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Abstract

We present a graph-based Tree Adjoin-

ing Grammar (TAG) parser that uses BiL-

STMs, highway connections, and character-

level CNNs. Our best end-to-end parser,

which jointly performs supertagging, POS tag-

ging, and parsing, outperforms the previously

reported best results by more than 2.2 LAS

and UAS points. The graph-based parsing

architecture allows for global inference and

rich feature representations for TAG parsing,

alleviating the fundamental trade-off between

transition-based and graph-based parsing sys-

tems. We also demonstrate that the proposed

parser achieves state-of-the-art performance in

the downstream tasks of Parsing Evaluation

using Textual Entailments (PETE) and Un-

bounded Dependency Recovery. This provides

further support for the claim that TAG is a vi-

able formalism for problems that require rich

structural analysis of sentences.

1 Introduction

Tree Adjoining Grammar (TAG, Joshi and Sch-

abes (1997)) and Combinatory Categorial Gram-

mar (CCG, Steedman and Baldridge (2011)) are

both mildly context-sensitive grammar formalisms

that are lexicalized: every elementary structure

(elementary tree for TAG and category for CCG)

is associated with exactly one lexical item, and ev-

ery lexical item of the language is associated with

a finite set of elementary structures in the gram-

mar (Rambow and Joshi, 1994). In TAG and CCG,

the task of parsing can be decomposed into two

phases (e.g. TAG: Bangalore and Joshi (1999);

CCG: Clark and Curran (2007)): supertagging,

where elementary units or supertags are assigned

to each lexical item and parsing where these su-

pertags are combined together. The first phase of

supertagging can be considered as “almost pars-

ing” because supertags for a sentence almost al-

ways determine a unique parse (Bangalore and

Joshi, 1999). This near uniqueness of a parse

given a gold sequence of supertags has been con-

firmed empirically (TAG: Bangalore et al. (2009);

Chung et al. (2016); Kasai et al. (2017); CCG:

Lewis et al. (2016)).

We focus on TAG parsing in this work. TAG

differs from CCG in having a more varied set of

supertags. Concretely, the TAG-annotated version

of the WSJ Penn Treebank (Marcus et al., 1993)

that we use (Chen et al., 2005) includes 4727 dis-

tinct supertags (2165 occur once) while the CCG-

annotated version (Hockenmaier and Steedman,

2007) only includes 1286 distinct supertags (439

occur once). This large set of supertags in TAG

presents a severe challenge in supertagging and

causes a large discrepancy in parsing performance

with gold supertags and predicted supertags (Ban-

galore et al., 2009; Chung et al., 2016; Kasai et al.,

2017).

In this work, we present a supertagger and a

parser that substantially improve upon previously

reported results. We propose crucial modifications

to the bidirectional LSTM (BiLSTM) supertagger

in Kasai et al. (2017). First, we use character-level

Convolutional Neural Networks (CNNs) for en-

coding morphological information instead of suf-

fix embeddings. Secondly, we perform concatena-

tion after each BiLSTM layer. Lastly, we explore

the impact of adding additional BiLSTM layers

and highway connections. These techniques yield

an increase of 1.3% in accuracy. For parsing, since

the derivation tree in a lexicalized TAG is a type of

dependency tree (Rambow and Joshi, 1994), we

can directly apply dependency parsing models. In

particular, we use the biaffine graph-based parser

proposed by Dozat and Manning (2017) together

with our novel techniques for supertagging.

In addition to these architectural extensions for

supertagging and parsing, we also explore multi-

task learning approaches for TAG parsing. Specif-
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ically, we perform POS tagging, supertagging,

and parsing using the same feature representations

from the BiLSTMs. This joint modeling has the

benefit of avoiding a time-consuming and com-

plicated pipeline process, and instead produces

a full syntactic analysis, consisting of supertags

and the derivation that combines them, simultane-

ously. Moreover, this multi-task learning frame-

work further improves performance in all three

tasks. We hypothesize that our multi-task learning

yields feature representations in the LSTM layers

that are more linguistically relevant and that gener-

alize better (Caruana, 1997). We provide support

for this hypothesis by analyzing syntactic analo-

gies across induced vector representations of su-

pertags (Kasai et al., 2017; Friedman et al., 2017).

The end-to-end TAG parser substantially outper-

forms the previously reported best results.

Finally, we apply our new parsers to the down-

stream tasks of Parsing Evaluation using Tex-

tual Entailements (PETE, Yuret et al. (2010)) and

Unbounded Dependency Recovery (Rimell et al.,

2009). We demonstrate that our end-to-end parser

outperforms the best results in both tasks. These

results illustrate that TAG is a viable formalism

for tasks that benefit from the assignment of rich

structural descriptions to sentences.

2 Our Models

TAG parsing can be decomposed into supertag-

ging and parsing. Supertagging assigns to words

elementary trees (supertags) chosen from a finite

set, and parsing determines how these elementary

trees can be combined to form a derivation tree

that yield the observed sentence. The combina-

tory operations consist of substitution, which in-

serts obligatory arguments, and adjunction, which

is responsible for the introduction of modifiers,

function words, as well as the derivation of sen-

tences involving long-distance dependencies. In

this section, we present our supertagging models,

parsing models, and joint models.

2.1 Supertagging Model

Recent work has explored neural network mod-

els for supertagging in TAG (Kasai et al., 2017)

and CCG (Xu et al., 2015; Lewis et al., 2016;

Vaswani et al., 2016; Xu, 2016), and has shown

that such models substantially improve perfor-

mance beyond non-neural models. We extend pre-

viously proposed BiLSTM-based models (Lewis

et al., 2016; Kasai et al., 2017) in three ways: 1)

we add character-level Convolutional Neural Net-

works (CNNs) to the input layer, 2) we perform

concatenation of both directions of the LSTM not

only after the final layer but also after each layer,

and 3) we use a modified BiLSTM with highway

connections.

