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ABSTRACT 
Infant engagement during guided play is a reliable indicator of 
early learning outcomes, psychiatric issues and familial wellbeing. 
An obstacle to using such information in real-world scenarios is 
the need for a domain expert to assess the data. We show that an 
end-to-end Deep Learning approach can perform well in automatic 
infant engagement detection from a single video source, without 
requiring a clear view of the face or the whole body. To tackle the 
problem of explainability in learning methods, we evaluate how 
four common attention mapping techniques can be used to perform 
subjective evaluation of the network’s decision process and identify 
multimodal cues used by the network to discriminate engagement 
levels. We further propose a quantitative comparison approach, by 
collecting a human attention baseline and evaluating its similarity 
to each technique. 
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1 INTRODUCTION 
Infant engagement during play has been shown to be a reliable 
indicator of learning outcomes in early childhood, as well as a po-
tential tool to detect psychiatric and familial issues. A few examples: 
gaze following at 12 months correlates with improved language 
outcomes at 24 months [30]; increased mutual gaze at 5 months 
correlates with improved visual attention control at 11 months [31]; 
reduced engagement with social stimuli at 6 months is associated 
with autism spectrum disorder diagnosis at 24 months [22]; dyadic 
measures of engagement around 24 months can be used to identify 
cases of child neglect [27]. 

A major issue stopping us from applying these results in real-
world scenarios is the data collection bottleneck: obtaining en-
gagement information is a laborious process that requires manual 
annotation by one or more domain experts. The same problem 
afects the widely used Facial Action Coding System (FACS) [13] 
for emotion analysis, which typically requires a certifed coder to 
carefully consider video capture of an individual’s face to record 
the activation of Facial Action Units (FAU). In recent years, we 
have seen the rise of publicly available Deep Learning tools that 
can reliably estimate FAU activations, given clear video capture 
of adults [29]. Free access to such tools has allowed researchers 
to build real-time automatic afect analysis solutions where pre-
viously only manual annotation used to be possible (e.g., student 
engagement detection [38, 42, 44]). This begs the question: can we 
automate infant engagement analysis in the same way? To answer 
it, we collected a dataset on infant engagement during guided play, 
and trained an end-to-end video classifer to separate positive and 
negative samples. 

While recent reviews indicate that Deep Learning based meth-
ods are becoming increasingly popular in the wider feld of auto-
matic afect recognition [33], and end-to-end learning methods have 
attained promising results [40], the number of studies using end-
to-end Deep Learning is still small. To the best of our knowledge, 
the only previous study on end-to-end Deep Learning for infant 
engagement is our earlier pilot experiment [15]. In the pilot, we 
successfully trained task engagement classifers on video data with 
coarse annotations, and used attention mapping techniques for 
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subjective network analysis, but did not analyse social engagement 
nor compare attention maps quantitatively. 

Using an end-to-end Deep Learning approach has clear advan-
tages: we can obtain good performance without explicit modelling 
of the interaction, and we are not limited by feature extraction meth-
ods. As an example, the mentioned FAU extraction tools require a 
clear view of the face, while our method only requires a general 
side view of the scene. However, a major drawback is explainabil-
ity: it is typically hard to explain the decision-making process of a 
Deep Learning model, even if we have full access to its internals. 
This makes it possible for the system to inadvertently depend on 
unexpected or unwanted correlations. Lapuschkin et al. [26] give a 
striking example: An image classifer for the PASCAL VOC 2007 
dataset classifes horse images correctly if they have a copyright 
notice – disproportionately common in this category – and fails if 
the notice is removed. If the same copyright notice is then added to 
a car picture, the model confuses it with a horse. 

To improve model explainability, a host of techniques has been 
developed. They are collectively known as Explainable Artifcial 
Intelligence (XAI), and have been the focus of much research in 
recent years [1]. In this study, we focused on local explanations: 
given an input sample and an output decision, these methods pro-
duce a simplifed explanation of the network’s decision process. 
In the context of computer vision, an important family of local 
explanation methods are attention maps. Given the model’s predic-
tion, they assign an importance score to each pixel in the input. 
Many methods have been proposed, with varying computational 
costs and theoretical justifcations. Some well-known examples are 
Guided Backpropagation [37], Grad-CAM [35], and LRP [3]. 

