
End-to-end Lane Detection through Differentiable Least-Squares Fitting

Wouter Van Gansbeke Bert De Brabandere Davy Neven Marc Proesmans Luc Van Gool

Dept. ESAT, Center for Processing Speech and Images

KU Leuven, Belgium

{firstname.lastname}@esat.kuleuven.be

Abstract

Lane detection is typically tackled with a two-step

pipeline in which a segmentation mask of the lane markings

is predicted first, and a lane line model like a parabola or

spline is fitted to the post-processed mask next. The problem

with such a two-step approach is that the parameters of the

network are not optimized for the true task of interest (esti-

mating the lane curvature parameters) but for a proxy task

(segmenting the lane markings), resulting in sub-optimal

performance. In this work, we propose a method to train

a lane detector in an end-to-end manner, directly regressing

the lane parameters. The architecture consists of two com-

ponents: a deep network that predicts a segmentation-like

weight map for each lane line, and a differentiable least-

squares fitting module that returns for each map the param-

eters of the best-fitting curve in the weighted least-squares

sense. These parameters can subsequently be supervised

with a loss function of choice. Our method relies on the

observation that it is possible to backpropagate through a

least-squares fitting procedure. This leads to an end-to-end

method where the features are optimized for the true task of

interest: the network implicitly learns to generate features

that prevent instabilities during the model fitting step, as

opposed to two-step pipelines that need to handle outliers

with heuristics. Additionally, the system is not just a black

box but offers a degree of interpretability because the inter-

mediately generated segmentation-like weight maps can be

inspected and visualized. Code and a video is available at

github.com/wvangansbeke/LaneDetection End2End.

1. Introduction and Related Work

A general trend in deep learning for computer vision is

to incorporate prior knowledge about the problem at hand

into the network architecture and loss function. Leverag-

ing the large body of fundamental computer vision theory

and recycling it into a deep learning framework gives the

best of two worlds: the parameter-efficiency of engineered

components combined with the power of learned features.

The challenge is in reformulating these classical ideas in

a manner that they can be integrated into a deep learning

framework.

An illustration of this integration is at the intersection

of deep learning and scene geometry [15, 32, 12, 16]: the

general idea is to design differentiable modules that give a

deep network the capability to apply geometric transforma-

tions to the data, and to use geometry-aware criterions as

loss functions. The large body of classical research on ge-

ometry in computer vision [8, 13, 7] has inspired several

methods to incorporate geometric knowledge into the net-

work architecture [15, 32, 12, 16]. The spatial transformer

network (STN) of Jaderberg et al. [15] and the perspec-

tive transformer net of Yan et al. [32] introduce differen-

tiable modules for the spatial manipulation of data in the

network. Handa et al. [12] extend the STN to 3D transfor-

mations. Kendall et al. [17, 16] propose a deep learning

architecture for 6-DOF camera relocalization and show that

instead of naively regressing the camera pose parameters,

much higher performance can be reached by taking scene

geometry into account and designing a theoretically sound

geometric loss function. Other examples of exploiting ge-

ometric knowledge as a form of regularization in deep net-

works include [4, 5, 18].

In a similar spirit, we propose in this work a lane detec-

tion method that exploits prior geometric knowledge about

the task, by integrating a least-squares fitting procedure

directly into the network architecture. Lane detection is

traditionally tackled with a multi-stage pipeline involving

separate feature extraction and model fitting steps: First,

dense or sparse features are extracted from the image with

a method like SIFT or SURF [20, 2]. Second, the fea-

tures are fed as input to an iterative model fitting step such

as RANSAC [9] to find the parameters of the best fitting

model, which are the desired outputs of the algorithm. In

this work we replace the feature extraction step with a deep

network, and we integrate the model fitting step as a differ-

entiable module into the network. The output of the net-

work are the lane model parameters, which we supervise

with a geometric loss function. The benefit of this end-to-

end framework compared to using a multi-stage pipeline of

separate steps is that all components are trained jointly: the

features can adapt to the task of interest, preventing out-

liers during the model fitting step. Moreover, our proposed

system is not just a black box but offers a degree of in-

terpretability because the intermediately generated weight

map is segmentation-like and can be inspected and visual-

ized.

