
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 3, JUNE 1999 277

End-to-End Internet Packet Dynamics
Vern Paxson

Abstract— We discuss findings from a large-scale study of
Internet packet dynamics conducted by tracing 20 000 TCP
bulk transfers between 35 Internet sites. Because we traced
each 100-kbyte transfer at both the sender and the receiver,
the measurements allow us to distinguish between the end-to-
end behaviors due to the different directions of the Internet
paths, which often exhibit asymmetries. We: 1) characterize
the prevalence of unusual network events such as out-of-order
delivery and packet replication; 2) discuss a robust receiver-based
algorithm for estimating “bottleneck bandwidth” that addresses
deficiencies discovered in techniques based on “packet pair;”
3) investigate patterns of packet loss, finding that loss events
are not well modeled as independent and, furthermore, that
the distribution of the duration of loss events exhibits infinite
variance; and 4) analyze variations in packet transit delays as
indicators of congestion periods, finding that congestion periods
also span a wide range of time scales.

Index Terms—Computer networks, computer network perfor-
mance, computer network reliability, failure analysis, internet-
working, stability.

I. INTRODUCTION

A
S THE Internet grows larger, measuring and characteriz-

ing its dynamics grows harder. Part of the problem is how

quickly the network changes. Another part is its increasing

heterogeneity. It is more and more difficult to measure a

plausibly representative cross section of its behavior. The few

studies to date of end-to-end packet dynamics have all been

confined to measuring a handful of Internet paths because

of the great logistical difficulties presented by larger scale

measurement [1], [5], [17], [18]. Consequently, it is hard to

gauge the degree to which their findings are representative. To

address this problem, we devised a measurement framework

in which a number of sites run special measurement daemons

(NPD’s) to facilitate measurement. With this framework, the

number of Internet paths available for measurement grows as

for sites, yielding an attractive scaling. We previously

used the framework with sites to study the end-to-end

routing dynamics of about 1000 Internet paths [20].

In this study, we report on a large-scale experiment to study

end-to-end Internet packet dynamics.1 Our analysis is based

Manuscript received April 14, 1998; revised February 26, 1999 and March
8, 1999; approved by IEEE/ACM TRANSACTIONS ON NETWORKING Editor
C. Partridge. This work was supported by the Director, Office of Energy
Research, Office of Computational and Technology Research, Mathematical,
Information, and Computational Sciences Division of the U.S. Department of
Energy under Contract DE-AC03-76SF00098. An early version of this paper
appeared in Proceedings of ACM SIGCOMM ’97.

The author is with the Network Research Group, Lawrence Berkeley
National Laboratory, University of California at Berkeley, Berkeley, CA
94720 USA (e-mail: vern@aciri.org).

Publisher Item Identifier S 1063-6692(99)05591-0.
1 This paper is necessarily terse, due to space limitations. A longer version

is available [22].

on measurements of TCP bulk transfers conducted between

35 NPD sites (Section II). Using TCP—rather than fixed-rate

UDP or ICMP “echo” packets, as done in [1], [5], [18]—reaps

significant benefits. First, TCP traffic is “real world,” since

TCP is widely used in today’s Internet [25]. Consequently,

any network path properties we can derive from measurements

of a TCP transfer can potentially be directly applied to tuning

TCP performance. Second, TCP packet streams allow fine-

scale probing without unduly loading the network, since TCP

adapts its transmission rate to current congestion levels.

Using TCP, however, also presents two analysis problems.

First, to analyze packet dynamics using TCP requires a way

to measure the sending and receiving times of individual

packets, which TCP does not provide. We instead must record

the traffic with a packet filter. Packet-filter measurement

can be imperfect, in particular suffering from measurement

“drops,” in which the filter fails to record all of the traffic.

Unless we identify traces with such errors, we can derive

inaccurate conclusions about packet dynamics such as loss

rates. To address this problem, we developed tcpanaly, a

program that understands the specifics of the different TCP

implementations in our study, and thus can infer when the

packet filter has made an error [21]. We then exclude erroneous

traces from any analysis that would be skewed by the error.

tcpanaly also forms the basis for the analysis in this paper:

after verifying the trace’s integrity, it then computes statistics

concerning network dynamics.

Second, TCP packets are sent over a wide range of time

scales, from milliseconds to many seconds between con-

secutive packets. Such irregular spacing greatly complicates

correlational and frequency-domain analysis, because a stream

of TCP packets does not give us a traditional time series of

constant-rate observations to work with. Consequently, in this

paper we do not attempt these sorts of analyses, though we

hope to pursue them in future work. (See also [18] for previous

work in applying frequency-domain analysis to Internet paths.)

In Section III, we characterize unusual network behavior:

out-of-order delivery, replication, and packet corruption. Then

in Section IV, we discuss a robust algorithm for estimating

the “bottleneck” bandwidth that limits a connection’s maxi-

mum rate. This estimation is crucial for subsequent analysis

because knowing the bottleneck rate lets us determine when

the closely spaced TCP data packets used for our network

probes necessarily queue behind each other and, hence, their

timing dynamics will be correlated. Once we can determine

which probes were correlated and which not, we then can turn

to analysis of end-to-end Internet packet loss (Section V) and

delay (Section VI). In Section VII, we summarize our findings,

several of which challenge commonly-held assumptions about

network behavior.

1063–6692/99$10.00 1999 IEEE

278 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 3, JUNE 1999

II. THE MEASUREMENTS

We gathered our measurements using the NPD measurement

framework we developed and discussed in [20]. Thirty-five

sites participated in two experimental runs. The sites include

educational institutes, research labs, network service providers,

and commercial companies, in nine countries. We conducted

the first run, during December 1994, and the second

during November–December 1995. Thus, differences between

and give an indication how Internet packet dynamics

changed during the course of 1995. Throughout this paper,

when discussing such differences, we limit discussion to the

21 sites that participated in both and

Each measurement was made by instructing daemons run-

ning at two of the sites to send or receive a 100-kbyte TCP

bulk transfer, and to trace the results using tcpdump [12].

Measurements occurred at Poisson intervals which, in prin-

ciple, results in unbiased measurement, even if the sampling

rate varies [20]. In the mean per-site sampling interval

was about 2 h, with each site randomly paired with another.

Sites typically participated in about 200 measurements, and we

gathered a total of 2800 pairs of traces. In we sampled

pairs of sites in a series of grouped measurements, varying the

sampling rate from minutes to days, with most rates on the

order of 4–30 min. These groups then give us observations of

the path between the site pair over a wide range of time scales.

Sites typically participated in about 1200 measurements, for a

total of 18 000 trace pairs. In addition to the different sampling

rates, the other difference between and is that in

we used Unix socket options to assure that the sending

and receiving TCP’s had big “windows,” to prevent window

limitations from throttling the transfer’s throughput.

We limited measurements to a total of 10 min. This limit

leads to under-representation of those times during which

network conditions were poor enough to make it difficult

to complete a 100-kbyte transfer in that much time. Thus,

our measurements are biased toward more favorable network

conditions. In [22] we show that the bias is negligible for

North American sites, but noticeable for European sites.

III. NETWORK PATHOLOGIES

We begin with an analysis of network behavior we might

consider “pathological,” meaning unusual or unexpected: out-

of-order delivery, packet replication, and packet corruption. It

is important to recognize pathological behaviors so subsequent

analysis of packet loss and delay is not skewed by their

presence. For example, it is very difficult to perform any sort

of sound queueing delay analysis in the presence of out-of-

order delivery, since the latter indicates that a first-in–first-out

(FIFO) queueing model of the network does not apply.

A. Out-of-Order Delivery

Even though Internet routers employ FIFO queueing, any

time a route changes, if the new route offers a lower delay

than the old one, then reordering can occur [17]. Since we

recorded packets at both ends of each TCP connection, we can

detect network reordering as follows. First, we remove from

our analysis any trace pairs suffering packet filter errors [21].

Then, for each arriving packet we check whether it was

sent after the last nonreordered packet. If so, then it becomes

the new such packet. Otherwise, we count its arrival as an

instance of a network reordering. So, for example, if a flight

of ten packets all arrive in the order sent except for the last

one, which arrives before all of the others, we consider this

to reflect nine reordered packets rather than one. Using this

definition emphasizes “late” arrivals rather than “premature”

arrivals. It turns out that counting late arrivals gives somewhat

higher (25%) numbers than counting premature arrivals,

but as our goal is only to convey the rough magnitude of

reordering, this difference is not particularly significant.

Observations of Reordering: Out-of-order delivery is fairly

prevalent in the Internet. In 36% of the connections

included at least one packet (data or ack) delivered out of

order, while in 12% did. Overall, 2% of all of the data

packets and 0.6% of the acks arrived out of order (0.3% and

0.1% in). Data packets are no doubt more often reordered

than acks because they are frequently sent closer together (due

to ack-every-other policies), so their reordering requires less

of a difference in transit times.

We should not infer from the differences between reordering

in and that reordering became less likely over the

course of 1995, because out-of-order delivery varies greatly

from site-to-site. For example, fully 15% of the data packets

sent by the “ucol” site2 during arrived out of order, much

higher than the 2.0% overall average.

Reordering is also highly asymmetric. For example, only

1.5% of the data packets sent to ucol during arrived out

of order. This means a sender cannot soundly infer whether

the packets it sends are likely to be reordered, based on

observations of the acks it receives, which is unfortunate, as

otherwise the reordering information would aid in determining

the optimal duplicate ack threshold to use for TCP fast

retransmission (see below).

