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Abstract

The predominant approaches for extracting

key information from documents resort to clas-

sifiers predicting the information type of each

word. However, the word level ground truth

used for learning is expensive to obtain since

it is not naturally produced by the extraction

task. In this paper, we discuss a new method

for training extraction models directly from

the textual value of information. The extracted

information of a document is represented as

a sequence of tokens in the XML language.

We learn to output this representation with

a pointer-generator network that alternately

copies the document words carrying informa-

tion and generates the XML tags delimiting

the types of information. The ability of our

end-to-end method to retrieve structured infor-

mation is assessed on a large set of business

documents. We show that it performs compet-

itively with a standard word classifier without

requiring costly word level supervision.

1 Introduction

Companies and public administrations are daily

confronted with an amount of incoming documents

from which they want to extract key information as

efficiently as possible. They often face known types

of documents such as invoices or purchase orders,

thus knowing what information types to extract.

However, layouts are highly variable across docu-

ment issuers as there are no widely adopted spec-

ifications constraining the positioning and textual

representation of the information within documents.

This makes information extraction a challenging

task to automate.

In addition to the incremental approaches based

on layout identification (d’Andecy et al., 2018;

Dhakal et al., 2019), a number of recent works

have proposed deep neural models to extract in-

formation in documents with yet unseen layouts.

Following Palm et al. (2017), most of these layout-

free approaches resort to classifiers that predict the

information type of each document word. Yet, the

information extraction task does not offer word

level ground truth but rather the normalized textual

values of each information type (Graliński et al.,

2020). The word labels can thus be obtained by

matching these textual values with the document

words but this process is either time-consuming

if manually performed or prone to errors if algo-

rithmically performed. Indeed, extracted informa-

tion may not appear verbatim in the document

as its textual values are normalized. For exam-

ple, the value ”2020-03-30” for the document

date field may be derived from the group of words

”Mar 30, 2020”. This forces the development

of domain specific parsers to retrieve the matching

words. Also, multiple document words can share

the textual value of a extracted field while being

semantically distinct, hence imposing additional

heuristics for disambiguation. Otherwise, a street

number may be wrongly interpreted as a product

quantity, inducing noise in the word labels.

To the best of our knowledge, Palm et al. (2019)

is the only related model that directly learns from

naturally produced extraction results. However,

the authors only tackle the recognition of indepen-

dent and non-recurring fields such as the document

date and omit the extraction of structured entities.

Such entities are structures composed of multiple

field values. Within documents, structured infor-

mation is often contained in tables. For example,

a product entity is usually described in a table row

with its field values, such as price and quantity, be-

ing in different columns. Our work is intended to

remedy this lack by proposing end-to-end methods

for processing structured information. As a first

step towards full end-to-end extraction, we focus

in this paper on the recognition of fields whose val-

ues always appears verbatim in the document, thus

eliminating the need for normalization operations.

As illustrated in Figure 1, extracted structured

information can be represented in a markup lan-
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(a) Document (b) Extracted information

Figure 1: A purchase order (a) and the XML representation of its extracted information (b). In this example, we

retrieve the ordered products which are contained in the main table of the document. Two fields are recognized for

each product entity: the ID number and the quantity.

guage that describes both its content and its struc-

ture. Among many others, we choose the XML

language1 for its simplicity. We define as many

XML tag pairs as the number of entity and field

types to extract. A pair of opening and closing field

tags delimits a list of words constituting a field

instance of the corresponding type.

Following successful applications of sequence-

to-sequence models in many NLP tasks (Otter et al.,

2020), we employ a recurrent encoder-decoder ar-

chitecture for outputting such XML representations.

Conditioned on the sequence of words from the

document, the decoder emits one token at each

time step: either a XML tag or a word belonging to

a field value. Since field values are often specific

to a document or a issuer, extracted information

cannot be generated from a fixed size vocabulary

of words. Rather, we make use of pointing abili-

ties of neural models (Vinyals et al., 2015) to copy

words of the document that carry relevant informa-

tion. Specifically, we adapt the Pointer-Generator

Network (PGN) developed by See et al. (2017) for

text summarization to our extraction needs. We

evaluate the resulting model for extracting ordered

products from purchase orders. We demonstrate

that this end-to-end model performs competitively

with a word classifier based model while avoiding

1https://en.wikipedia.org/wiki/XML

to create supervision at the word level.

