uses its parent node p, to reach the sink node s. 
Node p also generates its own packets towards the sink. Fig. 2 
also presents the layered communications architecture of these 
nodes, some of their relevant functions, and a data flow. The 
rounded-corner boxes inside each layer represent labels 
characterizing relevant states in the data communications 
process. 

 

Our proposal estimates the EED by estimating all the 
delays between the labels where the data passes through, from 
the application in the generator node to the application in the 
sink node. The EED is estimated whenever a node’s 
application generates a new data packet and it is based on the 
delays obtained for previous packets. Since our nodes run the 
ContikiOS 2.5 [12] operating system, the labels were inserted 
in the ContikiOS code files, according to Table I.  

Within each node, two internal delay components are 
defined: the link delay, and the processing delay. The link 
delay comprises the time related to packet transmission and 
link queuing. The processing delay comprises the time elapsed 
while packets are being processed inside the nodes and that is 

not related to transmission or queuing. In order to obtain the 
delays in other nodes two RPL metrics are also used. So, in 
each node, the delay each packet will suffer is estimated from 
the delay of previous packets sent and from these two RPL 
metrics. 

TABLE I.  RELATION BETWEEN LABELS, FUNCTIONS AND FILES 

Label Function in code OS file 

APP-send send_packet() udp-client.c 

APP-receive receive_packet() udp-server.c 

uIP6-fwd/out 
uip_process() uip6.c 

uIP6-in 

MAC-receive input_packet() contikimac.c 

MAC-queuing send_packet() 

csma.c 
MAC-send 

transmit_queued_packet() 
PHY-send 

PHY-receive mac_call_sent_callback() 

A. Link Delay 

Fig. 3 shows the delays considered to obtain the link delay 
in node i, in particular the MAC layer queuing delay and the 
transmission delay. The link delay calculated for the packet n 
transmitted from node i to a parent node p is obtained by: 

 n

ip

n

i

n

ip onDelayTransmissiQueueDelayLinkDelay +=  (2) 

where the QueueDelay is the interval between the time the 
packet is inserted into the MAC queue until its removal, and 
the TransmissionDelay is the time interval required for the 
packet successful transmission, including the ACK reception. 

 

B. Processing Delay 

WSN nodes may have different capabilities in what 
concerns processing power and memory. In order to obtain the 
processing delay, different information paths inside a node are 
considered. In a generator node, the data payload will be 
generated by the application layer, then sent to the IP layer, and 
then passed to the MAC layer. In a forwarder node, after the 
packet is received, it is passed to the MAC layer, then to IP 
layer, and then it will be sent to the MAC queue. In the case of 
a sink node, the packet will be received, passed to the MAC 
layer, then to the IP layer, and finally delivered to the 
Application layer. These internal paths and associated delays 
are shown in Fig. 4. The delay names include the layers 
between which the delay is accounted (e.g. Delay_L5L3 is the 
delay between layer 5 and layer 3). Since the generation of data 
payload in layer 5 until the packet is received at the MAC 
layer, two internal delays are accounted: the Delay_L5L3 and 
the Delay_L3L2. For a generator node i, the Generation 
Processing Delay (GenProcDelay) for a packet n is obtained as 
follows: 
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Fig. 3. Link Delay - Generator/forwarder node and parent node 
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Fig. 2. EED estimation – WSN nodes’ interaction 
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i

n

i

n

i Delay_L3L2Delay_L5L3ayGenProcDel +=  (3) 

In the case node i is forwarding a packet n from other node, 
the following delays are accounted:  Delay_L2L3_FWD - 
which is the delay accounted between layer 2 and layer 3 of a 
packet meant to be forwarded - and Delay_L3L2. Thus, the 
Forward Processing Delay (FwdProcDelay) in node i for 
packet n is obtained by: 

 n

i

n

i

n

i Delay_L3L2_FWDDelay_L2L3ayFwdProcDel +=  (4) 

For the packet n received in the sink s, Delay_L2L3 and 
Delay_L3L5 are accounted. The Input Processing Delay 
(InProcDelay) accounted in the sink is obtained by: 

 n

s

n

s

n

s Delay_L3L5Delay_L2L3yInProcDela +=  (5) 

 

C. Internal Delays 

The internal delays used in link delay and processing delay 
components are obtained by using timers with a millisecond 
precision. These timers measure the time interval between code 
execution points defined by the labels indicated in Table I. 
Exponential Weighted Moving Averages (EWMA) are used to 
consider the history of these timers: 

1).1(. --+= n

i

last

i

n

i DelayDelayDelay bb
 

These moving averages are used to obtain QueueDelay, 
TransmissionDelay, Delay_L2L3, Delay_L2L3_FWD 
Delay_L3L5, Delay_L5L3, and Delay_L3L2. 