The site-to-site variation in reordering coincides with earlier

findings concerning route flutter among the same sites [20].

That study identified two sites as particularly exhibiting flutter,

ucol and the “wustl” site. For the part of during

which wustl exhibited route flutter, 24% of all of the data

packets it sent arrived out of order, a rather stunning degree

of reordering. If we eliminate ucol and wustl from the

analysis, then the proportion of all of the data packets

delivered out-of-order falls by a factor of two. We also note

that in packets sent by ucol were reordered only 25 times

out of nearly 100 000 sent, though 3.3% of the data packets

sent to ucol arrived out of order, dramatizing how over long

time scales, site-specific effects can completely change.

Thus, we should not interpret the prevalence of out-of-order

delivery summarized above as giving representative numbers

for the Internet, but instead form the rule of thumb: Internet

paths are sometimes subject to a high incidence of reordering,

but the effect is strongly site dependent and correlated with

route fluttering.

We observed reordering rates as high as 36% of all packets

arriving in a single connection. Interestingly, some of the

2 See [20] for specifics concerning the sites mentioned in this paper.

PAXSON: END-TO-END INTERNET PACKET DYNAMICS 279

Fig. 1. Out-of-order delivery with two distinct slopes.

most highly reordered connections did not suffer any packet

loss, and no needless retransmissions due to false signals

from duplicate acks. We also occasionally observed very large

reordering “gaps.” However, the evidence suggests that these

gaps are not due to route changes, but a different effect. Fig. 1

shows a sequence plot exhibiting a massive reordering event.

This plot reflects packet arrivals at the TCP receiver, where

each square marks the upper sequence number of an arriving

data packet. All packets were sent in increasing sequence

order.

Fitting a line to the upper points yields a data rate of a little

over 170 kbyte/s, which was indeed the true (T1) bottleneck

rate (Section IV). The slope of the packets delivered late,

though, is just under 1 Mbyte/s, consistent with an Ethernet

bottleneck. What has apparently happened is that a router

with Ethernet-limited connectivity to the receiver stopped

forwarding packets for 110 ms just as sequence 72 705 arrived,

perhaps because at that point it processed a routing update

[9]. It finished between the arrival of 91 137 and 91 649, and

began forwarding packets normally again at their arrival rate,

namely T1 speed. Meanwhile, it had queued 35 packets while

processing the update, and these it finally forwarded whenever

it had a chance, so they went out as quickly as possible, namely

at Ethernet speed, but interspersed with new arrivals.

We observed this pattern a number of times in our data—not

frequently enough to conclude that it is anything but a pathol-

ogy, but often enough to suggest that significant momentary

increases in networking delay can be due to effects different

from both route changes and queueing; most likely due to

router forwarding lulls.

Impact of Reordering: While out-of-order delivery can vi-

olate one’s assumptions about the network—in particular, the

abstraction that it is well-modeled as a series of FIFO queueing

servers—for the connections in our study, it only rarely had

significant impact on TCP performance, because generally, the

scale of the reordering was just a few packets.

In general, one way reordering can make a difference is in

determining the TCP “duplicate ack” threshold a sender uses to

infer that a packet requires retransmission. If the network never

exhibited reordering, then as soon as the receiver observed a

packet arriving that created a sequence “hole,” it would know

that the expected in-sequence packet had been dropped, and

could signal to the sender calling for prompt retransmission.

Because of reordering, however, the receiver does not know

whether the packet in fact has been dropped; it may instead just

be late. Presently, TCP senders retransmit if “dups”

arrive, a value chosen so that “false” dups caused by out-of-

order delivery are unlikely to lead to spurious retransmissions.

The value of was chosen primarily to assure

that the threshold was conservative. Large-scale measurement

studies were not available to further guide the selection of the

threshold. We now examine two possible ways to improve

the fast retransmit mechanism: by delaying the generation

of dups to better disambiguate packet loss from reordering,

and by altering the threshold to improve the balance between

seizing retransmission opportunities, versus avoiding unneeded

retransmissions.

We first look at packet reordering time scales to determine

how long a receiver needs to wait to disambiguate reordering

from loss. We only look at the time scales of data-packet

reorderings, since ack reorderings do not affect the fast re-

transmission process. We find a wide range of times between

an out-of-order arrival and the later arrival of the last packet

sent before it. One noteworthy artifact in the distribution is

the presence of “spikes” at particular values, the strongest at

81 ms. This turns out to be due to a 56 kbit/s link, which

has a bottleneck bandwidth of about 6320 user data bytes/s.

Consequently, transmitting a 512-byte packet across the link

requires 81.0 ms, so data packets of this size can arrive no

closer, even if reordered. Thus we see that reordering can have

associated with it a minimum time, which can be quite large.

Inspecting the distributions further, we find that a

strategy of waiting 20 ms would identify 70% of the out-of-

order deliveries. For the same proportion can be achieved

waiting 8 ms, due to its overall shorter reordering times

(presumably due to overall higher bandwidths). Thus, even

though the upper end of the distribution is very large (12 s), a

generally modest wait serves to disambiguate most sequence

holes.

We now look at the degree to which false fast retransmit

signals due to reordering are actually a problem. We classify

each sequence of dups as either good or bad, depending

on whether a retransmission in response to it was necessary

or unnecessary. When considering a refinement to the fast

retransmission mechanism, our interest lies in the resulting

ratio of good to bad controlled by both the dup ack

threshold value we consider, and the waiting time

observed by the receiver before generating a dup upon the

advent of a sequence hole.

For current TCP, dups and For these

values, we find in and in

The order of magnitude improvement between and

is due to the use in of bigger windows (Section II), and

hence more opportunity for generating good dups. Clearly, the

current scheme works well. While improves by

a factor of 2.5, it also diminishes fast retransmit opportunities

by 30%, a significant loss.

For we gain 65%–70% more fast retransmit

opportunities, a hefty improvement, each generally saving a

connection from an expensive timeout retransmission. The

cost, however, is that falls by about a factor of three.

280 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 3, JUNE 1999

If the receiving TCP waited ms before generating

a second dup, then falls only slightly (30% for not

at all for). Unfortunately, changing to TCP’s

coupled with the ms delay requires both sender and

receiver modifications, increasing the problem of deploying the

change. However, we could instead consider a similar change

requiring only changes to the sender: lower to 2, but on the

second dup, wait 20 ms before entering fast retransmission.

This change turns out to have virtually identical effects to

having the receiver perform the wait. falls only slightly

for and not at all for and numerous additional fast

retransmission opportunities are gained.

We might then be tempted to apply the same sender-side

approach to lowering to 1. This works well for only

diminishing to 180, still a comfortably high value;3 but

for we obtain which is unacceptably low.

We note that the TCP selective acknowledgment (SACK)

option also provides a mechanism for improving TCP retrans-

mission [16], [7], [14]. Use of SACK can be complementary

to lowering since SACK focuses on determining what to

retransmit rather than when.

We observed one other form of dup ack series potentially

leading to unnecessary retransmission, which we mention

briefly because it is surprisingly common. Sometimes a series

occurs for which the original ack (of which the others are

dups) had acknowledged all of the outstanding data. When this

occurs, the subsequent dups are always due to unnecessary

retransmissions arriving at the receiving TCP, until at least

a round-trip time (RTT) after the sending TCP sends new

data. For these sorts of series are 2–15 times more

frequent than bad series, and about 10 times rarer than good

series. They occur during retransmission periods when the

sender has already filled all of the sequence holes and is now

retransmitting unnecessarily. Use of SACK eliminates these

series, as would a simple heuristic of noting when all of the

outstanding data has been acknowledged.

B. Packet Replication

Another form of “pathological” network behavior is packet

replication, in which the network delivers multiple copies

of the same packet. Unlike reordering, it is difficult to see

how replication can occur, though perhaps one mechanism is

unnecessary link-level retransmissions.4 In we observed

only one instance of packet replication, in which a pair of acks,

sent once, arrived nine times, each copy coming 32 ms after

the last. In we observed 65 instances of replication, all of

a single packet, the largest being 23 copies of a data packet

3 However, as noted above, some network paths have substantial minimum

reordering times. For today’s slower rate paths, these times can well exceed
the 20-ms figure we have explored. For such paths prone to reordering,
we would expect any approach based on delaying W = 20 ms to lead to
significant, unnecessary retransmissions, and poor performance. This problem
is considerably diminished for Nd = 2 because then we must have quite
substantial (in terms of time) reordering in order to generate enough dups to
falsely trigger fast retransmission.

4 We have observed traces (not part of this study) in which more than 10%
of the packets were replicated. The problem was traced to an improperly
configured bridging device.

arriving in a short blur at the receiver. Since the problem was

exceedingly rare in our traces, we omit further analysis here.

C. Packet Corruption

The final pathology we look at is packet corruption, in

which the network delivers to the receiver an imperfect copy

of the original packet. For data packets, tcpanaly cannot

directly verify the checksum because the packet filter used

in our study only recorded the packet headers, not payloads.

(For “pure acks,” i.e., acknowledgment packets with no data

payload, it directly verifies the checksum.) Consequently,

tcpanaly includes algorithms to infer whether data packets

arrive with invalid checksums, discussed in [21]. Using that

analysis, we first found that one site, “lbli,” was much

more prone to checksum errors than any other. Since lbli’s

Internet link is via an ISDN link, it appears quite likely that

these are due to noise on the ISDN channels.