2.1.1 Input Representations

The input for each word is represented via con-

catenation of a 100-dimensional embedding of

the word, a 100-dimensional embedding of a

predicted part of speech (POS) tag, and a 30-

dimensional character-level representation from

CNNs that have been found to capture morpho-

logical information (Santos and Zadrozny, 2014;

Chiu and Nichols, 2016; Ma and Hovy, 2016).

The CNNs encode each character in a word by

a 30 dimensional vector and 30 filters produce a

30 dimensional vector for the word. We initialize

the word embeddings to be the pre-trained GloVe

vectors (Pennington et al., 2014); for words not in

GloVe, we initialize their embedding to a zero vec-

tor. The other embeddings are randomly initial-

ized. We obtain predicted POS tags from a BiL-

STM POS tagger with the same configuration as

in Ma and Hovy (2016).

2.1.2 Deep Highway BiLSTM

The core of the supertagging model is a deep

bidirectional Long Short-Term Memory network

(Graves and Schmidhuber, 2005). We use the fol-

lowing formulas to compute the activation of a sin-

gle LSTM cell at time step t:

it = σ (Wi[xt;ht−1] + bi) (1)

ft = σ (Wf [xt;ht−1] + bf ) (2)

c̃t = tanh (Wc[xt;ht−1] + bc) (3)

ot = σ (Wo[xt;ht−1] + bo) (4)

ct = f ⊙ ct−1 + it ⊙ c̃t (5)

ht = o⊙ tanh (ct) (6)

Here a semicolon ; means concatenation, ⊙ is

element-wise multiplication, and σ is the sigmoid

function. In the first BiLSTM layer, the input xt is

the vector representation of word t. (The sequence

is reversed for the backwards pass.) In all subse-

quent layers, xt is the corresponding output from

the previous BiLSTM; the output of a BiLSTM at

timestep t is equal to [hft ;h
b
t ], the concatenation

of hidden state corresponding to input t in the for-

ward and backward pass. This concatenation af-
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ter each layer differs from Kasai et al. (2017) and

Lewis et al. (2016), where concatenation happens

only after the final BiLSTM layer. We will show in

a later section that concatenation after each layer

contributes to improvement in performance.

We also extend the models in Kasai et al. (2017)

and Lewis et al. (2016) by allowing highway con-

nections between LSTM layers. A highway con-

nection is a gating mechanism that combines the

current and previous layer outputs, which can pre-

vent the problem of vanishing/exploding gradients

(Srivastava et al., 2015). Specifically, in networks

with highway connections, we replace Eq. 6 by:

rt = σ (Wr[xt;ht−1] + br)

ht = rt ⊙ ot ⊙ tanh (ct) + (1− rt)⊙Whxt

Indeed, our experiments will show that highway

connections play a crucial role as we add more

BiLSTM layers.

We generally follow the hyperparameters cho-

sen in Lewis et al. (2016) and Kasai et al. (2017).

Specifically, we use BiLSTMs layers with 512

units each. Input, layer-to-layer, and recurrent

(Gal and Ghahramani, 2016) dropout rates are all

0.5. For the CNN character-level representation,

we used the hyperparameters from Ma and Hovy

(2016).

We train this network, including the embed-

dings, by optimizing the negative log-likelihood

of the observed sequences of supertags in a mini-

batch stochastic fashion with the Adam optimiza-

tion algorithm with batch size 100 and ℓ = 0.01
(Kingma and Ba, 2015). In order to obtain pre-

dicted POS tags and supertags of the training data

for subsequent parser input, we also perform 10-

fold jackknife training. After each training epoch,

we test the supertagger on the dev set. When clas-

sification accuracy does not improve on five con-

secutive epochs, training ends.

2.2 Parsing Model

Until recently, TAG parsers have been grammar

based, requiring as input a set of elemenetary trees

(supertags). For example, Bangalore et al. (2009)

proposes the MICA parser, an Earley parser that

exploits a TAG grammar that has been trans-

formed into a variant of a probabilistic CFG. One

advantage of such a parser is that its parses are

guaranteed to be well-formed according to the

TAG grammar provided as input.

More recent work, however, has shown that

data-driven transition-based parsing systems out-

perform such grammar-based parsers (Chung

et al., 2016; Kasai et al., 2017; Friedman et al.,

2017). Kasai et al. (2017) and Friedman

et al. (2017) achieved state-of-the-art TAG parsing

performance using an unlexicalized shift-reduce

parser with feed-forward neural networks that was

trained on a version of the Penn Treebank that

had been annotated with TAG derivations. Here,

we pursue this data-driven approach, applying a

graph-based parser with deep biaffine attention

(Dozat and Manning, 2017) that allows for global

training and inference.

2.2.1 Input Representations

The input for each word is the concatenation

of a 100-dimensional embedding of the word

and a 30-dimensional character-level representa-

tion obtained from CNNs in the same fashion

as in the supertagger.1 We also consider adding

100-dimensional embeddings for a predicted POS

tag (Dozat and Manning, 2017) and a predicted

supertag (Kasai et al., 2017; Friedman et al.,

2017). The ablation experiments in Kiperwasser

and Goldberg (2016) illustrated that adding pre-

dicted POS tags boosted performance in Stanford

Dependencies. In Universal Dependencies, Dozat

et al. (2017) empirically showed that their depen-

dency parser gains significant improvements by

using POS tags predicted by a Bi-LSTM POS tag-

ger. Indeed, Kasai et al. (2017) and Friedman

et al. (2017) demonstrated that their unlexicalized

neural network TAG parsers that only get as in-

put predicted supertags can achieve state-of-the-

art performance, with lexical inputs providing no

improvement in performance. We initialize word

embeddings to be the pre-trained GloVe vectors as

in the supertagger. The other embeddings are ran-

domly initialized.