There is a vast literature on lane detection, including

many recent methods that employ a CNN for the feature

extraction step [30, 22, 31, 21, 11]. We refer to [24] for an

overview. Discussing all these approaches at length is out

of the scope of this work, but most of them have in com-

mon that they tackle the task with a multi-stage pipeline in-

volving separate feature extraction and model fitting steps.

Our goal in this work is not to outperform these highly-

optimized approaches, but to show that without bells and

whistles, lane parameter estimation using our proposed end-

to-end method outperforms a multi-step procedure.

Our work is also related to a class of methods which

backpropagate through an optimization procedure. The

general idea is to include an optimization process within

the network itself (in-the-loop optimization). This is pos-

sible if the optimization process is differentiable, so that

the loss can be backpropagated through it [27]. One ap-

proach is to unroll a gradient descent procedure within the

network [6, 23]. Another approach proposed by Amos et

al. [1] is to solve a quadratic program (QP) problem exactly

using a differentiable interior points method. Our model fit-

ting module solves a weighted least-squares problem, which

is a specific instantiation of a QP problem. Our contribution

lies in showing the efficacy of including a differentiable in-

network optimization step on a real-world computer vision

task.

2. Method

We propose an end-to-end trainable framework for lane

detection. The framework consists of three main mod-

ules, as shown schematically in Figure 1: a deep network

which generates weighted pixel coordinates, a differentiable

weighted least-squares fitting module, and a geometric loss

function. We now discuss each of these components in de-

tail.

2.1. Generating Weighted Pixel Coordinates with a
Deep Network

Each pixel in an image has a fixed (x, y)-coordinate as-

sociated with it in the image reference frame. In a reference

frame with normalized coordinates, the coordinate of the

upper left pixel is (0, 0) and the coordinate of the bottom

right pixel is (1, 1). These coordinates can be represented

as two fixed feature maps of the same size as the image: one

containing the normalized x-coordinates of each pixel and

one containing the normalized y-coordinates, indicated by

the two white maps in Figure 1.

We can equip each coordinate with a weight w, pre-

dicted by a deep neural network conditioned on the input

image. This is achieved by designing the network to gen-

erate a feature map with the same spatial dimensions as the

input image, representing a weight for each pixel coordi-

nate. Any off-the-shelf dense prediction architecture can be

used for this. In order to restrict the weight maps to be non-

negative, the output of the network is squared. If we flat-

ten the generated weight map and the two coordinate maps,

we obtain a list of m triplets (xi, yi, wi) of respectively the

x-coordinate, y-coordinate and coordinate weight for each

pixel i in the image. For an image of height h and width w,

the list contains m = h · w triplets. This list is the input to

the weighted least-squares fitting module discussed next.

For the task of lane detection, the network must generate

multiple weight maps: one for each lane line that needs to

be detected. A lane line (also referred to as curve) is de-

fined as the line that separates two lanes, usually indicated

by lane markings on the road. E.g. in the case of ego-lane

detection, the network outputs two weight maps; one for the

lane line immediately to the left of the car and one for the

lane line immediately to the right, as these lines constitute

the borders of the ego-lane.

2.2. Weighted Least-Squares Fitting Module

The fitting module takes the list of m triplets (xi, yi, wi)
and interprets them as weighted points in 2D space. Its pur-

pose is to fit a curve (e.g. a parabola, spline or other polyno-

mial curve) through the list of coordinates in the weighted

least-squares sense, and to output the n parameters of that

best-fitting curve.

Least-squares fitting. Many traditional computer vision

methods employ curve fitting as a crucial step in their

pipeline. One fundamental and simple fitting procedure is

linear least-squares. Consider a system of linear equations

Xβ = Y

with X ∈ R
m×n, β ∈ R

n×1, and Y ∈ R
m×1:

X =

⎛

⎜

⎜

⎜

⎝

1 x1 · · · xn−1

1

1 x2 · · · xn−1

2

...
...

. . .
...

1 xm · · · xn−1

m

⎞

⎟

⎟

⎟

⎠

, β =

⎛

⎜

⎜

⎜

⎝

β1

β2

...

