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Fig. 1. Overview of our optically coded computational super-resolution SPAD camera. We computationally design phase plates that can suppress aliasing

while preserving as much information as possible for super-resolution image reconstruction (right bottom). Fabricated using photolithography technique, this

optimized phase plate produces the target PSF at the image plane. In this figure we demonstrate two representative applications of our optically coded

super-resolution SPAD camera: regular intensity imaging, as well as depth estimation, where we obtain high quality super-resolved (4×) images (a-2) from raw

data (a-1) modulated by our phase mask, and super-resolved (4×) intensity (b-2) and depth images (b-3) from the noisy raw data (b-1).

Single Photon Avalanche Photodiodes (SPADs) have recently received a

lot of attention in imaging and vision applications due to their excellent

performance in low-light conditions, as well as their ultra-high temporal

resolution. Unfortunately, like many evolving sensor technologies, image

sensors built around SPAD technology currently suffer from a low pixel

count.

In this work, we investigate a simple, low-cost, and compact optical coding

camera design that supports high resolution image reconstructions from

raw measurements with low pixel counts. We demonstrate this approach

for regular intensity imaging, depth imaging, as well transient imaging.

Our method uses an end-to-end framework to simultaneously optimize

the optical design and a reconstruction network for obtaining super-resolved

images from raw measurements. The optical design space is that of an en-

gineered point spread function (implemented with diffractive optics), which

can be considered an optimized anti-aliasing filter to preserve as much high

resolution information as possible despite imaging with a low pixel count,
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low fill-factor SPAD array. We further investigate a deep network for recon-

struction. The effectiveness of this joint design and reconstruction approach

is demonstrated for a range of different applications, including high speed

imaging, and time of flight depth imaging, as well as transient imaging.

While our work specifically focuses on low-resolution SPAD sensors, sim-

ilar approaches should prove effective for other emerging image sensor

technologies with low pixel counts and low fill-factors.

CCS Concepts: · Computing methodologies→ 3D imaging; Computa-

tional photography; Antialiasing.

Additional KeyWords and Phrases: SPAD, diffractive optics, super-resolution,

depth/transient imaging
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1 INTRODUCTION

Arrays of Single Photon Avalanche Diode (SPAD) have recently

emerged as an alternative hardware solution to photomultiplier

tubes (PMT) and streak cameras [Velten et al. 2012, 2013]. Features

such as single photon light sensitivity and sub-nanosecond time res-

olution make this technology promising for many photon-starved
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applications like time-of-flight [Shin et al. 2016], transient ima-

ging [Gariepy et al. 2015; O’Toole et al. 2017], fluorescence lifetime

imaging [Li et al. 2010; Schwartz et al. 2008] and positron emission

tomography [Nemallapudi et al. 2015].

Unfortunately, image sensors built upon SPAD technologies still

suffer from low spatial resolution (e.g., 64×32) and low fill-factor, i.e.

the fact that the light sensitive area of a pixel is only a small fraction

of the pixel’s total area (e.g., 3.14% in the MPD-SPC3 SPAD camera

used in our experiments). Although recent research prototypes of

SPAD arrays have substantially higher pixel counts (e.g. up to 512×

512 pixels [Ulku et al. 2018]), they still fall short of the resolution of

conventional image sensors. Therefore our method is relevant to

the latest generation of prototype SPAD image sensors as well as all

commercially available SPAD arrays. Both the limited pixel count

(e.g., [Shin et al. 2016; Sun et al. 2018]) and the limited fill-factor and

its associated loss in light efficiency [Intermite et al. 2015; Pavia et al.

2014] have been targeted by recent research. However, no definitive

solution is available at this time.

To date, computational imaging has achieved tremendous success

in the fields of spatial resolution enhancement [Chen et al. 2015; Sun

et al. 2018] and defocus deblurring super-resolution [Xiao et al. 2015].

Via point spread function (PSF) engineering [Pavani et al. 2009;

Shechtman et al. 2014], researchers have succeeded in localizing

microscopic point emitters in a 3D volume by inserting either a

spatial light modulator (SLM) or a physical phase plate.

Although optimizing the parameters of diffractive optical ele-

ments (DOEs) for a computational camera has been studied intens-

ively, state-of-the-art PSF engineeringmethods still for themost part

do not consider the optical design together with the sensor perform-

ance and the reconstruction algorithm in a full end-to-end fashion.

A notable exception is a recent work by Sitzmann et al. [2018], that

employed an end-to-end optimization that jointly considers optics

and image processing to extract optimal PSFs for the purposes of

superresolution and depth of field extension. Although this work

takes a significant step towards full end-to-end design of cameras,

the reconstruction method used is quite simple and with only fixed

blocks, for example, the Wiener deconvolution. In our work, we

extend this concept by jointly optimizing both the PSF design for

the sampling model and the reconstruction algorithm, particularly

in the context of a deep neural network.

Putting these pieces together, we aim to overcome the essential

spatial resolution limit of SPAD sensors by developing an optic-

ally encoded superresolution SPAD camera with only a single-shot

capture procedure. This is achieved by a combination of an optical

system that encodes the incident light and a deep neural network

that faithfully decodes the high resolution image. The optical encod-

ing is interpreted as an engineered PSF, acting as an anti-aliasing

filter that helps preserve as much information as possible, given the

specific sampling pattern of SPAD sensors. We demonstrate signific-

ant improvements gained by our prototype when imaging natural

scenes. While our method can in principle be applied in any imaging

system that employs SPAD array sensors, we focus in particular on

three applications: regular intensity imaging (including high speed

imaging), depth imaging, and transient (i.e. light-in-flight) imaging.

Our main technical contributions are as follows:

• We exploit an end-to-end design paradigm for computational

super-resolution camera systems, incorporating both PSF

design, imaging model, and deep network reconstruction.

The system finds optimized compromises between sharpness

and anti-aliasing for a given pixel fill-factor.

• We develop a novel single-shot optically coded SPAD camera

that achieves an aggressive spatial resolution enhancement

of 4×. By simply applying an ultra thin phase plate that can

be easily fabricated and assembled, we achieve an almost zero

budget enhancement of hardware configuration.

