
End-to-End Integration of a

Convolutional Network, Deformable Parts Model

and Non-Maximum Suppression

Li Wan David Eigen Rob Fergus

Dept. of Computer Science, Courant Institute, New York University

251 Mercer Street New York, NY 10012

wanli,deigen,fergus@cs.nyu.edu

Abstract

Deformable Parts Models and Convolutional Networks

each have achieved notable performance in object detec-

tion. Yet these two approaches find their strengths in com-

plementary areas: DPMs are well-versed in object compo-

sition, modeling fine-grained spatial relationships between

parts; likewise, ConvNets are adept at producing power-

ful image features, having been discriminatively trained di-

rectly on the pixels. In this paper, we propose a new model

that combines these two approaches, obtaining the advan-

tages of each. We train this model using a new structured

loss function that considers all bounding boxes within an

image, rather than isolated object instances. This enables

the non-maximal suppression (NMS) operation, previously

treated as a separate post-processing stage, to be integrated

into the model. This allows for discriminative training of

our combined Convnet + DPM + NMS model in end-to-end

fashion. We evaluate our system on PASCAL VOC 2007 and

2011 datasets, achieving competitive results on both bench-

marks.

1. Introduction

Object detection has been addressed using a variety

of approaches, including sliding-window Deformable Parts

Models [6, 20, 7], region proposal with classification [8,

17], and location regression with deep learning [14, 15].

Each of these methods have their own advantages, yet are by

no means mutually exclusive. In particular, structured parts

models capture the composition of individual objects from

component parts, yet often use rudimentary features like

HoG [3] that throw away much of the discriminative infor-

mation in the image. By contrast, deep learning approaches

[10, 19, 14], based on Convolutional Networks [11], extract

strong image features, but do not explicitly model object

composition. Instead, they rely on pooling and large fully

connected layers to combine information from spatially dis-

parate regions; these operations can throw away useful fine-

grained spatial relationships important for detection.

ConvNet
Features

...

Response
Pyramid

Deformable
Parts Model

fprop

bprop

root

AND

part1
part9

D
ef

D
ef

...
root

AND

part1
part9

D
ef

... O
R

obj view

obj view

Image
Pyramid

Final
Prediction

D
ef

... ...

bicycle

person

person

...
...

NMS

NMS

Figure 1. An overview of our system: (i) a convolutional network

extracts features from an image pyramid; (ii) a set of deformable

parts models (each capturing a different view) are applied to the

convolutional feature maps; (iii) non-maximal suppression is ap-

plied to the resulting response maps, yielding bounding box pre-

dictions. Training is performed using a new loss function that en-

ables back-propagation through all stages.

In this paper, we propose a framework (shown in Fig. 1)

that combines these two approaches, fusing together struc-

tured learning and deep learning to obtain the advantages

of each. We use a DPM for detection, but replace the HoG

features with features learned by a convolutional network.

This allows the use of complex image features, but still pre-

serves the spatial relationships between object parts during

inference.

An often overlooked aspect of many detection systems

is the non-maximal suppression stage, used to winnow mul-

tiple high scoring bounding boxes around an object in-

stance down to a single detection. Typically, this is a post-

processing operation applied to the set of bounding boxes

produced by the object detector. As such, it is not part of

the loss function used to train the model and any parame-

1

ters must be tuned by hand. However, as demonstrated by

Parikh and Zitnick [12], NMS can be a major performance

bottleneck (see Fig. 2). We introduce a new type of image-

level loss function for training that takes into consideration

of all bounding boxes within an image. This differs with

the losses used in existing frameworks that consider single

cropped object instances. Our new loss function enables the

NMS operation trained as part of the model, jointly with the

Convnet and DPM components.

2. Related Work

Most closely related is the concurrent work of Girshick

et al. [9], who also combine a DPM with ConvNet features

in a model called DeepPyramid DPM (DP-DPM). Their

work, however, is limited to integrating fixed pretrained

ConvNet features with a DPM. We independently corrob-

orate the conclusion that using ConvNet features in place

of HoG greatly boosts the performance of DPMs. Further-

more, we show how using a post-NMS online training loss

improves response ordering and addresses errors from the

NMS stage. We also perform joint end-to-end training of

the entire system.

The basic building blocks of our model architecture

come from the DPMs of Felzenszwalb et al. [6] and Zhu

et al. [20][2], and the ConvNet of Krizhevsky et al. [10].

We make crucial modifications in their integration that en-

ables the resulting model to achieve competitive object de-

tection performance. In particular, we develop ways to

transfer the ConvNet from classification to the detection en-

vironment, as well as changes to the learning procedure to

enable joint training of all parts.

The first system to combine structured learning with a

ConvNet is LeCun et al. [11], who train a ConvNet to clas-

sify individual digits, then train with hand written strings of

digits discriminatively. Very recently, Tompson et al. [16]

trained a model for human pose estimation that combines

body part location estimates into a convolutional network,

in effect integrating an MRF-like model with a ConvNet.