βn

⎞

⎟

⎟

⎟

⎠

, Y =

⎛

⎜

⎜

⎜

⎝

y1
y2
...

ym

⎞

⎟

⎟

⎟

⎠

.

There are m equations in n unknowns. If m > n, the

system is overdetermined and no exact solution exists. We

resort to finding the least-squares solution, which minimizes

the sum of squared differences between the data values and

their corresponding modeled values:

β =Z∈Rn×1 ||XZ − Y ||2. (1)

Figure 1. Overview of the architecture. In this example the network produces four weight maps, each corresponding to one of four lane

lines for which the parameters are estimated.

The solution is found by solving the normal equations, and

involves the matrix multiplication of Y with the pseudo-

inverse of X:

β =
(

XTX
)−1

XTY. (2)

Weighted least-squares fitting. The previous formula-

tion can be extended to a weighted least-squares problem.

Let W ∈ R
m×m be a diagonal matrix containing weights

wi for each observation. In our framework, the observa-

tion will correspond to the fixed (x, y)-coordinates in the

image reference frame, and the weights will be generated

by a deep network conditioned on the image. The weighted

least-squares problem is

WXβ = WY. (3)

By defining X ′ = WX and Y ′ = WY with

W = diag(

⎡

⎢

⎢

⎢

⎣

w1

w2

...

wm

⎤

⎥

⎥

⎥

⎦

) =

⎛

⎜

⎜

⎜

⎝

w1 0 · · · 0
0 w2 · · · 0
...

...
. . .

...

0 0 · · · wm

⎞

⎟

⎟

⎟

⎠

,

we can reformulate this in the standard form X ′β = Y ′ and

solve it in the same way as before.

Backpropagating through the fitting procedure. Recall

that we have a list of weighted pixel coordinates (xi, yi, wi)
where the coordinates (xi, yi) are fixed and the weights wi

are generated by a deep network conditioned on an input

image. We can use these values to construct the matrices

X , Y and W , solve the weighted least-squares problem, and

obtain the parameters β of the best-fitting curve through the

weighted pixel coordinates.

The contribution of this work lies in the following in-

sight: instead of treating the fitting procedure as a sepa-

rate post-processing step, we can backpropagate through it

and apply a loss function on the parameters of interest β

rather than indirectly on the weight maps produced by the

network. This way, we obtain a powerful tool for tackling

lane detection within a deep learning framework in an end-

to-end manner.

Note that equations 2 and 3 only involve differentiable

matrix operations. It is thus possible to calculate deriva-

tives of β with respect to W , and consequently also with

respect to the parameters of the deep network. The specifics

of backpropagating through matrix transformations are well

understood. We refer to [10] for the derivation of the gradi-

ents of this problem using Cholesky decomposition.

By backpropagating the loss through the weighted least-

squares problem, the deep network can learn to generate a

weight map that gives accurate lane line parameters when

fitted with a least-squares procedure, rather than optimizing

the weight map for a proxy objective like lane line segmen-

tation with curve fitting as a separate post-processing step.

The model parameters that are the output of the curve

fitting step can be supervised directly with a mean squared

error criterion or via a more principled geometric loss func-

tion as the one discussed in the next section.

2.3. Geometric Loss Function

The n curve parameters βi that are the output of the curve

fitting step could be supervised by comparing them with the

ground truth parameters β̂i with a mean squared error crite-

rion, leading to the following L2 loss:

L =
1

n

n
∑

i=1

(βi − β̂i)
2. (4)

Figure 2. The geometric loss minimizes the (squared) area between

the predicted curve and ground truth curve up to a point t.

The problem with this is that the curve parameters have dif-

ferent sensitivities: a small error in one parameter value

might have a larger effect on the curve shape than an error

of the same magnitude in another parameter.