2 Related Work

2.1 Information extraction

As mentioned before, most methods for informa-

tion extraction in documents take the word labels

for granted and rather focus on improving the en-

coding of the document.

Holt and Chisholm (2018) combine heuristic fil-

tering for identifying word candidates and a gradi-

ent boosting decision tree for independently scor-

ing them. The strength of their model mainly lies

on the wide range of engineered features describing

syntactic, semantic, positional and visual content

of each word as well as its local context.

When extracting the main fields of invoices and

purchase orders, Palm et al. (2017) and Sage et al.

(2019) both employ recurrent connections across

the document to reinforce correlations between the

class predictions of words. They show empirically

that Recurrent Neural Networks (RNN) surpass

classifiers whose prediction dependence is only

due to local context knowledge introduced in the

word representations. For this purpose, they ar-

range the words within a document as a unidimen-

sional sequence and pass the word representations

into a bidirectional LTSM (BLSTM) network for

field classification. Similar to the state-of-the-art

https://en.wikipedia.org/wiki/XML
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in Named Entity Recognition (Yadav and Bethard,

2018), Jiang et al. (2019) also add a Conditional

Random Field (CRF) on top of the BLSTM to re-

fine predictions while extracting information from

Chinese contracts.

Yet, unlike plain text, word spacing and align-

ments in both horizontal and vertical directions

convey substantial clues for extracting information

of documents. By imposing a spurious unidimen-

sional word order, these architectures significantly

favor transmission of context in one direction at

the expense of the other. Lately, methods that ex-

plicitly consider the two dimensional structure of

documents have emerged with two different ap-

proaches.

Lohani et al. (2018), Liu et al. (2019) and

Holeček et al. (2019) represent documents by

graphs, with each node corresponding to a word or

a group of words and edges either connecting all

the nodes or only spatially near neighbors. Convo-

lutional or recurrent mechanisms are then applied

to the graph for predicting the field type of each

node.

Some authors rather represent a document page

as a regular two dimensional grid by downscal-

ing the document image. Each pixel of the grid

contains at most one token - either a character or

a word - and its associated representation. Then,

they employ fully convolutional neural networks

to model the document, either with dilated con-

volutions (Zhao et al., 2019; Palm et al., 2019)

or encoder-decoder architectures performing alter-

nately usual and transposed convolutions (Katti

et al., 2018; Denk and Reisswig, 2019; Dang and

Thanh, 2019). Finally, all these works except Palm

et al. (2019) output a segmentation mask represent-

ing the probabilities that each token contained in a

pixel of the grid belong to the field types to extract.

Katti et al. (2018) and Denk and Reisswig (2019)

additionally tackle tabular data extraction by pre-

dicting the coordinates of the table rows bounding

boxes to identify the invoiced products.

Instead of directly classifying each word of

the document, Palm et al. (2019) output attention

scores to measure the relevance of each word given

the field type to extract. The relevant words are

then copied and fed to learned neural parsers to

generate a normalized string corresponding to the

expected value of the field. The predicted string

is measured by exact match with the ground truth.

Evaluated on 7 fields types of invoices, their end-

to-end method outperforms a logistic regression

based model whose word labels are derived from

end-to-end ground truth using heuristics. However,

their approach cannot extract structured informa-

tion such as the invoiced products.

Although there are publicly released datasets for

the task of information extraction in documents

(Jiang et al., 2019; Huang et al., 2019; Graliński

et al., 2020), as far as we know, none of them are

annotated to recognize structured data.

2.2 Structured language generation

A number of works prove that neural encoder-

decoder models can produce well-formed and well-

typed sequences in a structured language without

supplying an explicit grammar of the language.

Extending traditional text recognition, some au-

thors transform images of tables (Zhong et al.,

2019; Deng et al., 2019) and mathematical formu-

las (Deng et al., 2017; Wu et al., 2018) into their

LaTeX or HTML representations. After applying a

convolutional encoder to the input image, they use

a forward RNN based decoder to generate tokens

in the target language. The decoder is enhanced

with an attention mechanism over the final feature

maps to help focusing on the image part that is

recognized at the current time step.

