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Abstract—Consider a network in which adjacent nodes ex-
change messages via multiple communication channels. Multi-
ple channels between adjacent nodes are desirable due to their
cost effectiveness and improved fault-tolerance. We consider
the problem of providing deterministic quality of service guar-
antees in this network. We show that any scheduling protocol
designed for a single channel can be converted into a multiple-
channel scheduling protocol without significantly increasing
the delay at the scheduling node. However, because there are
multiple channels between adjacent nodes, the packets of a
flow may be reordered. This in turn significantly increases the
upper bound on the end-to-end delay of the flow. We show
how this increase in delay can be avoided through the use of
efficient sorting techniques.

I. INTRODUCTION

Packet scheduling protocols that provide deterministic
quality of service guarantees flourished in the previous
decade (for a survey, see [23]). Many of these protocols are
based, one way or another, on earlier work on task schedul-
ing. In particular, they are based on the techniques given
in the landmark paper of Liu and Layland on periodic task
scheduling [16].

In [16], all tasks share a single resource. In the last few
years, there has been significant work in the scheduling of
periodic tasks over multiple resources [1], [2], [17]. Even
though the theory of periodic task scheduling over multiple
resources has began to show promise, there has been lit-
tle work to develop packet scheduling protocols over mul-
tiple channels between network nodes. This is due in part
to the belief that multiple channels between nodes is either
not practical or uncommon. However, there is significant
evidence to the contrary.

In a recent paper [3], it was argued that packet reorder-
ing is not a “pathological” problem, but rather a normal
occurrence. That is, packets are reordered not only due to
route changes (which are rare), but also due to inherent par-
allelism in the network. One cause for this parallelism is the
aggressive deployment of parallel channels between nodes.
As stated in [3], in a survey of 38 major service providers in
1997, only two had no parallel channels between its nodes.
The reason for this approach is that it often reduces equip-
ment and trunk costs. That is, it is often more cost effective

to put two components in parallel than to use one compo-
nent that has twice the speed. In addition, it improves fault-
tolerance.

Another technology that provides multiple channels be-
tween nodes is the establishment of light-paths in wave-
division multiplexed (WDM) optical networks. Although
the establishment of light-paths is usually semi-permanent,
recent work allows the establishment of light-paths on-
demand, to reflect the changes in network load over time
[11]. If there is a significant load between two nodes in the
network, it is possible that a single light-path may not pro-
vide enough bandwidth between them, which calls for the
establishment of additional light-paths between these nodes.
Thus, multiple communication channels may be established
between two nodes (for more examples of multiple-channel
systems, see [4].)

Given the evidence of multiple channels between nodes
presented above, it is likely that multiple channels will con-
tinue to exist. Therefore, it is reasonable to assume that
if a guaranteed quality of service protocol is deployed on
a global scale, it will likely traverse at some point net-
work nodes with multiple channels between them. Thus,
the problem of scheduling packets for guaranteed quality of
service in the presence of multiple channels must be studied.

In [4], the first scheduling protocol for guaranteed service
over multiple channels is presented. The scheduling pro-
tocol assigns timestamps to packets in the same way as in
weighted-fair-queuing [15], [18], and packets are forwarded
to channels in order of increasing timestamp. However, no
other scheduling protocols were considered, and the end-
to-end delay of a series of multiple-channel nodes was not
considered.

In this paper, we present general techniques to develop
multiple-channel scheduling protocols. In particular, we
show two techniques which take a single-channel schedul-
ing protocol and convert it to a multiple-channel protocol.
In addition, we consider the end-to-end delay of packets
through a series of multiple-channel nodes. We observe
that the addition of multiple channels may significantly in-
crease the end-to-end delay due to packet reorder. We show
how this increase in delay can be prevented through efficient
sorting techniques.

Due to space limitations, some proofs have been omitted.



The omitted proofs may be found in [7].

II. SINGLE-CHANNEL NETWORK MODEL

In this section, we define the network model for single-
channel scheduling, and also define the quality of service
that the model assigns to each flow of packets. We base our
model on the models of [5] and [10]. We present multiple-
channel scheduling in Section III.

A network is a set of nodes interconnected by point-to-
point communication channels. For every pair of nodes� and

�
, there is at most one channel from � to

�
and at

most one channel from
�

to � . Every output channel in a
node is equipped with a scheduler. From the input chan-
nels, the scheduler receives packets from flows whose path
include the output channel of the scheduler. The scheduler
then chooses the transmission order and transmission time
of these packets over its output channel. This is shown in
Figure 1.

We say a packet is forwarded to the output channel when
its first bit is transmitted over the output channel. We say
a packet exits a scheduler when the last bit of the packet
is transmitted by the output channel of the scheduler, and
hence, the output channel becomes idle at this moment. To
simplify our discussion, we ignore channel propagation de-
lays, since they simply add a constant delay to each packet.

We adopt the following notation for each flow � and each
scheduler � along the path of � .���

bandwidth reserved for flow � .� �	� 
�����
packet of � ,
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 from � .' $ output bandwidth of scheduler � .
Consider a scheduler � and a flow � . We define the start-

time ( $ � �	� 
 and finish-time ) $ � �	� 
 of packet � �	� 
 at scheduler� as follows [5][10]. Assume � were to forward the packets
of � at exactly

���
bits/sec.. Then, ( $ � �	� 
 is the time at which

the first bit of � �	� 
 is forwarded by � , and ) $ � �	� 
 is the time at
which the last bit of � �	� 
 is forwarded by � . More formally,
let � be an input flow of scheduler � . Then,
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Each scheduler � forwards the packets of each input flow� at a rate of at least
���

. Therefore, for each packet � �	� 
 , its
exit time from the scheduler is close to its start time, ( $ � �	� 
 .
We refer to these schedulers as start-time schedulers [5],
[6], [10], [14].
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Fig. 1. Output channels and their schedulers.

