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Abstract

Autonomous cars establish driving strategies using the

positions of ego lanes. The previous methods detect lane

points and select ego lanes with heuristic and complex post-

processing with strong geometric assumptions. We propose

a sequential end-to-end transfer learning method to esti-

mate left and right ego lanes directly and separately without

any postprocessing. We redefined a point-detection problem

as a region-segmentation problem; as a result, the proposed

method is insensitive to occlusions and variations of envi-

ronmental conditions, because it considers the entire con-

tent of an input image during training. Also, we constructed

an extensive dataset that is suitable for a deep neural net-

work training by collecting a variety of road conditions,

annotating ego lanes, and augmenting them systematically.

The proposed method demonstrated improved accuracy and

stability on input variations compared with a recent method

based on deep learning. Our approach does not involve

postprocessing, and is therefore flexible to change of target

domain.

1. Introduction

Deep learning understands the world by analyzing the

context of a scene, then focusing on important objects

and observing them at a hierarchy of levels, from narrow

with high resolution, to broad with low resolution. There-

fore, when understanding a scene, deep learning is rela-

tively insensitive to variations of environmental condition,

and is inexpensive to redesign, to respond to different tar-

gets. For deep learning to achieve high accuracy, it needs

a large amount of high-quality data. Therefore, much of

the progress in deep learning, specifically in supervised

deep-network learning, can be attributed to the availabil-

ity of huge image datasets such as ImageNet [42], Activi-

tyNet [18], MS COCO [32], Open Images [25], YouTube-

8M [1], and YouTube-BB [39]. Recently, in the field of au-

Figure 1. The proposed method transfers the learned representa-

tions of a deep network through sequential representation domain

change and reduction. The transferred network extracts left and

right ego lanes directly and separately from input image without

any postprocessing.

tonomous driving, various datasets have been published in-

cluding CamVid [9], KITTI [16], TORCS [10], GTA5 [40],

Cityscapes [12], and SYNTHIA [41]. Those datasets focus

on high-level scene understanding by semantic segmenta-

tion. Semantic segmentation is essential for an autonomous

driving intelligence to understand the complex situations of

a scene. Segmenting objects, including static and moving

objects, in a scene means that we can simultaneously detect

and classify all objects; the results can be used to analyze

the properties of objects and the relations between them.

This paper presents a method to adopt abundant semantic

information for ego lane estimation using newly constructed

datasets and networks developed for high-level scene seg-

mentation (Fig. 1). This method is effective because con-

sidering the complete scene, rather than parts of it, reduces

the deep networks sensitivity to problems such as occlusion

by vehicles and pedestrians, rough road condition, blurred

lane markings, low illumination at the evening, and other

variations of road surface due to environmental conditions.

The contributions of this paper are: 1) an end-to-end esti-

mation process of left and right ego lanes from an input im-

age directly and separately using sequential transfer learn-

ing, without any postprocessing, 2) a semi-automatic ego

lane annotation tool to reduce the effort required to con-

struct a new dataset for our end-to-end approach, and 3) a

large dataset construction with extensive data augmentation

to train a deep neural network. We present related work in
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Section 2, details of our approach in Section 3, experimental

results in Section 4 and a conclusion in Section 5.

2. Related Work

Model-driven approaches. Many papers have reviewed

lane detection based on model-driven approaches [50, 19,

27]. Most of the methods involve stages such as prepro-

cessing, feature extraction, line fitting and lane-parameter

estimation. The problem of designing and combining hand-

crafted features with the model is very important. Mainly

three features (edge, color, texture), are defined by four

types of model [27]. The first type finds strong edge com-

ponents in an image and uses the combination of a Sobel

filter and Hough Transform [51, 3, 5, 31, 13, 28] to ana-

lyze the strong edge direction. The accuracy of the original

Hough Transform was improved by the Statistical Hough

Transform that uses a multiple kernel density to describe

the distribution of the Hough variables without edge prepro-

cessing [33, 34, 35]. Some researchers used IPM to change

the point of sight and found all straight lines [2, 6, 33, 7].