Neural encoder-decoder architectures have also

been used for semantic parsing which aims at con-

verting natural language utterances to formal mean-

ing representations (Dong and Lapata, 2016; Rabi-

novich et al., 2017). The representations may be

an executable language such as SQL and Prolog or

more abstract representations like abstract syntax

trees. Text being the modality of both input and out-

put sequences, Jia and Liang (2016), Zhong et al.

(2017) and McCann et al. (2018) include attention-

based copying abilities in their neural model to

efficiently produce the rare or out-of-vocabulary

words.

3 Approach

We assume that the text of a document is already

transcribed before extracting its information. For

scanned documents, we employ a commercial Op-

tical Character Recognition (OCR) engine for re-

trieving the text.

The method we propose for extracting structured

information from a document is depicted in Fig-

ure 2. The model is derived from the PGN of See

et al. (2017) proposed for summarization of news
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Figure 2: Illustration of the pointer-generator network for extracting structured information of the document in

Figure 1. For each decoder time step, a generation probability pgen ∈ [0, 1] is calculated, which weights the proba-

bility of generating XML tags from the vocabulary versus copying words from the document carrying information.

The vocabulary distribution and the attention distribution are weighted and summed to obtain the final distribution.

For the illustrated time step, the model mainly points to the word R-1141, i.e. the ID number of the first product.

articles. The attention-based pointing mechanism

allows to accurately reproduce factual information

of articles by copying words that are not in the gen-

erator’s vocabulary, e.g. rare proper nouns. Simi-

larly, we take advantage of its pointing ability to

copy the words from the document which carry

relevant information while allowing the generator

to produce the XML tags which structure the ex-

tracted information. In the following subsections,

we describe in details our model and highlight key

differences with the original PGN.

3.1 Word representation

Each word wi of the document is represented by a

vector denoted ri. In complement to the word level

embeddings used by See et al. (2017), we enrich

representations with additional textual features to

cope with the open vocabulary observed within the

corpus of documents. First, we follow the C2W

model of Ling et al. (2015) to form a textual rep-

resentation qci at the character level. To that end,

we apply a BLSTM layer over the dense embed-

dings associated to the characters of the word and

concatenate the last hidden state in both directions.

We also add the number ni of characters in the

word and case features, i.e. the percentage αi of

its characters in upper case and a binary factor βi
indicating if it has a title form. We concatenate all

these features to form the textual component rti of

the word representation:

rti = [qwi , q
c
i , ni, αi, βi] (1)

where qwi is its word level embedding.

To take into account the document layout, we

also compute spatial features rsi of the word. These

encompass the coordinates of the top-left and

bottom-right edges of the word bounding box, nor-

malized by the height and width of the page. We

concatenate the spatial rsi and textual rti compo-

nents to build the word representation ri.

3.2 Encoder

The words of the document are organized as a uni-

dimensional sequence of length N by reading them
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in a top-left to bottom-right order. The word rep-

resentations {ri}i=1..N are then fed to a two-layer

BLSTM to obtain contextualized representations

through the encoder hidden states {hi}i=1..N .

3.3 Decoder

Decoding is performed by a two-layer forward

LSTM, producing a hidden state st at each time

step t. An attention mechanism is added on top of

the decoder to compute the attention distribution

at over the document words and the context vector

h∗t =
∑N

i=1
atihi. While See et al. (2017) use the

alignment function of Bahdanau et al. (2015), we

employ the general form of Luong et al. (2015) as

this is computationally less expensive while show-

ing similar performances:

eti = sTt Wahi (2)

at = softmax(et) (3)

where Wa is a matrix of learnable parameters.

We simplify the computing of the vocabulary dis-

tribution Pvocab as the generator is only in charge

of producing the XML tags and thus has a vocabu-

lary of limited size. We apply a unique dense layer

instead of two and do not involve the context vector

h∗t in the expression of Pvocab:

Pvocab = softmax(V st + b) (4)

where V and b are learnable parameters

The generation probability pgen ∈ [0, 1] for

choosing between generating XML tags versus

copying words from the document is computed

as follows:

pgen = σ(wT

hh
∗

t + wT

s st + wT

xxt + bptr) (5)

where xt is the decoder input, vectors wh, ws, wx

and scalar bptr are learnable parameters and σ is the

sigmoid function. Then, pgen weights the sum of

the attention and vocabulary distributions to obtain

the final distribution P (w) over the extended vo-

cabulary, i.e. the union of all XML tags and unique

textual values from the document words:

P (w) = pgenPvocab(w)+(1−pgen)
∑

i:wi=w

ati (6)

Note that if a textual value appears multiple times

in the document, the attention weights of all the

corresponding words are summed for calculating

its probability of being copied.