Definition 1: A scheduler � is a start-time scheduler if
and only if, for every input flow � of � and every

�
,
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for some constant
? $ � �	� 
 .

We refer to
? $ � �	� 
 as the start-time delay of packet � �	� 
 at

scheduler � , and we refer to ( $ � �	� 
A;#? $ � �	� 
 as the start-time
deadline of � �	� 
 at � . Throughout the paper, we assume all
schedulers are start-time schedulers.

The start-time delay is broad enough to encompass the
delay provided by many scheduling protocols. For exam-
ple, by choosing

? $ � �	� 
�+B���	� 
�CD���E;F�������$ C ' $ , ? $ � �	� 
 be-
comes the delay of virtual-clock and weighted-fair-queuing
protocols [18], [21]. Another example is the real-time chan-
nel model, [8], [24] where each flow has constant packet
size and constant packet delay. This is represented above by
having

? $ � �	� 
 and
���	� 


be constant for all
�
.

We next consider the delay of a packet across a sequence
of schedulers. Because the start-time of a packet determines
its exit time from a scheduler, a bounded end-to-end delay
requires a bounded per-hop increase in the start-time of the
packet. This bound is as follows.

Theorem 1: Let � be a start-time scheduler, � be an input
flow of � , and G be the next scheduler after � . Then, for all

�
,
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>� ( $ � �	� 
H;#I $ � �	� 
 (1)
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This bound was shown in [6], [10], and it also follows
from the results in [24]. From induction and the definition
of a start-time scheduler, we can obtain the following end-
to-end delay bound.

Corollary 1: Let G �S/ G0T / Q	Q	Q / G0U be a sequence of U start-
time schedulers traversed by flow � . For all
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Fig. 2. Multiple output channels per node.
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Notice that the above bounds are independent of the par-
ticular scheduling technique, and the bandwidth of the chan-
nel between the schedulers. The only requirement is that the
schedulers are start-time schedulers.

III. � -CHANNEL NETWORK MODEL

We next enhance the network model to include multiple
channels between nodes. This is shown in Figure 2. All the
channels to the same neighboring node are managed by a
single scheduler. For simplicity, we assume all the channels
managed by the same scheduler have equal bandwidth.

Definition 2: A scheduler � is an � -channel scheduler if
it has a total of � output channels. An � -channel scheduler
has capacity

'
if and only if each of its � channels has

capacity
' C � .

Since all channels of a scheduler lead to the same node,
and they all have the same bandwidth, it is irrelevant which
channel is used to forward a packet. Hence, when any of
the channels becomes idle, the scheduler will pick the next
packet from its queue and forward it to the idle channel.

Note that packets from a flow can become reordered
along their path to the destination. This is due to the fact
that multiple output channels can become idle at the same
time, and packets � �	� 
 and � �	� 1 
 �J*65 can be forwarded to a
pair of channels at the same time. If

���	� 
 8 � �	� 1 
 �J*65
, then� �	� 1 
 �J*65 will arrive earlier to the next node than � �	� 
 , and

hence, be reordered.
Each node has the option to either process the packets of

each flow in FCFS order, or sort the packets of each flow
back to their original order. We will consider both of these
cases. In both cases, the start-time of each packet is com-
puted using the same formulae as before. However, the in-
dex of the packet may change from one scheduler to the next
due to reorder.

IV. � -CHANNEL END-TO-END DELAY

As discussed above, an � -channel scheduler may reorder
packets. Therefore, even if the scheduler is a start-time
scheduler, we cannot apply Theorem 1, because this theo-
rem assumes no packet reorder. We next present some gen-
eral results about a scheduler which reorders packets. We
then apply these results to the reorder introduced by an � -
channel scheduler.

We begin with a lemma that bounds the start-time of
packets in the presence of limited reorder.

Lemma 1: Consider a start-time scheduler � which may
reorder packets. Let � be an input flow of � , and denote
the output flow corresponding to � as flow � (which may be
reordered). Let ��� � � + � �	� 
 , that is, the

 S��
packet of the

output flow � is the
� ��

packet of flow � . Finally, let G be the
next scheduler after � .

1) Assume � �	� 
 is the last packet of flow � . Then,

(  � � � ��� ( $ � �	� 
<;#I $ � �	� 

2) Assume � �	� 1 
 � � 5 is the last packet of flow � . Then,
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 � �� X 
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Lemma 1 implies that if no packet after � �	� 
 is reordered
with � �	� 
 , then the increase in start-time of � �	� 
 is the same
as in Theorem 1. Furthermore, if packets � �	� 1 
 �J*65 up to� �	� 1 
 � � 5 are reordered with � �	� 
 , then the start-time of � �	� 

increases in proportion to the number of bytes in these pack-
ets.

We next apply this lemma to the limited reorder intro-
duced by an � -channel scheduler.

Theorem 2: Let � be an � -channel start-time scheduler,� be an input flow of � , and G be the next scheduler of � after� . Let � be the output flow of � corresponding to � , and let��� � � + � �	� 
 , that is, the
 S��

packet of the output flow � is the� ��
packet of flow � . Then,

(  � � � ��� ( $ � �	� 
<;#I $ � �	� 
<; .��	� � 7�
 ���	� 
���

Proof: Notice that an � -channel reorders packets, but
with limited reorder. That is, for a packet � �	� 
 , while it is
being transmitted in a channel, packets from � after � �	� 

could be transmitted. These packets can add to no more
than .���� � 7
 ���	� 
 bytes. This is because we have only
��� � additional channels, and the packets in these channels
must exit before � �	� 
 exits. Since packets received after � �	� 

do not affect the start-time of � �	� 
 , we can consider these
additional packets to be the last packets of the flow. Hence,
from Lemma 1
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Fig. 3. N-Channel emulation of a 1-channel scheduler.