The second type observes the change of feature values. To

detect lanes, these method detect a large change of intensity

[24, 22] or measure the positive and negative second deriva-

tives of edge components [30]. The third type analyzes

the primary color or direction of lane components. These

methods segregate pixels by exploiting primary color infor-

mation of lanes [11, 52, 8], or extract lanes by clustering

straight lines that point in similar directions and removing

outliers [47]. The fourth type defines models with specific

shapes, then performs model fitting on a feature image. For

example, various models that represent straight or curved

lines (e.g., linear, parabolic, B-spline), are each matched to

a sub-window that has feature values extracted on geomet-

ric constraints [53, 46, 48, 49]. All of these model-driven

approaches use hand-crafted features that is elaborately de-

signed dependent on target’s properties and need heuristic

and complex postprocessing with strong geometric assump-

tions to determine the positions of ego lanes. Therefore, if

the target is change, the design of features should be modi-

fied.

Approaches based on deep learning. To overcome lim-

itations of model-driven approaches, recent research has

adopted deep learning, specifically convolutional neural

networks (CNNs), for lane detection. One method extracts

lane candidate regions and uses the RANSAC algorithm to

remove outliers and to perform line fitting [23], but because

the CNN uses an edge image as input, the method’s accu-

racy is directly affected by that of the edge-detection algo-

rithm, which is sensitive to intensity variations and occlu-

sion; in the paper, the CNN was only to extract features,

and did not consider full context of an input image. An-

other method predicts two end points of a local lane seg-

ment in a sliding window by regression using a CNN [20];

it uses local context of a scene by considering occlusion

cases to obtain ground truth. Another combines multi-

task CNN and RNN to detect lane boundaries [29]. To

select ego lanes and separate left and right lanes, the two

previous methods performed postprocessing including DB-

SCAN, line clustering, and heuristic selection. A different

approach uses use two laterally-mounted down-facing cam-

eras to estimate the position of lanes with sub-centimeter

accuracy [17], but because of the orientation of the cam-

eras the method cannot exploit all of the information in the

scene. Another approach adds an expansion network to a

CNN and trains the network end-to-end for estimation of

ego lane [38]. To achieve best trade-off between segmen-

tation quality and runtime, several architecture refinements

were added, but the method cannot estimate exact left and

right ego lanes (two side-curves) because it consider a re-

gion that is surrounded by the two side-curves. Our pro-

posed method extracts the left and right ego lanes directly

and separately from an input image and utilizes all informa-

tion in the front road scene by an end-to-end technique to

improve accuracy.

3. Semantic Ego Lane Estimation

3.1. Problem Redefinition

Model-driven methods detect lane markings by observ-

ing a large change of feature values in a sub-region sur-

rounding each pixel. Previous deep-learning based meth-

ods also analyzed the existence possibility of lane markings

by considering the sub-region surrounding a pixel. These

methods can be defined as a point-detection problem on lo-

cal context. The results are lane segments; they should be

clustered into groups that share similar properties such as

position and direction, then classified as two ego lanes by

additional heuristic steps. Methods based on deep learning

solve the challenges of the lane detection more efficiently

than model-driven methods. But, because methods based

on deep learning train the CNN on an edge image, rather

than on the original image [23], or consider the context only

within a sub-image rather than the entire image [20], or es-

timate lane positions in a fully-connected layer using the

information missed by numerous convolution and pooling

layers [29, 17], they cannot fully exploit the information

included in driving situation. We overcame these limita-

tions by redefining the point-detection problem as a region-

segmentation problem. This change of perspective, from

point to region and from sub-context to full context, reduces

the sensitivity of our approach to occlusion, degraded mark-

ings and various road conditions. For example, if a scene

consists of roads and background, we can estimate the po-

sitions of ego lanes, even if they have poor texture. In our

approach, the results of segmentation into left and right ego

lane regions can be used to adjust the driving direction di-
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Figure 2. Semi-automatic interface to annotate left and right ego

lanes. Original image (left). Annotation of lane points (center).

Fitted curves (right).

rectly because they involve the information already. Also,

we can use abundant scene segmentation datasets as pre-

knowledge for lane region segmentation.

3.2. Dataset Generation of Ego Lanes

KITTI is very useful and famous dataset to evaluate a lot

of functions for autonomous driving cars. Among various

categories, lane dataset consists of 95 training and 96 test

images. We wanted to construct and share a larger dataset

that included more various highway and urban road con-

ditions. So, we constructed a new dataset to segment ego

lanes through end-to-end estimation. In advance, to reflect

various road conditions, we downloaded black box videos

of America, Europe and Asia from Youtube site. Their im-

ages includes various curved road as well as straight road.