• We build a prototype with a general phase plate being easily

assembled in front of a regular lens. We validate our claims

of resolving high resolution images through simulations and

real experiments in normal imaging, high-speed imaging, and

time-of-flight (TOF)/transient imaging.

2 RELATED WORK

Computational imaging has been applied in both low-level vision

tasks like artifact removal [Peng et al. 2019], and higher-level ima-

ging applications like depth estimation [Levin et al. 2007, 2009].

Particularly, a large amount of work has studied image enhance-

ment using the end-to-end method for applications such as haze

removal [Cai et al. 2016], motion deblur [Gong et al. 2017], and

time-of-flight imaging [Su et al. 2018]. In the following, we focus

on a few more narrow categories of research that are most relevant

to our work.

Image Super-resolution (SR). For target applications like high

speed imaging, fluorescent lifetime imaging, time-of-flight depth or

transient imaging, achieving an aggressive resolution enhancement

is highly desirable. A large body of work is based on learning the

mapping from low-resolution (LR) to high-resolution (HR) images,

using techniques such as dictionary learning [Yang et al. 2008, 2010],

local linear regression [Timofte et al. 2014; Yang and Yang 2013],

random forests [Schulter et al. 2015], and CNNs [Dong et al. 2016b,a;

Shi et al. 2016]. Alternatively, one can employ a sparse coding based

network to fully explore the sparsity of natural images [Wang et al.

2015].

Ongoing research efforts have attempted to improve the SR qual-

ity using deeper networks [Kim et al. 2016a,b]. Alternative work

includes a Laplacian Pyramid SR network [Lai et al. 2017] and an

enhanced deep SR network [Lim et al. 2017] that removes unneces-

sary modules in conventional residual networks [He et al. 2016].

More recently, Haris et al. proposed a deep back-projection net-

work [Haris et al. 2018], exploiting iterative up and down sampling

layers and providing an error feedback mechanism for projection

errors at each stage.

The mentioned approaches take a traditional image processing

approach, whereby the imaging hardware is given and not part of

the design decision. Computational imaging approaches, where the

imaging hardware and the reconstruction method are co-designed,

promise improved system performance. This is the approach we

take in this work, specifically with the design of an optimal sampling

strategy for low pixel count, small fill factor SPAD image sensors.

ACM Trans. Graph., Vol. 39, No. 2, Article 9. Publication date: December 2019.
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PSF Engineering for Computational Imaging. The optics and com-

putational imaging communities have widely investigated the de-

liberate design of (non-Dirac) point spread functions (PSFs) with

favorable properties for specific applications. One of the earliest

approaches was wavefront coding, a method to make the PSF depth-

invariant in an attempt to extend the depth of field [Dowski and

Cathey 1995; George and Chi 2003]. Recently, the utility of PSF

engineering was expanded to 3D to realize a 3D super-resolution

effect [Yeh and Waller 2016]. Encoding the aperture of the optical

system not only enables recovery of depth information with great

fidelity but also generates a high resolution image image [Levin et al.

2007; Zhou et al. 2011]. Furthermore, coded aperture techniques

have been intensively incorporated into compressive sensing [Arce

et al. 2014; Llull et al. 2013; Marcia et al. 2009].

Instead of inserting a (usually binary) coded aperture, we investig-

ate the link between the aperture and the image plane in the domain

of diffractive optics. By introducing a phase modulation diffractive

optical element into the aperture, one has greater flexibility to design

the desired PSF in the image plane. There have been a wide range

of optimization-based algorithms capable of generating desirable

phase or amplitude distributions in both the spatial and the spectral

domain. To this end, iterative methods based on Gerchberg-Saxton

search, simulated annealing, or direct binary search, have been ap-

plied to design both monochromatic and broadband DOEs [Kim

et al. 2012; Qu et al. 2015].

Another related avenue of investigation is the design of diffractive

optical elements to serve as replacements for refractive lenses in ima-

ging systems. Peng et al.’s work on achromatic DOE lenses [2016]

started a sequence of DOE design works with similar methodo-

logy [Heide et al. 2016; Peng et al. 2018; Petrov et al. 2017]. Instead

of automated end-to-end design, the PSF design and reconstruction

method are developed separately with a human in the loop. Some

recent works [Datta et al. 2018; Zhao et al. 2018] have explored

the role of anti-aliasing filters in image super-resolution; however,

they use analytical filters (Butterworth and Gaussian, respectively),

instead of end-to-end learned ones.

Imaging with SPAD Sensors. Time-correlated single photon count-

ing (TCSPC) [O’Connor 2012] is a common technique for pico-

second rate recording of photon events using SPAD arrays. It has

been widely applied for example in fluorescence lifetime imaging [Li

et al. 2012, 2010]. By repeatedlymeasuring the time duration between

a laser pulse and the corresponding transient photon arrival, one

can achieve typically sub-nanosecond resolution. Starting with first

photon imaging [Kirmani et al. 2014], several approaches have been

proposed to abstract the correct temporal information like temporal

deconvolution [Sun et al. 2018], pile-up compensation [Heide et al.

2018; Pediredla et al. 2018] and non-line-of-sight imaging [Heide

et al. 2019; Lindell et al. 2019].

To overcome the limitations of low fill-factor and low spatial

resolution, researchers have used 2D translation setups to shift a 2D

SPAD array with a fixed lens [Shin et al. 2016], or used a galvomirror

setup to scan a 1D line SPAD camera [Lindell et al. 2018; O’Toole et al.

2017]. An alternative approach is the use of DMD-based focal plane

spatial modulation to enable a compressive sensing design with

SPAD arrays [Sun et al. 2018]. This method requires high precision

mechanics and additional imaging optics. Other works have focused

primarily on improving the fill-factor of SPAD arrays [Intermite

et al. 2015; Pavia et al. 2014].

Although state-of-the-art methods have yielded a reasonable spa-

tial resolution, they are significantly complicating the camera design,

and/or require multi-shot image acquisitions, which makes it im-

possible to image non-repeatable phenomena. We seek a computa-

tional super-resolution imaging solution that can maintain all the

advantages of SPAD sensors including the snapshot capability, i.e.

super resolution reconstruction from a single image capture.