After eliminating lbli, the proportion of corrupted packets

is about 0.02% in both data sets. No other single site strongly

dominated in suffering from corrupted packets, and in

most of the sites receiving corrupted packets had fast (T1

or greater) Internet connectivity, so the corruptions are not

primarily due to noisy, slow links. This evidence suggests

that, as a rule of thumb, the proportion of Internet data packets

corrupted in transit is around 1 in 5000.

A corruption rate of 1 packet in 5000 is certainly not neg-

ligible, because TCP protects its data with a 16-bit checksum.

Consequently, on average, one bad packet out of 65 536 will

be erroneously accepted by the receiving TCP, resulting in

undetected data corruption. If the 1 in 5000 rate is indeed

correct, then about one in every 300 million Internet packets

is accepted with corruption—certainly, many each day. In

this case, we argue that TCP’s 16-bit checksum is no longer

adequate, if the goal is that globally in the Internet there are

very few corrupted packets accepted by TCP implementations.

If the checksum were instead 32 bits, then only about one in

packets would be accepted with corruption.

The data checksum error rate of 0.02% of the packets is

much higher than that measured directly (by verifying the

checksum) for pure acks. For pure acks, we found only one

corruption out of 300 000 acks in and, after eliminating

lbli, one out of 1.6-million acks in This discrepancy

suggests that data packets are much more likely to be corrupted

than the small pure ack packets because of some artifact of

how the corruption occurs. For example, it may be that corrup-

tion primarily occurs inside routers, where it goes undetected

by any link-layer checksum, and that the mechanism (e.g.,

botched DMA, cache inconsistencies) only manifests itself for

packets larger than a particular size.

We gathered a bit of further evidence concerning corruption

rates by sampling traffic on a busy FDDI ring connecting a

large university (U.C. Berkeley) to the Internet. In a January

1998 sample of 400 000 packets, one in 7500 had an inconsis-

tent checksum. In a November 1998 sample of 294 million

packets, about one in 9500 had an inconsistent checksum.

Thus, the problem appears quite real, and is under further

investigation [19].

PAXSON: END-TO-END INTERNET PACKET DYNAMICS 281

In summary, we cannot offer a definitive answer as to

overall Internet packet corruption rates, but the evidence that

corruption occurs fairly frequently argues for further study in

order to resolve the question.

IV. BOTTLENECK BANDWIDTH

In this section, we discuss how to estimate a fundamental

property of a network connection, the bottleneck bandwidth

that sets the upper limit on how quickly the network can

deliver the sender’s data to the receiver. The bottleneck comes

from the slowest forwarding element in the end-to-end chain

that comprises the network path. We make a crucial distinction

between bottleneck bandwidth and available bandwidth. The

former gives an upper bound on how fast a connection

can possibly transmit data, while the less well-defined latter

term denotes how fast the connection can transmit while

still preserving network stability. Available bandwidth never

exceeds bottleneck bandwidth and can, in fact, be much

smaller (Section VI-C).

We will denote a path’s bottleneck bandwidth as For

measurement analysis, it is important to estimate because

from it we can then estimate a bound on interpacket spacing

such that if two packets are sent with less spacing between

them, then the second packet will have to queue behind the first

at the bottleneck, and thus the transmission delays of the two

packets will be correlated, rather than providing independent

measurements of delay conditions along the path. If a packet

carries a total of bytes and the bottleneck bandwidth is

byte/s, then define

(1)

From a queueing theory perspective, is simply the service

time of a -byte packet at the bottleneck link. If the sender

transmits two -byte packets with an interval be-

tween them, then the second one is guaranteed to have to wait

behind the first one at the bottleneck element (hence the use

of “ ” to denote “queueing”). We will always discuss in

terms of user data bytes, i.e., TCP packet payload, and for

ease of discussion will assume is constant. We will not use

the term for acks.

For our measurement analysis, accurate assessment of

is critical. Suppose we observe a sender transmitting packets

and an interval apart. Then if the

delays experienced by and are perforce correlated, and

if their delays, if correlated, are due to another

source (such as additional traffic from other connections, or

processing delays). We need to know so we can distinguish

those measurements that are necessarily correlated from those

that are not. If we do not do so, then we will skew our analysis

by mixing together measurements with built-in delays due to

queueing at the bottleneck with measurements that do not

reflect built-in delays.

A. Packet Pair

The bottleneck estimation technique used in previous work

is based on “packet pair” [13], [1], [3]. The fundamental idea

is that if two packets are transmitted by the sender with an

interval between them, then when they arrive at the

bottleneck they will be spread out in time by the transmission

delay of the first packet across the bottleneck: after completing

transmission through the bottleneck, their spacing will be

exactly Barring subsequent delay variations, they will then

arrive at the receiver spaced not apart, but

We then compute via (1).

The principle of the bottleneck spacing effect was noted in

Jacobson’s classic congestion paper [11], where it in turn leads

to the “self-clocking” mechanism. Keshav formally analyzed

the behavior of packet pair for a network of routers that all

obey the “fair queueing” scheduling discipline (not presently

used in the Internet), and developed a provably stable flow

control scheme based on packet-pair measurements [13]. Both

Jacobson and Keshav were interested in estimating available

rather than bottleneck bandwidth, and for this, variations from

due to queueing are of primary concern (Section VI-C).

But if, as for us, the goal is to estimate then these variations

instead become noise we must deal with.

Bolot used a stream of packets sent at fixed intervals to

probe several Internet paths in order to characterize delay and

loss [1]. He measured round-trip delay of UDP echo packets

and, among other analysis, applied the packet pair technique

to form estimates of bottleneck bandwidths. He found good

agreement with known link capacities, though a limitation of

his study is that the measurements were confined to a small

number of Internet paths.

Recent work by Carter and Crovella also investigates the

utility of using packet pair in the Internet for estimating

[3]. Their work focuses on bprobe, a tool they devised

for estimating by transmitting ten consecutive ICMP echo

packets and recording the interarrival times of the consecutive

replies. Much of the effort in developing bprobe concerns

how to filter the resulting raw measurements in order to form

a solid estimate. bprobe currently filters by first widening

each estimate into an interval by adding an error term, and

then finding the point at which the most intervals overlap.

The authors also undertook to calibrate bprobe by testing

its performance for a number of Internet paths with known

bottlenecks. They found in general it works well, though

some paths exhibited sufficient noise to sometimes produce

erroneous estimates.

One limitation of both studies is that they were based on

measurements made only at the data sender. (This is not an

intrinsic limitation of the techniques used in either study.)

Since in both studies, the packets echoed back from the

remote end were the same size as those sent to it, neither

analysis was able to distinguish whether the bottleneck along

the forward and reverse paths was the same. The bottleneck

could differ in the two directions due to asymmetric routing

[20], or because some media, such as satellite links, can have

significant bandwidth asymmetries depending on the direction

traversed [6].

For estimating bottleneck bandwidth by measuring TCP

traffic, a second problem arises: if the only measurements

available are those at the sender, then “ack compression”

(Section VI-A) can significantly alter the spacing of the small

ack packets as they return through the network, distorting the

282 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 3, JUNE 1999

bandwidth estimate. We investigate the degree of this problem

below.

For our analysis, we consider what we term receiver-

based packet pair (RBPP), in which we look at the pattern

of data-packet arrivals at the receiver. We also assume that

the receiver has full timing information available to it. In

particular, we assume that the receiver knows when the packets

sent were not stretched out by the network, and can reject

these as candidates for RBPP analysis. RBPP is considerably

more accurate than sender-based packet pair (SBPP), since it

eliminates the additional noise and possible asymmetry of the

return path, as well as noise due to delays in generating the

acks themselves. We find in practice this additional noise can

be quite large.

B. Difficulties with Packet Pair

As shown in [1] and [3], packet pair techniques often

provide good estimates of bottleneck bandwidth. We find,

however, four potential problems (in addition to asymmetries

and noise on the return path for SBPP). Three of these problem

can often be addressed, but the fourth is more fundamental.

Out-of-Order Delivery: The first problem stems from the

fact that for some Internet paths, out-of-order packet delivery

occurs quite frequently (Section III-A). Clearly, packet pairs

delivered out of order completely destroy the packet pair

technique, since they result in which then leads to a

negative estimate for . Out-of-order delivery is symptomatic

of a more general problem, namely that the two packets in a

pair may not take the same route through the network, which

then violates the assumption that the second queues behind

the first at the bottleneck.

Limitations Due to Clock Resolution: Another problem re-

lates to the receiver’s clock resolution meaning the mini-

mum difference in time the clock can report. can introduce

large margins of error around estimates of . For example, if

ms, then for bytes, a packet pair cannot

distinguish between byte/s, and

We had several sites in our study with ms. A

technique for coping with large is to use packet bunch, in

which back-to-back packets are used, rather than just

two. Thus, the overall arrival interval spanned by the

packets will be about times larger than that spanned by

a single packet pair, diminishing the uncertainty due to

Changes in Bottleneck Bandwidth: Another problem that

any bottleneck bandwidth estimation must deal with is the

possibility that the bottleneck changes over the course of

the connection. Fig. 2 shows a sequence plot of data packets

arriving at the receiver for a trace in which this happened. The

eye immediately picks out a transition between one overall

slope to another, just after The first slope corresponds

to about 53 kbit/s, while the second is 106 kbit/s, and increase

of a factor of two.

Here, the change is due to lbli’s ISDN link activating

a second channel to double the link bandwidth, but we

emphasize that bottleneck shifts can occur due to other mech-

anisms, such as routing changes or partial layer-2 failures.