We also use Grand Theft Auto V (GTA5) and TORCS

games to consider more various situations with less effort.

The set of real data consists of 10,680 images (50 video

clips, 5 hours 56 minutes, 5.43 GB). The set of virtual data

consists of 960 images (2 videos, 32 minutes, 2.13 GB).

Because high-quality game simulations describe real world

concretely with a variety of scenarios that cannot be gener-

ated in real situations, recent research has used them very

actively [10, 40].

To remove duplicated images and select representative

scenes, we collected 4,000 images by sampling at an ap-

propriate frame interval. The frame interval varies from

30 to 100 to obtain the same number of images from each

video clip. We developed a semi-automatic annotation tool

to change the collected images into training data, then used

Matlabs interface to annotate left and right ego lanes for

each image (Fig. 2). After marking the two end points of

a left ego lane, we additionally marked three middle points

in which the line direction changes between two end points.

We selected the upper endpoint considering that all points

will be fitted using a second-order polynomial curve. The

right ego lane was also marked using the same process. To

ensure the quality of the ground truth points, cross-checks

were done through multiple people, and if the current frame

had occlusion cases, the previous and next frames were ref-

erenced. Then two second-order polynomial curves were

drawn using ten points, then the original image and four ver-

sions of it were saved for verification; these were: (1) a bi-

nary image with lane points, (2) a dilated binary image with

lane regions, (3) a dilated color image with different colors

on the left and right ego regions, and (4) a dilated gray im-

age with different indexes on the left and right ego regions.

The images used for training deep network were the original

RGB image and image (4). We use the dilated lane region,

not the line image, to represent the lane width as one con-

text in our training process because a real lane is a region

with a width value. We randomly selected 25% of images

(1,000 images) as test data, and used the rest (3,000 images)

as training data. To include a variety external environmen-

tal conditions, we performed extensive training data aug-

mentation by scaling, blurring, translation, rotation, noise,

and illumination. We used Matlab’s various functions and

parameters; imresize(0.8 1.4), imgaussfit(-1.0 2.5), pixel

shift(-6 12), imrotate(-2 3), imnoise(gaussian, poisson, salt-

pepper, speckle), and imadjust((-1.0,-1.0) (0.3 0.9)). We

produced at most 30 versions of each image (i.e., 6 tech-

niques by 5 parameters); the result was 90,000 image pairs

for deep network training.

3.3. Learning Semantic Ego Lanes

Network Architecture In the region-segmentation prob-

lem, if the number of categories increases, the problem be-

comes one of scene segmentation. Recently, various net-

works have been proposed for pixel-level scene segmen-

tation. FCN [36, 43] uses networks that consist of only

convolution and pooling layers by eliminating the fully-

connected layer from AlexNet [26], VGG-net [44], and

GoogLeNet [45]. Two groups [37, 4] generated a seg-

mented image with the same size of input image by adding

upsampling networks. In this paper, we used SegNet [4]; it

was mainly trained and evaluated with road scene data and

has shown fast processing for real-time autonomous driv-

ing. The network consists of a convolution network (i.e., an

encoder), which extracts features by hierarchical abstrac-

tion, and a deconvolution network (i.e., a decoder), which

reconstructs a segmented image by upsampling. The convo-

lution network has same structure as the first 13 convolution

layers of the VGG15 network, and generates feature maps.

To solve the gradient vanishing and exploding problem and

to reduce the number of iterations taken for loss conver-

gence in training process, it also includes batch normaliza-
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Figure 3. Overall procedure of the proposed sequential end-to-end transfer learning. VGG-net pre-trained on ImageNet dataset (first

network) is symmetrically concatenated as a deconvolution network. The modified network is trained to segment each class component

through representation domain change from general scene objects to road scene object (second network). Lastly, the transferred network is

trained to extract left and right ego lanes by representation domain reduction from road scene objects to ego lane objects (last network).

tion [21] technique and uses a rectified linear unit (ReLU) as

an activation function. The deconvolution network has de-

convolution layers that correspond to the convolution layers

and performs upsampling. The main idea of the method is to

use max-pooling indices memorized in each pooling layer

of convolution network. After passing the final deconvolu-

tion layer, they use trainable multi-class soft-max classifier

to categorize each pixel.