2.2.2 Biaffine Parser

We train our parser to predict edges between lex-

ical items in an LTAG derivation tree. Edges are

labeled by the operations together with the deep

syntactic roles of substitution sites (0=underlying

subject, 1=underlying direct object, 2=underlying

indirect object, 3,4=oblique arguments, CO=co-

head for prepositional/particle verbs, and adj=all

adjuncts). Figure 1 shows our biaffine parsing ar-

1We fix the embedding of the ROOT token to be a 0-
vector.
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Figure 1: Biaffine parsing architecture. For the depen-

dency from John to sleeps in the sentence John sleeps,

the parser first predicts the head of John and then pre-

dicts the dependency label by combining the dependent

and head representations. In the joint setting, the parser

also predicts POS tags and supertags.

chitecture. Following Dozat and Manning (2017)

and Kiperwasser and Goldberg (2016), we use

BiLSTMs to obtain features for each word in a

sentence. We add highway connections in the

same fashion as our supertagging model.

We first perform unlabeled arc-factored scoring

using the final output vectors from the BiLSTMs,

and then label the resulting arcs. Specifically, sup-

pose that we score edges coming into the ith word

in a sentence i.e. assigning scores to the potential

parents of the ith word. Denote the final output

vector from the BiLSTM for the kth word by hk
and suppose that hk is d-dimensional. Then, we

produce two vectors from two separate multilayer

perceptrons (MLPs) with the ReLU activation:

h
arc-dep
k = MLP(arc-dep)(hk)

harc-head
k = MLP(arc-head)(hk)

where h
arc-dep
k and harc-head

k are darc-dimensional

vectors that represent the kth word as a dependent

and a head respectively. Now, suppose the kth row

of matrix H (arc-head) is harc-head
k . Then, the proba-

bility distribution si over the potential heads of the

ith word is computed by

si = softmax(H (arc-head)W (arc)h
arc-dep
i

+H (arc-head)b(arc))
(7)

where W (arc) ∈ R
darc×darc and b(arc) ∈ R

darc .

In training, we simply take the greedy maximum

probability to predict the parent of each word. In

the testing phase, we use the heuristics formulated

by Dozat and Manning (2017) to ensure that the

resulting parse is single-rooted and acyclic.

Given the head prediction of each word in the

sentence, we assign labeling scores using vectors

obtained from two additional MLP with ReLU.

For the kth word, we obtain:

h
rel-dep
k = MLP(rel-dep)(hk)

hrel-head
k = MLP(rel-head)(hk)

where h
rel-dep
k , hrel-head

k ∈ R
drel . Let pi be the in-

dex of the predicted head of the ith word, and r be

the number of dependency relations in the dataset.

Then, the probability distribution ℓi over the possi-

ble dependency relations of the arc pointing from

the pith word to the ith word is calculated by:

ℓi = softmax(hT (rel-head)
pi

U (rel)h
(rel-dep)
i

+W (rel)(h(rel-head)
i + h(rel-head)

pi
) + b(rel))

(8)

where U (rel) ∈ R
drel×drel×r, W (rel) ∈ R

r×drel , and

b(rel) ∈ R
r.

We generally follow the hyperparameters cho-

sen in Dozat and Manning (2017). Specifically,

we use BiLSTMs layers with 400 units each. In-

put, layer-to-layer, and recurrent dropout rates are

all 0.33. The depths of all MLPs are all 1, and

the MLPs for unlabeled attachment and those for

labeling contain 500 (darc) and 100 (drel) units re-

spectively. For character-level CNNs, we use the

hyperparameters from Ma and Hovy (2016).

We train this model with the Adam algorithm to

minimize the sum of the cross-entropy losses from

head predictions (si from Eq. 7) and label predic-

tions (ℓi from Eq. 8) with ℓ = 0.01 and batch size

100 (Kingma and Ba, 2015). After each training

epoch, we test the parser on the dev set. When la-

beled attachment score (LAS)2 does not improve

on five consecutive epochs, training ends.

2.3 Joint Modeling

The simple BiLSTM feature representations for

parsing presented above are conducive to joint

modeling of POS tagging and supertagging; rather

than using POS tags and supertags to predict a

derivation tree, we can instead use the BiLSTM

hidden vectors derived from lexical inputs alone

2We disregard pure punctuation when evaluating LAS and
UAS, following prior work (Bangalore et al., 2009; Chung
et al., 2016; Kasai et al., 2017; Friedman et al., 2017).
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to predict POS tags and supertags along with the

TAG derivation tree.

h
pos
k = MLP(pos)(hk)

h
stag
k = MLP(stag)(hk)

where h
pos
k ∈ R

dpos and h
stag
k ∈ R

dstag . We ob-

tain probability distribution over the POS tags and

supertags by:

softmax(W (pos)h
pos
k + b(pos)) (9)

softmax(W (stag)h
stag
k + b(stag)) (10)

where W (pos), b(pos), W (stag), and b(stag) are in

R
npos×dpos , R

npos , R
nstag×dstag , and R

nstag re-

spectively, with npos and nstag the numbers of

possible POS tags and supertags respectively.

We use the same hyperparameters as in the

parser. The MLPs for POS tagging and supertag-

ging both contain 500 units. We again train this

model with the Adam algorithm to minimize the

sum of the cross-entropy losses from head predic-

tions (si from Eq. 7), label predictions (ℓi from

Eq. 8), POS predictions (Eq. 9), and supertag pre-

dictions (Eq. 10) with ℓ = 0.01 and batch size

100. After each training epoch, we test the parser

on the dev set and compute the percentage of each

token that is assigned the correct parent, relation,

supertag, and POS tag. When the percentage does

not improve on five consecutive epochs, training

ends.

This joint modeling has several advantages.

First, the joint model yields a full syntactic anal-

ysis simultaneously without the need for training

separate models or performing jackknife training.

Secondly, joint modeling introduces a bias on the

hidden representations that could allow for bet-

ter generalization in each task (Caruana, 1997).

Indeed, in experiments described in a later sec-

tion, we show empirically that predicting POS tags

and supertags does indeed benefit performance on

parsing (as well as the tagging tasks).