End-to-End Computational Cameras. Motivated by recent advances

in hardware as well as optimization methods, researchers have

started to investigate joint optimization over optics like binary

masks [Iliadis et al. 2020] for compressive sensing and even sensor

structure like a color filter array [Chakrabarti 2016]. More recently,

an end-to-end optimization [Sitzmann et al. 2018] over more com-

plicated phase modulation elements was reported. In work parallel

to ours, full end-to-end pipelines have been shown recently for

the design of depth-encoding PSFs in shape-from-defocus applica-

tions [Chang and Wetzstein 2019; Wu et al. 2019].

In addition to conventional imaging applications, diffractive op-

tical elements can also be used as convolutional layers in neural

networks [Chang et al. 2018] to speed up the process. Instead, we

are inspired to simulate our imaging model for SPAD sensor using

convolutional layer. Taking the convolutional layer into a physical

world, we are able to realize the difficult super-resolution task for

low fill-factor and low resolution SPAD sensor by incorporating

both optics and deep reconstruction networks.

3 JOINT LEARNING OF OPTICS AND DEEP NETWORK

RECONSTRUCTION

We aim to realize super-resolution imaging over a SPAD sensor

that suffers from both low resolution and low fill-factor. These two

problems will result in significant spatial aliasing and the associated

reconstruction artifacts [Parker 2017]. To address this issue, we

introduce an optical low-pass filter (OLPF) into the optical system of

the camera. The OLPF acts as an anti-aliasing filter, that is specially

designed to suppress aliasing while preserving as much information

as possible for super-resolution image reconstruction.

In our framework, this filter and the matching reconstruction

network are jointly learned in an end-to-end sense, as illustrated in

Figure 2. Specifically, we first synthesize the low resolution input

using a convolutional layer conv(11, 1)1, representing the PSF and

the sensor sampling model, followed by a feature extraction step to

generate LR feature maps. Then, at the projection stages a mapping

between the LR feature maps and the HR feature maps is built.

Finally, a reconstruction step is added to convert the HR feature

maps into high resolution images.

After training, we extract the optimal PSF from the weights of

conv(11, 1) and then apply a Gerchberg-Saxton (GS)-based phase

retrieval algorithm to derive the phase mask (see left-bottom of

1For convenience, we denote a convolutional layer as conv(f , n)[.] and a transposed

convolutional layer as convT (f , n)[.] where f is the filter size and n is the number

of filters.
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Fig. 2. Framework for joint learning of imaging model and reconstruction. The anti-aliasing filter (PSF) for the low fill-factor SPAD array is learned using our

design paradigm. In each forward pass, the synthetic PSF is convolved with a batch of images, and Poisson noise is added to account for sensor’s counting

noise after the interval sampling process. After obtaining the optimized PSF, we apply a Gerchberg-Saxton-based phase retrieval algorithm to derive the phase

mask. The reconstruction network is composed of three main parts: initial feature extraction, back projection stages, and reconstruction step. The

back-projection stage (right bottom), alternating between reconstruction of H t and Lt , consists of T up projection stages and T − 1 down projection stages.

Each unit is connected with the outputs of all previous units.

Figure 2), which acts as an optical coder installed at the front fo-

cal plane of a regular lens to generate the optimal PSF for later

implementations. In order to account for differences between the

design and the fabrication of the phase mask, the real-world PSF of

the mask can be calibrated, and the reconstruction network can be

fine-tuned through re-training.

In the following, we first detail the image formation model, in-

corporating the anti-aliasing filter applied to the sampling model of

SPAD array and the phase mask optimization to generate the learned

PSF combined with a regular imaging lens. Next, we present the

deep neural network reconstruction and the time profile sharpening

strategy.

3.1 Image Formation

3.1.1 Anti-aliasing filtering and image sampling. As mentioned, the

fill factor of most current SPAD imaging sensors is very low, that

is, the light sensitive area of the pixel is much smaller than the

total area occupied by the pixel structure. For example, the SPAD

array used in our experiments (MPD-SPC3) has a pixel pitch of

150 µm horizontally and vertically, however the active area is only

30 µm in each dimension. The physical low pixel count and small

fill-factor severely degrade the image quality, creating the desire for

super-resolved image reconstruction. To avoid aliasing, the image

signal should be pre-filtered with a low pass filter of the appropriate

cut-off frequency, followed by a down-sampling process [Parker

2017]. Again, the goal is to trade-off sharpness and aliasing, so as to

find a good compromise that preserves most details of interest.

Due to the low resolution of the sensor array, we can reasonably

neglect off-axis aberrations like coma. Image formation becomes

a shift-invariant convolution of a latent image with a kernel. To

this end, we jointly learn the optimal anti-aliasing filter (e.g. the

convolved kernel) and the reconstruction network to eventually

preserve the finest details of natural images so as to realize a super-

resolution enhancement. The quantitative evaluation of applying

this desired OLPF is detailed in Section 4.

At the position (x ,y) on the sensor, the detected signal Is (x ,y) is

expressed as:

Is (x ,y) = P(S(pλ ∗ I )), (1)

where S is a 2D sampling operator corresponding to the physical

structure of SPAD sensor, I is the latent image formed on the sensor,

pλ is the kernel (or PSF) realized by the optical system, and P repres-

ents a generator of the Poisson noise, which is the appropriate noise

model for low light scenarios that are typical for SPAD imaging.

3.1.2 Learning optimal PSF using end-to-end design. To obtain the

optimal PSF pλopt using our end-to-end framework, we model our

PSF as well as the low-resolution sampling process of the SPAD

array as a convolutional layer conv(11, 1). In each forward pass, the

synthetic PSF (convolutional layer) is convolved with a batch of

images, and Poisson noise is added to account for photon shot noise

after the interval sampling process. In other words, we represent

both the PSF and the sampling process as layers in our neural net-

work during training, and then physically realize the learned result

as a custom DOE for our SPAD camera (see Section 3.3).

To determine the size of the kernel, we take a large kernel 21× 21

at the beginning and then we found only an 11 × 11 region of the

filter had non-zero values. Therefore, we take 11 × 11 as the kernel

size of the PSF whose physical dimension is 412.5 × 412.5µm2.