Even though these tools have been successfully used for manual 
exploration of the network on a sample-per-sample basis, there is 
no consensus on which attention maps are most useful to a human 
observer, or how to aggregate them over a whole dataset. We ad-
dressed these issues by comparing four common techniques, both 
subjectively – by analysing the known advantages and shortcom-
ings of each method, and discussing examples of network insights 
revealed by specifc attention maps –, and objectively – by collecting 
hand-authored human attention maps, and computing a similarity 
measure proposed in the visual saliency prediction literature [6]. 

The following is a summary of our contributions: 

(1) We show that an end-to-end Deep Learning model can suc-
cessfully predict task engagement and social engagement 
of an infant participating in guided play. We do this from a 
single video feed showing a lateral view of the whole scene, 
without dedicated facial or postural capture. 

(2) We use four machine attention mapping techniques on a 
selected subset of the samples, and showcase their use in 
subjective analysis of the network’s decision process, high-
lighting head, body and contextual cues identifed by the 
network as important to discriminate engagement levels. 

(3) We collect human attention maps as a ground-truth, and use 
established similarity metrics to evaluate machine attention 
mapping methods quantitatively. 

2 RELATED WORK 

2.1 Automatic Infant Engagement Recognition 
In the wider context of automatic afect recognition, it is common 
to estimate facial and postural features, and use those as inputs for 
a classifcation algorithm. In particular, two open-source feature 
extractors have been widely used: OpenFace [4] takes clear facial 
images, and estimates several facial features (most notably FAU); 
OpenPose [8] takes unobstructed body images, and estimates an 
individual’s posture. Both tools are Deep Learning models trained 
on video capture of adults, so caution should be taken when break-
ing any of their assumptions – that the subject is an adult, or that 
we have a clear view of the subject. 

Narrowing the scope, automatic engagement recognition has re-
ceived a lot of interest in the educational context, due to the body 
of research suggesting ties to academic performance [16]. Recent 
editions of the EmotiW challenge [12] have contained a category for 
engagement recognition in Massive Online Open Course (MOOC) 
education. The dataset contains clear facial video capture of adult 
students. All the published participants in the latest (2020) engage-
ment sub-challenge [38, 42, 44] use OpenFace, OpenPose, and pre-
trained video networks as feature extractors, and train their own 
classifcation algorithm on the obtained features. Automatic engage-
ment detection in school-age children has also been investigated in 
connection to Autism Spectrum Disorder (ASD). Javed et al. [21] 
use OpenPose to extract postural and facial data, compute custom 
features from it, and train a 5-layer convolutional network. 

This reliance on a small set of open-source tools comes with 
limitations. OpenFace has been shown to perform well with facial 
capture of children as young as 5 [2], but requires a clear frontal 
view, and does not generalize to infants [18]. Similarly, OpenPose 
needs retraining for infants [9], and requires a clear view of the 
body (in our experience, it fails on hard-side views). In contrast, 
an end-to-end model can be trained on any form of video capture, 
as long as it contains enough information. We show that a gen-
eral overview of the interaction from the side is enough to train 
an engagement classifer. We do so by fne-tuning a pre-trained 
convolutional network on a small amount of data. 

2.2 Machine Attention 
Consider an input color image �� �� , where (�, �) are the pixel coordi-
nates (row and column), and � is the color channel1. In the context 
of explainability for Computer Vision classifer models, an attention 
map is a real-valued grid that assigns a relevance score ℎ� to each 

� � 
pixel location (�, �), given a target class � . Let �� be the model’s 
score for � , and P(�) = [softmax(S)]� its estimated probability. 
Relevance can be interpreted in many ways. For example, Zeiler et 
al. [43] place a square occluder at each pixel location and record 
how P(�) decreases to determine how important an image patch is 
for the fnal decision: ℎ� = 1 − P [� | occluder at (�, �)] . A related 

� � 
concept are learned attention mechanisms, in which a similar score 
is calculated internally by the network and is used to flter out 
information during inference. The methods we study here have 

1The descriptions in this section are given in terms of image inputs. The same defni-
tions apply to video by adding a frame index � : ��� �� , etc. 
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been classifed as post-hoc attention maps [24] to distinguish them 
from learned attention. 

To our surprise, we found very few examples of post-hoc atten-
tion maps in the afect recognition literature. Gera et al. [17] train 
an image classifer to take facial capture as input, and predict one 
of 8 emotions as output. They use Grad-CAM to perform subjective 
evaluation of the network’s decision process. Prajod et al. [32] train 
two image classifers to take facial capture as input, and predict if 
the subject is in pain as output. They use LRP to perform subjective 
comparison of the two networks. Based on this, they hypothesise 
that one network focuses on closed eyes, while the other focuses 
on visible teeth. They then verify this hypothesis by annotating 
the dataset and training a linear classifer on the output of each 
network’s last pooling layer, showing that each network’s embed-
ding is signifcantly better for predicting the corresponding facial 
expression. To the best of our knowledge, the only earlier paper in 
afect recognition comparing various attention mapping methods 
is our pilot study [15]. We trained a task engagement classifer on 
coarse labels, and used several attention mapping techniques to 
perform subjective evaluation, albeit with a focus on the diferences 
between mapping techniques. 