Ultimately, the design of a loss function depends on the

task: it must optimize a relevant metric for the task of inter-

est. For lane detection, we opt for a loss function that has a

geometric interpretation: it minimizes the squared area be-

tween the predicted curve yβ(x) and the ground truth curve

y
β̂
(x) in the image plane, up to a point t (see Figure 2):

L =

∫ t

0

(yβ(x)− y
β̂
(x))2dx (5)

For a straight line y = β0 + β1x, this results in:

L = ∆β2

0
t+∆β1∆β0t

2 +
∆β2

1
t3

3
, (6)

where ∆βi = βi − β̂i. For a parabolic curve y = β0 +
β1x+ β2x

2 it gives:

L =
∆β2

2
t5

5
+

2∆β2∆β1t
4

4
+

(∆β2

1
+ 2∆β2∆β0)t

3

3

+
2∆β1∆β0t

2

2
+ ∆β2

0
t.

(7)

2.4. Optional Transformation to Other Reference
Frame

Before feeding the list of weighted coordinates

(xi, yi, wi) to the fitting module, the coordinates can op-

tionally be transformed to another reference frame by mul-

tiplying them with a transformation matrix H . This mul-

tiplication is also a differentiable operation through which

backpropagation is possible.

In lane detection, for example, a lane line is better ap-

proximated as a parabola in the ortho-view (i.e., the top-

down view) than as a parabola in the original image refer-

ence frame. We can achieve this by simply transforming the

coordinates from the image reference frame to the ortho-

view by multiplying them with a homography matrix H .

The homography matrix is considered known in this case.

Note that it is not the input image that is transformed to the

ortho-view, only the list of coordinates.

3. Experiments

To better understand the dynamics of backpropagating

through a least-squares fitting procedure, we first provide

a simple toy experiment. Next, we evaluate out method

on the real-world task of lane detection. Our goal is not

to extensively tune the method and equip it with bells and

whistles to reach state-of-the-art performance on a lane de-

tection benchmark, but to illustrate that end-to-end training

with our method outperforms the classical two-step proce-

dure in a fair comparison.

3.1. Toy Experiment

Recall that the least-squares fitting module takes a list

of weighted coordinates (xi, yi, wi) as input and produces

the parameters βi of the best-fitting curve (e.g. a poly-

nomial) through these points as output. During training,

the predicted curve is compared to the ground truth curve

(e.g. an annotated lane) in the loss function, and the loss

is backpropagated to the inputs of the module. Note that

we only discussed backpropagating the loss to the coordi-

nate weights, generated by a deep network, but that it is in

principle also possible to backpropagate the loss to the co-

ordinates themselves.

This is illustrated in Figure 3. The blue dots represent

coordinates and their size represents their weight. The blue

line is the best-fitting straight line (i.e., first-order polyno-

mial) through the blue dots, in the weighted least-squares

sense. The green line represents the ground truth line, and

is the target. If we design the loss as in Section 2.3 and

backpropagate through the fitting module, we can iteratively

minimize the loss through gradient descent such that the

predicted line converges towards the target line. This can

happen in three ways:

1. By updating the coordinates (xi, yi) while keeping

their weights wi fixed. This corresponds to the first

row, where the blue dots move around but keep the

same size.

2. By updating the weights wi while keeping the coor-

dinates (xi, yi) fixed. This corresponds to the second

row, where the blue dots change size but stay at the

same spot.

3. By updating both the coordinates (xi, yi) and the

weights wi. This corresponds to the third row, where

the blue dots move around and change size at the same

time.

For the lane detection task in the next section we focus on

the second case, where the coordinate locations are fixed, as

Figure 3. Illustration of differentiable weighted least-squares line fitting on a synthetic example, explained in Section 3.1.

they represent image pixel coordinates that lie on a regular

grid. The loss is thus only backpropagated to the coordi-

nate weights, and from there further into the network that

generates them, conditioned on an input image.

3.2. Ego-lane Detection

We now turn to the real-world task of ego-lane detection.

To be more precise, the task is to predict the parameters of

the two border lines of the ego-lane (i.e. the lane the car

is driving in) in an image recorded from the front-facing

camera in a car. As discussed before, the traditional way

of tackling this task is with a two-step pipeline in which

features are detected first, and a lane line model is fitted to

these features second. The lane line model is typically a

polynomial or spline curve. In this experiment, the lines

are modeled as parabolic curves y = ax2 + bx + c in the

ortho-view. The network must predict the parameters a, b

and c of each curve from the untransformed input image.