Theorem 2 shows that the packet reorder introduced by an
� -channel scheduler affects the start-time of each packet at
the next scheduler. The impact of this increase depends on
the values of � and

���	� 
�CD���
. It is likely that � will be quite

small, with only a few channels between nodes. However,
the term

���	� 
�CD���
may be significant, and for some applica-

tions, even a per-hop delay equal to
���	� 
�CD���

is too large.
Thus, the impact of packet reorder is significant. In Sec-
tion VII, we show how packets can be efficiently sorted to
prevent this increase in the start-time.

V. 1-CHANNEL EMULATION

We have considered the increase in start-time across an
� -channel server. However, we have not considered how
the scheduler chooses packets to be forwarded. Although
scheduling protocols tailored specifically for multiple chan-
nels can be developed, one obvious question to ask is if ex-
isting scheduling protocols can be adapted to multiple chan-
nels. In particular, if all single-channel scheduling protocols
can be adapted to multiple channels. We next address this
question.

Consider Fig. 3. In this figure we have three sched-
ulers. Scheduler � is a 1-channel scheduler with capacity'

. Scheduler � is a 1-channel scheduler whose output chan-
nel has infinite capacity and whose input flows are the same
as those of � . Scheduler G is an � -channel scheduler of ca-
pacity

'
.

The behavior of these schedulers is as follows. Scheduler� will forward to G each packet at exactly the same time at
which the same packet is forwarded by � . Notice that since
the capacity of � is infinity, this implies that � is non-work
conserving, and that once � forwards a packet, the packet is
received immediately by G . Also notice that after � forwards
a packet of size

�
to G , it may not forward the next packet

until
��C '

seconds later. Finally, G is work-conserving. It
simply queues the packets received from � , and it forwards

packets in FCFS order to its � output channels. In a sense,
schedulers � and G emulate the behavior of scheduler � , ex-
cept that the packets are distributed over � channels.

We next compare the behavior of these two systems.
Theorem 3: Let � be a

�
-channel scheduler with capacity'

. Assume a 1-channel scheduler � has capacity � and
has the same input flows as � . Let � forward packets in the
same order as � and at exactly the same time as � . AssumeG is a work-conserving, FCFS, � -channel scheduler with
capacity

'
. Let G be after � . Then, for all input flows � and

for all
�
,
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Proof: If packet � �	� 
 arrives at G and is sent immedi-
ately to a channel, (i.e., no queuing at G ), then the extra delay
suffered at G is at most

����� 	
��� � ����� 	
 , which is equal to,

.��	� � 7�
 ���	� 
'
Consider now that when � �	� 
 arrives at G , all channels are

occupied (i.e., � �	� 
 is queued at G ). Let ��� � � be the latest
packet before � �	� 
 such that ��� � � suffered no queuing at G
(i.e. there was one empty channel at the time � � � � arrives atG ). Thus, from

% � � � � � up to
%  � �	� 
 all channels are occupied.

Let the channel backlog be the sum over all channels of
the number of bits which remain to be transmitted from the
packet currently in the channel. Let � be the channel back-
log at time

% 2 � � � � . Note that � � .��	� � 7�
 ������� , because
there is one empty channel at this time, and each channel
can have at most

������� bits.
Let � be the total number of bits in the sequence of pack-

ets arriving at G starting from time
%  � � � � and ending at time% 2 � �	� 
 . That is, we start with ��� � � and end with the packet

previous to � �	� 
 . Since packets arrive at G at a rate of at most'
, the length of the interval � %  � � � �S/ %  � �	� 
 7 is at least

� '
Also, during � %  � � � �S/ %  � �	� 
 7 , since all channels are busy

during this interval, the number of bits forwarded is

' 
 . %  � �	� 
 � %  � � � � 7 � ' 
 � ' + �
Hence, at time

% 2 � �	� 
 the channel backlog plus the packets
in the queue ahead of � �	� 
 is at most � bits, that is, at most
the channel backlog at time

% 2 � � � � .
These � bits prevent � �	� 
 from going into a channel. How

long is it before � �	� 
 is forwarded to a channel? Notice that
all channels will be busy until � �	� 
 is forwarded to a channel.
Hence, in the worst case, all � bits are in the channels, and



they are evenly spread over all channels. Hence, � �	� 
 begins
transmission no later than time

%  � �	� 
<;�� 

+ %  � �	� 
H; � '

The exit time,
&  � �	� 
 , is thus,
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The additional delay compared to a single channel scheduler
is as follows.
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Thus,

&  � �	� 
 � &��0� �	� 
>� �' ; � 
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Since � � .�� � � 7�
 ������� ,
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Reducing, we obtain,
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The above theorem shows that we can implement an � -
channel scheduler based upon any 1-channel scheduler. The
penalty for doing so is an increase in the exit time of each
packet. Notice, however, that the increase is quite small.
It is less than the time required for one of the channels to
transmit two packets. This is not significant if the channel
bandwidth is large.

Note that the bound on the exit-time difference is similar
to the bound obtained in [4]. However, the bound in [4] is
specific to weighted-fair queuing. In our case, the bound
applies to any scheduler, regardless of type. For example,
a stop-and-go scheduler [12] and all the schedulers in the
family of rate-proportional servers [19] exhibit this bound.

The behavior of both � and G can be combined into a sin-
gle scheduler which emulates � . In this case, we say that �
emulates � .

Definition 3: An � -channel scheduler � emulates a 1-
channel scheduler � if and only if all of the following
hold.
� The capacity of both � and � is the same.
� � forwards packets in the same order as � does.
� A packet in � is eligible to be forwarded when the

packet is forwarded by � .
� A channel cannot be idle while there are eligible pack-

ets in � .

Thus far, we placed no restrictions on the type of sched-
uler � . Next, we focus on a start-time scheduler.

Corollary 2: Let � be an � -channel scheduler which em-
ulates a 1-channel start-time scheduler � . Let

'
be their

capacity.
1) For all input flows � and all

�
,
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<; .�� � � 7 
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'
2) Let � be an input flow of � , � be the output flow of� corresponding to � (which may be reordered), and��� � � + � �	� 
 .