Their system, however, requires annotated body part loca-

tions and is applied to pose estimation, whereas our system

does not require annotated parts and is applied to object de-

tection.

Some recent works have applied ConvNets to object

detection directly: Sermanet et al. [14] train a network

to regress on object bounding box coordinates at differ-

ent strides and scales, then merge predicted boxes across

the image. Szegedy et al. [15] regress to a bitmap with

the bounding box target, which they then apply to strided

windows. Both of these approaches directly regress to the

bounding box from the convolutional network features, po-

tentially ignoring many important spatial relationships. By

contrast, we use the ConvNet features as input to a DPM. In

this way, we can include a model of the spatial relationships

INRIA PASCAL
0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Im
p

ro
v
e

m
e

n
t

in
 A

P

Parts

Spatial Models

NMS

Figure 2. Reproduced from Parikh and Zitnick [12]: an ablation

study of the stages in a DPM model [6] . Their figure shows how

significant performance improvements could be obtained by re-

placing the parts detection and non-maximal suppresssion stages

with human subjects. This suggests that these stages limit perfor-

mance within the model. Our work focuses on improving each of

these, replacing the part detectors with a Convnet and integrating

NMS into the model.

between object parts.

In the R-CNN model, Girshick et al. [8] take a differ-

ent approach in the use of ConvNets. Instead of integrating

a location regressor into the network, they instead produce

candidate region proposals with a separate mechanism, then

use the ConvNet to classify each region. However, this ex-

plicitly resizes each region to the classifier field of view

(fixed size), performing significant distortions to the input,

and requires the entire network stack to be recomputed for

each region. Instead, our integration runs the features in a

convolutional bottom-up fashion over the whole image, pre-

serving the true aspect ratios and requiring only one com-

putational pass.

End-to-end training of a multi-class detector and post-

processing has also been discussed in Desai et al. [4]. Their

approach reformulates NMS as a contextual relationship be-

tween locations. They replace NMS, which removes du-

plicate detections, with a greedy search that adds detection

results using an object class-pairs context model. Whereas

their system handles interactions between different types of

objects, our system integrates NMS in a way that creates an

ordering both of different classes and the same class but dif-

ferent views. Our loss is a form of ranking objective, with

close ties to the objective used by Blaschko et al. [1]; how-

ever, the loss we use also accounts for the NMS step of our

detection model. In addition, we further integrate our post-

NMS ranking loss into a full end-to-end system including

ConvNet feature generation.

3. Model Architecture

The architecture of our model is shown in Fig. 3. For a

given input image x, we first construct an image pyramid

(a) with five intervals over one octave1 We apply the Con-

1We use as many octaves as required to make the smallest dimension

48 pixels in size.

xs=4 xs=1

max

φA(xs)	

F(xs, y)

wv=1 wv=2 wv=3

Fv=1 Fv=2 Fv=3

xs

2x2 max pool

11x11 convolution

2x2 max pool

5x5 convolution

3x3 convolution

3x3 convolution

Layer 1

Layer 2

Layer 4

3

96

256

384

384

φA(xs)	

384

1

1

(a)

(b.i)

(b.ii)

(b.iii)

(b.iv)

(c.i)

(c.ii)

(c.iii)

(c.iv)

(c.v)

xs=0 xs=2 xs=3

(d)
NMS

responses for each scale

Figure 3. Our model architecture, with Convolutional Network

(left), Deformable Parts Model (right) and non-maximal suppres-

sion (top) components. An input x is first repeatedly downsampled

to create an image pyramid (a). We run the convolutional network

on each scale, by performing four layers of convolution and max-

pooling operations (b.ii - b.iv). This produces a set of appearance

features φA(xs) at each scale, which are used as input to a DPM

(c.i). Each object class model has three views of object templates

(c.ii), each of which is composed of a root filter and nine parts fil-

ters. These produce a response map Fv for each view (c.iii), which

are then combined using a pixel-wise max (c.iv) to form a final ac-

tivation map for the object class, F (xs, y). We then perform NMS

(d) across responses for all scales. To generate bounding boxes, we

trace the activation locations back to their corresponding boxes in

the input.

vNet (b) at each scale xs to generate feature maps φA(xs).
These are then passed to the DPM (c) for each class; as we

describe in Section 3.2, the DPM may also be formulated

as a series of neural network layers. At training time, the

loss is computed using the final detection output obtained

after NMS (d), and this is then back-propagated end-to-end

through the entire system, including NMS, DPM and Con-

vNet.

3.1. Convolutional Network

We generate appearance features φA(x) using the first

five layers of a Convolutional Network pre-trained for the

ImageNet Classification task. We first train an eight layer

classification model, which is composed of five convolu-

tional feature extraction layers, plus three fully-connected

classification layers2. After this network has been trained,

we throw away the three fully-connected layers, replacing

them instead with the DPM. The five convolutional layers

are then used to extract appearance features.