3 Results and Discussion

We follow the protocol of Bangalore et al. (2009),

Chung et al. (2016), Kasai et al. (2017), and Fried-

man et al. (2017); we use the grammar and the

TAG-annotated WSJ Penn Tree Bank extracted by

Chen et al. (2005). Following that work, we use

Sections 01-22 as the training set, Section 00 as

the dev set, and Section 23 as the test set. The

training, dev, and test sets comprise 39832, 1921,

and 2415 sentences, respectively. We implement

all of our models in TensorFlow (Abadi et al.,

2016).3

3.1 Supertaggers

Our BiLSTM POS tagger yielded 97.37% and

97.53% tagging accuracy on the dev and test sets,

performance on par with the state-of-the-art (Ling

et al., 2015; Ma and Hovy, 2016).4 Seen in the

middle section of Table 1 is supertagging per-

formance obtained from various model configu-

rations. “Final concat” in the model name in-

dicates that vectors from forward and backward

pass are concatenated only after the final layer.

Concatenation happens after each layer otherwise.

Numbers immediately after BiLSTM indicate the

numbers of layers. CNN, HW, and POS denote

respectively character-level CNNs, highway con-

nections, and pipeline POS input from our BiL-

STM POS tagger. Firstly, the differences in per-

formance between BiLSTM2 (final concat) and

BiLSTM2 and between BiLSTM2 and BiLSTM2-

CNN suggest an advantage to performing concate-

nation after each layer and adding character-level

CNNs. Adding predicted POS to the input some-

what helps supertagging though the difference is

small. Adding a third BiLSTM layer helps only

if there are highway connections, presumably be-

cause deeper BiLSTMs are more vulnerable to

the vanishing/exploding gradient problem. Our

supertagging model (BiLSTM3-HW-CNN-POS)

that performs best on the dev set achieves an ac-

curacy of 90.81% on the test set, outperforming

the previously best result by more than 1.3%.

3.2 Parsers

Table 3 shows parsing results on the dev set. Ab-

breviations for models are as before with one

addition: Stag denotes pipeline supertag input

from our best supertagger (BiLSTM3-HW-CNN-

POS in Table 1). As with supertagging, we ob-

serve a gain from adding character-level CNNs.

Interestingly, adding predicted POS tags or su-

pertags deteriorates performance with BiLSTM3.

These results suggest that morphological informa-

tion and word information from character-level

CNNs and word embeddings overwhelm the in-

3Our code is available online for easy replication of
our results at https://github.com/jungokasai/

graph_parser.
4We cannot directly compare these results because the

data split is different in the POS tagging literature.
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Supertagger Dev Test

Bangalore et al. (2009) 88.52 86.85
Chung et al. (2016) 87.88 –
Kasai et al. (2017) 89.32 89.44
BiLSTM2 (final concat) 88.96 –
BiLSTM2 89.60 –
BiLSTM2-CNN 89.97 –
BiLSTM2-CNN-POS 90.03 –
BiLSTM2-HW-CNN-POS 90.12 –
BiLSTM3-CNN-POS 90.12 –
BiLSTM3-HW-CNN-POS 90.45 90.81
BiLSTM4-CNN-POS 89.99 –
BiLSTM4-HW-CNN-POS 90.43 –
Joint (Stag) 90.51 –
Joint (POS+Stag) 90.67 91.01

Table 1: Supertagging Results. Joint (Stag) and Joint

(POS+Stag) indicate joint parsing models that perform

supertagging, and POS tagging and supertagging re-

spectively.

POS tagger Dev Test

BiLSTM 97.37 97.53
Joint (POS+Stag) 97.54 97.73

Table 2: POS tagging results.

formation from predicted POS tags and supertags.

Again, highway connections become crucial as the

number of layers increases. We finally evaluate

the parsing model with the best dev performance

(BiLSTM4-HW-CNN) on the test set (Table 3). It

achieves 91.37 LAS points and 92.77 UAS points,

improvements of 1.8 and 1.7 points respectively

from the state-of-the-art.

3.3 Joint Models

We provide joint modeling results for supertag-

ging and parsing in Tables 2 and 3. For these

joint models, we employed the best parsing con-

figuration (4 layers of BiLSTMs, character-level

CNNs, and highway connections), with and with-

out POS tagging added as an additional task. We

can observe that our full joint model that performs

1 2 3 4 5 6 7 8 9 10 11+

80

85

90

95 Our Joint Parser

Shift-reduce Parser

Figure 2: F1 Score with Dependency Length.

Dev Test
Parser UAS LAS UAS LAS

Bangalore et al. (2009) 87.60 85.80 86.66 84.90
Chung et al. (2016) 89.96 87.86 – –
Friedman et al. (2017) 90.36 88.91 90.31 88.96
Kasai et al. (2017) 90.88 89.39 90.97 89.68
BiLSTM3 91.75 90.22 – –
BiLSTM3-CNN 92.27 90.76 – –
BiLSTM3-CNN-POS 92.07 90.53 – –
BiLSTM3-CNN-Stag 92.15 90.65 – –
BiLSTM3-HW-CNN 92.29 90.71 – –
BiLSTM4-CNN 92.11 90.66 – –
BiLSTM4-HW-CNN 92.78 91.26 92.77 91.37
BiLSTM5-CNN 92.34 90.77 – –
BiLSTM5-HW-CNN 92.64 91.11 – –
Joint (Stag) 92.97 91.48 – –
Joint (POS+Stag) 93.22 91.80 93.26 91.89

Joint (Shuffled Stag) 92.23 90.56 – –

Table 3: Parsing results on the dev and test sets.

POS tagging, supertagging, and parsing further

improves performance in all of the three tasks,

yielding the test result of 91.89 LAS and 93.26

UAS points, an improvement of more than 2.2

points each from the state-of-the-art.

Figures 2 and 3 illustrate the relative perfor-

mance of the feed-forward neural network shift-

reduce TAG parser (Kasai et al., 2017) and our

joint graph-based parser with respect to two of

the measures explored by McDonald and Nivre

(2011), namely dependency length and distance

between a dependency and the root of a parse. The

graph-based parser outperforms the shift-reduce

parser across all conditions. Most interesting is

the fact that the graph-based parser shows less of

an effect of dependency length. Since the shift-

reduce parser builds a parse sequentially with one

parsing action depending on those that come be-

fore it, we would expect to find a propogation of

errors made in establishing shorter dependencies

to the establishment of longer dependencies.