What is of interest is not that ISDN in particular exhibits

Fig. 2. Bottleneck bandwidth change.

Fig. 3. Enlargement of part of the right half of Fig. 2.

this quirk, but the awareness of the general problem that

bottleneck bandwidth can indeed change during the course

of a connection.

Multichannel Bottleneck Links: A more fundamental prob-

lem with packet-pair techniques arises from the effects of

multichannel links, for which packet pair can yield incorrect

overestimates even in the absence of any delay noise. Fig. 3

expands a portion of Fig. 2. The slope of the large linear trend

in the plot corresponds to 13 300 byte/s (106 kbit/s) as noted

earlier . However, we see that the line is actually made up of

pairs of packets. The slope between the pairs corresponds to a

data rate of 160 kbyte/s. However, this trace involved lbli,

a site with an ISDN link that has a hard limit of 128 kbit/s

16 kbyte/s, a factor of ten smaller. Clearly, an estimate of

kbyte/s must be wrong, yet that is what a packet-pair

calculation will yield.

What has happened is that the bottleneck ISDN link uses

two channels that operate in parallel. When the link is idle

and a packet arrives, it goes out over the first channel, and

when another packet arrives shortly after, it goes out over

the other channel. They do not queue behind each other!

Multichannel links violate the assumption that there is a single

end-to-end forwarding path, with disastrous results for packet-

pair, since in their presence it can form completely misleading

overestimates for .

Again, we stress that the problem is more general than

the circumstances shown in this example. First, while in this

example, the parallelism leading to the estimation error came

from a single link with two separate physical channels, the

PAXSON: END-TO-END INTERNET PACKET DYNAMICS 283

same effect could come from a router that balances its outgoing

load across two different links. Second, it may be tempting to

dismiss this problem as correctable by using packet bunch with

instead of packet pair. This argument is not compelling

without further investigation, however, because could

be more prone to error for regular bottlenecks; and, more

fundamentally, only works if the parallelism comes from

two channels. If it came from three channels (or load-balancing

links), then will still yield misleading estimates.

C. Robust Bottleneck Estimation

We now turn to the question of how we might extend the

packet-pair concept to address the difficulties mentioned in the

previous section. We term the more robust procedure we de-

veloped “packet bunch modes” (PBM). The main observations

behind how PBM works is that we can deal with packet pair’s

shortcomings by forming receiver-side estimates for a range of

packet-bunch sizes, allowing for multiple bottleneck values or

apparent bottleneck values. Forming estimates at the receiver

yields the benefits discussed in Section IV-A. Considering a

range of bunch sizes lets us accommodate limited receiver-

clock resolutions and the possibility of multiple channels or

load-balancing across multiple links by using large bunch

sizes. But since we also consider small bunch sizes, we can

still minimize the risk of underestimation due to noise diluting

the spacing of the bunches. Finally, allowing for finding

multiple bottleneck values lets us accommodate multichannel

(and multilink) effects, and also the possibility of a bottleneck

change.

Allowing for multiple bottleneck values rules out use of

the most common robust estimator, the median, since it

presupposes unimodality. We instead focus on identifying

modes, i.e., local maxima in the density function of the

distribution of the estimates. We then observe that:

1) if we find two strong modes, for which one is found

only at the beginning of the connection and one at the

end, then we have evidence of a bottleneck change;

2) if we find two strong modes which span the same portion

of the connection, and if one is found only for a packet

bunch size of and the other only for bunch sizes

then we have evidence for an -channel bottleneck link;

3) we can find both situations, for a link that exhibits both a

change and a multichannel link, such as shown in Fig. 2.

Turning these observations into a working algorithm entails a

great degree of niggling detail, as well as the use of a number

of heuristics. Examples are: determining how many packet

arrivals to consider given limited-clock resolution; propagating

clock uncertainties into the bandwidth estimates; dealing with

relatively flat modal peaks; merging nearby peaks; avoiding

timing artifacts introduced by TCP “self-clocking” and delayed

acknowledgment; deciding when we have too few bandwidth

measurements for a given bunch size to trust the corresponding

estimate; and numerous others.

We defer discussion of these particulars to [22]. We note,

though, that one salient aspect of PBM is that it forms its

final estimates in terms of error bars that nominally encompass

20% around the bottleneck estimate, but might be narrower

Fig. 4. Histogram of single-bottleneck estimates for N2:

if estimates cluster sharply around a particular value, or wider

if limited clock resolution prevents finer bounds. PBM always

tries bunch sizes ranging from two to five packets. If required

by limited clock resolution or the failure to find a compelling

bandwidth estimate (about one quarter of all of the traces,

usually due to limited clock resolution), it tries progressively

larger bunch sizes, up to a maximum of 21 packets. We also

note that nothing in PBM is specific to analyzing TCP traffic.

All it requires is knowing when packets were sent relative

to one another, how they arrived relative to one another, and

their size.

We applied PBM to and for those traces for which

tcpanaly’s packet filter and clock analysis did not uncover

any uncorrectable problems. After removing lbli, which

frequently exhibited both bottleneck changes and multichannel

effects, PBM detected a single bottleneck 95%–98% of the

time, failed to produce an estimate 0%–2% of the time (due to

excessive noise or reordering), detected a bottleneck change

in about 1 connection out of 250, and inferred a multichannel

bottleneck in 1%–2% of the connections (though some of these

appear spurious). Since all but single bottlenecks are rare, we

defer discussion of the others to [22], and focus here on the

usual case of finding a single bottleneck.

Unlike [3], we do not know a priori the bottleneck band-

widths for many of the paths in our study. We thus must

fall back on self-consistency checks in order to gauge the

accuracy of PBM. Fig. 4 shows a histogram of the estimates

formed for (The estimates are similar, though lower

bandwidth estimates are more common.) We can arguably

identify all of the peaks in the figure as corresponding to

known bandwidths such as 170 kbyte/s for a T1 circuit after

removing overhead, or possible divisions or pairings of known

bandwidths. We find that the E1 peak disappears if we confine

the analysis to North American sites, as expected since E1 is

used in Europe but not in North America. Since we can offer

plausible explanations for all of the peaks, PBM passes the

self-consistency test, which in turn argues that PBM is indeed

detecting true bottleneck bandwidths.

We next investigate the stability of bottleneck bandwidth

over time. If we consider successive estimates for the same

sender/receiver pair, then we find that 50% differ by less than

1.75%; 80% by less than 10%; and 98% differ by less than a

factor of two. Clearly, bottlenecks change infrequently.

284 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 3, JUNE 1999

The last property of bottleneck bandwidth we investigate is

symmetry: how often is the bottleneck from host to host

the same as that from to ? Bottleneck asymmetries are an

important consideration for sender-based “echo” measurement

techniques, since these will observe the minimum bottleneck

of the two directions [1], [3]. A receiver-based algorithm

like PBM, however, can soundly assess the bottleneck in

just one direction along the path. Since our data sets include

connections in both directions along each path, we can use

PBM to estimate the bottleneck bandwidth in each direction,

and then compare the two to assess symmetry. This assessment

is imperfect, since we do not have simultaneous measurements

in each direction, but since the bottleneck bandwidth along a

path changes infrequently, we can still compare connections

somewhat separated in time.

We find that for a given pair of hosts, the median estimates

in the two directions differ by more than 20% about 20%

of the time. This finding agrees with the observation that

Internet paths often exhibit major routing asymmetries [20].

The bottleneck differences can be quite large, with for example

some paths T1-limited in one direction but Ethernet-limited in

the other. In light of these variations, we see that sender-based

bottleneck measurement will sometimes yield quite inaccurate

results.

D. Efficacy of Packet Pair

We finish with a look at how packet pair performs compared

to PBM. We confine our analysis to those traces for which

PBM found a single bottleneck. This restriction might intro-

duce bias by removing traces for which we know a packet pair

will perform poorly (such as multichannel links). However,

the bias is bounded by the fact that such traces comprise only

2%–5% of all of the traces.

If packet pair produces an estimate lying within 20% of

PBM’s, then we consider it to agree with PBM, otherwise

not. We evaluate RBPP (per Section IV-A) by considering

it as PBM limited to packet bunch sizes of two packets (or

larger, if needed to resolve limited clock resolutions). We find

RBPP estimates almost always (97%–98%) agree with PBM.

Thus, if: 1) PBM’s general clustering and filtering algorithms

are applied to packet pair; 2) we do packet pair estimation

at the receiver; 3) the receiver benefits from sender timing

information, so it can reliably detect out-of-order delivery and

lack of bottleneck “expansion;” and 4) we are not concerned

with multichannel effects, then packet pair is a viable and

relatively simple means to estimate the bottleneck bandwidth.

We also evaluate the sender-based packet pair (SBPP), in

which the sender makes measurements by itself. SBPP is of

considerable interest because a sender can use it without any

cooperation from the receiver, making it easy to deploy in the

Internet. To fairly evaluate SBPP, we assume use by the sender

of a number of considerations for forming sound bandwidth

estimates, detailed in [22]. Even so, we find that SBPP does not

work especially well. In both data setss, the SBPP bottleneck

estimate agrees with PBM only about 60% of the time. About

one third of the estimates are too low, reflecting inaccuracies

induced by excessive delays incurred by the acks on their

return. The remaining 5%–6% are overestimates (typically

50% too high), reflecting ack compression (Section IV-A).