(  � � � � � ( $ � �	� 
<;#I �0� �	� 
<; .��	� � 7�
 �������$' ;
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where G is the next scheduler in the path of � after � .
Part one of Corollary 2 shows that if the 1-channel sched-

uler being emulated is a start-time scheduler, then the re-
sulting � -channel scheduler is also a start-time scheduler,
whose start-time delay is slightly higher than that of the em-
ulated scheduler. Part two shows the increase in the start-
time of a packet as it traverses the � -channel scheduler.
This includes the additional term

.��	� � 7�
 ���	� 
���
due to the reordering of packets. As we mentioned earlier,
we can reduce this term by efficiently sorting packets, which
is discussed in Section VII.

VI. BOUNDED APPETITE SERVERS

A disadvantage of the emulation of a 1-channel sched-
uler is that the resulting � -channel scheduler is not work-
conserving. For example, assume the scheduler and its
channels are idle, and the scheduler receives two packets at
the same time. After the scheduler forwards the first packet,
it cannot forward the second packet until

��C '
seconds later,

where
�

is the size of the first packet. We would like to con-
sider work-conserving schemes to schedule packets over �
channels. In particular, we would like to be as general as
possible, and to be close to existing protocols for 1-channel
schedulers.

We consider schedulers which assign deadlines to pack-
ets and forward packets in order of increasing deadline. This
can be done by assigning a timestamp to each packet, and
then forwarding packets in order of increasing timestamp.
However, the timestamp need not be exactly equal to the
deadline. For example, in self-clocking fair queuing [13]



and weighted fair queuing [15], [18], the timestamp as-
signed to each packet is not equal to its intended deadline.
However, we require that if a packet � �	� 
 has a timestamp
greater than the timestamp of another packet � � � � , then the
deadline of � �	� 
 is greater than the deadline of ��� � � .

To guarantee that packets exit by their deadlines, we re-
quire the following bound on the occurrence of deadlines,
which was introduced in [9].

Definition 4: A scheduler � with capacity
'

satisfies the
bounded appetite property if and only if, for all intervals
� � / ��� , the packets which arrive during the interval and
whose deadlines are at most

�
sum to at most . � � � 7 
 '

bytes. That is,� W � /0��� . � � % $ � �	� 
>� � 7�� .�� $ � �	� 
 � � 7 �=� $ � �	� 
�	� . � � � 7 
 '
where � $ � �	� 
 is the deadline of packet � �	� 
 at scheduler � .

Without loss of generality, we assume that � $ � �	� 
 �% $ � �	� 
J; ���	� 
�C . ' C � 7 for an � -channel server � . We next
consider the exit time from a work conserving � -channel
scheduler with bounded appetite.

Theorem 4: Consider an � -channel, work-conserving
scheduler � which satisfies the bounded appetite property
and has capacity

'
. Let � forward packets in order of their

deadlines. Then, for all input flows � and for all
�
,

& $ � �	� 
>� � $ � �	� 
<; �

 �������$'

Proof: The proof is similar to that of Theorem 3. As-
sume when packet � �	� 
 arrives at � it goes directly into a
channel. Then,
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Consider now when � �	� 
 arrives at � , and all channels
are occupied (i.e., � �	� 
 is queued at � ). Let 
 be the latest
time, but no later than

% $ � �	� 
 , such that one of the following
holds:

1) A packet ��� � � was forwarded directly to an output
channel (��� � � has no queuing delay at � ) and all pack-
ets forwarded in the interval � 
 / % $ � �	� 
 � , including ��� � � ,
have deadlines at most � $ � �	� 
 .

2) A packet ��� � � was forwarded, where � $ � � � � 8 � $ � �	� 
 ,
and all packets forwarded in the interval .�
 / % $ � �	� 
 � ,
have deadlines at most � $ � �	� 
 .

Consider the first case. Since � �	� 
 arrives at time
% $ � �	� 
 ,

only packets with deadlines at most � $ � �	� 
 are forwarded
during the interval � 
 / & $ � �	� 
 � . Furthermore, any packet for-
warded during the interval � 
 / & $ � �	� 
 � must arrive at 
 or
later, because ��� � � has no queuing delay.

Since the deadline of a packet is greater than its arrival
time, only packets arriving in the interval � 
 / � $ � �	� 
 � can

have a deadline of at most � $ � �	� 
 . From the bounded ap-
petite property, these packets add to at most

.�� $ � �	� 
 ��
 7 
 ' (2)

bytes. Note that only these packets and the channel backlog
at time 
 2 can be forwarded before � �	� 
 .

The channel backlog at time 
 2 can be at most .�� � � 7 
� �����$ bits, since there was an empty channel when � � � � ar-
rived. Furthermore, from the definition of � � � � , all channels
are busy until ��� � � is forwarded.

The case which delays the forwarding of � �	� 
 the most is
when all channels at the same time finish transmitting their
packets. In this way, no channel will become free until the
very last moment. Hence, � �	� 
 has an exit time as follows.

& $ � �	� 
>� 
 ; .�� $ � �	� 
 ��
 7 
 '' ; .�� � � 7�
 � �����$'
Reducing we obtain,

& $ � �	� 
>� � $ � �	� 
<; .�� � � 7 
 �������$'
A similar reasoning applies to the second case, except

that ��� � � is not counted in (2) above. Hence, packets in the
channel backlog at time 
 (including ��� � � ) plus those pack-
ets counted in (2) may exit before � �	� 
 is forwarded to a
channel. The backlog at time 
 is at most � 
 �������$ . Hence,
the exit time is as follows.

& $ � �	� 
>� � $ � �	� 
<; �

 �������$'

It was shown in [9] that weighted fair queuing and virtual
clock are bounded appetite scheduling protocols, and their
deadlines satisfy the following.