Lastly, it is worth noting our joint parsing ar-

1 2 3 4 5 6 7 8 9 10 11+

90

95

Our Joint Parser

Shift-reduce Parser

Figure 3: F1 Score with Distance to Root.
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chitecture has a substantial advantage regarding

parsing speed. Since POS tagging, supertagging,

and parsing decisions are made independently for

each word in a sentence, our system can parallelize

computation once the sentence is encoded in the

BiLSTM layers. Our current implementation pro-

cesses 225 sentences per second on a single Tesla

K80 GPU, an order of magnitude faster than the

MICA system (Bangalore et al., 2009).5

4 Joint Modeling and Network

Representations

Given the improvements we have derived from the

joint models, we analyze the nature of inductive

bias that results from multi-task training and at-

tempt to provide an explanation as to why joint

modeling improves performance.

4.1 Noise vs. Inductive Bias

One might argue that joint modeling improves per-

formance merely because it adds noise to each task

and prevents over-fitting. If the introduction of

noise were the key, we would still expect to gain

an improvement in parsing even if the target su-

pertag were corrupted, say by shuffling the order

of supertags for the entire training data (Caruana,

1997). We performed this experiment, and the

result is shown as “Joint (Shuffled Stag)” in Ta-

ble 3. Parsing performance falls behind the best

non-joint parser by 0.7 LAS points. This suggests

that inducing the parser to create representations

to predict both supertags and a parse tree is ben-

eficial for both tasks, beyond a mere introduction

of noise.

4.2 Syntactic Analogies

We next analyze the induced vector representa-

tions in the output projection matrices of our su-

pertagger and joint parsers using the syntactic

analogy framework (Kasai et al., 2017). Consider,

for instance, the analogy that an elementary tree

representing a clause headed by a transitive verb

(t27) is to a clause headed by an intransitive verb

(t81) as a subject relative clause headed by a tran-

sitive verb (t99) is to a subject relative headed by

an intransitive verb (t109). Following the ideas

in Mikolov et al. (2013) for word analogies, we

can express this structural analogy as t27 - t81 +

5While such computational resources were not available
in 2009, our parser differs from the MICA chart parser in
being able to better exploit parallel computation enabled by
modern GPUs.

t109 = t99 and test it by cosine similarity. Table

4 shows the results of the analogy test with 246

equations involving structural analogies with only

the 300 most frequent supertags in the training

data. While the embeddings (projection matrix)

from the independently trained supertagger do not

appear to reflect the syntax, those obtained from

the joint models yield linguistic structure despite

the fact that the supertag embeddings (projection

matrix) is trained without any a priori syntactic

knowledge about the elementary trees.

The best performance is obtained by the su-

pertag representations obtained from the training

of the transition-based parser Kasai et al. (2017)

and Friedman et al. (2017). For the transition-

based parser, it is beneficial to share statistics

among the input supertags that differ only by a

certain operation or property (Kasai et al., 2017)

during the training phase, yielding the success in

the analogy task. For example, a transitive verb su-

pertag whose object has been filled by substitution

should be treated by the parser in the same way as

an intransitive verb supertag. In our graph-based

parsing setting, we do not have a notion of parse

history or partial derivations that directly connect

intransitive and transitive verbs. However, syn-

tactic analogies still hold to a considerable degree

in the vector representations of supertags induced

by our joint models, with average rank of the cor-

rect answer nearly the same as that obtained in the

transition-based parser.

This analysis bolsters our hypothesis that joint

training biases representation learning toward lin-

guistically sensible structure. The supertagger

is just trained to predict linear sequences of su-

pertags. In this setting, many intervening su-

pertags can occur, for instance, between a subject

noun and its verb, and the supertagger might not

be able to systematically link the presence of the

two in the sequence. In the joint models, on the

other hand, parsing actions will explicitly guide

the network to associate the two supertags.

5 Downstream Tasks

Previous work has applied TAG parsing to the

downstream tasks of syntactically-oriented textual

entailment (Xu et al., 2017) and semantic role la-

beling (Chen and Rambow, 2003). In this work,

we apply our parsers to the textual entailment

and unbounded dependency recovery tasks and

achieve state-of-the-art performance. These re-
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Parser / Supertagger %correct Avg. rank

Transition-based 67.07 2.36
Our Supertagger 0.00 152.46
Our Joint (Stag) 29.27 2.55
Our Joint (POS+Stag) 30.08 2.57

Table 4: Syntactic analogy test results on the 300 most

frequent supertags. Avg. rank is the average position

of the correct choice in the ranked list of the closest

neighbors; the top line indicates the result of using su-

pertag embeddings that are trained jointly with a tran-

sition based parser (Friedman et al., 2017).

sults bolster the significance of the improvements

gained from our joint parser and the utility of TAG

parsing for downstream tasks.

5.1 PETE

Parser Evaluation using Textual Entailments

(PETE) is a shared task from the SemEval-2010

Exercises on Semantic Evaluation (Yuret et al.,

2010). The task was intended to evaluate syn-

tactic parsers across different formalisms, focus-

ing on entailments that could be determined en-

tirely on the basis of the syntactic representa-

tions of the sentences that are involved, with-

out recourse to lexical semantics, logical reason-

ing, or world knowledge. For example, syntactic

knowledge alone tells us that the sentence John,

who loves Mary, saw a squirrel entails John saw

a squirrel and John loves Mary but not, for in-

stance, that John knows Mary or John saw an

animal. Prior work found the best performance

was achieved with parsers using grammatical

frameworks that provided rich linguistic descrip-

tions, including CCG (Rimell and Clark, 2010;

Ng et al., 2010), Minimal Recursion Semantics

(MRS) (Lien, 2014), and TAG (Xu et al., 2017).