Network Training We used two techniques for our end-to-

end training and inference that consider the full content of a

scene. The first technique was to acquire the contexts of var-

ious objects in a scene, then to transfer the learned represen-

tations of the deep network over two stages. Transfer learn-

ing [14] is a method that can use the representation abil-

ity obtained from huge amounts of another domain’s data

when our target domain does not have enough training data.

For road scene segmentation, we performed a fine-tuning on

published datasets, such as CamVid, Cityscapes, and GTA5.

To train the network, we used stochastic gradient descent

method with the same hyper-parameters with SegNet [4] in-

cluding learning rate, momentum, and loss function. This

process changes the feature representation domain of a net-

work from general scene objects included in the ImageNet

dataset, to road scene objects (Fig. 3, gray network). The

second technique was to use the data obtained from our an-

notation tool and image amplification, to reduce again the

domain from road scene objects to left or right ego lanes

(Fig. 3, blue network). The input for this second transfer

learning consists of 480x360 RGB images, and the output

consists of ground truth images that are indexed into three

categories: left ego lane region, right ego lane region, and

background region, each labeled with a unique integer start-

ing from zero. For both of two transfer learning, we applied

a class balancing technique to assign the weight differently

in the loss function according to the ratio of class frequency.

During this second transfer learning using the same hyper-

parameters with the first transfer learning, the time required

to converge a cross-entropy loss is much shorter and the

network’s region segmentation ability increases because the

number of target categories is much less than the number of

categories of road scene.

To overcome challenges [50, 19, 27] such as occlusion,

shadow, degradation, illumination, print quality, weather

conditions, road geometries, and extraneous objects, the de-

sign of the ground truth data is also important. If lane mark-

ings are invisible for various reasons, human drivers recog-

nize the whole context, estimate ego lanes intuitively, and

drive on the correct path. Applying the same principle, we

generated the ground truth data of ego lanes. If ego lanes

were briefly invisible, we used our intuition obtained from

the previous scenes to annotate the estimated region. In this

way, by using data generated based on the logic that humans

use while driving, our deep network can recognize ego lane

under various road-surface conditions.

4. Experiments

We evaluated the accuracy of ego lane recognition. Each

test image represents a unique road scene. The evaluation

and analysis was performed from three distinct viewpoints:

1) network’s representation ability dependent on different

datasets used in the first transfer learning, 2) network’s in-

ference accuracy dependent on various data augmentation

ratios used during the second transfer learning, and 3) net-

work’s identification stability in a variety of input varia-

tions.

Two measurements were used for these three experi-

ments. One is composed of region-based precision and

recall to evaluate the region segmentation accuracy of ego

lanes. These measures are defined as

precision =
TP

TP + FP
, recall =

TP

TP + FN
, (1)

where TP is the number of True Positives (i.e., the number

of ego lane pixels correctly classified), FP is the number of

False Positives (background pixels classified as ego lanes),

and FN is the number of False Negatives (ego lane pixels

classified as background). Because KITTI dataset and our
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Figure 4. Definitions of ego lane of KITTI (a) and our dataset (b).

Examples of TP, TN, FP, FN, region-based precision, and recall

for KITTI (c) and our dataset (d). Dash lines mean the boundaries

of estimated result.

paper use different meaning of ’ego lane’, we used differ-

ent metric. In KITTI dataset, ego lane means a wide region

that is surrounded left and right ego lanes (Figure 4(a)). So,

although the two side curves are not exact, precision and

recall values are not low if the overall region is extracted

well (Figure 4(c)). In our paper, ego lanes mean two nar-

row regions corresponding two side curves themselves (Fig-

ure 4(b)). The evaluation using these definition makes us to

estimate more exact two side-curves (Figure 4(d)). Accu-

rate estimation of left and right ego lanes (curves) is very

important for lane departure warning, lane change assis-

tance, forward collision avoidance (advanced driver assis-

tance system), and self-driving (autonomous driving).