During training, the decoder input xt is the pre-

vious token of the ground truth sequence, while

in inference mode, the previous token emitted by

the decoder is used. An input token is either rep-

resented by a dense embedding if the token is a

XML tag or by the textual feature set rti of the cor-

responding words {wi} if the token is copied from

the document.

To help the model keeping track of words already

copied, we concatenate the previous context vector

h∗t−1
with the input representation xt before ap-

plying the first decoder LSTM layer (Luong et al.,

2015). We also employ the coverage mechanism

proposed in See et al. (2017) in order to reduce rep-

etitions in the generated sequences. The idea is to

combine the attention distributions of the previous

time steps in the coverage vector ct =
∑t−1

t′=1
at

′

to compute the current attention distribution. We

adapt their mechanism to our alignment function,

thus changing the equation 2 to:

eti = sTt (Wahi + ctiwc) (7)

where wc is a vector of adjustable parameters.

The training loss is the combination of the nega-

tive log-likelihood of the target tokens {w∗

t }t=1..T

and the coverage loss which penalizes the model

for repeatedly paying attention to the same words:

losst = − logP (w∗

t ) + λ

N∑

i=1

min(ati, c
t
i) (8)

loss =
1

T

T∑

t=1

losst (9)

where λ is a scalar hyperparameter.

When the decoding stage is performed, the result-

ing string is parsed according to the XML syntax

to retrieve all the predicted entities and fields of the

document.

4 Dataset

We train and evaluate our extraction model on a

dataset of real world business documents which un-

fortunately cannot be publicly released. It consists

of 219,476 purchase orders emanated by 17,664

issuers between April 2017 and May 2018. The

dataset is multilingual and multicultural even if

the documents mainly originate from the U.S. The

number of purchase orders per issuer is at least 3

and at most 31, ensuring diversity of document lay-

outs. Training, validation and test sets have distinct
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issuers to assess the ability of the model to general-

ize to unseen layouts. They have been constructed

by randomly picking 70 %, 10 % and 20 % of the

issuers, respectively. More detailed statistics of the

dataset are given in the Table 1.

Table 1: Statistics of our dataset.

Training documents 154,450

Validation documents 22,261

Test documents 42,765

Words per document (Avg.) 411

Pages per document (Avg.) 1.52

Product entities per document (Avg.) 3.52

Tokens in output sequence (Avg.) 32.24

Words per ID number instance (Avg.) 1.36

Words per quantity instance (Avg.) 1.00

This dataset comes from a larger corpus of doc-

uments with their information extraction results

that have been validated by end users of a com-

mercial document automation software. Among all

the types of information, we focus on the extrac-

tion of the ordered product entities which have two

mandatory fields: ID number and quantity. From

this corpus, we select the purchase orders whose

location in the document is supplied for all its field

instances. The knowledge of location comes from

a layout-based incremental extraction system and

ensures that we perfectly construct the labels for

training a word classifier. Since a field instance

can be composed of multiple words, we adopt the

IOB (Inside, Outside, Beginning) tagging scheme

of Ramshaw and Marcus (1999) for defining the

field type of each document word.

5 Experiments

Our end-to-end model is compared on this dataset

with a baseline extraction method based on a word

classifier. This baseline encodes the document as

the end-to-end model does, i.e. with the same oper-

ations for constructing the word representations ri
and the encoder outputs hi. On top of the encoder,

a dense layer with softmax activation is added with

5 output units. 4 of these units refer to the begin-

ning and continuation of an instance for ID number

and quantity fields. The remaining unit is dedi-

cated to the Outside class, i.e. for the document

words carrying information that we do not want

to extract. The words with a predicted probability

above 0.5 for one of the 4 field units are associ-

ated with the corresponding class, otherwise we

attribute the Outside class. Field instances are then

constructed by merging words with beginning and

continuing classes of the same field type. Finally,

each quantity instance is paired with an ID number

instance to form the product entities. To do so, the

Hungarian algorithm (Kuhn, 1955) solves a linear

sum assignment problem with the vertical distance

on the document as the matching cost between two

field instances. For our task, this pairing strategy is

flawless if the field instances are perfectly extracted

by the word classifier.