ACM Trans. Graph., Vol. 39, No. 2, Article 9. Publication date: December 2019.
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3.2 Image Reconstruction

Image reconstruction is the final stage for applications like regular

intensity imaging or high speed imaging, and the second last stage

for applications like depth and transient imaging. For our camera

the reconstruction is formulated as an optimization problem of a

data fitting term with an additional regularization term:

min
I

1

2
∥S(pλopt ∗ I ) − Is ∥

2
2 + β ∥Φ(I )∥1, (2)

where Φ(·) denotes the transform coefficients of I with respect to

some transform Φ that can be either linear or optimized non-linear.

Sparsity in the transform space Φ(I ) is encouraged by the ℓ1 norm

with β being a regularization parameter.

Usually, natural images are non-stationary in classic domains

like DCT, gradients, and wavelets, which may result in an ill-posed

problem under such an imaging model. Although an optimized

PSF model can preserve a large amount of spatial information, con-

ventional optimization-based methods fail to faithfully reconstruct

good quality results when the sampling ratio is very low (e.g. in

our case with a sampling ratio only 3.14%). To this end, a trainable

architecture for super-resolution with powerful learning ability for

features meets our strict requirements as our learned PSF itself

encodes features. We choose the state-of-the-art methodÐ dense

deep back-projection networks (D-DBPN) [Haris et al. 2018] as our

reconstruction network, as shown in Figure 2. The D-DBPN frame-

work introduces an iterative error correcting feedback mechanism

to characterize the features in previous layers. More importantly,

it addresses the mutual dependency by taking the back-projection

from HR domain to LR domain.

3.2.1 Framework architecture. As shown in Figure 2, the end-to-end

framework to obtain the optimal filter and reconstruction network

can be divided into four parts:

a. Imaging model. As we have already discussed in Sec. 3.1.1, we

take the physical imaging model as the first part of our end-to-

end framework. The joint framework is used to learn the optimal

anti-aliasing filter. After fabricating the filter we then refine the

learning process of the reconstruction network with additional

training to account for fabrication errors. For more details, please

refer to Section 5.

b. Initial feature extraction. The initial feature maps L0 are con-

structed using a conv(3,n0) layer to extract features and a conv(1,nR )

layer to pool the features and reduce the dimension from n0 to nR .

In the experiments, n0 is set as 256 and nR , which is the number of

filters used in each projection unit, is set as 64.

c. Back-projection. As illustrated in Figure 2, at t th stage (T =

7 stages in total), the LR feature maps [L1,L2, · · · ,Lt−1] and HR

feature maps [H1,H2, · · · ,H t ] are concatenated to be used as input

for up- and down-projection units respectively. In each projection

unit, we use a conv(1,nR ) to merge all previous outputs from each

unit after the shown concatenation process.

The up-projection is defined as follows:

scale up H t
0 = conv

T (fp ,nR )[L
t−1]

scale down Lt0 = conv(fp ,nR )[H
t
0 ]

residual: elt = Lt0 − Lt−1

scale residual up: H t
1 = conv

T (fp ,nR )[e
l
t ]

output feature map:H t
= H t

0 + H
t
1

(3)

The down-projection is defined as follows:

scale down Lt0 = conv(fp ,nR )[H
t ]

scale up H t
0 = conv

T (fp ,nR )[L
t
0]

residual: eht = H t
0 − H t

scale residual down:Lt1 = conv(fp ,nR )[e
l
H ]

output feature map: Lt = Lt0 + L
t
1

(4)

d. Reconstruction. Finally, we take the concatenated HR feature

maps [H1,H2, · · · ,H t ] as input and use a conv(3, 1) layer to recon-

struct the target HR image.

3.2.2 Training details. To train the network, we use the mean

square error (MSE) loss function. In the stated framework, we use an

8×8 convolutional layer with a stride of four and a padding of two.

All convolutional and transposed convolutional layers are followed

by a parametric rectified linear unit. We trained our network using

the high resolution images from the DIV2K dataset, using a batch

size of 64. For convenience, the LR image resolution was 32×32 (half

the size of our SPAD array), and the HR image size was 128×128.

We take a convolution layer conv(11, 1) as our PSF following the

sampling model of the SPAD sensor to simulate the LR images from

HR images. We use ADAM as the optimizer with momentum set to

0.9 and weight decay set to 10−4. The learning rate is initialized to

10−4 for all layers and decayed by a factor of 10 for every half of

total epochs. All experiments were conducted using Pytorch on a

single NVIDIA TITAN Xp GPU. For learning the optimal PSF, we

trained the whole framework with 50 epochs taking around 40 hours.

After calibrating the PSF generated by the fabricated phase mask,

we take the weights of the network trained above as initialization

and continue to train the reconstruction network with 11 epochs

taking around 8 hours.

PSF

 Phase 
Mask

 Planar 
Wave

Modulated 
Wave Sensor

 Aperture 
Stop

Imaging
Lens

Fourier Plane Image Plane

Fig. 3. Illustration of light propagation and desired PSF. The phase mask

(i.e. DOE) is set at the equivalent Fourier plane of imaging lens to modulate

the incident light and produces the desired PSF on the sensor.
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3.3 Phase Mask Generation

After obtaining the optimal PSF with our framework, we establish

the relationship between the PSF and the phase mask. We first

analyze the propagation of light from the phase mask to the image

plane, and then present the details of phase mask design.

3.3.1 Optical model. As shown in Figure 3, the mask is placed at the

front focal plane of the lens, and acts as the pupil of whole system.

For modeling the light propagation, we apply scalar diffraction

theory [Goodman 2005] to approximate the paraxial incident wave.

The phase of a complex-valued incident wave is delayed by a phase

profile ϕ(x ′,y′) proportionally to the height map of a diffractive

optical element h(x ′,y′):

ϕ(x ′,y′) = ∆n
2π

λ
h(x ′,y′), (5)

where λ is the wavelength, (x ′,y′) is the location on the phase mask

plane , and ∆n = n − n0 represents the refractive index difference

between air (n0) and the substrate material (n). Placed at the front

focal plane of a lens together with our customized limited stop, the

phase mask acts as the complex pupil function.

The incident wave fieldUλ(x
′,y′, z = 0−) = A(x ′,y′)ϕd (x

′,y′) is

modulated by the phase mask, shown as:

Uλ(x
′
,y′, z = 0+) = Uλ(x

′
,y′, z = 0−) · e

iϕ(x ′
,y′)
, (6)

where we use the notation z = 0− and z = 0+ to denote positions

just before and just after the mask, respectively.