V. PACKET LOSS

In this section, we look at what our measurements tell us

about packet loss in the Internet: how frequently it occurs and

with what general patterns (Section V-A), differences between

loss rates of data packets and acks (Section V-B), the degree

to which loss occurs in bursts (Section V-C), and how well

TCP retransmission matches genuine loss (Section V-D).

A. Loss Rates

A fundamental issue in measuring packet loss is to avoid

confusing measurement drops with genuine losses. As men-

tioned in Section I, we addressed this concern by coding into

tcpanaly the details of the different TCP implementations

in our study, so it could infer measurement drops by detecting

apparently inconsistent TCP behavior (such as sending an

acknowledgment for data that, according to the trace, never

arrived) [21]. Because we can determine whether traces suffer

from measurement drops, we can exclude those that do from

our packet loss analysis and avoid what could otherwise be

significant inaccuracies.

For the sites in common, in 2.7% of the packets

were lost, while in nearly twice as many (5.2%) were

lost. However, we need to address the question of whether

the increase was due to the use of bigger windows in

(Section II). With bigger windows, transfers will often have

more data in flight and, consequently, load router queues much

more.

We can assess the impact of bigger windows by looking at

loss rates of data packets versus those for ack packets. Data

packets stress the forward path much more than the smaller

ack packets stress the reverse path, especially since acks are

usually sent at half the rate of data packets due to ack-every-

other-packet policies. On the other hand, the rate at which

a TCP transmits data packets adapts to current conditions

along the forward path, while the ack transmission rate does

not adapt to conditions along the reverse path unless either

an entire flight of acks is lost, causing a sender timeout, or

there is significant correlation between the loss rates in the

forward and reverse directions, which we show in Section V-

B is not the case. Thus, we argue that ack losses give a

clearer picture of overall Internet loss patterns, while data

losses tell us specifically about the conditions as perceived

by TCP connections.

In 2.88% of the acks were lost and 2.65% of the

data packets, while in the figures are 5.14% and 5.28%.

Clearly, the bulk of the difference between the and

loss rates is not due to the use of bigger windows in We

conclude that, overall, packet loss rates nearly doubled during

1995. We can refine these figures by conditioning on observing

at least one loss during a connection. Here we make a tacit

assumption that the network has two states, “quiescent” and

“busy,” and that we can distinguish between the two because

when it is quiescent, we do not observe any (ack) loss.

PAXSON: END-TO-END INTERNET PACKET DYNAMICS 285

TABLE I
CONDITIONAL ACK LOSS RATES FOR DIFFERENT REGIONS

We will term a connection “loss-free” if it did not experience

any lost acks, and “lossy” if at least one of the acks was lost.

In both and about half the connections were loss-

free. For lossy connections, the loss rates jump to 5.7% in

and 9.2% in Thus, even in if the network was busy

(using our simplistic definition above), loss rates were quite

high, and for they shot upward to a level that in general

will seriously impede TCP performance.

Geography also plays a crucial role. We partitioned the

connections into four groups: “Europe,” “U.S.,” “Into Europe,”

and “Into U.S.” European connections have both a European

sender and receiver, U.S. connections have both in the U.S.

“Into Europe” connections have U.S. data receivers (since they

are what transmit the packets of interest, namely the acks, into

Europe). Similarly, “Into U.S.” are connections with European

data receivers.

Table I summarizes loss rates for the different regions,

conditioning on whether any acks were lost (“loss-free” or

“lossy”). The second and third columns give the proportion of

all connections that were loss-free in and respectively.

We see that except for the trans-Atlantic links going into the

United States, the proportion of loss-free connections is fairly

stable. Hence, loss rate increases are primarily due to higher

loss rates during the already-loaded “busy” periods. The fourth

and fifth columns give the proportion of acks lost for all of the

lossy connections aggregated together, and the final column

summarizes the relative change of these figures. None of the

“lossy” loss rates is especially heartening, and the trends are

all increasing. The 17% loss rate going into Europe is

particularly glum.

Within regions, we find considerable site-to-site variation in

loss rates, as well as variation between loss rates for packets

inbound to the site and those outbound (Section V-B). We did

not, however, find any sites that seriously skewed the above

figures.

In [22], we also analyze loss rates over the course of

the day, here omitted due to limited space. We find the

expected diurnal pattern of “busy” periods corresponding to

working hours and “quiescent” periods to late night and early

morning hours. However, we also find that our successful

measurements involving European sites exhibit a definite bias

toward oversampling the quiescent periods, due to effects

discussed in Section II. Consequently, the European loss rates

given above are underestimates.

B. Data-Packet Loss versus Ack Loss

We now turn to evaluating how patterns of packet loss differ

among data packets (those carrying any user data) and ack

packets. We make a key distinction between “queued” and

Fig. 5. N2 loss rates for data packets and acks.

“unqueued” data packets. A “queued” data packet is one that

presumably had to queue at the bottleneck link behind one of

the connection’s previous packets, while an unqueued data

packet is one that we know did not have to queue at the

bottleneck behind a predecessor. We distinguish between the

two by computing each packet’s waiting time, as follows.

Suppose the methodology in Section IV estimates the bottle-

neck bandwidth as . It also provides bounds on the estimate,

i.e., a minimum value and a maximum We can then

determine the maximum amount of time required for a -byte

packet to transit the bottleneck, namely: s, which

is simply (1) using the lower bound on

Let be the time at which the sender transmits the th

data packet. We then associate a maximum waiting time

with each packet (assume for simplicity that is constant).

The first packet’s waiting time is

Subsequent packets have a waiting time

reflects the maximum amount of extra delay the th

packet incurs due to its own transmission time across the

bottleneck link, plus the time required to first transmit any

preceding packets across the bottleneck link, if will arrive

at the bottleneck before they have completed transmission. In

queueing theory terms, reflects the th packet’s (maximum)

waiting time at the bottleneck queue, in the absence of

competing traffic from exogenous sources.

If then we will term packet “queued,”

meaning that it had to wait for pending transmission of earlier

packets. Otherwise, we term it “unqueued.” (We can also

develop “central” estimates rather than maximum estimates

using instead of in this chain of reasoning. These are

the values used in Section IV-C).

Using this terminology, in both and about 2/3 of

the data packets were queued. Fig. 5 shows the distributions of

loss rates during for unqueued data packets, queued data

packets, and acks. All three distributions show considerable

probability of zero loss. We see that queued packets are much

more likely to be lost than unqueued packets, as we would

expect. In addition, acks are consistently more likely than

286 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 3, JUNE 1999

unqueued packets to be lost, but generally less likely to be

lost than queued packets, except during times of severe loss.

We interpret the difference between ack and data loss rates

as reflecting the fact that, while an ack stream presents a

much lighter load to the network than a data-packet stream, the

ack stream does not adapt very much to the current network

conditions along its forwarding path, while the data-packet

stream does, lowering its transmission rate in an attempt to

diminish its loss rate.

It is interesting to note the extremes to which packet loss

can reach. In the largest unqueued data-packet loss rate

we observed was 47%. For queued packets it climbed to 65%,

and for acks 68%. As we would expect, these connections

all suffered egregiously. However, they did manage to suc-

cessfully complete their transfers within their alloted 10 min,

a testimony to TCP’s tenacity. For all of these extremes, no

packets were lost in the reverse direction. Clearly, packet loss

on the forward and reverse paths is sometimes completely

independent. Indeed, the coefficient of correlation between

combined (queued and unqueued) data-packet loss rates and

ack loss rates in is 0.21, and in the loss rates appear

uncorrelated (coefficient of 0.02), perhaps due to the greater

prevalence of routing asymmetry.

A final puzzle is that the nonzero portions of both the

unqueued and queued data-packet loss rates agree closely with

exponential distributions, while the distribution for acks is not

so persuasive a match. Perhaps the better fit for data loss

rates reflects the fact that the sender transmits data packets

at a rate that adapts to the current network conditions based

on observing data-packet loss. The difference highlights that

if we passively measure the loss rate by observing the fate

of a connection’s TCP data packets, then we in fact are

making measurements using a mechanism whose goal is to

lower the value of what we are measuring (by spacing out

the measurements). Consequently, we need to take care to

distinguish between measuring overall Internet packet loss

rates, which is best done using nonadaptive sampling, versus

measuring loss rates experienced by a transport connection’s

packets—the two can be quite different.

C. Loss Bursts

In this section, we look at the degree to which packet loss

occurs in bursts of more than one consecutive loss.

The first question we address is the degree to which packet

losses are well-modeled as independent. In [1], Bolot in-

vestigated this question by comparing the unconditional loss

probability with the conditional loss probability where

is conditioned on the fact that the previous packet was also

lost. He investigated the relationship between and for

different packet spacings ranging from 8 to 500 ms. He

found that approaches as increases, indicating that

loss correlations are short lived, and concluded that “losses of

probe packets are essentially random as long as the probe

traffic uses less than 10% of the available capacity of the

connection over which the probes are sent.” The path he

analyzed, though, included a heavily loaded trans-Atlantic link,

so the patterns he observed might not be typical.

TABLE II
UNCONDITIONAL AND CONDITIONAL LOSS RATES

Fig. 6. Distribution of packet loss outage durations exceeding 200 ms.