� $ � �	� 
>� ( $ � �	� 
<;
���	� 

���

We therefore have the following corollary.
Corollary 3: Let � be a work-conserving, � -channel

server with capacity
'

. Let � assign timestamps to packets
as weighted fair queuing or virtual clock, and forward pack-
ets to the channels in order of increasing timestamp. Let �
be an input flow of � , let � be the output flow corresponding
to � (which could be reordered) and let � � � � + � �	� 
 . Then,

? $ � �	� 
 � ���	� 

��� ; �


 �������$'
& $ � �	� 
 � ( $ � �	� 
<;

���	� 

��� ; �


 �������$'
(  � � � � � ( $ � �	� 
<;

��������	� 

��� ; � 
 �������$' ;

.�� � � 7�
 ���	� 
���



Corollary 3 provides a slightly tighter bound on the exit
time of a packet than the bound given in [4] for a multiple-
channel weighted fair-queuing scheduler. More importantly,
however, is that the corollary may be applied to any sched-
uler which satisfies the bounded appetite property. In ad-
dition to the typical timestamp protocols of virtual clock
[21] and weighted fair queuing [15], [18], protocols such
as stop-and-go [12] and rate-controlled static priority queu-
ing [25] have bounded appetite [9]. Although these latter
protocols are not work-conserving, they define an eligibility
time for each packet. After the eligibility time of the packet
has elapsed, the packet is scheduled according to its dead-
line. Thus, if we consider each packet as arriving into the
scheduler at its eligibility time, then the above corollary also
applies to these protocols.

VII. SORTING SERVERS

We next attempt to reduce the increase in start-time
shown in Theorem 2. This increase is caused by the reorder-
ing of packets through the � -channel scheduler. To reduce
this start-time, the next scheduler must restore packets to
their original order. We consider a couple of techniques to
perform this ordering.

Both techniques assume that, for each packet � �	� 
 at a
scheduler � , there is an eligibility time � $ � �	� 
 , and the sched-
uler will not forward � �	� 
 before this time. Since a packet
has not truly “arrived” to the scheduler until its eligibility
time, we redefine the start-time as follows.

( $ � �	� 
 +�� ��� .�� $ � �	� 
0/ ) $ � �	� 1 
324*6507

) $ � �	� 
J+ ( $ � �	� 
<;
���	� 

���

The first technique is a jitter reduction technique, similar
to the technique in [22]. If � is a start-time scheduler, then
each packet is timestamped with the difference between its
exit time and its start-time deadline. That is, each packet� �	� 
 is timestamped with the value � $ � �	� 
 , where

� $ � �	� 
J+F& $ � �	� 
 � . ( $ � �	� 
<;@? $ � �	� 
 7
If G is the next scheduler after � , then the eligibility time is
as follows.

�  � �	� 
J+ %  � �	� 
<; � $ � �	� 
J+ ( $ � �	� 
<;@? $ � �	� 

By using the above technique, each packet � �	� 
 is eligi-

ble at G exactly at its start-time deadline ( $ � �	� 
 ; ? $ � �	� 
 . In
all start-time scheduling protocols in the literature, the start-
time deadlines increase with each new packet of the same
flow. Hence, packets will become eligible at G in sorted or-
der.

The above technique has the disadvantage of not being
work-conserving. In particular, a flow cannot exceed its re-
served rate and take advantage of unused bandwidth, since

 

queues of 
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intervals 

output 
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Fig. 4. Output queue of scheduler with eligibility times.

the schedulers along its path will only forward its packets at
the reserved rate.

In our second technique, a packet at G becomes eligible no
earlier than its arrival time plus the maximum transmission
time of one packet. In this way, when packet � �	� 
 is eligible
at G , all other packets � �	� � ,  �� �

, have already been received
at G . We assume that each packet � �	� 
 includes its index

�
in

its header. Scheduler G sorts the packets of � in order of
their indices before forwarding them to the output channels.
Hence, the increase in start-time due to reorder is prevented.

Theorem 5: Let � be a start-time � -channel scheduler of
capacity

'
, � be an input flow of � , and G be the next sched-

uler of � after � . In addition, we assume the following.
� There exists a 	 such that for all � and

�
,

%  � �	� 
<; � 
 �������$' � �  � �	� 
>� %  � �	� 
<; 	
� G sorts packets of � in order of increasing index, and

forwards them in order to the output channels.
� A packet � �	� 
 is not eligible at G if there is a packet � �	� � , ��#�

, which is also not eligible.
Then, the start-time at G is as follows.

(  � �	� 
>� ( $ � �	� 
<;#I $ � �	� 
H; 	

The above technique, although not work-conserving,
does allow the packets of a flow to be forwarded at a rate
greater than the flow’s reserved rate. However, it must be
implemented efficiently and with a small value of 	 .

We borrow the sorting technique of [20]. Here, we as-
sume packets are assigned timestamps, and are forwarded
in timestamp order. The major problem is that packets can-
not be added to the output queue until their eligibility time.
If one packet from each flow becomes eligible at the same
time, than all these packets must be added at once to the
output queue. If there are 
 flows, this takes O( 
 
�� �� 
 )
time, which is excessive.

To avoid this, time is divided into adjacent fixed-size in-
tervals of length � . For each interval .�� 
 � / .�� ; � 7 
 � � , there
is a packet priority queue, arranged in timestamp order. The
queue of the interval only contains packets which become
eligible during this interval. At time .�� ;9� 7 
 � , the queue
elapses, and it is inserted into the output queue.



The output queue is a balanced search tree, whose leaves
are the roots of elapsed interval queues (see Figure 4). To
limit the size of the output queue, only one packet per flow
can be in an interval queue (whether the interval queue has
elapsed or not). This packet is the next one to transmit from
the flow. Thus, the output queue has at most 
 leaves, and
each interval queue has at most 
 packets.