The error is measured as the normalized area between the

predicted curve y(x) and the ground truth curve ŷ(x) in the

ortho-view up to a fixed distance t from the car:

error =

∫ t

0

|y(x)− ŷ(x)|dx (8)

It is averaged over the two lane lines of the ego-lane and

over the images in the dataset.

Again, it is not our goal to outperform the sophisticated

and highly-tuned lane detection frameworks found in the

literature, but rather to provide an apples-to-apples compar-

ison of our proposed end-to-end method to a classical two-

step pipeline. Extensions like data augmentation, more real-

istic lane line models, and an optimized base network archi-

tecture are orthogonal to our approach. In order to provide a

fair comparison, we train the same network in two different

Table 1. Summarized results of the experiment. Our end-to-end

method gives lower error on both the training and validation set.

Metric

Method loss error

Train Cross-entropy - 1.113e-3

End-to-end (ours) 7.340e-7 7.590e-4

Val Cross-entropy - 1.603e-3

End-to-end (ours) 1.912e-5 1.437e-3

ways, and measure its performance according to the error

metric. We compare following two methods:

Cross-entropy training In this setting, the network that

generates the pixel coordinate weights (two weight

maps: one for each lane line) is trained in a

segmentation-like manner, with the standard per-pixel

binary cross-entropy loss. This corresponds to the fea-

ture detection step in a two-step pipeline. The segmen-

tation labels are created from the ground truth curve

parameters by drawing the corresponding curve with

a fixed thickness as a dense label. At test time, a

parabola is fitted through the predicted features in the

least-squares sense. This corresponds to the fitting step

in a two-step pipeline.

End-to-end training (ours) In this setting, the network is

trained with our proposed method involving backprop-

agation through a weighted least-squares fit and the

geometric loss function. There is no need to create

any proxy segmentation labels, as the supervision is

directly on the curve parameters. It corresponds to the

second case in Section 3.1.

Figure 4. Convergence of the error during training (left) on the training set and (right) on the validation set. The error curve of our method

is indicated in blue, the error curve of the method trained with a segmentation-like cross-entropy loss and fitting as a post-processing step

is indicated in red.

Dataset and training setup We run our experiment on

the TuSimple dataset [29]. We manually select and clean up

the annotations of 2535 images, filtering out images where

the ego-lane cannot be detected unambiguously. 20% of the

images are held out for validation, taking care not to include

images of a single temporal sequence in both train and val

set.

ERFNet [28] is used as the network architecture. The

last layer is adapted to output two feature maps, one for

each ego-lane line. In both the cross-entropy and end-

to-end experiments, we train for 350 epochs on a single

GPU with image resolution of 256x512, batch size of 8,

and Adam [19] with a learning rate of 1e-4. As a sim-

ple data augmentation technique the images are randomly

flipped horizontally. In the end-to-end experiments, we use

a fixed transformation matrix H to transform the weighted

pixel coordinates to the ortho-view. Note that the input im-

age itself is not transformed to the ortho-view, although that

would also be an option. The system is implemented in Py-

Torch [26].

Results and discussion Figure 4 shows the error (i.e.,

normalized area between gt and predicted curve) during

training for both methods, on the training set (left) and on

the validation set (right). Table 1 summarizes these results

and reports the value of the geometric loss (see Section 2.3),

which is the actual metric being optimized in our end-to-end

method.

We see that our end-to-end method converges to lower

error than the method trained with cross-entropy loss, both

on the training and validation set. The convergence is

slower, but this should come as no surprise: the supervi-

sion signal in the end-to-end method is much weaker than

in the cross-entropy method with dense per-pixel labels. To

see this, consider that the end-to-end method does not ex-

plicitly force the weight map to be a segmentation of the

actual lane lines in the image. Even if the network gener-

ated a seemingly random-looking weight map, the loss (and

thus the gradients) would still be zero as long as the least-

squares fit through the weighted coordinates would coinci-

dentally correspond to the ground truth curve. For example,

the network could fall into a local minimum of generating

the weight map based on image features such as the van-

ishing point at the horizon and the left corner of the image,

still resulting in a relatively well fitting curve but hard to

improve upon. One option to combine the fast convergence

of the cross-entropy method with the superior performance

of the end-to-end method would be to pre-train the network

with the first and fine-tune with the latter.