D. RPL Metrics 

Our proposal uses the RPL (IPv6 Routing Protocol for 
Low-power and Lossy Networks)[13] as routing protocol. 
Nodes using RPL organize themselves in a tree-like topology 
named Destination-Oriented Directed Acyclic Graph 
(DODAG) optimized according to an Objective Function (OF) 
towards one defined sink node. Our proposal assumes RPL 
using the Minimum Rank with Hysteresis Objective Function 
(MRHOF)[14], which selects routes that minimize a metric 
using hysteresis in order to reduce instability due to small 
metric changes. The rank used by OF represents a cost for the 
path selected towards the root. By applying the OF, each node 
elects one parent towards the sink from a set of candidate 
parents. Different metrics may be used, carried in a DAG 
Metric Container object, which includes a set of Routing 
Metric/Constraint objects. In order to advertise the internal 
nodes delays, our proposal uses two metrics: the Path Delay 
Metric (PathDelayMetric) which represents the cumulative link 
delays to the sink, and the Processing Delay Metric 
(ProcDelayMetric) which represents the cumulative processing 
delays to the sink. Both metrics are advertised by every node 
within the RPL routing protocol messages. The 

PathDelayMetric and ProcDelayMetric for a forwarding node i 
with an RPL preferred parent p and sink s, can be obtained by: 

 
ps

n

ipis etricPathDelayMLinkDelayetricPathDelayM +=  (6) 

 
ps

n

iis etricProcDelayMelaydProcDFwcDelayMetriProc += (7) 

A sink node s advertises to its neighbors a PathDelayMetric 
of zero and a ProcDelayMetric according to the following: 

 n

sss ProcDelayInetricProcDelayM =   

The other nodes will broadcast both path and processing 
metrics according to the RPL specification. 

E. In-node End-to-end Delay Estimation 

In our proposal, the EED estimation is composed of the 
end-to-end path delay which is the sum of all link delays, and 
the processing delay which is the sum of all processing delays. 
For a node i with parent p, the Path Delay (PathDelay) of 
packet n sent to the sink s is calculated as follows: 

 
ps

n

ip

n

is etricPathDelayMLinkDelayPathDelay +=  (8) 

The PathDelay is obtained by the same elements of the 
PathDelayMetric (Eq. 6). However, it is calculated when a 
packet is generated while the PathDelayMetric is calculated 
when RPL advertisements need to be sent to the neighbors, 
which in turn depends on the hysteresis function. 

For a packet n generated by node i and sent to the sink s, 
the Processing Delay (ProcDelay) estimated in node i is the 
following: 

 
ps

n

i

n

is etricProcDelayMProcDelayGenProcDelay +=  (9) 

The EED estimation mechanism is presented in Fig. 5 and 
it is implemented in all nodes of the WSN. 

 

When a node i needs to send a data packet n it estimates the 
EED towards sink s using PathDelay and the ProcDelay 
obtained for the last packet as follows: 

 1-n

is

1-n

is

n

is ProcDelayPathDelayEDEstimatedE +=  (10) 

IV. HARDWARE AND SIMULATION ENVIRONMENT 

A test scenario was deployed and the Contiki Cooja 
Simulator [15] was used to validate our EED estimation 
proposal. The network topology adopted is shown in Fig. 6 and 
the simulation parameters are presented in Table II. The 
simulated scenario consists of 16 generator/forwarder nodes 
placed within a distance of 30 meters from each other plus a 
sink node, deployed in a WSN area of 100 meters by 100 
meters. Each node was simulated as a Tmote Sky[16] 
composed of a MSP430F1611 micro-controller and a CC2420 
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Fig. 4. Processing Delay - Generator/forwarder node and sink node 
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Fig. 5. EED Estimation using PathDelay and ProcDelay 