Using the Fresnel approximation, the light propagates through a

lens with a focal length f to the image plane is then formulated as:

Uλ(x ,y) =
e ikf

iλf

∫ ∫

∑

Uλ(x
′
,y′, z = f )e

− ik
2f

(x ′2
+y′2)

e
ik
2f [(x−x

′)2+(y−y′)2]
dx ′dy′

=

∫ ∫

∑

ϕ(x ′,y′)e
−i2π

x ′x+y′y′

λf dx ′dy′,

(7)

where k = 2π/λ is the wave number, (x ,y) is the location on the im-

age plane, and e
− ik

2f
(x ′2
+y′2)

represents the optical transfer function

of the lens. Note that Equation (7) represents essentially a Fourier

transform (FT).

For an imaging system, the diffractive PSF on the image plane is

eventually obtained as:

pλ(x ,y) ∝ ∥(F {ϕ(x ′,y′)}∥2. (8)

3.3.2 Phase retrieval. After deriving the relationship between PSF

and the phase mask, we can design a physical height profile h(x ′,y′)

on a substrate of refractive index n to implement an image-plane

PSF pλ using the Gerchberg-Saxton (GS) [Gerchberg and Saxton

1972] phase retrieval algorithm based on Equation (5).

The core of the phase retrieval is shown on the bottom left of

Figure 2. In the beginning, a random phase distribution serves as

the initial estimate subject to the amplitude of the PSF. Then, using

the initial phase and the amplitude constraint (between 0 and 1) of

learned PSF, we apply an inverse Fourier transform on this synthes-

ized complex field function. The resulting phase part of the discrete

complex field is preserved while the amplitude part is discarded. In
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Fig. 4. Efficiency illustration of GS phase retrieval method for our design.

a) Learned PSF; b) Simulated PSF using the phase profile optimized by GS

method; c) The absolute error between a) and b), and the RMSE is 0.0061; d)

The correlation coefficient of the learned PSF and the PSF generated by

phase plate, and finally it converges to 0.9996.

the next round, this preserved phase is plugged into the forward

propagation procedure of applying a Fourier transform to update

the amplitude estimate of the complex field on the image plane.

Eventually, the process is repeated with a finite number times to

converge to an optimal phase profile. For more details, please refer

to the work by Morgan et al. [2004]. Since we optimize the phase

plate for only one wavelength (that of our picosecond laser), we are

guaranteed to obtain a phase plate that can generate the optimal PSF

we desire. As shown in Figure 4, the correlation coefficient between

the PSF generated by phase plate and the learned PSF is 0.9996, and

the RMSE between them is 0.0061. This all means the optimal PSF

is accurately realized by the phase mask.

3.3.3 Phase mask tiling. As shown in Figure 5, a subpixel on the

learned PSF has a size of lp = 37.5 µm. Accordingly, the size of phase

profile obtained using Equation 7 is lu = λf /lp = 0.8733 mm, which

would make for a very small, square aperture. To design optical

systems with larger apertures, one could over-parameterize the

design space to optimize the phase profile over a defined larger

aperture. This would require a re-design of the pattern for each

aperture size, and rule out the use of the aperture stop diaphragm

in the main camera lens.

A simple alternative that overcomes these issues, is to side-by-

side replicate the small optimized phase pattern described above in

order to tile the aperture. In our prototype, we tile a square area

of edge length L = 14 mm, which defines a maximum aperture

that can be further stopped down using the lens diaphragm. The

tiling has the effect of creating a discrete dot pattern instead of a

continuous PSF in the image plane. At a size of lplu/L = 2.34 µm,

the individual dots are significantly smaller than a sub-pixel and

their center-to-center spacing is exactly the sub-pixel pitch, which

also matches the edge length of the light sensitive area of a SPAD
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a b c

150μm

412.5μm

 Sensetive
area

412.5μm
Designed PSF size

37.5μm
Subpixel size

Shrinked subpixel: “dot” in (a)
with size 2.34μmd

 1)

 2)
  3)   4)   5)

a b c

d

Fig. 5. Calibrating the PSF generated by our fabricated phase plate. a)

Captured PSF; b) Synthetic learned PSF; c) Effective PSF as a result of

combining PSF a) with the SPAD pixel sampling pattern; d) Illustrating the

effect of focus on the dot pattern from a) ś see text for details..

pixel. Therefore, as the SPAD sensor integrates spatially over the

light sensitive area, it integrates over exactly one of the dots in the

dot pattern, which is equivalent to implementing the continuous

version of the PSF designed above.

As an added benefit, the dot pattern simplifies the alignment

process in the assembly of the optical system. As illustrated in

Figure 5,(d1)-(d3), slight defocus does not spread the energy out

of the subpixel block. If we were to instead employ a large, non-

repeating mask, a slight slight defocus would spread energy to

neighboring subpixels, equivalent to an additional low-pass filter,

as illustrated in Figure 5,(d4)-(d5).

3.4 Temporal Sharpening for Depth and Transient Imaging

To extract temporal information from our reconstructed images,

we use a recent reported temporal PSF model [Sun et al. 2018] for

SPAD sensors to sharpen our reconstructed 3D data. For depth and

transient imaging, our SPAD sensor works in time-correlated single

photon counting (TCSPC) mode.

This model is useful for precise temporal localization of Gaussian

laser pulses from an observed time profile at each pixel Ii , using

a model of the temporal response of the SPAD pixel, Π(t). The

gate signal Π(t) is not a simple rectangular pulse, but is distorted

according to a resistor-capacitor (RC) circuit response (also compare

Figure 6 bottom left). We band limit this RC model with a small

Gaussian filter (σf = 100 ps in the experiments), see Figure 6 bottom

center.

The observed time profile at each pixel Ii is then modeled as a

convolution of this gate model Π(t) with the Gaussian laser pulse

G(t ;A, µ) = Ae
−

(t−µ )2

2σ 2 , where the parameters A and µ of the Gaus-

sian are initially unknown. They can be determined by solving the

following minimization problem for each pixel:

min
A,µ

∥G(t ;A, µ) ∗ Π(t) − Ii ∥
2
2 , (9)

where ∗ denotes the convolution. Please refer to the original paper

of Sun et al. [2018] for technical details. Instead of using a Gaussian
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Fig. 6. Modeling the temporal PSF of the system as the convolution of

distorted SPAD gate signal and a Gaussian laser pulse profile [Sun et al.