Table II summarizes and for the different types of

packets and the two data sets. Clearly, TCP packet loss events

are not well modeled as independent. Even for the low-burden

relatively low-rate ack packets, the loss probability jumps by

a factor of seven if the previous ack was lost. We would

expect to find the disparity strongest for queued data packets,

as these must contend for buffer with the connection’s own

previous packets, as well as any additional traffic, and indeed

this is the case. We find the effect least strong for unqueued

data packets, which accords with these not having to contend

with the connection’s previous packets, and having their rate

diminished in the face of previous loss.5

The relative differences between and in Table II all

exceed those computed by Bolot by a large factor. His greatest

observed ratio of to was about 2.5 : 1. However, his

were all much higher than those in Table II, even for

ms, suggesting that the path he measured differed considerably

from a typical path in our study.

Given that packet losses occur in bursts, the next natural

question is, how big? To address this question, we group

successive packet losses into outages. Fig. 6 shows the distri-

bution of outage durations for those lasting more than 200 ms

(the majority). We see that all four distributions agree fairly

closely.

It is clear from Fig. 6 that outage durations span several

orders of magnitude. For example, 10% of the ack outages

were 33 ms or shorter (not shown in the plot), while another

10% were 3.2 s or longer, a factor of 100 larger. Furthermore,

the upper tails of the distributions are consistent with Pareto

distributions. Fig. 7 shows a complementary distribution plot

of the duration of ack outages, for those lasting more than

2 s (about 16% of all the outages). Both axes are log-scaled. A

5 It is interesting that queued packets are unconditionally less likely to be
lost than unqueued packets. We suspect this reflects the fact that lengthy
periods of heavy loss or outages will lead to timeout retransmissions, and
these are unqueued. Note that these statistics differ from the distributions
shown in Fig. 5 because those are for per-connection loss rates, while Table II
summarizes loss probabilities over all the packets in each data set.

PAXSON: END-TO-END INTERNET PACKET DYNAMICS 287

Fig. 7. Log-log complementary distribution plot ofN2 ack outage durations.

straight line on such a plot corresponds to a Pareto distribution.

We have added a least-squares fit. We see the long outages

fit quite well to a Pareto distribution with shape parameter

except for the extreme upper tail, which is subject to

truncation because of the 600-s limit on connection durations

(Section II).

A shape parameter means that the distribution has

infinite variance, indicating immense variability. Pareto distri-

butions for activity and inactivity periods play key roles in

some models of self-similar network traffic [26], suggesting

that packet loss outages could contribute to how TCP network

traffic might fit to ON/OFF-based self-similarity models.

Finally, we note that the patterns of loss bursts we observe

might be greatly shaped by use of “drop tail” queueing.

In particular, deployment of random early detection (RED)

could significantly affect these patterns and the corresponding

connection dynamics [8].

D. Efficacy of TCP Retransmission

The final aspect of packet loss we investigate is how

efficiently TCP deals with it. Ideally, TCP retransmits if and

only if the retransmitted data was indeed lost. However, the

transmitting TCP lacks perfect information, and consequently

can retransmit unnecessarily. We analyzed each TCP trans-

mission in our measurements to determine whether it was a

redundant retransmission (RR), meaning that the data sent had

already arrived at the receiver, or was in flight and would

successfully arrive.

In [21], we identified one TCP implementation as suffering

from significant errors in computing RTO, which the other im-

plementations do not exhibit. We removed the corresponding

traces from the analysis in this section, as the TCP generated

an abnormally large number of RR’s.

We classify three types of RR’s:

• unavoidable because all of the acks for the data were

lost;

• coarse feedback meaning that had earlier acks conveyed

finer information about sequence holes (such as provided

by SACK), then the retransmission could have been

avoided;

• bad RTO meaning that had the TCP simply waited

longer, it would have received an ack for the data (bad

retransmission timeout).

TABLE III
PROPORTION OF RR’s DUE TO DIFFERENT CAUSES

Type of RR N1 N2

% all packets 1% 2%

% retrans. 26% 28%

Unavoidable 44% 17%

Coarse feed. 51% 80%

Bad RTO 4% 3%

Because we have traces of connections at both sender and

receiver, we can unambiguously determine for each retrans-

mission which acks had arrived or would subsequently arrive

at the sender, and so can readily detect RR’s and classify

them by type. Table III summarizes the prevalence of the

different types of RR’s in and We see that in

a fair proportion of the RR’s were unavoidable. (Some of

these might however have been avoided had the receiving TCP

generated more acks.) But for only about 1/6 of the RR’s

were unavoidable, the difference no doubt due to ’s use of

bigger windows (Section II) increasing the mean number of

acks in flight.

“Coarse feedback” RR’s presumably would all be fixed

using SACK, so we see that SACK provides a major benefit

in improving TCP retransmission.

“Bad RTO” RR’s indicate that the TCP’s computation of the

retransmission timeout was erroneous. Bad RTO RR’s are rare,

providing solid evidence that the standard TCP RTO estimation

algorithm developed in [11] performs quite well for avoiding

RR’s. A separate question is whether the RTO estimation is

overly conservative. A thorough investigation of this question

is complex because a revised estimator might take advantage

of both higher-resolution clocks and the opportunity to time

multiple packets per flight. Thus, we leave this interesting

question for future work.

In summary, ensuring standard-conformant RTO calcula-

tions and deploying the SACK option together eliminate

virtually all of the avoidable redundant retransmissions. The

remaining RR’s are rare enough to not present serious perfor-

mance problems.

The last aspects of TCP retransmission we investigate are

the patterns of packet loss during fast recovery sequences.

Two known problems with TCP loss recovery are that if

multiple packets are lost in a single flight, then the recovery

is likely to stall until a retransmission timeout occurs, seri-

ously diminishing throughput; and if a retransmitted packet is

itself lost, the connection will also incur a timeout [7], [10].

While these problems have been recognized for quite a while,

extensive data has not been available in order to gauge the

degree to which they actually present difficulties for Internet

connections. We analyzed the and measurements to

provide such data.

In out of 1178 packets retransmitted using fast recovery,

only 3.9% were themselves lost, while in only 4.5% of

15 444 packets were lost. (These proportions are quite close

to the unconditional loss rates we examined in Section V-A,

and much lower than the conditional loss rates examined in

Section V-C, indicating that congestion often drains on time

scales of RTT’s.) We conclude that the concern of suffering a

288 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 3, JUNE 1999

timeout due to a lost retransmitted packet is, in practice, not

an especially serious problem.

However, in both and 1/3 of the time we found

that more than one packet was lost in the flight prior to a

fast recovery, and about 15% of the time, more than two

packets were lost. These proportions are high enough to give

solid support for refining the fast recovery mechanism to cope

with multiple losses, such as by adding SACK; though we

note again, as in Section V-C, that deployment of RED may

significantly alter these proportions.

VI. PACKET DELAY

The final aspect of Internet packet dynamics we analyze is

that of packet delay. Here we focus on network dynamics

rather than transport protocol dynamics. Consequently, we

confine our analysis to variations in one-way transit times

(OTT’s) and omit discussion of RTT variation, since RTT

measurements conflate delays along the forward and reverse

paths.

For reasons noted in Section I, we do not attempt frequency-

domain analysis of packet delay. We also do not summarize the

marginal distribution of packet delays. Mukherjee found that

packet delay along a particular Internet path is well modeled

using a shifted gamma distribution, but the parameters of the

distribution vary from path to path and over the course of

the day [18]. Since we have about 1000 distinct paths in our

study, measured at all hours of the day, and since the gamma

distribution varies considerably as its parameters are varied, it

is difficult to see how to summarize the delay distributions in a

useful fashion. We hope to revisit this problem in future work.

Any accurate assessment of delay must first deal with the is-

sue of clock accuracy. This problem is particularly pronounced

when measuring OTT’s since doing so involves comparing

measurements from two separate clocks. Accordingly, we

developed robust algorithms for detecting clock adjustments

and relative skew by inspecting sets of OTT measurements

[23]. The analysis in this section assumes these algorithms

have first been used to reject or adjust traces with clock errors.

OTT variation was previously analyzed by Claffy and

colleagues in a study of four Internet paths [5]. They found

that mean OTT’s are often not well approximated by dividing

RTT’s in half, and that variations in the paths’ OTT’s are often

asymmetric. Our measurements confirm this latter finding. If

we compute the interquartile range (75th percentile minus

25th) of OTT’s for a connection’s unqueued data packets ver-

sus the acks coming back, in the coefficient of correlation

between the two is 0.10, and in it drops to 0.006.

A. Timing Compression

Packet timing compression occurs when a flight of packets

sent over an interval arrives at the receiver over an

interval To first order, compression should not

occur, since the main mechanism at work in the network for

altering the spacing between packets is queueing, which in

general expands flights of packets (cf. Section IV-A). How-

ever, compression can occur if a flight of packets is at some

point held up by the network, such that transmission of the first

packet stalls and the later packets have time to catch up to it.

Zhang et al. predicted from theory and simulation that

acks could be compressed (“ack compression”) if a flight

arrived at a router without any intervening packets from

cross traffic (hence, the router’s queue is draining) [27].

Mogul subsequently analyzed a trace of Internet traffic and

confirmed the presence of ack compression [17]. His definition

of ack compression is somewhat complex since he had to

infer endpoint behavior from an observation point inside

the network. Since we can compute from our data both

and we can instead directly evaluate the presence

of compression. He found compression was correlated with

packet loss but considerably more rare. His study was limited,

however, to a single 5 h traffic trace.