When a packet from the output queue is transmitted, it is
removed from its interval queue, and the next packet of the
same flow is examined. If it is not eligible, it is added to the
appropriate interval queue. If it is eligible, it is inserted into
the output queue as an interval queue of size one.

In our scheme, we require � to be at least .�� 
 ������� 7 C '
.

If a packet arrives at any time during the � �� interval, .�� 

� / .�� ;F� 7 
 � � , it is added to the queue of the next interval.
Thus, it becomes eligible at time .�� ; T 7�
 � , which implies
	 � � .

Note that once a packet � �	� 
 becomes eligible and its in-
terval queue is added to the output queue, all packets � �	� � , �� �

, have been received. Only the packet with the smallest
index is kept in an interval queue, and hence, packet � �	� 
 is
indeed the next packet to transmit from � .

However, there is an issue which is not present in [20]. It
is possible that a packet � �	� � ,  �� �

, is received while packet� �	� 
 is contained in an interval queue. If this is the case, � �	� 

is removed from its interval queue, and added to the regular
queue of packets of flow � (discussed below). Then, packet� �	� � is added to the appropriate interval queue.

Only the packet of � with smallest index is stored in an
interval queue. Other packets are stored in the regular queue
of � . Since the scheduler must sort these packets by index,
and reorder is limited, we assume the queue of � is actually
two queues. The first is a small queue of � packets1 sorted
by index. An incoming packet is placed in the FIFO queue
only if the small queue is full. When a packet is removed
from the small queue, the next packet is removed from the
FIFO queue and added to the small queue. Due to the lim-
ited reorder, and since the � most recent packets are in the
small queue, the packet with smallest index (other than the
one in the interval queue) is always be found in the small
queue.

In conclusion, processing an arrival or departure of a
packet can be done in O(

� �� 
 ) time. Also, moving an
interval queue to the output queue requires only O(

� �� 
 )
time. Thus, � can be small, close to the transmission time
of a packet.

VIII. CONCLUDING REMARKS

In this paper, we have considered the problem of provid-
ing deterministic quality of service guarantees in a network
with multiple channels between nodes. We have shown that
�
This assumes equal packet sizes. If not, the queue must be able to con-

tain packets adding up to
�������	��
� bytes.

any scheduling protocol designed for a single channel can
be converted into a multiple-channel scheduling protocol
without significantly increasing the delay at the scheduling
node. This technique is inherently non-work conserving. In
addition, we have shown that for schedulers with bounded
appetite, any work-conserving single-channel scheduling
protocol can be converted to a work-conserving multiple-
channel scheduling protocol. In addition, due to multiple
channels between nodes, the packets of a flow may be re-
ordered. This in turn significantly increases the upper bound
on end-to-end delay for the flow. We have shown that this
increase in delay can be eliminated through the use of effi-
cient sorting techniques.

There are several possible venues for future work in
multiple-channel scheduling protocols. First, we have as-
sumed all channels of a scheduler have the same bandwidth.
This can be relaxed without significantly changing the the-
orems. In addition, the term

.��	� � 7�
 �������'
in the theorems can actually be reduced to half. We did
not present this reduction due to lack of space. We will
present these improvements in the journal version of the pa-
per. Finally, we will explore if there is any significant advan-
tage in designing scheduling protocols specifically for mul-
tiple channels, as opposed to transforming a single-channel
scheduler into a multiple-channel scheduler as done in this
paper.

REFERENCES

[1] Baruah, S., Cohen, N, Plaxton, G, Varvel, D., “Proportionate
Progress: A Notion of Fairness in Resource Allocation”, Algorith-
mica, 15:600-625, 1996.

[2] Baruah, S., Gherke, J., Plaxton, G., “Fast Scheduling of Periodic
Tasks on Multiple Resources”, Proc. Intl. Parallel Processing Sym-
posium, 1995.

[3] Bennet, J.C.R., Partridge, C., Shectman, N., “Packet Reordering is
not Pathological Network Behavior”, IEEE/ACM Trans. on Network-
ing, Vol 7 No 6, Dec. 1999.

[4] Blanquer J.M., Ozden B., “Fair Queuing for Aggregated Multiple
Links”, Proceedings of the ACM SIGCOMM Conference, 2001.

[5] Cobb J., “An In-Depth Look at Flow Aggregation”, Proceedings of
the IEEE International Conference on Network Protocols, 1999.

[6] Cobb J., Gouda M., “Flow Theory”, IEEE/ACM Transactions on Net-
working, October 1997.

[7] Cobb J., Lin M., “End-to-End Delay Guarantess for Multi-Channel
Schedulers”, Technical Report, Department of Computer Science,
The University of Texas at Dallas, UTDCS-01-02.

[8] D. Ferrari, D. Verma, “A Scheme for Real-Time Channel Establish-
ment in Wide-Area Networks”, IEEE Journal on Selected Areas in
Communications, 8(3), April 1990.

[9] Figueira N., Pasquale J., “A Schedulability Condition for Deadline-
Ordered Service Disciplines”, IEEE/ACM Transactions on Network-
ing, Vol. 5 No. 2, April 1997.

[10] Figueira N., Pasquale J., “Leave-in-Time: A New Service Disci-
pline for Real-Time Communications in a Packet-Switching Data
Network”, Proceedings of the ACM SIGCOMM Conference, 1995.

[11] Fumagalli, A., Cai, J., Chlamtac, I., “A Token Based Protocol for
Integrated Packet and Circuit Switching in WDM”, Proceedings of
the IEEE GLOBECOM Conference, 1998.



[12] Golestani, S.J., “A Framing Strategy for Congestion Management”,
IEEE Journal on Selected Areas in Communications, Vol. 9 No. 7,
Sept. 1991.

[13] Golestani, S. J., “A Self-Clocking Fair-Queuing Scheme for Broad-
band Applications”, Proc. of the IEEE INFOCOM 1994 Conference.