Figure 5 shows some qualitative results of our method.

Despite the weak supervision signal, the network eventu-

ally discovers that the most consistent way to satisfy the

loss function is to focus on the visible lane markings in the

image, and to map them to a segmentation-like representa-

tion in the weight maps. The network learns to handle the

large variance in lane markings and can tackle challenging

conditions like the faded markings in the bottom example

of Figure 5.

To be robust against outliers in the fitting step, classic

methods often resort to iterative optimization procedures

like RANSAC [9], iteratively reweighted least-squares [14]

and iterative closest point [3]. In our end-to-end framework,

the network learns a mapping from input image to weight

map such that the fitting step becomes robust. This moves

complexity from the post-processing step into the network,

allowing for a simple one-shot fitting step.

3.3. Multi-lane Detection

As a final experiment, we extend our method to handle

multi-lane detection and compare with state-of-art. Now,

the goal is to detect the ego-lanes aswell as the farther lane-

lines in the driving scene (i.e. 4 lane lines in total). The

framework must predict 4 sets of coefficients a, b and c to

model the four lane lines accurately in the ortho-view. This

Figure 5. Qualitative results on the lane detection task. From left to right: input image with overlayed ground truth (green) and predicted

lane lines (purple), ortho-view of the scene in which the loss is calculated (see text), coordinate weight maps corresponding to left and

right lane lines. The network learns to handle the large variance in lane markings and challenging conditions like the faded markings in the

bottom row that are correctly ignored.

means that the network has four output maps.

In order to get the final coordinates of the lane lines, we

augment our method in a shared encoder architecture with

a line prediction branch and a horizon prediction branch.

Since we output all the coefficients for a fixed amount of

lane lines, we ought to know if the predicted line is present

and where the line ends. The TuSimple benchmark requires

(x, y)-coordinates for the evaluation after all. We argue

that these additional tasks can benefit from the representa-

tions learned by the main task. By adopting a multi-task

framework we don’t unnecessarily decrease the speed of

the framework since we can share the encoder. The added

branches are kept straightforward by using 4 convolution

layers with 3x3 kernel size, followed by max pooling and fi-

nally a fully connected layer. The horizon estimation branch

performs a regression to estimate the horizon and the line

classification branch determines if a line is present or not.

This framework is visualized in Figure 6. The losses for

all tasks are linearly combined before backpropagation and

we train the whole framework completely end-to-end. Fur-

thermore, no segmentation masks are used during training.

More details about the architecture can be found in the code.

Dataset and training setup We use the TuSimple dataset

to validate the effectiveness of our method for multi-lane

detection. Here, we use the complete 3626 images from

which we also leave 20% out for validation. The testset

consists of 2782 images. We adopt the same settings as

in the ego-lane detection experiment. However, instead of

using the pseudoinverse of X , a Cholesky decomposition is

Table 2. Comparison with state-of-the-art.

Method Acc Fps Extra data

XingangPan [25] 96.53% 5.51 yes

DavyNeven [24] 96.40% 52.6 no

Ours 95.80% 71.5 no

Baseline 95.10% N.A. no

used in order to be less sensitive to ill-conditioned matrices

when solving a system of linear equations.

Results and Discussion We first compare to our baseline:

the conventional two step approach, i.e. segmentation fol-

lowed by a line fitting module. We used ERFNet trained

in the same way as before but without backpropagation

through our least squares layer. The results in table 2 show

that we clearly outperform this baseline. The accuracy is

calculated as the ratio of the number of correct points to the

number of points in the ground truth. We improve by 0.7%

when training end-to-end. Figure 7 shows some predictions

on the testset. The baseline is more sensitive towards out-

liers since the line fitting is independent from the optimiza-

tion process. Our end-to-end approach allows us to penal-

ize those occurrences while optimizing for the final coordi-

nates. We also show that our fairly elegant method is not

far off from the leading methods on the TuSimple bench-

mark. Furthermore, our method is considerably faster (71

fps on a NVIDIA 1080Ti) since we don’t require any post-

processing to predict the line coordinates. It also does not

require expensive segmentation ground truth. This proves

that the network can learn the coefficients for multi-lane

detection jointly by backpropagation through our differen-

Least
Squares

Layer

Coefficients:
a1, b1, c1
a2, b2, c2
a3, b3, c3
a4, b4, c4

Horizon
Estimation

Branch

Shared
Encoder

Representation

Line
Classification

Branch

Decoder

Endoder

Horizon limit:
y

Line presence:
[1, 1, 1, 0]

Image

Weight Map

Figure 6. The framework for our multi-lane detection experiment is shown here. The three tasks are represented as the three branches in

the figure which are necessary to generate the final line coordinates. Notice that the line classification branch informs the framework that

there are only three lane lines in the image. This controls the amount of false positives.

Figure 7. Predicted curves on the testset of TuSimple.

tiable weighted least squares layer. A restriction is that the

network outputs a fixed amount of weight maps with a pre-

defined order. In this way, lane changes are hard to handle

since the order is ambiguous during this event. Each out-

put map corresponds to a weighted least squares problem

for a specific lane line after all. Instance segmentation ap-

proaches, such as [24, 25], are not subject to a specific seg-

mentation order, resulting in a slightly higher accuracy in

table 2. An exciting next step is to combine our differen-

tiable line fitting module with an approach to output each

line-instance sequentially. Hence, we can combine the best

of both methods. However this is outside the scope of this

paper.

4. Conclusion

In this work we proposed a method for estimating lane

curvature parameters by solving a weighted least-squares

problem in-network, where the weights are generated by a

deep network conditioned on the input image. The network

was trained to minimize the area between the predicted lane

lines and the ground truth lane lines, using a geometric loss

function. We visualized the dynamics of backpropagating

through a weighted least-squares fitting procedure, and pro-

vided an experiment on a lane detection task showing that

our end-to-end method outperforms a two-step procedure

despite the weaker supervision signal. Our end-to-end ap-

proach shows clear improvement operating at 70 fps. The

general idea of backpropagating through an in-network op-

timization step could prove effective in other computer vi-

sion tasks as well, for example in the framework of active

contour models. In such a setting, the least-squares fitting

module could perhaps be replaced with a more versatile dif-

ferentiable gradient descent module. This will be explored

in future work.

Acknowledgement: This work was supported by Toy-

ota, and was partially carried out at the TRACE Lab at KU

Leuven (Toyota Research on Automated Cars in Europe).

References

[1] B. Amos and J. Z. Kolter. Optnet: Differentiable optimiza-

tion as a layer in neural networks. In Proceedings of the

International Conference on Machine Learning, pages 136–

145, 2017.

[2] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up

robust features. Proceedings of the European Conference on

Computer Vision, 2006.

[3] P. J. Besl and N. D. McKay. Method for registration of 3-d

shapes. In Robotics-DL tentative, pages 586–606. Interna-

tional Society for Optics and Photonics, 1992.

[4] D. Boscaini, J. Masci, E. Rodolà, and M. Bronstein. Learn-

ing shape correspondence with anisotropic convolutional

neural networks. In Advances in Neural Information Pro-

cessing Systems, 2016.

[5] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Van-

dergheynst. Geometric deep learning: going beyond eu-

clidean data. IEEE Signal Processing Magazine, 34(4):18–

42, 2017.

[6] J. Domke. Generic methods for optimization-based model-

ing. In Proceedings of the International Conference on Arti-

ficial Intelligence and Statistics, pages 318–326, 2012.

[7] L. Dorst, D. Fontijne, and S. Mann. Geometric algebra for

computer science: an object-oriented approach to geometry.

Morgan Kaufmann Publishers Inc., 2009.

[8] O. Faugeras. Three-dimensional computer vision: a geomet-

ric viewpoint. MIT press, 1993.

[9] M. A. Fischler and R. C. Bolles. Random sample consen-

sus: a paradigm for model fitting with applications to image

analysis and automated cartography. Communications of the

ACM, 24(6):381–395, 1981.