Ack compression: A simple metric for detecting ack com-

pression would be to compute which, if less than

one, indicates that the packets arrived with their timing com-

pressed. However, we need to take into account the uncertain-

ties in and due to the limited resolution of the clocks

used to measure them. Let and be the receiver and

sender’s clock resolutions, per the discussion in [23]. Then the

actual sending spacing is bounded by and similarly

for the receiving spacing. Therefore, the actual

degree of compression ranges from

to

To be conservative in concluding that a set of packets had

compressed timing, we use the latter end of this range. Then,

to detect ack compression, for each group of at least three

acks, we compute

(2)

While generally the acks in our traces were generated for

every-other data packet, we also included acks sent more

frequently, such as duplicate acks.

We consider a group compressed if We term such

a group a compression event. In 50% of the connections

experienced at least one compression event, and in 60%

did. In both, the mean number of events was around two, and

1% of the connections experienced 15 or more. Almost all

compression events are small, with only 5% spanning five or

more acks. Finally, a significant minority (10%–25%) of the

compression events occurred for dup acks. These are sent with

less spacing between them than regular acks sent by ack-every-

other policies, so it takes less timing perturbation to compress

them.

Were ack compression frequent, it would present two prob-

lems. First, as acks arrive, they advance TCP’s sliding window

and “clock out” new data packets at the rate reflected by their

arrival [11]. For compressed acks, this means that the data

packets go out faster than previously, which can result in

network stress. Second, sender-based measurement techniques

such as SBPP (Section IV-A) can misinterpret compressed

acks as reflecting greater bandwidth than truly available. Since,

however, we find ack compression relatively rare and small in

PAXSON: END-TO-END INTERNET PACKET DYNAMICS 289

Fig. 8. Data-packet timing compression.

magnitude, the first problem is not serious,6 and the second

can be dealt with by judiciously removing upper extremes

from sender-based measurements.

Data-Packet Timing Compression: For data-packet timing

compression, our concerns are different. Sometimes a flight of

data packets is sent at a high rate due to a sudden advance

in the receiver’s offered window. Normally these flights are

spread out by the bottleneck and arrive at the receiver with

a distance between each packet (Section IV). If, after the

bottleneck, their timing is compressed, then use of (2) will not

detect this fact unless they are compressed to a greater degree

than their sending rate. Fig. 8 illustrates this concern: the

flights of data packets arrived at the receiver at 170 kbyte/s (T1

rate), except for the central flight, which arrived at Ethernet

speed. However, it was also sent at Ethernet speed, and so

Consequently, we consider a group of data packets as

“compressed” if they arrive at greater than twice the upper

bound on the estimated bottleneck bandwidth We only

consider groups of at least four data packets, as these, coupled

with ack-every-other policies, have the potential to then elicit

a pair of acks reflecting the compressed timing, leading to

bogus self-clocking.

These compression events are rarer than ack compression,

occurring in only 3% of the traces and in 7% of those

in We were interested in whether some paths might be

plagued by repeated compression events due to either peculiar

router architectures or network dynamics. Only 25%–30% of

the traces with an event had more than one, and just 3% had

more than five, suggesting that such phenomena are rare. But

those connections with multiple events are dominated by a

few host pairs, indicating that the phenomenon does occur

repeatedly, and is sometimes due to specific routers.

B. Queueing Time Scales

In this section, we briefly develop a rough estimate of the

time scales over which queueing occurs. If we take care to

eliminate suspect clocks, reordered packets, compressed tim-

ing, and traces exhibiting TTL shifts (which indicate routing

6 Indeed, it has been argued that occasional ack compression is beneficial,
since it provides an opportunity for self-clocking to discover newly available
bandwidth.

Fig. 9. Proportion (normalized) of connections with given timescale of
maximum delay variation (�̂):

changes), then we argue that the remaining measured OTT

variation reflects queueing delays.

We compute the queueing variation on the time scale as

follows. We partition the packets sent by a TCP into intervals

of length For each interval, let and be the number of

successfully arriving packets in the left and right halves of the

interval. If either is zero, or if or vice versa, then

we reject the interval as containing too few measurements or

too much imbalance between the halves. Otherwise, let and

be the median OTT’s of the two halves. We then define the

interval’s queueing variation as Finally, let

be the median of over all such intervals.

Thus, reflects the “average” variation we observe in

packet delays over a time scale of By using medians, this

estimate is robust in the presence of noise due to nonqueueing

effects, or queueing spikes. By dividing intervals in two and

comparing only variation between the two halves, we confine

to only variations on the time scale of Shorter or

longer lived variations are, in general, not included.

We now analyze for different values of confining

ourselves to variations in ack OTT’s, as these are not clouded

by queueing at the bottleneck and adaptive transmission rate

effects. The question is: are there particular ’s on which most

queueing variation occurs? If so, then we can hope to engineer

for those time scales. For example, if the dominant is less

than a connection’s RTT, then it is pointless for the connection

to try to adapt to queueing fluctuations, since it cannot acquire

feedback quickly enough to do so.

For each connection, we range through ms to

find the value of for which is greatest. reflects the

time scale for which the connection experienced the greatest

OTT variation. Fig. 9 shows the normalized proportion of the

connections in and exhibiting different values of

Normalization is done by dividing the number of connections

that exhibited with the number that had durations at least

as long as For both data sets, time scales of 128–2048 ms

primarily dominate. This range spans an order of magnitude,

and exceeds typical RTT values. Furthermore, while less

prevalent, values all the way up to 65 s remain common,

with having a strong peak at 65 s (perhaps due to periodic

outages caused by router synchronization [9], eliminated by

the end of 1995).

290 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 3, JUNE 1999

We summarize the figure as indicating that Internet delay

variations occur primarily on time scales of 0.1–1 s, but extend

out quite frequently to much larger times.

C. Available Bandwidth

The last aspect of delay variation we look at is an interpreta-

tion of how it reflects the available bandwidth. In Section V-B

we developed a notion of data packet ’s “waiting time,”

meaning the total delay it incurs due to both queueing at the

bottleneck behind its predecessors, and the time required for

its own transmission across the bottleneck [per (1)]. For

simplicity, we assume that is the same for each data packet,

though the following discussion can be extended to the case

of variable

Since every packet requires time to transit the bottleneck,

variations in OTT do not include but will reflect

is the expected additional delay that packet

will experience because it will have to queue behind its

predecessors at the bottleneck.

Let denote the difference between packet ’s measured

OTT and the minimum observed OTT. Using the same as-

sumptions as in Section VI-B, we interpret as reflecting

queueing delays.

If the network path is completely unloaded except for the

connection’s load itself (no competing traffic), then we should

have That is, the measured extra delay () can all be

accountted for by the expected extra delay due to queueing

behind its predecessors.

More generally, define

then reflects the proportion of the packet’s delay due to

the connection’s own loading of the network. If then

overall, we have a situation approximating namely all

of the delay variation is due to the connection’s own queueing

load on the network. On the other hand, if then

the delays experienced by the packet are much higher than

those simply due to their own transmission times across the

bottleneck and their own queueing behind their predecessors.

In this case, the connection’s load is insignificant compared to

that of other traffic in the network.

Similarly, we can say that reflects the resources

consumed by the connection itself, while

reflects the resources consumed

by the competing connections.

Thus, captures the proportion of the total resources that

were consumed by the connection itself, and we interpret as

reflecting the available bandwidth. Values of close to one

mean that the entire bottleneck bandwidth was available, and

values close to zero mean that almost none of it was actually

available.

Note that we can have even if the connection does

not consume all of the network path’s capacity. All that is

required is that, to the degree that the connection did attempt to

(a)

(b)

Fig. 10. Density and cumulative distribution of N2 inferred available band-
width (�).

consume network resources, they were readily available. This

observation provides the basis for hoping that we might be able

to use to estimate available bandwidth without fully stressing

the network path, unlike other available bandwidth estimation

techniques [15], [4]. Fully evaluating this possibility remains

for future work.

We can roughly gauge how well truly reflects available

bandwidth by computing the coefficient of correlation between

and the connection’s overall throughput (normalized by

dividing by the bottleneck bandwidth). For this is 0.44,

while for it rises to 0.55.

Fig. 10 shows the density and cumulative distribution of

for We find that Internet connections encounter a

broad range of available bandwidth.7 As is generally the

case with Internet characteristics, a single figure like this can

oversimplify the situation. We note, for example, that confining

the evaluation of to European connections results in a sharp

leftward shift in the density, indicating generally less available

bandwidth, while for U.S. connections, the density shifts

to the right. Furthermore, for paths with higher bottleneck

bandwidths, we generally find lower values of reflecting

that such paths tend to be shared among more competing

connections. Finally, we note that the predictive power of

tends to be fairly good. On average, a given observation of

will be within 0.1 of later observations of for the same path,

for time periods up to several hours.

7 The depressed density at � � 0 reflects a measurement bias [22].

PAXSON: END-TO-END INTERNET PACKET DYNAMICS 291

VII. CONCLUSION

We analyzed packet traces of 20 800 TCP connections

between 35 Internet sites in an attempt to characterize the

spectrum of packet dynamics observed along Internet paths.

Our analysis of “pathological” network behavior found that

packet reordering is surprisingly common, with 36% of the

100 kbyte connections in one data set, and 12% in the other,

experiencing at least one reordered packet. Reordering varies

considerably from site to site, and while it sometimes occurs in

groups as large as dozens of packets, it usually involves only

one or two packets and is correlated with routing fluctuations.

The timing differences leading to reordering are such that the

TCP fast retransmission threshold could be safely lowered

from three duplicate acks to two by introducing a 20-ms

wait before retransmitting, increasing the fast retransmission

opportunities by 2/3.