[14] Goyal P, Lam S., Vin H., “Determining End-to-End Delay Bounds in
Heterogeneous Networks”, Proceedings of the NOSSDAV workshop,
1995.

[15] Keshav S., “A Control Theoretic Approach to Flow Control”, Pro-
ceedings of the 1991 ACM SIGCOMM Conference.

[16] Liu C., Layland J., “Scheduling Algorithms for Multiprogramming
in a Hard Real-Time Environment”, Journal of the ACM, Vol. 20, Jan
1973.

[17] Moir, M., Ramamurthy, S., “Fair Scheduling of Fixed and Migrat-
ing Periodic Tasks on Multiple Resources”, IEEE Real-Time Systems
Symposium, 1999.

[18] Parekh A. K. J., Gallager R., “A Generalized Processor Sharing Ap-
proach to Flow Control in Integrated Services Networks: The Single
Node Case”, IEEE/ACM Transactions on Networking, 1(3):344-357,
June 1993.

[19] Stiliadis, D. Varma, A., “Rate-proportional Servers: a Design
Methodology for Fair Queuing Algorithms” IEEE/ACM Transactions
on Networking, Vol. 6 No., 2 , April 1998.

[20] Stiliadis, D. Varma, A., “A General Methodology for Designing Effi-
cient Traffic Scheduler Shaping Algorithms” Proc. of the INFOCOM
1997 Conference.

[21] Xie G., Lam S., “Delay Guarantee of Virtual Clock Server”,
IEEE/ACM Transactions on Networking, Dec. 1995.

[22] Verma D. C., Zhang H., Ferrari D., “Delay Jitter for Real-Time Com-
munication in a Packet Switched Network”, Proc. of the TRICOM
1991 Conference.

[23] Zhang H., “Service Disciplines for Guaranteed Performance Service
in Packet-Switching Networks”, Proceedings of the IEEE, Vol. 93,
No. 10, Oct. 1995.

[24] Zheng Q., Shin K.G., “On the Ability of Establishing Real-Time
Channels in Point-to-Point Packet-Switched Networks”, IEEE Trans-
actions on Comm., Vol 42, No. 2/3/4, 1994.

[25] Zhang H., Ferrari D., “Rate-Controlled Static Priority Queuing”, Pro-
ceedings of the INFOCOM 1993 Conference.

APPENDIX

Lemma 2: Consider a scheduler G with input flow � . If
for any packet � �	� � , where

�"�  ���
, we modify

%  � �	� � to
be at most its previous value, then (  � �	� 
 cannot increase.

Proof: We will reduce the arrival time of packet
 

incrementally and show that (  � �	� 
 cannot increase.
Consider first reducing

%  � �	� � , but without reducing it be-
low

%  � �	� 1 � 24*65 . From the definition of ( , reducing the ar-
rival time of a packet � �	� � does not increase (  � �	� � , and by a
simple induction on the definition of ( , it does not increase(  � �	� 
 for any

�
,
��8  

.
Consider reducing now

%  � �	� � below
%  � �	� 1 � 24*65 but not

below
%  � �	� 1 � 2�� 5 . For simplicity, we keep the same indices

in both cases, i.e., in the reordered case, � �	� � arrives to G
before � �	� 1 � 24*65 .

We use a hat accent to denote the values after the reduc-
tion in

%  � �	� � and we use non-accented values to denote the
values without the reduction in

%  � �	� � . Thus,
%  � �	� � is the

original arrival time of � �	� � and
�%  � �	� � is the reduced arrival

time of � �	� � .
From the definition of � , and � �	� 1 � 24*65 being the packet

previous to � �	� 1 � �J*65 in the reordered flow,
�(  � �	� 1 � �J*65 +�� ��� . �)  � �	� 1 � 24*65 / %  � �	� 1 � �J*6507

Without reorder, from the definition of ( ,

(  � �	� 1 � �J*65 +�� ��� .�)  � �	� �R/ %  � �	� 1 � �J*6507
From the above, we must show that

�)  � �	� 1 � 24*65 � )  � �	� � . We
have four cases to consider.

1)
�%  � �	� ��� )  � �	� 1 � 2�� 5

In this case, in the reordered flow � �	� � is the next
packet after � �	� 1 � 2�� 5 . Hence, from the definition of( , �(  � �	� � + )  � �	� 1 � 2�� 5

�)  � �	� � + )  � �	� 1 � 2�� 5 ;@���	� �DCD��� (3)

Within, this case, we have the following two sub-
cases.

a)
%  � �	� 1 � 24*65 � �)  � �	� �
Because in the reordered flow � �	� � is the packet
previous to � �	� 1 � 24*65 , from the definition of ( ,

�(  � �	� 1 � 24*65 + �)  � �	� �
�)  � �	� 1 � 24*65 + �)  � �	� ��;@� �	� 1 � 24*65 CD���

From equation (3),
�)  � �	� 1 � 24*65 + )  � �	� 1 � 2�� 5 ; ���	� � CD��� ; � �	� 1 � 24*65 CD���

In the ordered flow, from the definition of ( ,) increases by at least
��CD���

with each packet.
Hence,

)  � �	� ��� )  � �	� 1 � 2�� 5 ;@���	� �DCD��� ;@� �	� 1 � 24*65 CD���
Thus,

�)  � �	� 1 � 24*65 � )  � �	� �
b)
%  � �	� 1 � 24*65 8 �)  � �	� �
Because in the reordered flow � �	� � is the packet
previous to � �	� 1 � 24*65 , from the definition of ( ,

�(  � �	� 1 � 24*65 + %  � �	� 1 � 24*65
�)  � �	� 1 � 24*65 + %  � �	� 1 � 24*65 ;@� �	� 1 � 24*65 CD��� (4)

In the ordered flow, from the definition of ( ,

)  � �	� � + (  � �	� ��;@���	� �DCD���� )  � �	� 1 � 24*65 ;@���	� �DCD���� (  � �	� 1 � 24*65 ;@� �	� 1 � 24*65 CD��� ;@���	� �DCD���� %  � �	� 1 � 24*65 ;@� �	� 1 � 24*65 CD��� ;@���	� � CD���
Hence, combining the above with Equation (4),�)  � �	� 1 � 24*65 � )  � �	� � .