radio with a data rate of 250 kbit/s using IEEE 802.15.4 MAC 
and PHY layer specifications, with transmission and 
interference ranges of 30 meters, and using the Unit Disk 
Graph Medium as physical channel model. The nodes run the 
Contiki OS 2.5[12] and were programmed to enable the debug 
of application and RPL messages. Extra code was programmed 
to implement the timers in each node and the respective 
processing delay was measured, having an impact of 16 ms per 
processed packet. The application layer uses UDP as transport 
layer and it generates packets of 100 Bytes in a Constant Bit 
Rate (CBR) by using constant Inter-packet Generation 
Intervals (IGIs). The simulations were repeated 10 times using 
different seeds. Simulations were configured to stop when the 
sink has received 500 packets from each node. 

 

TABLE II.  SIMULATION PARAMETERS 

Parameter Value 

Number of nodes 16 + sink node 

Deployment area 100 m x 100 m 

Transmission range 30 m 

Channel model Unit Disk Graph Medium 

Packet size 100 Bytes 

Transport/Application UDP/CBR 

 

In the simulation, the ETT-based solution was compared 
against our proposal and the EED estimation is obtained using 
the Eq. 1. RPL was configured to use the ETX metric. The 
metric value is multiplied by a transmission ratio in order to 
obtain the estimation of the EED as shown in Fig. 7. 

 

The simulator was configured to output the time instant 
when a packet is generated and when a packet reaches the 
destination application. In order to caracterize the EED 
estimation accuracy, when a packet is generated an EED 
estimation is performed, saved, and compared later with the 
real EED. The absolute value of the difference between the 
estimation and the real results is taken as the EED estimation 
error. During simulations the EED estimation errors for all 
packets and for all the nodes are accounted. When simulation 
ends the average of these errors is calculated as the average 
EED estimation error. Confidence intervals of 90% are 
obtained. 

V. RESULTS AND ANALYSIS 

Fig. 8 shows the average EED estimation error and 
respective confidence intervals for both solutions, for IGIs 
ranging from 1 to 10 seconds in steps of 1 second. The results 
show that, for IGIs below 2 seconds the average estimation 
error of our proposal is higher than the obtained for the ETT-
based solution. For an IGI equal or larger than 2 seconds 
(smaller traffic loads), our proposal presents an average 
estimation error below the ETT-based solution. For an IGI 
higher than 3 seconds, the difference obtained from the both 
solutions is approximately constant, having a value around 250 
ms. 

 

Fig. 9 zooms Fig. 8 and shows the average EED estimation 
error for both solutions obtained for IGI but ranging from 0.5 
to 5 seconds, in steps of 0.5 seconds. The results show that, for 
IGIs shorter than 1.5 seconds, our proposal presents an higher 
estimation error than the ETT-based solution. For an IGI value 
of 1.5 seconds the average estimation error obtained for both 
solutions is approximately the same; above that value, our 
proposal presents lower average estimation errors. 

 

Fig. 10 shows the average PathDelay and ProcDelay 
distributions of the EED estimation for our proposal and IGIs 
ranging from 0.5 to 5 seconds. For IGIs ranging from 0.5 to 2.5 
seconds the ProcDelay component accounts 5% of the total 
EED estimation and it increases gradually up to 35%. For IGIs 
larger than 2.5 seconds the ProcDelay component becomes 

 

Fig. 9. Average EED Estimation Error – IGI from 0.5 to 5s 
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Fig. 6. Simulation Topology 

 

Fig. 8. Average EED Estimation Error – IGI from 1 to 10s 
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Fig. 7. EED estimation using ETT-based solution 



approximately constant and it accounts for about 35% of the 
EED estimation. From the results shown in Fig. 9 and Fig. 10 
we conclude that, for IGIs below 1.5 seconds, the PathDelay 
has an impact higher than the ProcDelay. For these high 
network loads, the PathDelay suffers from the links instability 
and it turns highly unpredictable making our estimation less 
accurate. For IGIs above 1.5 seconds, the ProcDelay represents 
around 30% of the EED estimation and our proposal presents 
higher accuracy than the obtained by the ETT-based solution, 
benefiting from the consideration of processing delays. 