Note that for detection, we apply the convolutional layers

to images of arbitrary size (as opposed to ConvNet training,

which uses fixed-size inputs). Each layer of the network is

applied in a bottom-up fashion over the entire spatial extent

of the image, so that the total computation performed is still

proportional to the image size. This stands in contrast to [8],

who apply the ConvNet with a fixed input size to different

image regions, and is more similar to [14].

Applying the ImageNet classification model to PASCAL

detection has two scale-related problems that must be ad-

dressed. The first is that there is a total of 16x subsampling

between the input and the fifth layer; that is, each pixel in

φA corresponds to 16 pixels of input — this is insufficient

for detection, as it effectively constrains detected bounding

boxes to a lie on a 16-pixel grid. The second is that the Im-

ageNet classifier was trained on objects that are fairly large,

taking up much of the 224x224 image area. By contrast,

many target objects in PASCAL are significantly smaller.

To address these, we simply apply the first convolution

layer with a stride of 1 instead of 4 when combining with the

DPM (however, we also perform 2x2 pooling after the top

ConvNet layer due to speed issues in training, making the

net resolution increase only a factor of 2). This addresses

both scale issues simultaneously. The feature resolution is

automatically increased by elimination of the stride. More-

over, the scale of objects presented to the network at layers

2 and above is increased by a factor of 4, better aligning

the PASCAL objects to the ImageNet expected size This is

due to the fact that when the second layer is applied to the

output of the stride-1 maps, their field of view is 4x smaller

compared to stride-4, effectively increasing the size of input

objects.

Note that changing the stride of the first layer is effec-

tively the same as upsampling the input image, but pre-

serves resolution in the convolutional filters (if the filters

were downsampled, these would be equivalent operations;

however we found this to work well without changing the

filter size, as they are already just 11x11).

2The fully connected layers have 4096 - 4096 - 1000 output units each,

with dropout applied to the two hidden layers. We use the basic model

from [19], which trains the network using random 224x224 crops from the

center 256x256 region of each training image, rescaled so the shortest side

has length 256. This model achieves a top-5 error rate of 18.1% on the

ILSVRC2012 validation set, voting with 2 flips and 5 translations.

3.2. Deformable Parts Model

3.2.1 Part Responses

The first step in the DPM formulation is to convolve the ap-

pearance features with the root and parts filters, producing

appearance responses. Each object view has both a root fil-

ter and nine parts filters; the parts are arranged on a 3x3 grid

relative to the root, as illustrated in Fig. 4. (This is similar

to [20], who find this works as well as the more complex

placements used by [6]). Note that the number of root and

parts filters is the same for all classes, but the size of each

root and part may vary between classes and views.

Given appearance filters wroot
A,y,v for each class y and view

v, and filters wpart
A,y,v,p for each part p, the appearance scores

are:

F root
v (xs, y) = wroot

A,y,v ∗ φA(xs) + brootv (1)

F part
v,p (xs, y) = wpart

A,y,v,p ∗ φA(xs) + bpartv,p (2)

Part responses are then fed to the deformation layer.

3.2.2 Deformation Layer

The deformation layer finds the optimal part locations, ac-

counting for both apperance and a deformation cost that

models the spatial relation of the part to the root. Given

appearance scores F part
v,p , part location p relative to the root,

and deformation parameters wD,v,p for each part, the de-

formed part responses are the following (input variables

(xs, y) omitted):

F def
v,p = max

δi,δj
F part
v,p [pi+δi, pj+δj]−w

part
D,v,pφD(δi, δj) (3)

where F part
v,p [pi + δi, pj + δj] is the part response map

F part
v,p (xs, y) shifted by spatial offset (pi + δi, pj + δj), and

φD(δi, δj) = [|δi|, |δj |, δ
2
i , δ

2
j]

T is the shape deformation

feature. wpart
D,y,v ≥ 0 are the deformation weights.

Note the maximum in Eqn. 3 is taken independently at

each output spatial location: i.e. for each output location,

we find the max over possible deformations (δi, δj). In

practice, searching globally is unnecessary, and we con-

strain to search over a window [−s, s] × [−s, s] where s
is the spatial size of the part (in feature space). During

training, we save the optimal (δ̂i, δ̂j) at each output loca-

tion found during forward-propagation to use during back-

propagation.

The deformation layer extends standard max-pooling

over (δi, δj) with (i) a shift offset (pi, pj) accounting for

the part location, and (ii) deformation cost wT
DφD(δi, δj).

Setting both of these to zero would result in standard max-

pooling.