In this paper, we focus on the same four post-hoc techniques 
covered in the pilot: gradient saliency, guided backpropagation, Grad-
CAM, and guided Grad-CAM. These were chosen because they are 
popular, computationally efcient, and relatively easy to implement. 
Similar to [17, 32], we frst perform subjective evaluation, with a 
focus on comparing the unique characteristics of each method. We 
further collect a ground truth, and use it to perform quantitative 
comparison. What follows is a brief description of the four chosen 
methods. 

Gradient saliency was introduced by Simonyan et al. [36] as a 
seeding tool for object segmentation, and is the simplest method. To 
compute it, (1) calculate the gradient of the target class score with 
respect to the input pixels �� = ��� /��� �� (the input gradient);

� �� 
(2) take the absolute value, and take the maximum in the color 
channel dimension ℎ� = max� |�� | (the gradient saliency). This is 

� � � �� 
very simple to calculate with modern machine learning libraries, 
and has proved useful in its original context. However, it sufers 
from two issues: (i) it is not class discriminative, i.e., it does not 
change meaningfully based on which class � is targeted; and (ii) it 
is susceptible to high-frequency noise. 

Guided backpropagation [37] is an early attempt to address these 
issues in networks that use ReLU activation units. It uses a modifed 
backpropagation algorithm: augment ReLU layers when calculat-
ing their gradient, discarding negative gradients to focus on posi-
tive evidence only. The algorithm returns a modifed gradient �̂� 

� �� , 
and the attention map is again calculated by taking the saliency: 
ℎ� = max� |�̂� |. This results in sparse attention maps that focus 
� � � �� 
meaningfully on regions of interest, but still sufer from a lack of 
class discrimination. 

Grad-CAM [35] is a low-resolution activation mapping method 
for convolutional networks, specifcally designed to be class dis-
criminative. An intermediate representation is selected (typically 
the last convolutional layer with spatial dimensions), and both 
its activations �� �� and gradients �� = ��� /��� �� are calculated. 

� �� 
A weight is calculated per channel by taking the gradient mean: 

��
� = 1 Í 

�, � �
� (where � is the number of pixels in the tar-

� � �� 
geted layer). The channels are then averaged using the weights: Í 
�̂� = � ��

� �� �� . Finally, only the positive evidence is kept: ℎ� = 
� � � � 

�� ���� ( ˆ ). This method gives meaningfully diferent results when 
� � 

queried about diferent target classes � , but can be very coarse: in 
our networks, the last convolutional layer is only 10 × 10 px. 

Guided Grad-CAM [35] was proposed in the same paper as Grad-
CAM, and attempts to solve its low-resolution issue by a simple 
procedure: (1) upscale the Grad-CAM map to the same dimensions 
as the input, and (2) multiply the Grad-CAM map with the guided 
backpropagation map. This marries the benefts of clean locality 
(guided backpropagation) and class sensitivity (Grad-CAM), but 
since we are multiplying the maps, it runs the risk of being very 
sparse. 

2.3 Comparison with Human Attention 
Given the wide array of post-hoc attention mapping techniques 
available, we would like to have a quantitative measure of ftness 
available, so we can confdently choose the most adequate method 
to evaluate the network’s decision process. Some attempts have 
been made in the context of image classifcation. Fong et al. [14] 
propose an object segmentation approach: they check if the brightest 
pixel in an attention map is contained within the object of interest, 
as judged by a ground-truth image mask. This, however, does not 
translate well to our target domain: we are interested in detect-
ing a social construct, rather than an on-screen object. We propose 
evaluating the network’s human-likeness instead, by capturing a hu-
man attention ground-truth and measuring the similarity between 
human and machine maps. 

Human and machine attention maps have been compared in a 
diferent context: visual saliency prediction. That is, the model’s 
explicit goal is to estimate the amount of time a human observer 
will spend looking at each part of the image. In this case, annota-
tions are typically captured using eye-tracking technology, which 
produces a time-series of focus points. Models generate a continu-
ous map that aims to separate areas of low and high interest [5]. 
Evaluation metrics either compare the focus points directly to the 
output distribution, or generate a distribution based on the focus 
points and use measure-theoretic comparison tools [6]. While older 
reviews report classical models and smaller datasets, newer reviews 
show an increase in dataset size and a move towards convolutional 
networks for greater performance [7]. 