Xu et al. (2017) provided a set of linguistically-

motivated transformations to use TAG derivation

trees to solve the PETE task. We follow their pro-

cedures and evaluation for our new parsers.

We present test results from two configurations

in Table 5. One configuration is a pipeline ap-

proach that runs our BiLSTM POS tagger, su-

pertagger, and parser. The other one is a joint ap-

proach that only uses our full joint parser. The

joint method yields 78.1% in accuracy and 76.4%

in F1, improvements of 2.4 and 2.7 points over the

previously reported best results.

System %A %P %R F1

Rimell and Clark (2010) 72.4 79.6 62.8 70.2
Ng et al. (2010) 70.4 68.3 80.1 73.7
Lien (2014) 70.7 88.6 50.0 63.9
Xu et al. (2017) 75.7 88.1 61.5 72.5
Our Pipeline Method 77.1 86.6 66.0 74.9
Our Joint Method 78.1 86.3 68.6 76.4

Table 5: PETE test results. Precision (P), recall (R),

and F1 are calculated for “entails.”

5.2 Unbounded Dependency Recovery

The unbounded dependency corpus (Rimell et al.,

2009) specifically evaluates parsers on unbounded

dependencies, which involve a constituent moved

from its original position, where an unlimited

number of clause boundaries can intervene. The

corpus comprises 7 constructions: object extrac-

tion from a relative clause (ObRC), object extrac-

tion from a reduced relative clause (ObRed), sub-

ject extraction from a relative clause (SbRC), free

relatives (Free), object wh-questions (ObQ), right

node raising (RNR), and subject extraction from

an embedded clause (SbEm).

Because of variations across formalisms in their

representational format for unbounded depden-

dencies, past work has conducted manual evalu-

ation on this corpus (Rimell et al., 2009; Nivre

et al., 2010). We instead conduct an automatic

evaluation using a procedure that converts TAG

parses to structures directly comparable to those

specified in the unbounded dependency corpus. To

this end, we apply two types of structural trans-

formation in addition to those used for the PETE

task:6 1) a more extensive analysis of coordina-

tion, 2) resolution of differences in dependency

representations in cases involving copula verbs

and co-anchors (e.g., verbal particles). See Ap-

pendix A for details. After the transformations, we

simply check if the resulting dependency graphs

contain target labeled arcs given in the dataset.

Table 6 shows the results. Our joint parser

outperforms the other parsers, including the neu-

ral network shift-reduce TAG parser (Kasai et al.,

2017). Our data-driven parsers yield relatively low

performance in the ObQ and RNR constructions.

Performance on ObQ is low, we expect, because

of their rarity in the data on which the parser is

6One might argue that since the unbounded dependency
evaluation is recall-based, we added too many edges by the
transformations. However, it turns out that applying all the
transformations for the corpus even improves performance on
PETE (77.6 F1 score), which considers precision and recall,
verifying that our transformations are reasonable.
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System ObRC ObRed SbRC Free ObQ RNR SbEm Total Avg

C&C (CCG) 59.3 62.6 80.0 72.6 72.6 49.4 22.4 53.6 61.1
Enju (HPSG) 47.3 65.9 82.1 76.2 32.5 47.1 32.9 54.4 54.9
Stanford (PCFG) 22.0 1.1 74.7 64.3 41.2 45.4 10.6 38.1 37.0
MST (Stanford Dependencies) 34.1 47.3 78.9 65.5 41.2 45.4 37.6 49.7 50.0
MALT (Stanford Dependencies) 40.7 50.5 84.2 70.2 31.2 39.7 23.5 48.0 48.5
NN Shift-Reduce TAG Parser 60.4 75.8 68.4 79.8 53.8 45.4 44.7 59.4 61.2
Our Joint Method 72.5 78.0 81.1 85.7 56.3 47.1 49.4 64.9 67.0

Table 6: Parser accuracy on the unbounded dependency corpus. The results of the first five parsers are taken

from Rimell et al. (2009) and Nivre et al. (2010). The Total and Avg columns indicate the percentage of correctly

recovered dependencies out of all dependencies and the average of accuracy on the 7 constructions.

trained.7 For RNR, rarity may be an issue as well

as the limits of the TAG analysis of this construc-

tion. Nonetheless, we see that the rich structural

representations that a TAG parser provides enables

substantial improvements in the extraction of un-

bounded dependencies. In the future, we hope

to evaluate state-of-the-art Stanford dependency

parsers automatically.

6 Related Work

The two major classes of data-driven methods for

dependency parsing are often called transition-

based and graph-based parsing (Kübler et al.,

2009). Transition-based parsers (e.g. MALT

(Nivre, 2003)) learn to predict the next transition

given the input and the parse history. Graph-based

parsers (e.g. MST (McDonald et al., 2005)) are

trained to directly assign scores to dependency

graphs.

Empirical studies have shown that a transition-

based parser and a graph-based parser yield sim-

ilar overall performance across languages (Mc-

Donald and Nivre, 2011), but the two strands of

data-driven parsing methods manifest the funda-

mental trade-off of parsing algorithms. The for-

mer prefers rich feature representations with pars-

ing history over global training and exhaustive

search, and the latter allows for global training and

inference at the expense of limited feature repre-

sentations (Kübler et al., 2009).

Recent neural network models for transition-

based and graph-based parsing can be viewed

as remedies for the aforementioned limitations.

Andor et al. (2016) developed a transition-based

parser using feed-forward neural networks that

performs global training approximated by beam

search. The globally normalized objective ad-

dresses the label bias problem and makes global

7The substantially better performance of the C&C parser
is in fact the result of additions that were made to the training
data.

training effective in the transition-based parsing

setting. Kiperwasser and Goldberg (2016) incor-

porated a dynamic oracle (Goldberg and Nivre,

2013) in a BiLSTM transition-based parser that

remedies global error propagation. Kiperwasser

and Goldberg (2016) and Dozat and Manning

(2017) proposed graph-based parsers that have ac-

cess to rich feature representations obtained from

BiLSTMs.