 

Fig. 11 presents the average number of RPL packets sent by 
both solutions, per node and per simulation, for IGIs ranging 
from 0.5 to 5 seconds. The results show that, for all IGIs, the 
number of RPL packets generated by our proposal is 3 times 
the number of packets generated by the ETT-based solution. 
From the results shown in Fig. 9 and Fig. 11 we can conclude 
that the new RPL metrics used in our proposal lead to an higher 
advertisement rate due to the ProcDelayMetric and 
PathDelayMetric changes that occur more often than the ETX 
metric. Thus, for shorter IGIs (high loads), our proposal has 
higher estimation errors than the ETT-based solution. This high 
advertisement rate becomes a benefit for our proposal for IGIs 
larger than 1.5 seconds, since it enables a more accurate 
estimation. 

 

Fig. 12 and Fig. 13 present the average EED estimation 
error for both solutions obtained for specific nodes (node 8 and 

node 5), for IGIs ranging from 1 to 10 seconds. Fig. 12 
presents the results for node 8 which has the sink as parent. Fig. 
13 presents the results for the node 5 which has two forwarder 
nodes in the path for the sink. The results show that nodes 
closer to the sink (e.g. node 8) have estimation errors smaller 
than the nodes more distant from the sink (e.g. node 5). Also, 
for the nodes far from the sink, the difference between the 
estimations using ETT-based solution and our proposal is 
higher. For IGIs shorter than 6 seconds, the estimation in nodes 
far from the sink becomes largely inaccurate, when compared 
to nodes closer to sink. For IGI values of 1 and 2 seconds in 
node 5, results show that there were no packets arriving 
destination and so the average estimation error is zero. 

 

 

Fig. 14 presents the average EED for both solutions and for 
IGIs ranging from 1 to 10 seconds. The results show that, for 
almost all IGIs, the average EED obtained for our proposal is 
higher than the obtained for ETT-based solutions, except for 
the IGI of 3 seconds. At the same time, for IGIs shorter than 3 
seconds, the difference of both solutions is accentuated. The 
results in Fig. 14 also show that the average EED values are 
closer to the estimate EED errors presented in Fig. 8. Our 
proposal intends to take advantage of the maximum EED 
verified and, for an IGI of 5 seconds, it presents an average 
EED of 1000 ms and an error around 690 ms. Thus, in this case 
it is expected that a packet reachs the sink at maximum of 1690 
ms for our proposal against around 2000 ms for the ETT-based 
proposal.  

 

Fig. 11. Average number of RPL packets – IGI from 0.5 to 5s 

 

Fig. 12. Average EED Estimation Error – node 8 

 

Fig. 13. Average EED Estimation Error – node 5  

 

Fig. 10. ProcDelay and PathDelay Distribution – IGI from 0.5 to 5s 



 

Fig. 15 presents the Packet Reception Ratio (PRR) for both 
solutions and for IGIs ranging from 1 to 10 seconds. The 
results show that for IGIs shorter than 7 seconds, the PRR of 
our proposal is less than the PRR obtained for the ETT-based 
solution, with a constant difference of approximately 10%. The 
results presented in Fig. 14 and Fig. 15 indicate that the 
proposed mechanism has no significant impact on these 
performance items for an IGI higher than 7 seconds. For IGI 
shorter than 3 seconds, the average EED increases significantly 
when compared to ETT-based solution; for an IGI shorter than 
7 seconds, the PRR is affected in approximately 10%. This 
impact is due to the higher refresh rates of the RPL metrics 
used in our proposal, as explained above. 

 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper is proposed a novel real-time mechanism used 
to estimate per-packet end-to-end delay for monitoring 
applications running in WSN. This proposal accounts both the 
transmission and processing delays of previous packets to 
estimate the EED for each new packet. The EED estimation is 
obtained by combining internal timers with two cumulative 
RPL metrics. 

Our proposal was compared against an ETT-based solution 
and the results show that our proposal produces a more 
accurate EED estimation for low network loads, without 

impacting significantly on the network performance in terms of 
average EED and PRR values. 

Our proposal can be used to provide a node with EED 
information before it transmits a packet. By dropping useless 
packets a network can see its performance improved. These 
mechanisms can also be used to save nodes energy by avoiding 
the transmission of useless data. 
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