Since eye tracking is costly to capture and requires participants 
to visit the research facilities in person, some authors have focused 
on mouse-capture based methods to study human attention. This 
allows for crowd-sourcing the data collection, thus obtaining much 
larger datasets. Das et al. [11] used Amazon Mechanical Turk to 
annotate 60 thousand images from the Visual Question-Answering 
dataset, using a custom annotation tool. Users were presented with a 
blurred image and a question they had to answer, and could use their 
mouse to remove the blur from parts of the image. The resulting 
blur removal mask was used as a human attention distribution. The 
human attention maps were then compared to a learned attention 
map by downsampling to a low resolution (14 × 14px), and using 
Spearman’s rank correlation as a similarity measure. 
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In this study, we follow the more practical mouse-data approach. 
We develop an in-house tool to view and label video snippets, and 
paint over them using the mouse. We rely on a distribution simi-
larity measure to rank attention maps, according to their human-
likeness. 

3 METHOD 

3.1 Data Collection 
We recruited 23 infants aged 14 months (11 girls; mean age 14 
months and 6 days) from a local list of families who were interested 
in participating in research with their child. Before the study, the 
parents were informed about the procedure and signed a consent 
form. The experiment was approved by the university’s ethical com-
mittee. Each child participated in three guided play tasks with an 
adult experimenter, recorded in a single session. During the session, 
the infant was seated in a high chair at a table, facing the experi-
menter. One parent was seated behind the child. A Sony Handycam 
HDR-CX260 video camera (1440 × 1080px, 25fps) recorded the in-
teraction, providing a profle view of the participants. 

In the frst task (dolls), four round boxes were attached to the 
table. The boxes directly in front of the infant and the experimenter 
(yellow) contained 10 wooden dolls each. The boxes to the sides of 
the child (one red, one blue) were empty. The experimenter began 
by placing a doll in one of the empty boxes. She then invited the 
infant to join and removed the cover from the infant’s doll box. The 
experimenter placed half of her dolls into one of the boxes one at 
a time, and then switched to placing them in the other box. The 
task ended when all the dolls were placed, or at the experimenter’s 
discretion if the child was not participating. 

In the second task (shaker), the experimenter showed the infant 
an egg-shaped shaker (musical instrument) and began to shake 
it at a predetermined tempo (150bpm or 170bpm) for 10 seconds. 
She then gave the infant an identical shaker, and encouraged joint 
play for 30 seconds. The experimenter then pretended to drop her 
instrument on the ground, and changed to the other tempo (170bmp 
or 150bpm). The task ended after another 30s of joint play. 

In the third task (drum), the experimenter showed the infant a 
toy drum and used a drumstick to play at one of the predetermined 
tempos, as in the previous task. She then gave the infant their own 
drumstick and encouraged them to join in drumming. After 30 
seconds of play, she fipped the drum over and switched to the 
other tempo. The task ended after another 30s of play. 

The collection process resulted in 23 videos (one per child), with 
a duration of 10min 49s ± 1min 58s, and a total length of 4h 9min. 
This includes time before, between and after the tasks, as well 
as a fourth free-play segment not used in this study. Hence, the 
total time used for this experiment was a fraction of the numbers 
reported here. 

3.2 Engagement Annotation 
The annotation process was realised using the ELAN annotation 
software [41]. ELAN allowed the coders to create separate tracks 
for each variable, and delineate labeled time spans in each track. 
Three variables were annotated. The frst variable was used to 
determine the time span corresponding to each of the three guided 
play tasks. As such, it contained three time-spans, respectively dolls, 

shaker and drum. The other two variables were binary (positive 
condition along the duration of the designated time-spans, negative 
condition outside the time-spans) and coded the infant’s behavior: 
task engagement and social engagement. For the context of this 
study, task engagement was defned as playfully interacting with 
the object of interest, and social engagement was defned as visibly 
paying attention to the experimenter and the intended game. A 
coding guide was created ahead-of-time to guide the annotation 
process, and was refned based on annotator feedback. 