Our assessment of bottleneck bandwidth uncovered four

difficulties with the common “packet pair” approach: out-of-

order delivery, limited clock resolution, bottleneck bandwidth

changes, and multipathing. We sketched a robust estimator,

Packet Bunch Modes (PBM’s), to address these difficulties,

and then, with it as a reference, found that receiver-based

packet-pair estimation works very well, agreeing with PBM

97%–98% of the time, while sender-based packet pair agrees

only about 60% of the time.

We found that packet loss rates nearly doubled during the

course of 1995, with most of the increase coming from larger

loss rates during the same busy periods, rather than longer busy

periods. There are considerable geographic differences in loss

rates, with European and especially the trans-Atlantic paths

having higher rates than the U.S. loss rates along the forward

and reverse directions of a network path show little correlation.

We found that loss patterns of data packets differ significantly

from those of acks, which appears to be due to the fact that the

rate at which data packets are sent adapts to current network

conditions in an attempt to diminish the experienced loss rate,

while the rate of ack packets adapts much less. Loss is not well

modeled as independent, with the likelihood that a packet is

lost increasing by an order of magnitude if its predecessor

was lost. Sustained loss “outages” have heavy-tailed durations

with a Pareto-shape parameter of indicating infinite

variance which could contribute to finding self-similar traffic

behavior. Finally, we find that when correctly implemented

the TCP retransmission algorithms perform well in terms of

avoiding unnecessary retransmissions, if coupled with the use

of SACK.

Our analysis of packet delay found that while 50%–60% of

the connections experienced at least one timing compression

event, such events tend to be isolated and small in magnitude,

so their impact is minor. We made a preliminary assessment

of delay variation time scales, finding that variations occur

primarily on time scales of 0.1–1 s, but not infrequently extend

out to much larger time scales. Our assessment of available

bandwidth was conducted in terms of gauging the degree to

which a connection’s own load along a path compared to

the total load along the path, finding that this ratio varied

fairly evenly all the way from the connection’s load being

insignificant to the connection’s load being the entire load

along the path.

Finally, our study has implications for several measurement

considerations.

• With due diligence to remove packet filter errors, TCP-

based measurement provides a viable means for assessing

end-to-end packet dynamics.

• We find wide ranges of behavior, such that we must

exercise great caution in regarding any aspect of packet

dynamics as “typical.”

• Some common assumptions such as in-order packet deliv-

ery, FIFO bottleneck queueing, independent loss events,

single congestion time scales, and path symmetries are all

violated, sometimes frequently.

• The combination of path asymmetries and reverse-

path noise render sender-only measurement tech-

niques markedly inferior to those that include receiver-

cooperation.

This last point argues that when the measurement of interest

concerns a unidirectional path—be it for measurement-based

adaptive transport techniques such as TCP Vegas [2], or gen-

eral Internet performance metrics such as those in development

by the IPPM effort [24]—the extra complications incurred by

coordinating sender and receiver yield significant benefits.

ACKNOWLEDGMENT

This work would not have been possible without the efforts

of the many volunteers who installed the Network Probe

Daemon (NPD) at their sites. The author is indebted to G.

Almes, J. Alsters, J-C. Bolot, K. Bostic, H-W. Braun, D.

Brown, R. Bush, B. Camm, B. Chinoy, K. Claffy, P. Collinson,

J. Crowcroft, P. Danzig, H. Eidnes, M. Eliot, R. Elz, M. Flory,

M. Gerla, A. Ghosh, D. Grunwald, T. Hagen, A. Hannan,

S. Haug, J. Hawkinson, TR Hein, T. Helbig, P. Hyder, A.

Ibbetson, A. Jackson, B. Karp, K. Lance, C. Leres, K. Lidl, P.

Linington, S. McCanne, L. McGinley, J. Milburn, W. Mueller,

E. Nemeth, K. Obraczka, I. Penny, F. Pinard, J. Polk, T.

Satogata, D. Schmidt, M. Schwartz, W. Sinze, S. Slaymaker,

S. Walton, D. Wells, G. Wright, J. Wroclawski, C. Young, and

L. Zhang. The author is also indebted to K. Bostic, E. Nemeth,

R. Stevens, G. Varghese, A. Albanese, W. Holfelder, and B.

Lamparter for their invaluable help in recruiting NPD sites.

The author extends gratitude to P. Danzig, J. Mogul, and M.

Schwartz for feedback on the design of NPD, and to L. Rizzo

for stimulating discussions concerning lowering the duplicate

ack threshold for fast retransmission.

This work greatly benefitted from discussions with D.

Ferrari, S. Floyd, V. Jacobson, M. Luby, G. Minshall, J. Rice,

and the comments of the anonymous referees. The author

expresses his heartfelt thanks.

REFERENCES

[1] J.-C. Bolot, “End-to-end packet delay and loss behavior in the Internet,”
in Proc. SIGCOM’93, pp. 289–298.

[2] L. Brakmo, S. O’Malley, and L. Peterson, “TCP Vegas: New techniques
for congestion detection and avoidance,” in Proc. SIGCOM’94, pp.
24–35.

292 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 3, JUNE 1999

[3] R. Carter and M. Crovella, “Measuring bottleneck link speed in packet-
switched networks,” Comput. Sci. Dept., Boston Univ., Boston, MA,
Tech. Rep. BU-CS-96-006, Mar. 1996.

[4] , “Dynamic server selection using bandwidth probing in wide-
area networks,” Tech. Rep. BU-CS-96-007, Comput. Sci. Dept., Boston
Univ., Boston, MA, Mar. 1996.

[5] K. Claffy, G. Polyzos, and H.-W. Braun, “Measurement considera-
tions for assessing unidirectional latencies,” Internetworking: Res. and

Experience, vol. 4, no. 3, pp. 121–132, Sept. 1993.
[6] R. Durst, G. Miller, and E. Travis, “TCP extensions for space commu-

nications,” in Proc. MOBICOM’96, pp. 15–26.
[7] K. Fall and S. Floyd, “Simulation-based comparisons of Tahoe, Reno,

and SACK TCP,” Comput. Commun. Rev., vol. 26, no. 3, pp. 5–21,
July 1996.

[8] S. Floyd and V. Jacobson, “Random early detection gateways for con-
gestion avoidance,” IEEE/ACM Trans. Networking, vol. 1, pp. 397–413,
Aug. 1993.

[9] , “The synchronization of periodic routing messages,” IEEE/ACM

Trans. Networking, vol. 2, pp. 122–136, Apr. 1994.
[10] J. Hoe, “Improving the start-up behavior of a congestion control scheme

for TCP,” in Proc. SIGCOM’96, pp. 270–280.
[11] V. Jacobson, “Congestion avoidance and control,” in Proc. SIGCOM’88,

pp. 314–329.
[12] V. Jacobson, C. Leres, and S. McCanne. (1989). tcpdump. [Online].

Available FTP: ee.lbl.gov
[13] S. Keshav, “A control-theoretic approach to flow control,” in Proc.

SIGCOM’91, pp. 3–15.
[14] M. Mathis and J. Mahdavi, “Forward acknowledgment: Refining TCP

congestion control,” in Proc. SIGCOM’96, 281–291.
[15] , “Diagnosing Internet congestion with a transport layer perfor-

mance tool,” in Proc. INET’96.
[16] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP selective

acknowledgment options,” RFC 2018, Oct. 1995.
[17] J. Mogul, “Observing TCP dynamics in real networks,” in Proc.

SIGCOM’92, pp. 305–317.

[18] A. Mukherjee, “On the dynamics and significance of low frequency
components of Internet load,” Internetworking: Res. and Experience,
vol. 5, pp. 163–205, Dec. 1994.

[19] C. Partridge, private communication, 1998.
[20] V. Paxson, “End-to-end routing behavior in the Internet,” IEEE/ACM

Trans. Networking, vol. 5, pp. 601–615, Oct. 1997.
[21] , “Automated packet trace analysis of TCP implementations,” in

Proc. SIGCOM’97, pp. 167–179.
[22] , “Measurements and analysis of end-to-end Internet dynamics,”

Univ. California, Berkeley, CA, Ph.D. dissertation, Apr. 1997.
[23] , “On calibrating measurements of packet transit times,” in Proc.

SIGMETRICS’98, pp. 11–21.
[24] V. Paxson, G. Almes, J. Mahdavi, and M. Mathis, “Framework for IP

performance metrics,” RFC 2330, May 1998.
[25] K. Thompson, G. Miller, and R. Wilder, “Wide-area Internet traffic pat-

terns and characteristics,” IEEE Network, vol. 11, pp. 10–23, Nov./Dec.
1997.

[26] W. Willinger, M. Taqqu, R. Sherman, and D. Wilson, “Self-similarity
through high-variability: Statistical analysis of Ethernet LAN traffic at
the source level,” IEEE/ACM Trans. Networking, vol. 5, pp. 71–86,
Feb. 1997.

[27] L. Zhang, S. Shenker, and D. Clark, “Observations on the dynamics of
a congestion control algorithm: The effects of two-way traffic,” in Proc.

SIGCOM’91, pp. 133–147.

Vern Paxson received the M.S. and Ph.D. degrees in computer science from
the University of California at Berkeley.

He is a Senior Scientist at the AT&T Center for Internet Research at
the International Computer Science Institute, Berkeley, CA. He is also a
Staff Scientist at the Lawrence Berkeley National Laboratory, Berkeley, CA.
His research efforts focus on Internet measurement and network intrusion
detection.