The model hyperparameters are chosen accord-

ing to the micro averaged gain on the validation

set. The end-to-end model and baseline share the

same hyperparameter values, except the number of

BLSTM cells in each encoder layer that is fixed to

128 and 256 respectively, to ensure similar num-

bers of trainable parameters. The input character

and word vocabularies are derived from the training

set. We consider all observed characters while we

follow the word vocabulary construction of Sage

et al. (2019) designed for business documents. This

results in vocabularies of respectively 5,592 and

25,677 elements. Their embedding has a size of 16

and 32 and are trained from scratch. The BLSTM

layer iterating over characters of document words

has 32 cells. For all BLSTM layers, each direction

has n/2 LSTM cells and their output are concate-

nated to form n-dimensional vectors. The decoder

layers have a size of 128 and are initialized by the

last states of the encoding BLSTM layers. At infer-

ence time, we decode with a beam search of width

3 and we set the maximum length of the output

sequence to the number of words in the document.

This results in 1,400,908 and 1,515,733 trainable

parameters for the PGN and the word classifier.

To deal with exploding gradients, we apply gra-

dient norm clipping (Pascanu et al., 2013) with

a clipping threshold of 5. The loss is minimized

with the Adam optimizer, its learning rate is fixed

to 0.001 the first 2 epochs and then exponentially

decreases by a factor of 0.8. We stop the training

when the micro gain on the validation set has not

improved in the last 3 epochs. As suggested in

See et al. (2017), the coverage loss is added to the

minimized loss only at the end of training, for one

additional epoch. We weight its contribution by

setting λ = 0.1 as the original value of 1 makes the

negative log-likelihood loss increase. The batch

size is 8 if the model fits on GPU RAM, 4 other-
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wise.

The experiments are carried out on a single

NVIDIA TITAN X GPU. Model training takes

from 3 to 10 days for 10 to 15 epochs. Due to the

computational burden, the hyperparameters values

have not been optimized thoroughly. Besides, we

are not able to train the models on documents with

more than 1800 words, which amounts to about

4 % of the training set being put aside. Yet, we

evaluate the models on all documents of the vali-

dation and test sets. The implementation is based

on the seq2seq subpackage of TensorFlow Addons

(Luong et al., 2017).

6 Results

6.1 Manual post-processing cost

We evaluate the models by measuring how much

work is saved by using them rather than manually

doing the extraction. For this purpose, we first as-

sign the predicted products of a document to the

ground truth entities, then we count the number of

deletions, insertions and modifications to match the

ground truth field instances from the predicted in-

stances that have been assigned. The modification

counter is incremented by one when a predicted

field value and its target do not exactly match. For a

given field, we estimate the manual post-processing

gain with the following edit distance:

1−
# deletions + # insertions + # modifications

N
(10)

where N is the number of ground truth instances

in the document for this field. Micro averaged

gain is calculated by summing the error counters of

ID number and quantity fields and applying equa-

tion 10. We select the assignment between pre-

dicted and target entities that maximizes the micro

gain of the document. To assess the post-processing

gains across a set of documents, we sum the coun-

ters of each document before using equation 10.

Our evaluation methodology is closely related to

Katti et al. (2018). However, they compute metrics

independently for each field while we take into

account the structure of entities in our evaluation.

We report in Table 2 the results of both extraction

models on the test set. We retain the best epoch of

each model according to the validation micro gain.

All post-processing gains have positive values,

meaning that it is more efficient to correct potential

errors of models than manually perform the extrac-

tion from scratch (in this case, # insertions = N

Table 2: Post-processing gains when extracting the

products from the test documents. % Perfect column

indicates the percentage of documents perfectly pro-

cessed by each model.

ID
number

Quantity
Micro
avg.