All 23 collected sessions were annotated. Three coders partici-
pated in the process, each one annotating a subset of the data. Five 
sessions were frst used as a pilot study to refne the coding rules, 
and discuss diferences in methodology. For these sessions, data 
from all three annotators is available. The remaining 18 sessions 
were randomly divided into three session blocks of 6 sessions each. 
Each coder was assigned a primary block to annotate, and upon 
completion, rotated to the next block. Thus, each block was an-
notated by two coders, and for each coder there was one hold-out 
block they had not seen. 

Table 1 summarizes the duration statistics for each task, sampled 
over all sessions and annotators. Task annotations had a mean 
duration of 2min 6s, with standard deviation 29s. Statistics requiring 
common start and end times were computed over the minimal 
interval: the intersection of all available annotations for that task 
and session. To verify the reliability of this reference interval, Table 
1 shows the Intersection Over Union (IOU): the duration of the 
minimal interval, divided by the duration of the maximal interval 
(union over all available annotations). With an average of 94%, 
we can conclude there was high overlap among annotators. The 
minimal interval allows us to estimate the available duration of 
recorded material for training and analysis: an average of 45min 
58s per task, with a total of 2h 17min. 

Inter-rater agreement was measured for each annotator pair. Fig-
ure 1 shows the agreement scores (empirical probability of agree-
ment) (1a) and Cohen’s Kappa [10] scores (1b). To calculate this, all 
the sessions annotated by both raters were considered, and both 
engagement variables were used. For each task, the minimal in-
terval was sampled every 0.1s, resulting in a time series per rater. 
These time series were then compared using the Python library 
statsmodels [34]. The average Cohen’s Kappa over all rater pairs 
is 0.63, a "substantial" agreement [25]. Note that this is efectively 
averaged over social engagement and task engagement. While 0.63 
agreement would be considered low in some easier settings, Lemaig-
nan et al. [28] point out that annotating engagement in children is a 
particularly difcult task, and consider their scores of 0.52 (task en-
gagement) and 0.46 (social engagement) satisfactory in this context. 
They further point out that ML models can refect this uncertainty 
in their output probability distribution, if trained with all the avail-
able data. Similarly, Henderson et al. [20] consider a kappa above 
0.6 to be satisfactory when annotating engagement in students. 

Consistent with Lemaignan’s observation, no aggregated ground-
truth was created for any of the provided variables. Instead, we 
decided to capitalize on the plurality of opinions between annota-
tors by devising a random sampling strategy, described in Section 
3.3. 
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Dolls Shaker Drum Total 
Individual Durations 
Mean Intersection Over Union 
Total Duration (Intersection) 

2min 15s ± 46s 
93% 

47min 40s 

1min 58s ± 12s 
94% 

43min 46s 

2min 4s ± 8s 
95% 

46min 27s 

2min 6s ± 29s 
94% 

2h 17min 53s 
Table 1: Duration statistics for each guided play task, over all available annotations. Each coder indicated their own task 
time-spans. Individual Durations shows the mean and standard deviation over all durations, considering each annotation 
separately. Mean Intersection Over Union is calculated per-task as (intersection of available annotations) / (union of available 
annotations), and averaged. Total Duration (Intersection) shows the sum of intersection lengths, computed over all sessions. 

(a) Agreement Score (b) Cohen’s Kappa 

Figure 1: Dyadic inter-rater agreement measures calculated on the full annotation set. Coders A, B and C are compared to each 
other. Each rater’s interval annotations were sampled every 0.1s, and the resulting slices compared. 1a shows the agreement 
score (empirical probability of agreement); 1b shows Cohen’s Kappa. 

3.3 Classifcation Algorithm 
We trained a separate classifer for each combination of task (dolls, 
shaker, drum) and variable (task engagement, social engagement). 
All classifers shared the same architecture: the Mixed Convolutions 
network mc3_18 from the torchvision package [39]. This was 
chosen as a compromise between computational cost and reported 
performance, and because it comes pre-trained on the Kinetics-400 
dataset [23]. 

The Kinetics-400 dataset is a collection of YouTube videos, with 
400 classes and at least 400 videos per class. It is a common baseline 
for pre-training and for reporting performance of video classifer 
networks [45]. It contains 306,245 clips, each approximately 10 
seconds long, for a total of ∼ 850 hours. Diferent clips have diferent 
resolutions. 

The network mc3_18 (11.7M parameters) is a variant of the 5-
block, 18-layer ResNet architecture [19] with 3D convolutions in 
blocks 1 and 2, and 2D convolutions in blocks 3 to 5. It can be 
viewed as a convolutional network that produces a 512-dimensional 
embedding (the encoder), followed by a logistic classifer (the head). 
It expects an input spatial resolution of 112 × 112 px (or higher). 