[10] M. B. Giles. An extended collection of matrix derivative re-

sults for forward and reverse mode automatic differentiation.

Technical report, University of Oxford, 2008.

[11] A. Gurghian, T. Koduri, S. V. Bailur, K. J. Carey, and V. N.

Murali. Deeplanes: End-to-end lane position estimation us-

ing deep neural networks. In CVPR Workshops, 2016.

[12] A. Handa, M. Bloesch, V. Pătrăucean, S. Stent, J. McCor-

mac, and A. Davison. gvnn: Neural network library for geo-

metric computer vision. In ECCV Workshops, 2016.

[13] R. Hartley and A. Zisserman. Multiple view geometry in

computer vision. Cambridge university press, 2003.

[14] P. W. Holland and R. E. Welsch. Robust regression us-

ing iteratively reweighted least-squares. Communications in

Statistics-theory and Methods, 6(9):813–827, 1977.

[15] M. Jaderberg, K. Simonyan, A. Zisserman, and

K. Kavukcuoglu. Spatial transformer networks. In

Advances in Neural Information Processing Systems, 2015.

[16] A. Kendall, R. Cipolla, et al. Geometric loss functions for

camera pose regression with deep learning. In Proc. CVPR,

volume 3, page 8, 2017.

[17] A. Kendall, M. Grimes, and R. Cipolla. Posenet: A convolu-

tional network for real-time 6-dof camera relocalization. In

Proceedings of the IEEE International Conference on Com-

puter Vision, 2015.

[18] A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry,

R. Kennedy, A. Bachrach, and A. Bry. End-to-end learning

of geometry and context for deep stereo regression. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 66–75, 2017.

[19] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. In Proceedings of the International Conference

on Learning Representations, 2015.

[20] D. G. Lowe. Object recognition from local scale-invariant

features. In Proceedings of the IEEE International Confer-

ence on Computer Vision, 1999.

[21] G. Lu. A Lane Detection, Tracking and Recogni-

tion System for Smart Vehicles. PhD thesis, Université

d’Ottawa/University of Ottawa, 2015.

[22] J. C. McCall and M. M. Trivedi. Video-based lane estima-

tion and tracking for driver assistance: survey, system, and

evaluation. IEEE transactions on intelligent transportation

systems, 7(1):20–37, 2006.

[23] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein. Unrolled

generative adversarial networks. In Proceedings of the Inter-

national Conference on Learning Representations, 2017.

[24] D. Neven, B. De Brabandere, S. Georgoulis, M. Proesmans,

and L. Van Gool. Towards end-to-end lane detection: an

instance segmentation approach. arXiv:1802.05591, 2018.

[25] X. Pan, J. Shi, P. Luo, X. Wang, and X. Tang. Spatial as

deep: Spatial cnn fortraffic scene understanding. In AAAI,

2018.

[26] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-

Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-

matic differentiation in pytorch. In NIPS-W, 2017.

[27] R. T. Rockafellar and R. J.-B. Wets. Variational analysis,

volume 317. Springer Science & Business Media, 2009.

[28] E. Romera, J. M. Alvarez, L. M. Bergasa, and R. Arroyo. Ef-

ficient convnet for real-time semantic segmentation. In IEEE

Intelligent Vehicles Symposium, pages 1789–1794, 2017.

[29] TuSimple. Tusimple benchmark, 2017.

[30] Y. Wang, D. Shen, and E. K. Teoh. Lane detection using

catmull-rom spline. In IEEE Intelligent Vehicles Symposium,

1998.

[31] H. Xu, X. Wang, H. Huang, K. Wu, and Q. Fang. A fast

and stable lane detection method based on b-spline curve.

In Computer-Aided Industrial Design & Conceptual Design,

IEEE 10th International Conference on, pages 1036–1040,

2009.

[32] X. Yan, J. Yang, E. Yumer, Y. Guo, and H. Lee. Perspective

transformer nets: Learning single-view 3d object reconstruc-

tion without 3d supervision. In Advances in Neural Informa-

tion Processing Systems, 2016.