2018]. The data of the histogram is selected from location (45, 167) in

Figure 1 b-3.

Table 1. Quantitative assessment of current SR methods over the low

fill-factor sampling model in PSNR and SSIM (grayscale).

Methods Set5 Set14 BSDS100

Bicubic 24.26/0.8336 21.51/0.7589 20.83/0.7175

SRCNN 25.27/0.8620 22.34/0.7812 21.58/0.7397

VSDR 25.45/0.8717 22.57/0.7915 21.74/0.7481

Ours 27.17/0.9019 23.97/0.8066 23.82/0.7691

model for the laser pulse, we note that it would be straightforward

to substitute other models such as an exponentially modified Gaus-

sian [Heide et al. 2014] to estimate parameters for inter-reflection,

subsurface scattering, or fluorescent lifetime imaging (FLIM).

4 EVALUATION IN SIMULATION

We first present a quantitative comparison of some of state-of-the-

art SR methods like VSDR [Kim et al. 2016b] and SRCNN [Dong et al.

2016b]. Table 1 shows that although that these kinds of methods

perform well on a conventional super-resolution problems, they

fail in the low fill-factor case. In this table, each of the methods,

including our own reconstruction network was trained using the

low fill-factor model (i.e. without an anti-aliasing filter) on the same

DIV2K dataset.We also tried VSDR and SRCNN on the optical design

obtained with our method, but the resulting SNR and SSIM results

are slightly worse than in the low fill factor case shown in the table.

Next, we present a quantitative comparison of applying our re-

construction network to four different sampling models: (1) Low

fill-factor sampling model that considers the SPAD sensor model

without the phase mask; (2) Full fill-factor sampling model that is

common for other imaging sensors; (3) Low fill-factor sampling

model that considers the SPAD sensor with a Gaussian PSF of stand-

ard deviation σN =
√

3 log 2/π ≈ 0.459, corresponding to a least-

squares fit of the sinc function that corresponds to the ideal low pass

filter; (4) Our sampling model that considers the SPAD sensor model

with setting the phase mask at the front focal plane of imaging lens.

To make a fair comparison, we use the same training dataset

and parameters to retrain the network for the low fill-factor model,

full fill-factor model, and a low fill-factor model with a Gaussian

PSF. We then assess on 3 well-known datasets: Set5 [Bevilacqua

et al. 2012], Set14 [Zeyde et al. 2010], and BSDS100 [Arbelaez et al.

2011]. Table 2 summarizes the averaged PSNR and SSIM scores. We
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Groundtruth Low fill-factor 

Full fill-factor Ours

Groundtruth Low fill-factor

Full fill-factor Ours

Low fill-factor

OursFull fill-factor

Groundtruth

Fig. 7. Selected examples of 4× super-resolution under different sampling

models. For the low fill-factor case, we direct apply the low fill-factor model

of SPAD to sample the high resolution images to obtain 1/4 resolution

images. For the full fill-factor case, we average the 4×4 pixel area to obtain

1/4 resolution images. For our method, we apply the low fill-factor

sampling model of SPAD with pre-filtering using our learned PSF kernel.

observe that, without the aid of our phase mask, the original low

fill-factor model exhibits significantly worse performance than ours

both in terms of of PSNR and SSIM. Concerning the Gaussian PSF,

even in comparison to a perfectly shaped Gaussian diffuser (which

would need to be carefully designed, manufactured, and aligned for

a specific sensor geometry, and would certainly not be an off-the-

shelf part), the scores and recovered image detail (see Figure 8) are

still worse than that of our end-to-end system. In addition, we also

evaluate a hypothetical full fill-factor model that might be feasible

with alternative sensor designs. The results show a clear advantage

of our end-to-end design over all alternatives sampling patterns on

all datasets.

Figure 7 visualizes several examples selected from the test data-

set. Sampling of a low fill-factor sensor destroys most information,

thereby the reconstructed results suffer from noticeable artifacts and

distortions. These artifacts are alleviated by our proposed method.

For instance, the texture on the butterfly is well preserved, but is in

comparison, corrupted by artifacts in the low fill-factor case without

Table 2. Quantitative comparison of 4× super-resolution under different

sampling models in PSNR and SSIM (grayscale)

Model Set5 Set14 BSDS100

Low fill-factor 27.17/0.9019 23.97/0.8066 23.82/0.7691

Full fill-factor 29.77/0.9317 26.13/0.8442 25.59/0.8069

Gaussian (optimal) 30.41/0.9360 26.68/0.8498 26.05/0.8157

Gaussian (w./o. re-training) 20.46/0.8087 19.64/0.7268 20.07/0.7016

Ours 30.76/0.9399 26.91/0.8557 26.23/0.8198

σN is chosen to best approximate the ideal low pass filter with a Gaussian (see text).

the phase mask. The full fill-factor sensor shows lightly better per-

formance than that of the low fill-factor sensor, since it averages

our the information at all frequencies across the full pixel block.

Instead, our sampling model preserves the most desired informa-

tion, showing reconstruction results closer to ground truth (GT). To

this end, we believe our anti-aliasing filtering design contributes to

preserving interesting details while suppressing other artifacts.

5 PROTOTYPE AND ASSESSMENTS

In this section, we assess the modulation transfer function (MTF)

of our imaging system and present the prototype results of three

application scenarios. Before detailing the experimental assessments,

we briefly summarize the fabrication of the phase masks and the

calibration of the PSFs.

5.1 Prototype

Fabrication. The phase mask is discretized into 8 levels which

can then be realized by repeatedly applying photo-lithography and

reactive ion etching (RIE) 3 times [Morgan et al. 2004; Peng et al.

2016] on a 0.5 mm Fused Silica substrate. The principal wavelength

is 655 nm and a 2π phase modulation is used to wrap the height

map. Refer to the supplemental document for fabrication details.