To ensure proper stratifcation, we partitioned the data ahead-
of-time into fve disjoint subsets (folds). Since we expected the data 
in each session (i.e., data corresponding to the same child) to be 
highly correlated, we split per session, ensuring that each session 
video was only used in one of the folds. We used rejection sampling 
to ensure that all empirical probabilities (per task and variable) in 
each fold were as close to the whole-dataset values as possible. The 
last fold was reserved as a test set. The other 4 folds were either 
used for 4-fold cross-validation (in hyper-parameter searches) or 
as last-out validation (for the fnal training). All session recordings 

were downsampled ahead-of-time to 208 × 160 px and 3.125fps 
(1/8th the original framerate). 

When considering what is a sample in our dataset, we identifed 
two problems to overcome. First, the available data was very small 
when compared to typical computer vision datasets (e.g., the total 
time is over 1,000 times shorter than Kinetics-400). Second, for 
many sessions we had two (possibly disagreeing) annotations as our 
"ground truth". A standard approach would have involved dividing 
the relevant parts of each session into non-overlapping samples, and 
somehow synthesizing a reference label. However, we identifed an 
option to allow the network to learn from the continuous annotation 
format, and from the individual opinion of each annotator. Each 
time a snippet was sampled from a session, an available coder 
was selected at random. We used that coder’s annotations for the 
relevant task to choose a random ofset into the video, and extract 
a 5-second snippet (15 frames). For each epoch, we sampled each 
available session 10 times, adjusting the ofset range to minimize 
overlap between consecutive samples. 

Upon loading, pixel values were normalized using each fold’s 
mean and standard deviation. At training time, the data augmenta-
tion pipeline optionally rotated the image (±8°, � = 0.35), chose a 
random 112 × 112 px crop with scaling and stretching, optionally 
fipped the image horizontally (� = 0.5), optionally adjusted the 
contrast (� = 0.35) and color balance (� = 0.35), optionally used 
a Gaussian blur (� = 5px, � = 0.35), and optionally added Gauss-
ian white noise (� ∈ (0.01, 0.03), � = 0.35). At testing time, the 
data augmentation pipeline took a 160 × 160 px center crop and 
optionally fipped the image horizontally (� = 0.5). 

To adapt the pre-trained network to our task, the original multi-
class logistic classifer was substituted with a randomly-initialized 
binary logistic classifer. Refecting this, the training process was 
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split in two parts: a head training phase to train only the new 
classifer head, and a fne-tuning phase to train the whole network 
at a lower learning rate. To accelerate the head training phase, 
we encoded samples and saved them to disk ahead-of-time, by 
collecting augmented samples for 100 epochs and feeding them to 
the encoder. 

A hyper-parameter search was conducted for each training phase 
(head training and fne-tuning). The following parameters were ex-
plored: learning rate, learning rate decay, L2 penalty, class weights 
(fat weights vs. linear weights). Each parameter combination was 
chosen by random sampling, and tested using 4-fold validation with 
repeated runs, to account for randomness in the initialization proce-
dure. The parameters which produced the best F1 validation score 
(averaged over folds and repetitions) were then used to train the 
networks. These values were adjusted by hand if a re-run was con-
sidered necessary, based on the observed behavior of the network 
on the train and validation sets. 

3.4 Human Attention Annotation 
When running the stratifcation process, we verifed that the test 
fold contained at least one video for each one of the three ses-
sion blocks described in Section 3.2. Thus, for each coder there 
was at least one test video they had not seen before. We chose 
one such video per coder, and used rejection sampling to fnd non-
overlapping samples, such that the two available annotations agreed 
on that sample (that is, there was a consensus label). If possible, 
we retrieved 12 such samples: one for each combination of task, 
variable, and label value. Due to some children showing very consis-
tent behaviors, this was not always possible, so the fnal number of 
samples ranged from 9 to 12 per annotator, for a total of 31 samples. 
We call this collection of samples the comparison set. 

A custom tool was used to visualize the comparison set, and 
collect human attention maps. The annotator could view the low-
resolution, low-framerate snippet that would have been presented 
to the network, and could press buttons to decide if the child was 
engaged or not. They could then navigate frame by frame, and use 
the mouse to paint over the video. They were instructed to highlight 
the parts of the video that supported their fnal decision, focusing on 
positive evidence for their label choice (i.e., the annotations should 
be class discriminative). Figure 2 shows a screenshot of the tool in 
use. 