8 9 7

6 5

1 2 3

4

8
9

7

6
5

1

2

3

4

384 384

(a) wroot
A,v (b) wpart

A,v (c) wpart
A,v , w

part
D,v

Figure 4. Root and parts filter setup for our DPM. (a) Each view

v has a root filter with a different pre-defined aspect ratio. (b)

Part filters are aligned on a 3x3 grid relative to the root. (c) Parts

may deform relative to the root position at a cost, parameterized

by w
part

D
.

3.2.3 AND/OR Layer

Combining the scores of root, parts and object views is done

using an AND-like accumulation over parts to form a score

Fv for each view v, followed by an OR-like maximum over

views to form the final object score F :

Fv(xs, y) = F root
v (xs, y) +

∑

p∈parts

F def
v,p (xs, y) (4)

F (xs, y) = max
v∈views

Fv(xs, y) (5)

F (xs, y) is then the final score map for class y at scale s,

given the image x as shown in Fig. 5(left).

3.3. Bounding Box Prediction

After obtaining activation maps for each class at each

scale of input, we trace the activation locations back to their

corresponding bounding boxes in input space. Detection

locations in F (xs, y) are first projected back to boxes in

φA(xs), using the root and parts filter sizes and inferred

parts offsets. These are then projected back into input

space through the convolutional network. As shown in

Fig. 5(right), each pixel in φA(xs) has a field of view of

35 pixels in the input, and moving by 1 pixel in φA moves

by 8 pixels in the input (due to the 8x subsampling of the

convolutional model). Each bounding box is obtained by

...root

AND

part1 part9

Def Def

AND

OR

...

AND

17 17 8(p-1) + 1

8

p
!A(xs)

xs

context context bounding

box

Figure 5. Left: Overview of the top part of our network architec-

ture: (i) the root and part layers are convolution layers with dif-

ferent sizes of filter but same input size; (ii) OR/AND/Def layer

preserve the size of the input to the output; (iii) each AND layer

represents an object view which contains a root and 9 parts.

Right: Aligning a bounding box from DPM prediction through the

convolutional network (see Section 3.3).

choosing the input region that lies between the field of view

centers of the box’s boundary. This means that 17 pixels on

all sides of the input field of view are treated as context, and

the bounding box is aligned to the interior region.

3.4. NonMaximal Suppression (NMS)

The procedure above generates a list of label assign-

ments A0 = {(bi, yi, ri)i=1...|B|} for the image, where bi
is a bounding box, and yi and ri are its associated class la-

bel and network response score, i.e. ri is equal to F (x, yi)
at the output location corresponding to box bi. B is the set

of all possible bounding boxes in the search.

The final detection result is a subset of this list, obtained

by applying a modified version of non-maximal suppression

derived from [20]. If we label location bi as object type

yi, some neighbors of bi might also have received a high

scores, where the neighbors of b are defined as neigh(b) =
{b′|overlap(b, b′) ≥ θ}. However, neigh(bi) \ bi should

not be labeled as yi to avoid duplicate detections. Applying

this, we get a subset of A = {(bi, yi, ri)i=1...n} as the final

detection result; usually n≪ |B|.

When calculating overlap(b, b′), we use a symmetric

form when the bounding boxes are for different classes,

but an asymmetric form when the boxes are both of the

same class. For different-class boxes, overlap(b, b′) =
Area(b∩b′)
Area(b∪b′) , and threshold θ = 0.75. For same-class boxes,

e.g. boxes of different views or locations, overlap(b, b′) =

max
(

Area(b∩b′)
Area(b) , Area(b∩b′)

Area(b′)

)

and θ = 0.5.

4. Final Prediction Loss

4.1. Motivation

Our second main contribution is the use of a final-

prediction loss that takes into account the NMS step used

in inference. In contrast to bootstrapping with a hard nega-

tive pool, such as in [20] [6], we consider each image indi-

vidually when determining positive and negative examples,

accounting for NMS and the views present in the image it-

self. Consider the example in Fig. 6: A person detector

may fire on three object views: red, green, and blue. The

blue (largest in this example) is closest to the ground truth,

while green and red are incorrect predictions. However, we

cannot simply add the green or red boxes to a set negative

examples, since they are indeed present in other images as

occluded people. This leads to a situation where the red

view has a higher inference score than blue or green, i.e.

r(red) > r(blue) and r(red) > r(green), because red is

never labeled as negative in the bootstrapping process. Af-

ter NMS, blue response will be suppressed by red, causing

a NMS error. Such an error can only be avoided when we

have a global view on each image: if r(blue) > r(red),
then we would have a correct final prediction.

Figure 6. Three possible

bounding boxes: blue,

green and red (blue clos-

est to the ground truth).

However, green and red

should not be considered

negative instances (since

they may be positive

in other images where

the person is occluded).