2)
�%  � �	� ��8 )  � �	� 1 � 2�� 5

Since in the reordered flow � �	� � is the next packet after� �	� 1 � 2�� 5 , from the definition of ( ,
�(  � �	� � + �%  � �	� �



�)  � �	� � + �%  � �	� ��;@���	� �DCD��� (5)

Within, this case, we have the following two subcases.
a)
%  � �	� 1 � 24*65 � �)  � �	� �
In the reordered flow, since � �	� 1 � 24*65 follows� �	� � , from the definition of ( ,

�(  � �	� 1 � 24*65 + �)  � �	� �+ �
from Equation (5) �
�%  � �	� ��;@���	� �DCD���

Also from the definition of ( ,
�)  � �	� 1 � 24*65 + �%  � �	� ��;@���	� �DCD��� ;@� �	� 1 � 24*65 CD���

In the ordered array, from the definition of ( , )
)  � �	� � + (  � �	� ��;@���	� �DCD���� )  � �	� 1 � 24*65 ;@���	� � CD���+ (  � �	� 1 � 24*65 ;@� �	� 1 � 24*65 CD��� ;@���	� � CD���� %  � �	� 1 � 24*65 ;@� �	� 1 � 24*65 CD��� ;@���	� � CD���
Note that

%  � �	� 1 � 24*65 8 �%  � �	� � (due to the re-

order), and hence )  � �	� ��8 �)  � �	� 1 � 24*65 .
b)
%  � �	� 1 � 24*65 8 �)  � �	� �
In the reordered flow, since � �	� 1 � 24*65 follows� �	� � , from the definition of ( ,

�(  � �	� 1 � 24*65 + %  � �	� 1 � 24*65
�)  � �	� 1 � 24*65 + %  � �	� 1 � 24*65 ;@� �	� 1 � 24*65 CD���

In the ordered flow, from the definition of ( ,

)  � �	� � 8 )  � �	� 1 � 24*65+ (  � �	� 1 � 24*65 ;@� �	� 1 � 24*65 CD���� %  � �	� 1 � 24*65 ;@� �	� 1 � 24*65 CD���
Hence,

�)  � �	� 1 � 24*65 � )  � �	� � .
Lemma 3: Consider a scheduler � and an input flow � .

Assume we insert an additional packet � into � after packet� �	� 1 � 24*65 and before packet � �	� � . Then, the start-time of � �	� 

for all

�
,
���! 

, increases by at most
���	CD���

.
The proof of Lemma 3 may be found in [7].
We next present the proof of Lemma 1.

Proof: Consider first part one. Let � correspond to a
possible output of � , where each packet of � is delayed its
maximum. That is, for all

�
, � � � 
J+ � �	� 
 , and

%  � � � 
J+ ( $ � �	� 
<;@? $ � �	� 

Hence, for all packets of � , the corresponding packet of �
arrives no later than the packet of � . Note that from the
results of [5], [10], for all

�
,

(  � � � 
 � ( $ � �	� 
<; I $ � �	� 


We manipulate flow � until we obtain our desired flow � .
Each manipulation cannot increase the start time of packet� �	� V .

Only packets ��� � * up to ��� � � affect the computation of(  � � � � . Hence, we obtain a new flow ��� which contains only
the packets of � corresponding to ��� � * up to ��� � � . Note that� �	� V , which is ��� � � , is the last packet of � . Also, since we
assumed that � �	� V is the last packet of � , it is also the last
packet of � and � � .

It is obvious from a simple induction proof and the def-
inition of ( , that removing any packet from a flow cannot
increase the value of ( for any packet in the flow. Hence,
the start-times of the packets of ��� have not increased be-
yond those of the corresponding packets of � .

Next, note that the packets of � and � � are not in the same
order. Through a repeated application of Lemma 2, we can
reduce the arrival times of the packets of � � (except � �	� V
itself) to the arrival times of the corresponding packets of � .
This results in flow � � � . From the lemma, the start time of� �	� V in � � � does not increase.

Finally, the arrival time of � �	� V must also be reduced to
the arrival time of ��� � � . From the definition of ( , reducing
the arrival time of a packet does not increase its start-time.
Hence, (  � � � ��� (  � � � V � ( $ � �	� V ;#I $ � �	� V

Consider now part two. If no packet after � �	� V is re-
ordered with � �	� V , the start time of � �	� V at G is the same as
in part one. However, the

�
packets after � �	� V could be re-

ordered with � �	� V and arrive to G before � �	� V . By a repeated
application of Lemma 3 and part one we obtain,

(  � � � ��� (  � � � V � ( $ � �	� V ;#I $ � �	� V ;
� V � �
 X V �J* ���	� 
���

The proofs of Corollaries 2 and 3 may be found in [7].
We next present the proof of Theorem 5.

Proof: Since the maximum delay a packet � �	� 
 will
experience before being considered eligible is 	 , and since� is a start-time scheduler, that means that the packet will be
eligible no later than time

( $ � �	� 
<;@? $ � �	� 
<; 	 (6)

From the lower bound on 	 , all packets with smaller in-
dex have been received when � �	� 
 is received. Furthermore,
from the assumptions of the theorem, all of these packets are
eligible. Hence, � �	� 
 is ready to be considered for schedul-
ing at the time in (6).

Hence, � plus the extra delay introduced before the packet
becomes eligible can be considered as a single start-time
scheduler

�� where
?��$ � �	� 
 +F? $ � �	� 
H; 	 . Hence, the start-time

at G follows from Theorem 1.