%
Perfect

Word
classifier

0.754 0.855 0.804 67.4

PGN 0.711 0.832 0.771 68.2

and # deletions = # modifications = 0). We note

that the performances of the word classifier and

PGN are quite similar. Even if its field level gains

are a little behind, the PGN slightly surpasses the

word classifier for recognizing whole documents.

Both models significantly reduce human efforts as

the end users do not have any corrections to make

for more than 2 out of 3 documents. Besides, the

PGN produces sequences that are well-formed ac-

cording to the XML syntax for more than 99.5 %

of the test documents.

6.2 Visual inspection of the attention

mechanism

The comparison with the baseline confirms that the

PGN has learned to produce relevant attention dis-

tributions in order to copy words carrying useful

information. In particular, when the expected field

value appears multiple times in the document, the

PGN is able to localize the occurrence that is se-

mantically correct, as illustrated in the document

displayed in Figure 3. As shown, the PGN focuses

its attention on the word 1 in the table row of the

product that is currently recognized. On the con-

trary, the model ignores the occurrences of 1 which

are contained in the rest of the product table and in

the address blocks. This behaviour is noteworthy

since the model is not explicitly taught to perform

this disambiguation.

7 Discussion

The main difficulty faced by both models is ambi-

guity in the ground truth as our dataset has been

annotated by users from many distinct companies.

Some documents contain multiple valid values for

a field of a unique product. For example, there may

be the references from both recipient and issuer for

the ID number. The field value which is retained

as ground truth then depends on further process-

ing of the extracted information, e.g. integration

into a Enterprise Resource Planning (ERP) system.
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Figure 3: A sample document with filled bounding

boxes around words whose colors depend on their atten-

tion weights. For sake of readability, we only highlight

the top 15 words. We show attention values for the 6th

time step of the pointer-generator network, after having

outputted the tokens <Product>, <IDNumber>,

THX-63972D, </IDNumber> and <Quantity>.

The model rightly points to the word 1 to extract the

quantity value of the first product.

This seriously prevents any extraction model from

reaching the upper bound of post-processing gain

metrics which is 1.

Besides, the ID number field does not always

have a dedicated physical column and rather ap-

pears within the description column, without key-

words clearly introducing the field instances such

as in Figure 1. Also, its instances are constituted on

average of more words than the quantity, making

less likely the exact match between predicted and

target instances. These additional complications

explain the gap of model performances between

the two fields.

Unlike the word classifier based approach, the

PGN tends to repeat itself by duplicating some field

instances and skipping others. This is especially

observed for documents having a large number of

products, therefore large output sequences. To mea-

sure the impact of these repetitions on metrics, we

split the test set into 3 subsets according to the

number of products contained in the document: no

more than 3, between 4 and 14 and at least 15 enti-

ties. The last subset gathers documents with output

sequences of at least 122 tokens. We recompute

the metrics for each subset and report the micro

averaged gains in Table 3.

Table 3: Micro averaged gains over the test set condi-

tioned on the number N of products in the document.

N ≤ 3 3 < N < 15 N ≥ 15

Documents 33,332 7,820 1,613

Product entities 46,893 53,771 44,094

Word classifier 0.804 0.807 0.801

PGN 0.820 0.791 0.696

Without coverage 0.799 0.817 0.671

The performances are stable for the word clas-

sifier whatever the number of entities in the docu-

ment. The PGN is on par with the word classifier

for the documents with a small number of products

which constitute the vast majority of the dataset.

However, its extraction performance greatly de-

clines for large output sequences, indicating that

the PGN is more affected by repetitions than the

baseline. It is unclear why the coverage mechanism

is not as successful on our task as it is for abstrac-

tive summarization (See et al., 2017). We also

tried to use the temporal attention from Paulus et al.

(2018) to avoid copying the same words multiple

times but this was unsuccessful too.

8 Conclusion

We discussed a novel method based on pointer-

generator networks for extracting structured infor-

mation from documents. We showed that learning

directly from the textual value of information is a

viable alternative to the costly word level supervi-

sion commonly used in information extraction. In

this work, we focused on purchase orders but the

approach could be used to extract any structured

entity as long as its information type is known at

training time.

Future work should aim to: i) reduce repetitions

in the output sequences, ii) add parsing abilities

into our encoder-decoder in order to transform the

values of copied words. This will allow to pro-

cess fields that need to be normalized when being

extracted.
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