Previous work integrated CCG supertagging

and parsing using belief propagation and dual de-

composition approaches (Auli and Lopez, 2011).

Nguyen et al. (2017) incorporated a graph-based

dependency parser (Kiperwasser and Goldberg,

2016) with POS tagging. Our work followed these

lines of effort and improved TAG parsing perfor-

mance.

7 Conclusion and Future Work

In this work, we presented a state-of-the-art TAG

supertagger, a parser, and a joint parser that per-

forms POS tagging, supertagging, and parsing.

The joint parser has the benefit of giving a full syn-

tactic analysis of a sentence simultaneously. Fur-

thermore, the joint parser achieved the best per-

formance, an improvement of over 2.2 LAS points

from the previous state-of-the-art. We have also

seen that the joint parser yields state-of-the-art in

textual entailment and unbounded dependency re-

covery tasks, and raised the possibility that TAG

can provide useful structural analysis of sentences

for other NLP tasks. We will explore more appli-

cations of our TAG parsers in future work.
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los Gómez Rodrı́guez. 2010. Evaluation of depen-
dency parsers on unbounded dependencies. In COL-
ING. Coling 2010 Organizing Committee, Beijing,
China, pages 833–841. http://www.aclweb.

org/anthology/C10-1094.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In EMNLP. pages 1532–1543.

Owen Rambow and Aravind Joshi. 1994. A formal
look at dependency grammars and phrase-structure
grammars, with special consideration of word-order
phenomena. In Leo Wanner, editor, Recent Trends
in Meaning-Text Theory, Amsterdam and Philadel-
phia, pages 167–190.

Laura Rimell and Stephen Clark. 2010. Cambridge:
Parser evaluation using textual entailment by gram-
matical relation comparison. In SemEval. pages
268–271.

Laura Rimell, Stephen Clark, and Mark Steedman.
2009. Unbounded dependency recovery for parser
evaluation. In EMNLP. Singapore, page 813821.

Cicero D. Santos and Bianca Zadrozny. 2014.
Learning character-level representations for
part-of-speech tagging. In Tony Jebara and
Eric P. Xing, editors, ICML. JMLR Workshop
and Conference Proceedings, pages 1818–
1826. http://jmlr.org/proceedings/

papers/v32/santos14.pdf.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen
Schmidhuber. 2015. Highway networks. arXiv
preprint arXiv:1505.00387 .

Mark Steedman and Jason Baldridge. 2011. Combina-
tory categorial grammar. In Robert Borsley and Ker-
sti Börjars, editors, Non-Transformational Syntax:
Formal and Explicit Models of Grammar, Wiley-
Blackwell.

Ashish Vaswani, Yonatan Bisk, Kenji Sagae, and
Ryan Musa. 2016. Supertagging with LSTMs. In
NAACL. Association for Computational Linguistics,
San Diego, California, pages 232–237. http://

www.aclweb.org/anthology/N16-1027.

Pauli Xu, Robert Frank, Jungo Kasai, and Owen
Rambow. 2017. TAG parser evaluation us-
ing textual entailments. In TAG+. Association
for Computational Linguistics, Umeå, Sweden,
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A Transformations for Unbounded

Dependency Recovery Corpus

For automatic evaluation on the unbounded de-

pendency recovery corpus (UDR, Rimell et al.

(2009)), we run simple conversion of dependency

labels in UDR to those in our TAG grammar (See

Table 7) with a couple of exceptions.

• Change arcs from verbs to wh-adverbs as in

“where is the city located?” to adjunction.

• Reflect causative-inchoative alternation in

the subject embedded construction. Con-

cretely, change the role of “door” in “hold the

door shut” from the subject to the object of

“shut.”

We then transform TAG dependency trees. Fi-

nally, we simply check if the resulting dependency

graphs contain target labeled arcs given in the

dataset.

Below is a full description of transformations.

This set of structural transformations is applied in

the order in which we will present it, so that the

output of previous transformations can feed sub-

sequent ones. In the following, we denote an arc

pointing from node B to node A with label C as

(A, B, C) where A and B are called the child (de-

pendent) and the parent (head) in the relation.

A.1 Transformations from PETE

We apply three types of transformation from Xu

et al. (2017) to interpret the TAG parses.

Relative Clauses When an elementary tree of a

relative clause adjoins into a noun, we add a re-

verse arc with the label reflecting the type of the

relative clause elementary tree. For a subject rela-

tive, we add a 0-labeled arc, for an object relative,

we add a 1-labeled arc, and so forth.

UDR Labels TAG Labels
nsubj, cop 0
dobj, pobj, obj2, nsubjpass 1
others (advmod etc) ADJ

Table 7: UD to TAG label conversion.

Sentential Complements Sentential comple-

mentation in TAG derivations can be analyzed via

either adjoining the higher clause into the em-

bedded clause (necessarily so in cases of long-

distance extraction from the embedded clause) or

substituting the embedded clause in the higher

clause. In order to normalize this divergence, for

an adjunction arc involving a predicative auxiliary

elementary tree (supertag), we add a reverse arc

involving the 1 relation (sentential complements).

A.2 Coordination

We roughly follow the method presented in Xu

et al. (2017) with extensions. Under the TAG

analysis, VP coordination involves a VP-recursive

auxiliary tree headed by the coordinator that in-

cludes a VP substitution node (for the second con-

junct) with label 1. In order to allow the first

clauses subject argument (as well as modal verbs

and negations) to be shared by the second verb, we

add the relevant relations to the second verb. In ad-

dition, we analyze sentential coordination cases.

Sentence coordination in our TAG grammar usu-

ally happens between two complete sentences and

no modifiers or arguments are shared, and there-

fore it can be analyzed via substituting a sentence

int the coordinator with label 1. However, when

sentential coordination happens between two rela-

tive clause modifiers, our TAG grammar analyzes

the second clause as a complete sentence, meaning

that we need to recover the extracted argument by

consulting the property of the first clause. Further-

more, the deep syntactic role of the extracted argu-

ment can be different in the two relative clauses.