We use a FLIR mono sensor GS3-U3-50S5M with a pixel pitch

of 3.45 µm to calibrate the PSF of the fabricated phase plate. The

phase plate is placed at the front focal plane of a Canon 50 mm

lens. A point light source with a 655 nm/10 nm bandpass filter is

set 1.35 m away from the sensor. Figure 5a shows the calibrated

PSF of our fabricated phase mask (see Section 3.3). The sparse dot

pattern structure is due to the tiling of the phase plate as described

in Section 3.3.3.

5.2 MTF Analysis

We use the slanted edge method [Burns andWilliams 2002] to assess

the modulation transfer functions (MTFs) of our results and that

of the low-resolution reference, as shown in Figure 9. We observe

outliers larger than 1 in the plot of the SR image without phase

mask (orange plot). In contrast, the MTF of our super-resolution

camera is closer to the desired MTF in optical systems: smoothly

and monotonously decreasing from an amplitude of 100% for the

DC term to ca. 10% at the Nyquist limit of the SR image, with no

erroneous maxima for higher frequencies. This result is enabled by

better preservation of super-resolution information in our learned

PSFs. Here we remind the reader that MTFs are intended to charac-

terize linear systems, and may not be the best metric of assessing

non-linear computational imaging systems such as ours.
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Fig. 8. Imaging performance of the best Gaussian PSF (top) and our

end-to-end learned PSF (bottom). Our end-to end learned approach does

show significantly better preservation of details above the Nyquist limit,

see insets.

5.3 Intensity Imaging

Experimental setup. The prototype of normal intensity imaging

is illustrated in Figure 10. We use an MPD-SPC3 SPAD array as

the detector. The phase mask is optimized for imaging daily scenes

and human activity. The SPAD array is operated in snapshot mode

with the integration time set as 52 µs. We sum up 100 frames before

read-out, corresponding to a total integration time of around 5.2 ms.

Results of intensity imaging. To validate the practicability of the

proposed optically coded single-shot super-resolution design, we

employ the fabricated phase mask on a normal imaging setup that

acts as the basis of alternative applications, for example, depth and

transient imaging, as well as low light imaging. A sequence of raw

images (upsampled to the size of the reconstructed images for ease of

comparison) is shown in Figure 11-1. The advantages of generating

the optimal PSF specifically designed for the SPAD sensor’s low fill-

factor structure are significant. The reconstructed super-resolution
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Fig. 9. MTFs derived from experimental results, including raw LR sensor

image and 4× super-resolved SR image with and without phase mask

respectively. The corresponding images are revealed with different color

plots, and the ideal 4× SR image is marked by black color.
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Fig. 10. Prototype for normal/high speed imaging and the scene: a) The

prototype of normal imaging and high speed imaging. b) The scene of

running fans captured with a regular RGB sensor. c) Static states of the

scene shown in b), and the red marked area are manually set as black to

mark the rotating position.

results (i.e. Figure 11-2 faithfully preserve many details as without

introducing artifacts. Therefore, for such a kind of low fill-factor

sensor structure, our method succeeds in preserving the spatial

information.

Results of reference experiments. To further demonstrate that our

phase mask works as designed, we performed a reference experi-

ment for the same scenes without phase mask. Figure 11-3 presents

the raw images without phase mask. The visualization of the raw

images contains more high frequencies compared with those with

phase mask. These undesirable high frequencies only result in the

loss of fine details we want to preserve, but also introduce strong

artifacts as illustrated in Figure 11-4.
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1) raw images with mask 2) results with mask 3) raw images without mask 4) results without mask

Fig. 11. Results of normal imaging. 1) Captured raw images with phase mask and with dark counts and background noise removed. 2) Results with phase

mask. 3) Captured raw images without phase mask and with dark counts and background noise removed. 4) Results without phase mask.

In comparison, our phase mask can preserve the most useful in-

formation while suppressing aliasing, consistent with the simulation

results as described in Section 4.

5.4 High Speed Imaging

Experimental setup. We use the same camera setup described

above. The SPAD array is operated in snapshot mode at a frame rate

of 1,250 fps with the integration time set as 80 µs. In this example

we sum up 10 frames before read-out. As illustrated in Figure 10b,

we use a CPU fan as a high speed spinning object. One of the blades

is marked black as a position tracker, as shown in Figure 10c.

Results of high speed imaging. The optically coded single-shot

super-solution camera fitswell with unsynchronized and non-repeatable

conditions, where time-sequential spatial resolution enhancement

methods like compressive sensing with a DMD, 2D mechanical

scanning, or 1D line scanning are not applicable. As illustrated in

Figure 12, we successfully capture and reconstruct the frames of

a high-speed rotating fan (roughly calculated at 3,750 rpm from

the shown frames). Figure 12a presents the captured raw data with

darkcounts and background noise removed. Figure 12b presents the

reconstructed 4× super-resolved frames. We can distinguish the

fine details of fan and football. For more details, please refer to the

supplemental video.

5.5 Depth and Transient Imaging

Experimental setup. Figure 13 illustrates the experimental setup

for depth and transient imaging and the corresponding scenes. We

use a 655nm picosecond laser (PicoQuant LDH P-650) with an av-

erage power of around 1 mW as the illumination source. The full

width at half maximum of the laser pulses is around 80 ps, and the

repetition rate is 50 MHz. To illuminate the scene smoothly, we scat-

ter the laser beam using a diffuser and use a 80 mm plano-convex

lens to re-concentrate the overly scattered beam.

We operate the SPAD camera in TCSPC mode with a 200 ps gate

width and a 20 ps phase shift per cycle. The integration time is set

to 52 µs, and 1,500 frames are summed up before read-out. In total,

the capture process lasts around 9.8 s.

During the capture, the SPAD array sends the synchronizing

signal to trigger the laser driver and then counts the arrival photons

with a fixed phase offset of the gate. After sufficient integration, the

SPAD camera shifts the gate window (i.e. 20 ps delay) and captures

another frame until covering all designed phase offsets.
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(a) raw frames (b) reconstructed frames

Fig. 12. Results of high speed imaging. The displayed data is selected for

every five frames and we set the frame rates around 1,250 fps. (a) Selected

raw frames with darkcounts and background noise removed. (b)

Reconstructed high resolution frames.

a picosecond

laser

illumination 

optics

our camera

b

Fig. 13. Photograph of hardware set-up of depth and transient imaging

(a); and the scenes used in experiments (b).