3.5 Machine Attention Computation 
We implemented each of the four studied post-hoc attention map-
ping techniques (Gradient Saliency, Guided Backpropagation, Grad-
CAM, Guided Grad-CAM), and applied them to each sample in 
the comparison set. Note that, while the explanation in Section 2.2 
is done in terms of still images with 2D pixel coordinates (�, �) – 
consistent with the original sources –, all these techniques apply 
naturally to video data with 3D frame-and-pixel coordinates (�, �, �), 
using all the available information. In particular, the relevance of 
motion should be captured by the attention maps. 

Since samples in the comparison set correspond to diferent tasks 
and variables, these maps were computed using all 6 classifcation 
networks obtained during the training process (Section 3.3): for 
each sample, the corresponding network (same task and variable) 

Figure 2: Custom annotation tool used to capture human 
attention maps. The user can view the video in the same 
format provided to the network, and can choose an appropri-
ate label. They can then move frame by frame and use the 
mouse to paint or erase regions of high interest. The black 
circle is located at the mouse cursor location and indicates 
the current painting size. The faces of the participants have 
been anonymized for this illustration. 

was used. When defning attention maps, we explained they can 
target any class in the output. To study class sensitivity accross 
mapping methods, we targeted both positive and negative labels in 
each case, resulting in 8 attention maps per sample. Both targets 
were used for subjective analysis of the network’s decision process. 

3.6 Attention Comparison 
Due to the diferences in high-frequency detail between diferent at-
tention maps, a pixel-for-pixel comparison was discarded, focusing 
instead on the low-frequency content of the distributions. To that 
efect, we chose to resize all attention maps to one common spatial 
size: 32 × 32px (1/5th of the input resolution). For full-resolution 
maps, which typically contained more fne-grained detail, down-
sampling was performed by frst applying Gaussian blur (� = 5px) 
and then sampling with stride 5px. For Grad-CAM (original size 
10 × 10px), bicubic upsampling was performed. 

Once the size was standardized, the average Earth Mover’s Dis-
tance per frame (EMD) [6] was used to evaluate the similarity 
between the human annotation and each machine attention map. 
The Earth Mover’s Distance, also known as the 1st Wasserstein 
Distance, is a metric on the space of probability distributions. In-
formally, it can be described as the minimum amount of work that 
it would take to reshape one distribution into another, if they were 
piles of earth. We chose to calculate the metric per frame for two 
reasons: (1) some attention maps have very unequal values between 
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frames, while the human annotation is near-constant in maximum 
value and total mass per frame; (2) EMD’s computational cost scales 
very poorly with the size of the map, making it infeasible to run on 
the whole video. 

We calculated the EMD scores in every full-agreement sample 
in the comparison set, that is, every sample that was identically 
classifed by all annotators, and by the network. We did so while 
targeting the matching category (i.e., the true label). This was done 
to ensure that the hand-painted maps were focusing on the same 
information as the machine attention maps. 

4 RESULTS AND ANALYSIS 

4.1 Network Performance 
Table 2 summarizes the performance statistics for the top network 
in each category, as judged by validation F1 score. We have listed the 
empirical probability � for comparison (calculated for the positive 
class, over the continuous-time annotations for the whole dataset). 
As a baseline, the best accuracy achievable by a random classifer is 
max(�, 1 − �) (achieved by always predicting the most likely class), 
and the best F1 achievable by a random classifer is 2�/(1 + �)
(achieved by always predicting the positive class). All values above 
the baseline are marked in black. We can see the dolls networks 
struggle in the test set (despite performing well in the validation 
set), while all other networks perform successfully. It is worth 
mentioning that agreement scores between annotators are in the 
0.81-0.83 range (see Fig. 1a), so one should not expect accuracies 
above those values. 

4.2 Agreement with the Network 
Figure 3 shows aggregate agreement scores (3a) and Cohen’s Kappa 
(3b) between each human annotator and the best performing net-
works. Unlike Figure 1, which considered all available annotations, 
and used their original time-interval form, this table uses the test set 
exclusively, and is calculated by taking video snippets (the samples 
as they are fed to the network for training and inference). Each 
session in the test set is sampled for every combination of task 
and variable, taking as many non-overlapping samples as possible. 
Labels are calculated for the available annotators with the same 
approach used for training. The human-human pairs show simi-
lar Kappa scores to Figure 1, albeit with a wider range: 0.55-0.71 
(Moderate to Substantial agreement). The human-machine pairs 
are clearly lower: 0.29-0.31 (Fair agreement). Overall, the networks 
performed clearly better than random choice, but not well enough 
to substitute a human annotator. 