Thus, we want

r(blue) > r(red)
r(blue) > r(green)

4.2. Loss Function

Recall that the NMS stage produces a set of assignments

predicted by the model A = {(bi, yi, ri)i=1...n} from the

set B of all possible assignments. We compose the loss us-

ing two terms, C(A) and C(A′). The first, C(A), measures

the cost incurred by the assignment currently predicted by

the model, while C(A′) measures the cost incurred by an

assignment close to the ground truth. The current predic-

tion cost C(A) is:

C(A) =
∑

(bi,yi,ri)∈A

H(ri, yi)

︸ ︷︷ ︸

CP (A)

+
∑

(bj ,yj ,rj)∈S(A)

H(rj , 0)

︸ ︷︷ ︸

CN (A)

(6)

where H(r, y) = I(y > 0)max(0, 1 − r)2 + I(y =
0)max(0, r + 1)2 i.e. a squared hinge error. 3 S(A) is

the set of all bounding boxes predicted to be in the back-

ground (y = 0): S(A) = B \ neigh(A) with neigh(A) =
⋃

(bi,yi,ri)∈A neigh(bi). CP (A) and CN (A) are the set of

positive predicted labels and the set of background labels,

respectively.

The second term in the loss, C(A′), measures the cost

incurred by the ground truth bounding boxes under the

model. Let the ground truth bounding box set be Agt =
{(bgti , ygti)i=1...m}. We construct a constrained inference

assignment A′ close to Agt by choosing for each bgti the box

(b′i, y
′
i, r

′
i) = argmax(b,y,r) r, where the argmax is taken

over all overlap(b, bgti) ≥ θ′; that is, the box with high-

est response out of those with sufficient overlap with the

ground truth. (θ′ = 0.7 in our experiments.) Similarly to

before, the cost C(A′) is:

C(A′) =
∑

(b′
i
,y′

i
,r′

i
)∈A′

H(r′i, y
′
i) +

∑

(b′
j
,y′

j
,r′

j
)∈S(A′)

H(r′j , 0) (7)

Thus we measure two costs: that of the current model

prediction, and that of an assignment close to the ground

truth. The final discriminative training loss is difference be-

3 where I is an indicator function that equals 1 iff the condition holds

tween these two:

L(A,A′) = C(A′)− C(A) (8)

Note this loss is nearly always greater than 0; however, the

gradient computation works even when the loss is less than

0, as can happen in a few rare cases.

Combining Equations 6 and 7 leads to

L(A,A′) = LP (A,A′) + LN (A,A′) (9)

LP (A,A′) =
∑

(b′,y′,r′)∈A′

H(r′, y′)−
∑

(b,y,r)∈A

H(r, y)

LN (A,A′) =
∑

(b′,y′,r′)∈S(A′)

H(r′, 0)−
∑

(b,y,r)∈S(A)

H(r, 0)

=
∑

(b,y,r)∈N\N ′

H(r, 0)−
∑

(b′,y′,r′)∈N ′\N

H(r′, 0)

where N = neigh(A) and N ′ = neigh(A′). The last line

comes from the fact that most of the boxes included in S(A)
and S(A′) are shared, and cancel out (see Fig. 7); thus we

can compute the loss looking only at these neighborhood

sets.

A

neigh(A')

A'

neigh(A)

A

neigh(A)

Figure 7. Illustration of ground-truth-constrained assignment A′

and unconstrained assignments A from the model, along with as-

sociated neighborhoods. Note neighborhoods are actually dense,

and we show only a few boxes for illustration.

4.3. Interpretation and Effect on NMS Ordering

As mentioned earlier, a key benefit to training on the fi-

nal predictions as we describe is that our loss accounts for

the NMS inference step. In our example in Fig. 6, if the

response r(red) > r(blue), then red ∈ A and blue ∈ A′.

Thus LP (A,A′) will decrease r(red) and increase r(blue).
This ensures the responses r are in an appropriate order

when NMS is applied. Once r(blue) > r(red), the mis-

take will be fixed.

The term LN in the loss is akin to an online version of

hard negative mining, ensuring that the background is not

detected as a positive example.

4.4. Soft Positive Assignments

When training jointly with the ConvNet, it is insufficient

to measure the cost using only single positive instances, as

the network can easily overfit to the individual examples.

We address this using soft positive assignments in place of

hard assignments; that is, we replace the definition of CP

in Eqn. 6 used above with one using a weighted average of

neighbors for each box in the assignment list:

CP (A) =
∑

bi∈A

∑

bj∈neigh(bi)
αijH(rj , yj)

∑

j αij

where αij = 2(Area(bi ∩ bj)/Area(bi))− 1, and similarly

for CP (A′).
Note a similar strategy has been tried in the case of HoG

features before, but was not found to be beneficial [6]. By

contrast, we found this to be important for integrating the

ConvNet. We believe this is because the ConvNet has many

more parameters than can easily overfit, whereas HoG is

more constrained.