Results of depth imaging. In this experiment, we demonstrate the

ability to resolve the geometric details of several objects (fans, horse,

wooden toys, etc.) in the scene depicted in Figure 14. As shown, the

reconstructed intensity (Figure 14b) and depth images (Figure 14c)

exhibit details that are hardly distinguishable in raw data, for in-

stance the edges of fans and wooden toys. From Figure 14a we

observe that the raw images obtained by summing over the time

axis remains very noisy although the dark counts and background

noise have been mostly removed. Compared to the raw data of

intensity imaging, i.e. Figure 11a), the summed pixel values show

a considerably larger uncertainty, which makes it challenging to

reconstruct good quality results. This is because the output power

of our laser is very low with an average output only around 1 mW.

Furthermore, the light is scatted to illuminate the entire scene. Con-

sequently, only a few photons can be collected by our camera after

bouncing back.

Results of transient imaging. Figure 15 presents the selected res-

ults of reconstructed transient frames. A mirror is placed near the

objects to reflect the light. In Figure 15a, the light pulse starts hitting

the objects, resulting in a gradual increase and then a gradual de-

crease of the illumination. Later, the reflected light from the objects

propagates to the mirror. Similarly, the reflected image (left part)

shows the same phenomenon as the objects that the illumination

gradually increases and then gradually decreases. The results in Fig-

ure 15b show a similar process. Thus, we have successfully captured

and reconstructed high resolution transient phenomena from the

low resolution raw data. Please refer to the supplementary video

for a better visualization.

6 DISCUSSION

Fabrication feasibility and generalization. Our optimized PSFs are

relatively small, and which means that the phase plate only needs to

diffract the light slightly, which can be achieved with relatively large

feature sizes (5 µm in our experiments). This easily fits within the

fabrication capability of inexpensive mass-production methods like

micro-imprinting. In practice, the assembling accuracy (rotation±4◦,

displacement ±2 mm) shows a minimal impact on reconstruction

results. It is viable to design systems where the phase plate can be

easily switched by end users, simple as switching a regular lens,

to maximize the performance for different application scenarios.

We believe the proposed design paradigm can be generalized to

alternative low fill-factor and low resolution sensors like on-board

pixel processing circuits [Donati et al. 2007], 3D cameras, fluorescent

analyzers, thermal cameras, etc.

Limitations for depth and transient imaging. We reasonably ignore

the multipath effect at the stage of proof-of-concept since current

illumination region is constrained within a level of a few decimetres.

But there are several limitations that affect the reconstruction quality

of depth and transient imaging. On the one hand, the picosecond

laser used in our experiments has a power of only 1 mW. On the

other hand, current photon detection efficiency (PDE) is only 12% at

the wavelength of 655 nm. These two essential hardware constraints,

in tandem with the need of diffusing laser beam into a 2D space to

illuminate the whole scene, result in a fact that only a few reflected

photons can be collected by the sensor. In contrast, line SPAD-

based scanning methods [Lindell et al. 2018; O’Toole et al. 2017]

ACM Trans. Graph., Vol. 39, No. 2, Article 9. Publication date: December 2019.



9:12 • Qilin Sun, Jian Zhang, Xiong Dun, Bernard Ghanem, Yifan Peng and Wolfgang Heidrich

(a)

(b)

(c)

Depth/mm Depth/mm Depth/mm Depth/mm

0

40

80

120

0

20

40

60

0

25

50

75

0

30

60

90

(d)

Depth/mm Depth/mm Depth/mm Depth/mm

0

40

80

120

0

20

40

60

0

25

50

75

0

30

60

90

Fig. 14. Results of depth imaging: (a) raw image(with darkcounts and background noise removed) summed over the time dimension; (b) reconstructed

intensity image according to (a); (c) reconstructed depth image; (d) reconstructed depth image without temporal deconvolution.

a

b

Fig. 15. Results of transient imaging. From left to right and from top to bottom are the selected frames of our reconstructed transient video stream. We here

present one frame out of every 9 frames with an visualized interval of 180 ps. The right bottom of a) shows the captured scene containing a cup, a polyhedron,

and a large mirror. The right bottom of b) is the captured scene containing a wooden skeleton and a large mirror.

scatter the laser beam only into a line and use the spectra of 450 nm,

corresponding to a SPAD detection PDE around 50%. Therefore,

currently the relatively lower light efficiency of our method adds

difficulties to tackle the strong noise in the reconstruction.

Future Work. In depth and transient imaging applications in-

creased illumination power always improves measurement range

and robustness to ambient light. However, safety and cost concerns

set tight limits to the laser power in many scenarios. To overcome

this problem, using an intensity-modulated continuous laser, similar

to amplitude modulated continuous wave (AMCW) time-of-flight

sensors, can be a good alternative. A future direction of research

would be to build a counting and digital version of AMCW TOF

sensors using continuous wave illumination. This can be achieved

by replacing the two capacitors that collect the charge of a photodi-

ode with two counting units that count the photons of SPAD. In this

way the SPAD-PMD device can lower the requirements on illumin-

ation while exhibit more robustness to ambient light. SPAD arrays

are a particularly promising technology for the field of fluorescent

lifetime imaging, where state-of-the-art hardware solutions either

suffer from low resolution or require complex and time-consuming

mechanical scanning. To this end, optimizing a phase mask can

enable a fast, high resolution, and scanning-free fluorescent lifetime

imaging system.

7 CONCLUSION

In conclusion, we present a general design paradigm to realize an

optically coded single-shot super-resolution camera for low fill-

factor sensors. This is achieved by incorporating optical design,

sensor modeling, and deep network reconstruction. We build a

high-resolution SPAD camera and demonstrate its viability in the

application scenarios of intensity, high speed, and depth/transient

imaging. Our approach for the first time overcomes the spatial

resolution limit of existing SPAD sensor arrays with a single-shot

capture, without the need of any mechanical scanning or repeatable

ACM Trans. Graph., Vol. 39, No. 2, Article 9. Publication date: December 2019.
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measurement. The hardware improvement requires only a relatively

inexpensive phase mask to the front focal plane of an existing optical

system. We envision a wide range of applications across computer

vision, sensing, and microscopic imaging.
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