Another measure is line-based accuracy to evaluate the

direction estimation of ego lanes (Figure 5). This statistic is

defined as

accuracy =
RGT ∩RL,R

RL,R

, (2)

where RGT means the ground truth area of ego lane regions

and RL,R means the area that was identified to be left or

right ego lanes, and we ignored the lower 8% of an input

image because ego lanes are occasionally occluded by the

bonnet of a car. We evaluated line-based accuracy because,

unlike the proposed method that extracts left and right ego

lanes directly and separately, the existing methods sepa-

rate ego lanes by applying postprocessing after detecting all

lanes. Thus, the method cannot define FP and FN for their

naive outputs before postprocessing. This second metric is

very reasonable because real lane has a little width. That is,

after we fit the extracted two ego lanes into 2nd polynomial

curves, we computed the overlapped ratio between the fitted

line and ground-truth region. Then, if the fitted curve is in-

cluded within the width, the result is decided as reasonably

good.

Figure 5. Examples of the line-based accuracy.

Dataset Images Resolution Classes

CamVid 701 960x720 32 (11)

Cityscapes (fine) 5,000 2,048x1,024 30

GTA5 24,966 1,914x1,052 19

Table 1. The overview of published datasets for semantic scene

segmentation.

4.1. Importance of Sequential Domain Change

Many published datasets (Table 1) are suitable for the

first transfer learning. We used them to analyze the effect

of different datasets on network’s representation ability. For

CamVid dataset, in common with [4], we used 11 classes for

the first transfer learning and it is reasonable because it has

much less number of images among datasets. Cityscapes

has highest resolution and includes very various kinds of

cities with the most classes. GTA5 has much more images

than other datasets with middle resolution and classes. We

performed transfer learning to change the feature represen-

tation domain from general scene objects to road scene ob-

jects, and measured the scene segmentation accuracy. We

did not use all datasets together, because they have differ-

ent numbers of categories, so we applied median frequency

balancing [15] for each dataset. The method achieved the

highest scene segmentation accuracy in the fewest iterations

on the CamVid dataset (Fig. 6, left), because this dataset has

fewer categories and less number of images than the other

datasets. Cityscape 5,000 and GTA5 24,966 need more iter-

ations to obtain enough accuracy. But this is just the scene

segmentation result on different datasets, not the region seg-

mentation result of ego lanes, so we performed the second

transfer learning using the same ego lane dataset that we

collected (Fig. 6, right). After 20,000 iterations, there is

no difference between ego lane segmentation accuracy of

five datasets; this result means that the accuracy of the first

transfer learning is not directly related to one of the second

transfer learning in terms of the accuracy. The important

thing is that increasing the number of categories considered

in the first transfer learning improves the network’s repre-

sentation ability at the second transfer learning with much

less iterations. If we perform the second transfer learning

without the first transfer learning, we need much more iter-

ations to achieve the comparable high accuracy(Fig. 6, right

(None)).

Also, we measured the precision, recall, and F measure
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Figure 6. (Left) Scene segmentation accuracy during 100,000 iterations at the first transfer learning. The numbers, 701, 5,000, and 24,966

mean the number of images that is used in training. (Right) Lane segmentation accuracy during 30,000 iterations at the second transfer

learning. The accuracy converges with much less iterations compared with the first transfer learning.

Dataset Precision Recall F0.5 measure

CamVid 701 0.37 0.77 0.41

Cityscapes 701 0.39 0.58 0.42

Cityscapes 5,000 0.43 0.54 0.45

GTA5 701 0.33 0.78 0.37

GTA5 24,966 0.31 0.69 0.35

Table 2. Precision, recall, and F0.5 measure of averaged total ego

lanes. Because precision is more important than recall in driv-

ing lane estimation (false detection is much more dangerous than

missed detection), we used β = 0.5.

Figure 7. Comparison of ego lane estimation without(single

TL)/with(sequential TL) the first transfer learning. Especially, in

shadow, tunnel, and overpass, the network with the first transfer

learning recognizes well the left and right ego lanes.

of ego lane regions using test data (Table 2). The deep net-

work trained using Cityscapes 5,000 (full) dataset showed

the most reasonable results when we consider the trade-off

Figure 8. Comparison of direction estimation accuracy with aug-

mented training data from regression, single TL network (without

the first transfer learning), and our sequential TL network. (Left)

left ego lane. (Right) right ego lane. 1x, 6x, 12x, 18x, 24x, and

30x, represent that set Nx consists of N x 10
3 images.

between precision and recall values. Because the number

of our ground-truth pixels is much less than KITTI dataset,

there are big gaps of precision and recall values. In our

definition of ego lanes, if the direction of detected two ego

lanes is a little different with the ground-truth, then preci-

sion and recall decrease rapidly. For various road condi-

tions, sequential transfer learning (TL) on Cityscapes 5,000

shows accurate and stable estimation results (Fig. 7), so we

selected this network for following experiments.