5. Training

Our model is trained in online fashion with SGD, with

each image being forward propagated through the model

and then the resulting error backpropagated to update the

parameters. During the fprop, the position of the parts in

the DPM are computed and then used for the subsequent

bprop. Training in standard DPM models [6] differs in two

respects: (i) a fixed negative set is mined periodically (we

have no such set, instead processing each image in turn) and

(ii) part positions on this negative set are fixed for many

subsequent parameter updates.

We first pretrain the DPM root and parts filters without

any deformation, using a fixed set of 20K random negative

examples for each class. Note that during this stage, the

ConvNet weights are fixed to their initialization from Ima-

geNet. Following this, we perform end-to-end joint training

of the entire system, including ConvNet, DPM and NMS

(via the final prediction loss). During joint training, we use

inferred part locations in the deformation layer.

The joint training phase is outlined in Algorithm 1. For

each training image sample, we build an image pyramid,

and fprop each scale of the pyramid through the ConvNet

and DPM to generate the assignment list A0. Note A0 is

represented using the output response maps. We then apply

NMS to get the final assignments A, as well as construct the

ground-truth constrained assignments A′. Using the final

prediction loss L(A,A′) from Eqn. 9, we find the gradient

and backpropagate through the network to update the model

weights. We repeat this for 15 epochs through the training

set with a learning rate η = 10−3, then another 15 using

η = 10−4.

At test time, we simply forward-propagate the input

pyramid through the network (ConvNet and DPM) and ap-

ply NMS.

Algorithm 1 Training algorithm for each image

1: Input: Image X with ground truth assignment Agt

2: Build image pyramid X → X1, X2, . . . , Xs

3: A0 = {}
4: for Xi ∈ X1, X2, . . . Xs do

5: A0 = A0 ∪ assignments from responses F (Xi;w)
6: end for

7: find A = NMS(A0)
8: find A′ using A0 and Agt

9: for Xi ∈ X1, X2, . . . Xs do

10: find gradient at scale i: gi =
∂L(A,A′)
∂F (Xi;w)

∂F (Xi;w)
∂w

11: end for

12: w ← w + η
∑

i gi

6. Experiments

We apply our model to the PASCAL VOC 2007 and

VOC 2011/2012 object detection tasks [5]. Table 1 shows

how each component in our system improves performance

on the PASCAL 2007 dataset. Our baseline implementation

of HoG DPM with bootstrap training achieves 30.7 mAP.

Switching HoG for a fixed pretrained ConvNet results in

a large 32% relative performance gain to 40.8 mAP, cor-

roborating the finding of [9] that such features greatly im-

prove performance. On top of this, training using our on-

line post-NMS procedure improves substantially improves

performance to 43.3 mAP, and jointly training all compo-

nents (ConvNet + DPM + NMS) further improves to 46.5

mAP. In addition, we can train different models to produce

detections for each class, or train all classes at once using

a single model with shared ConvNet feature extractor (but

different DPM components). Training all classes together

further boosts performance to 46.9% mAP. Note that this

allows the post-NMS loss to account for objects of different

classes as well as locations and views within classes, and

also makes inference faster due to the shared features. We

call this model “conv-dpm+FT-all”, and the separate-class

set of models “conv-dpm+FT”.

Comparisons with other systems are shown in Tables 2

(VOC 2007) and 3 (VOC 2011/2012). For VOC 2007 (Ta-

ble 2), our results are very competitive, beating all other

methods except the latest version of R-CNN trained on fc7
(“R-CNN(v4)FT fc7”). Notably, we outperform the DP-

DPM method (45.2% vs. our 46.9%), due to our integrated

joint training and online NMS loss. In addition, our final

model achieves comparible performance to R-CNN [8] with

a similar feature extractor using pool5 features (46.9% vs.

47.3%). Recent version of R-CNN achieve a better per-

Bootstrap NMS loss NMS loss+FT

HoG-root 22.8 23.9 N/A

HoG-root+part 30.7 33.2 N/A

conv-root 38.7 40.3 43.1

conv-root+part 40.8 43.3 46.5

Table 1. A performance breakdown of our approach. Columns

show different training methods and loss functions. Rows show

different feature extractors and DPM with/without parts. Note:

(i) conv features give a significant boost; (ii) our new NMS loss

consistently improves performance, irrespective of features/model

used and (iii) fine-tuning (FT) of the entire model gives further

gains.

formance 54.2% using a more complex network which in-

cludes fully connected layers (fc7); extending our model to

use deeper networks may also provide similar gains from

better feature representations.

Table 3 shows our system performance on VOC2011.

Here our system outperforms comparison methods, and in

particular DP-DPM, achieving 43.7% mAP versus 29.6%
for HoG-DPM [6] and 41.6% for DP-DPM [9].

Finally, we provide examples of detections from our

model in Figures 8 and 9. Detection results are either show

in green or red with ground truth bounding box in blue. Fig-

ure 9 illustrates training with our new loss function helps

model fix problem for both inter-class and intra-class NMS.