For instance, in the sentence, “... the same stump

which had impaled the car of many a guest in the

past thirty years and which he refused to have re-

moved,” we need to recover an arc from removed

to stump with label 1 whereas the arc from im-

paled to stump has label 0. To resolve this issue,

when there is coordination of two relative clause

modifiers, we add an edge from the head of the

second clause to the modified noun with the same

label as the label that under which the relative pro-

noun is attached to the head.

A.3 Resolving Differences in Dependency

Representations

Small Clauses The UDR corpus has inconsis-

tency with regards to small clauses. UDR gives

an analysis that a small clause contains a sub-

ject and a complement as in (nsubj, guy, liar) in
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“the guy who I call a liar.” in the subject em-

bedded constructions. However, in the object

question and object free relative constructions, a

small clause is analyzed as two arguments of the

verb. For instance, UDR specifies (what, adopted,

dobj) in “we adopted what I would term pseudo-

capitalism.” To solve this problem we add an arc

from the head of the matrix clause to the subject

in a small clause with label 1.

Co-anchors In our TAG grammar, Co-anchor

attachment represents the substitution into a node

that is construed as a co-head of an elementary

tree. For instance, “for” is deemed as a co-anchor

to “hope” in the sentence “that is exactly what I’m

hoping for (Figure 4). In this case, UDR would

pick the relation (what, hope, pobj). Therefore,

when there is a co-anchor to a head tree, we add

all arcs that involve the head tree to the co-anchor

tree.

Wh-determiners and Wh-adverbs Our TAG

grammar analyzes a wh-determiner via adjoining

the noun into the wh-determiner (Figure 5). This is

also true for cases where a wh-adverb is followed

by an adjective and a noun as in how many bat-

tles did she win? In contrast, UDR corpus gives

an analysis that the noun is the head of the con-

stituent. In order to resolve this discrepancy, when

a word adjoins into a wh-word,8 we pick all arcs

with the wh-word as the child and add the arcs ob-

tained from such arcs by replacing the wh-word

child by the word adjoining into the wh-word.

Copulas A copula is usually treated as a depen-

dent to the predicate both in our TAG grammar

(adjunction) and UDR. However, we found two

situations where they differ from each other. First,

when wh-extraction happens on the complement,

as in “obviously there has been no agreement on

what American conservatism is, or rather, what

it should be,” the TAG grammar analyzes it via

substituting the wh-word (“what”) into the copula

(“is”). To reconcile this disagreement between the

TAG grammar and UDR, when substitution hap-

pens into a be verb, we add the substitution into

8We considered imposing a more strict condition that the
word adjoining into the wh-word is a noun, but we found
cases that this method fails to cover; for example, UDR gives
(dobj, get, much) for a sentence “opinion is mixed on how
much of a boost the overall stock market would get even if
dividend growth continues at double-digit levels.”

Figure 4: Co-anchor case from a sentence “that is ex-

actly what I’m hoping for. The UDR gives the red arc

(what, for, pobj). The blue arc (what, for, 1) is obtained

from (what, hope, 1).

Figure 5: Wh-determiner case from a sentence What

songs did he sing? The UDR gives the red arc (songs,

sing, dobj). The blue arc (song, sing, 1) is obtained

from (what, sing, 1) and (songs, what, ADJ).
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the copula.9 Second, UDR treats non-be copu-

las differently than be verbs. An example is the

UDR relation (those, stayed, nsubj) “in the other

hemisphere it is growing colder and nymphs, those

who stayed alive through the summer, are being

brought into nests for quickening and more grow-

ing” where our parser yields (those, alive, 0). For

this reason, when a lemma of a verb is a non-be

copula,10 we add arcs involving the word to the

copula adjoining into the copula.

PP attachment with multiple noun candidates

We observed that PP attachment with multiple

noun candidates is often at stake in UDR.11 For in-

stance, UDR provides (part, had, nsubj) and (sev-

eral, tried, nsubj) for the sentences “... there is

no part of the earth that has not had them” and

“there were several on the Council who tried to

live like Christians” while the TAG parser out-

puts (earth, had, nsubj) and (Council, tried, nsubj)

respectively. While we count these cases as

“wrong” since they manifest certain disambigua-

tion (though not purely unbounded dependency re-

covery), we ignore superficial (conventional) dif-

ferences in head selection. In our TAG grammar “a

lot of people” would be headed by “lot” whereas

UDR would recognize “people” as the head.

Hence, when “lot/lots/kind/kinds/none of” occurs,

we add all arcs with “lot/lots/kind/kinds/none” to

the head of the phrase that is the object of “of.”

Modals In the UDR corpus, a modal depends

on an auxiliary verb following the modal, if there

is one. For example, “Rosie reinvented this man,

who may or may not have known about his child”

is given the relation (may, have, aux). In the

TAG grammar, both “may” and “have” adjoin into

“known.” Therefore, when the head of a modal has

another child with adjunction, we add an arc from

the child to the modal.

Existential there UDR gives the “cop” relation

between an existential there and the be verb. For

example, it gives (be, legislation, cop) in “... on

how much social legislation there should be.” On

the other hand, our TAG grammar analyzes that

9We use the nltk lemmatizer (Bird et al., 2009) to identify
be verbs.

10We chose “ stay,” “become,” “seem,” and “remain.”
11This is indeed one of the problems with UDR. Perfor-

mance on UDR is not purely reflective of unbounded depen-
dency recovery.

“there” is attached to “be” with label 0.12 To re-

solve this issue, for arcs that point into an existen-

tial there with label 0, we add a reverse edge with

label 0.

Determiner modifying a sentence Finally,

when a determiner followed by an adjective modi-

fies a sentence via adjunction in our TAG as in “the

more highly placed they are – that is, the more they

know – the more concerned they have become,”

we add an edge from the verb to the adjective with

label 1.

12Usually, “there” is attached to the noun, not the be verb,
but in this case, extraction is happening on the noun, so the be
verb becomes the head. See the discussion on copulas above.
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