4.2. Extensive but Reasonable Data Augmentation

We measured the direction estimation accuracy to eval-

uate the amplification effect of our training data on net-

work’s inference performance. From Sec 4.1, we selected

the network that is trained using Cityscapes 5,000 as the

base model and performed the second transfer learning by

fine-tuning for different data augmentation ratios. We com-

pared our proposed method with a recent regression method

based on deep learning [20]; this method predicts two end
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Figure 9. Comparison of direction estimation accuracy with aug-

mented test data from regression and our network. Left ego lane

(left). Right ego lane (right).

points of lane segments in each sliding window and clusters

them using DBSCAN. Because we compare the ego lane

direction, we selected among the clustered lanes the two

that are closest to the center of an input image. The reason

that we select the method is it generates lane curves not a

wide region that is surrounded by curves. At the 1x aug-

mentation ratio (no augmentation) or small amount of train-

ing data, the proposed method obtained much higher accu-

racy (Fig. 8) because it considers all information in a scene,

rather just parts of it. Also, the proposed method achieved

higher direction estimation accuracy for most cases. Re-

gression method was more closely related to training data

augmentation than our method, because the local informa-

tion of a sub-region is much more affected by the augmen-

tation techniques than the full context of an image. In either

method, direction estimation did not provide better than us-

ing the 18x augmentation ratio because unnecessary images

were added to training data in 24x and 30x. This result im-

plies the existence of reasonable augmentation ratio with

only the data that affect the accuracy; more training data

augmentation than the reasonable criterion do not help im-

prove the accuracy.

4.3. Robustness For Road Variations

In the previous Section, we evaluated the augmenta-

tion effect of training dataset on the fixed test dataset.

Lastly, we evaluated the robustness of the ego lane recog-

nition on various input road conditions on the fixed train-

ing dataset (no augmentation). From Section 4.2, we se-

lected three models (1x) for regression, single TL, and

sequential TL methods. We amplified the test data in-

stead of the training data by applying image-processing

techniques including scaling, blurring, translation, rotation,

noise, and illumination (Sec. 3.3). The input variations

represent diverse outputs from a camera mounted in a ve-

hicle, such as low-resolution images, installation-position

change, installation-angle change, noise caused by a faulty

camera, and low illumination during the evening. Using

five parameters of each amplification technique, we set six

sets of test images: 1x, 6x, 12x, 18x, 24x, and 30x, where

set Nx consists of N x 10
3 images. For each amplifica-

tion ratio, we compared the direction estimation accuracy

(Fig. 9). The accuracy of three methods was little affected

(< 4%) by the input variations. Our proposed sequential TL

method achieved higher direction estimation accuracy (left

ego lane, right ego lane, full ego lanes) than the regression

model and single TL method in all sets regardless of input

variations, even when the camera state or the external envi-

ronmental condition changed severely. Especially, our pro-

posed method represented better estimation results under

rough road conditions and low illumination environments

(Fig. 10), where the straight road is often seen because the

proportion of the highway images is higher than the urban

images. These results indicate that ego lane segmentation

stabilizes when all information in the scene is considered.

5. Conclusion

We proposed a method of semantic ego lane estima-

tion to train a deep network based on sequential end-to-end

training and to recognize left and right ego lanes without

postprocessing directly and separately. The method uses

two transfer learning steps. The first step changes the net-

work’s representation domain from a general scene to a

road scene; the second step reduces the target from road

objects in general, to left and right ego lanes in particular.

Because this sequential domain change is based on region

segmentation that considers the full context of a scene, the

proposed method recognizes ego lanes with low sensitiv-

ity to road conditions. Also, the end-to-end approach re-

duces re-design and re-optimization during data modifica-

tion and eliminates the possibility that postprocessing gen-

erates errors. By modification and extension of our target

data, the proposed approach can support more detailed in-

formation for to support driving situation decisions or to

establish driving strategies.
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