Our loss allows the larger view of the train to be selected

in (b), rather than the more limited view that appears in

more images. However, the gains are not limited to select-

ing larger views: In (d), we see a cat correctly selected at a

smaller scale. Finally, there are also examples of inter-class

correction in (g), e.g. “train” being selected over “bus”.

7. Discussion

We have described an object detection system that inte-

grates a Convolutional Network, Deformable Parts model

and NMS loss in an end-to-end fashion. This fuses to-

gether aspects from both structured learning and deep learn-

ing: object structures are modeled by a composition of parts

and views, while discriminative features are leveraged for

appearance comparisons. Our evaluations show that our

model achieves competitive performance on PASCAL VOC

2007 and 2011 datasets, and achieves substantial gains from

integrating both ConvNet features as well as NMS, and

training all parts jointly.

VOC2007 aero bike bird boat botl bus car cat chair cow table dog horse mbike pers plant sheep sofa train tv mAP

DetectorNet [15] 29.2 35.2 19.4 16.7 3.7 53.2 50.2 27.2 10.2 34.8 30.2 28.2 46.6 41.7 26.2 10.3 32.8 26.8 39.8 47.0 30.5

HoG-dpm(v5) [6] 33.2 60.3 10.2 16.1 27.3 54.3 58.2 23.0 20.0 24.1 26.7 12.7 58.1 48.2 43.2 12.0 21.1 36.1 46.0 43.5 33.7

HSC-dpm [13] 32.2 58.3 11.5 16.3 30.6 49.9 54.8 23.5 21.5 27.7 34.0 13.7 58.1 51.6 39.9 12.4 23.5 34.4 47.4 45.2 34.3

Regionlets [18] 54.2 52.0 20.3 24.0 20.1 55.5 68.7 42.6 19.2 44.2 49.1 26.6 57.0 54.5 43.4 16.4 36.6 37.7 59.4 52.3 41.7

DP-DPM [9] 44.6 65.3 32.7 24.7 35.1 54.3 56.5 40.4 26.3 49.4 43.2 41.0 61.0 55.7 53.7 25.5 47.0 39.8 47.9 59.2 45.2

R-CNN [8]fc7 56.1 58.8 34.4 29.6 22.6 50.4 58.0 52.5 18.3 40.1 41.3 46.8 49.5 53.5 39.7 23.0 46.4 36.4 50.8 59.0 43.4

R-CNN(v1)FT pool5 55.6 57.5 31.5 23.1 23.2 46.3 59.0 49.2 16.5 43.1 37.8 39.7 51.5 55.4 40.4 23.9 46.3 37.9 49.7 54.1 42.1

R-CNN(v4)FT pool5 58.2 63.3 37.9 27.6 26.1 54.1 66.9 51.4 26.7 55.5 43.4 43.1 57.7 59.0 45.8 28.1 50.8 40.6 53.1 56.4 47.3

R-CNN(v1)FT fc7 60.3 62.5 41.4 37.9 29.0 52.6 61.6 56.3 24.9 52.3 41.9 48.1 54.3 57.0 45.0 26.9 51.8 38.1 56.6 62.2 48.0

R-CNN(v4)FT fc7 64.2 69.7 50.0 41.9 32.0 62.6 71.0 60.7 32.7 58.5 46.5 56.1 60.6 66.8 54.2 31.5 52.8 48.9 57.9 64.7 54.2

HoG 29.3 55.5 9.3 13.3 25.2 43.1 53 20.4 18.5 25.1 23.3 10.3 55.4 44.2 40.8 10.5 19.8 34.3 43.3 39.5 30.7

HoG+ 32.8 58.5 10.3 16.0 27.1 46.1 56.9 21.9 20.6 27.2 26.4 13.0 57.8 47.5 44.2 11.0 22.7 36.5 45.8 42.1 33.2

conv-root 38.1 60.9 21.9 17.8 29.3 51.4 58.5 26.7 16.5 31.1 33.2 24.2 65.0 58.0 44.4 21.7 35.4 36.8 49.5 54.1 38.7

conv-dpm 45.3 64.5 21.1 21.0 34.2 54.4 59.0 32.6 20.0 31.0 34.5 25.3 63.8 60.1 45.0 23.2 36.0 38.4 51.5 56.2 40.8

conv-dpm+ 48.9 67.3 25.3 25.1 35.7 58.3 60.1 35.3 22.7 36.4 37.1 26.9 64.9 62.0 47.0 24.1 37.5 40.2 54.1 57.0 43.3

conv-dpm+ FT 50.9 68.3 31.9 28.2 38.1 61.0 61.3 39.8 25.4 46.5 47.3 29.6 67.5 63.4 46.1 25.2 39.1 45.4 57.0 57.9 46.5

conv-dpm+ FT-all 49.3 69.5 31.9 28.7 40.4 61.5 61.5 41.5 25.5 44.5 47.8 32.0 67.5 61.8 46.7 25.9 40.5 46.0 57.1 58.2 46.9

Table 2. Mean AP on PASCAL VOC 2007

VOC2011/2012 aero bike bird boat botl bus car cat chair cow table dog horse mbike pers plant sheep sofa train tv mAP

HoG-DPM [6] 45.6 49.0 11.0 11.6 27.2 50.5 43.1 23.6 17.2 23.2 10.7 20.5 42.5 44.5 41.3 8.7 29.0 18.7 40.0 34.5 29.6

conv-root 56.0 45.4 20.6 12.7 29.5 49.2 38.6 38.1 16.4 28.2 22.9 28.8 48.3 52.1 47.7 17.0 39.1 29.6 41.2 48.6 35.5

conv-dpm 56.9 53.2 26.6 17.6 29.9 51.4 42.5 42.4 16.5 31.6 25.0 37.7 52.7 56.7 49.9 16.5 41.0 30.9 44.4 49.7 38.4

conv-dpm+ 59.6 56.6 29.8 20 31.1 55.8 42.8 43.3 18.3 35.6 28.5 39.7 56.3 59.7 51.1 19.6 42.1 33.1 49.1 50.3 41.1

conv-dpm+FT-all 63.3 60.2 33.4 24.4 33.6 60 44.7 49.3 19.4 36.6 30.2 40.7 57.7 61.4 52.3 21.2 44.4 37.9 51.1 52.2 43.7

Table 3. Mean AP on PASCAL VOC 2011

Figure 8. Examples of correct (green) and incorrect (red) detections found by our model.

Figure 9. Examples of model with (green) and without (red) NMS loss (parts location are ommited)

References

[1] M. B. Blaschko, A. Vedaldi, and A. Zisserman. Simultane-

ous object detection and ranking with weak supervision. In

Advances in Neural Information Processing Systems, 2010.

2

[2] Y. Chen, L. Zhu, and A. L. Yuille. Active mask hierarchies

for object detection. In ECCV 2010, volume 6315 of Lecture

Notes in Computer Science, pages 43–56. Springer, 2010. 2

[3] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In CVPR, 2005. 1

[4] C. Desai, D. Ramanan, and C. Fowlkes. Discriminative mod-

els for multi-class object layout. International Journal of

Computer Vision, 2011. 2

[5] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. The PASCAL Visual Object Classes

Challenge 2012 (VOC2012) Results. http://www.pascal-

network.org/challenges/VOC/voc2012/workshop/index.html.

7

[6] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-

manan. Object detection with discriminatively trained part-

based models. IEEE Trans. Pattern Anal. Mach. Intell.,

32(9):1627–1645, Sept. 2010. 1, 2, 4, 5, 6, 7, 8

[7] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-

manan. Object detection with discriminatively trained part

based models. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 32(9):1627–1645, 2010. 1

[8] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich

feature hierarchies for accurate object detection and semantic

segmentation. CoRR, abs/1311.2524, 2013. 1, 2, 3, 7, 8

[9] R. B. Girshick, F. N. Iandola, T. Darrell, and J. Malik.

Deformable part models are convolutional neural networks.

CoRR, abs/1409.5403, 2014. 2, 7, 8

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet clas-

sification with deep convolutional neural networks. pages

1106–1114, 2012. 1, 2

[11] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278 –2324, nov 1998. 1, 2

[12] D. Parikh and C. L. Zitnick. Human-debugging of machines.

In In NIPS WCSSWC, 2011. 2

[13] X. Ren and D. Ramanan. Histograms of sparse codes for

object detection. 2013 IEEE Conference on Computer Vision

and Pattern Recognition, 0:3246–3253, 2013. 8

[14] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,

and Y. LeCun. Overfeat: Integrated recognition, localiza-

tion and detection using convolutional networks. CoRR,

abs/1312.6229, 2013. 1, 2, 3

[15] C. Szegedy, A. Toshev, and D. Erhan. Deep neural networks

for object detection. NIPS, 2013. 1, 2, 8

[16] J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint training

of a convolutional network and a graphical model for human

pose estimation. CoRR, abs/1406.2984, 2014. 2

[17] J. Uijlings, K. Sande, T. Gevers, and A. Smeulders. Selec-

tive search for object recognition. International Journal of

Computer Vision, 104(2):154–171, 2013. 1

[18] X. Wang, M. Yang, S. Zhu, and Y. Lin. Regionlets for generic

object detection. IEEE 14th International Conf. on Com-

puter Vision, 2013. 8

[19] M. D. Zeiler and R. Fergus. Visualizing and understanding

convolutional networks. CoRR, abs/1311.2901, 2013. 1, 3

[20] L. L. Zhu, Y. Chen, A. Yuille, and W. Freeman. Latent hier-

archical structural learning for object detection. 2010 IEEE

Conference on Computer Vision and Pattern Recognition,

0:1062–1069, 2010. 1, 2, 4, 5