Table 3 shows Cohen’s Kappa for each network, averaged over 
all human-human pairs (column "Human"), and averaged over all 
human-machine pairs (column "Machine"). We can see (dolls, social 
engagement) and (drums, social enagement) failed to obtain better-
than-random scores, while other networks performed better (in 
some cases, close to human levels of agreement). 

4.3 Subjective Analysis of Machine Attention 
Figure 4 shows all four attention mapping techniques acting on the 
same frame. The sample under consideration belongs to the task 
shaker and the target variable is social engagement. All annotators 

agreed that this is a negative sample: the child is not engaged (neg-
ative). The relevant network also classifed the sample as negative. 
In this fgure, the attention methods are targeting the matching 
class: negative or not engaged. We can observe the properties we 
discussed in Section 2.2: Gradient Saliency is noisy but somewhat 
informative, focusing on the infant’s head; Guided Backpropagation 
is sparse and focuses on the two participants, with special attention 
to the shaker (and possibly similar oval shapes, like the infant’s ear); 
Grad-CAM is low-resolution but focuses more clearly on the child; 
Guided Grad-CAM is the sparsest and potentially most informative 
– in this case, focusing on the infant’s head alone. 

Figure 5 shows the same frame and the same methods yet again. 
However, in this case the target is the opposite class: positive or 
engaged. As discussed in Section 2.2, Gradient Saliency and Guided 
Backpropagation are not class sensitive: there is no discernible dif-
ference between the matching and opposite targets. However, Grad-
CAM and Guided Grad-CAM shift the attention from the infant 
to the experimenter. Assuming we can trust the explanation, and 
considering that the prediction target is the infant’s emotional state, 
focusing on the experimenter could be considered contextual in-
formation. Depending on our goals, this could be seen as a failure 
of the network. However, we will see that human annotators simi-
larly rely on contextual cues when annotating – in their case, the 
cross-relation between social and task engagement. 

4.4 Subjective Analysis of Human Attention 
Figure 6 shows four consecutive frames from a manually annotated 
attention map for the task dolls and the target variable social engage-
ment. Using the custom tool described in Section 3.4, annotator A 
classifed the sample as positive, and painted areas of interest in ev-
ery frame to support their decision. We can see that they considered 
the child’s gaze and arm movement to be important factors. Unlike 
the network example in Section 4.3, the annotator did not highlight 
the experimenter as relevant contextual information. However, the 
focus on the arms was added because they indicate task engagement. 
Given that this was not the target variable, the arm annotation con-
stitutes contextual information: the child is seen to engage with the 
experimenter even if they temporarily break eye contact, because 
they are still actively participating in the activity. In this case, the 
judgement of one variable afects the judgment of the other. 

Compared to the machine attention maps displayed in Figures 4 
and 5, the mouse-painted maps have a distinctive lack of detail, with-
out reaching the coarseness of Grad-CAM. The observed disparity 
between diferent attention maps motivates our choice to blur and 
down-sample before performing a quantitative comparison. 

4.5 Quantitative Comparison of Attention Maps 
Figure 7 shows the original frame, two machine attention maps, and 
human attention, before and after being resampled to a common 
resolution (see Section 3.6). Visual inspection suggests that we have 
successfully mapped heterogeneous methods to a similar detail 
scale, while preserving each method’s identity. 

Table 4 shows the EMD mean and standard deviation for each 
machine attention method, ranked by mean EMD (lower is better). 
Matching human expectations, we see that both locality and class 
sensitivity are graded positively, with Guided Grad-CAM selected 
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Task Variable Empirical Prob. Val. Acc. Val. F1 Test Acc. Test F1 
Dolls Task Engagement 0.60 0.93 0.94 0.64 0.64 

Social Engagement 0.72 0.85 0.92 0.68 0.81 
Shaker Task Engagement 0.41 0.68 0.72 0.72 0.61 

Social Engagement 0.56 0.93 0.94 0.74 0.80 
Drum Task Engagement 0.53 0.80 0.82 0.88 0.90 

Social Engagement 0.70 0.85 0.92 0.76 0.86 
Table 2: Statistics for the best network in each category (as judged by validation F1 score): empirical probability of the positive 
class (calculated over the whole dataset), validation accuracy, validation F1 score, test accuracy, and test F1 score. Bold numbers 
indicate scores above the theoretical maximal score of a random classifer. Since there is no unifed ground truth, these numbers 
cannot be expected to reach 100%. 

(a) Agreement Score (b) Cohen’s Kappa 

Figure 3: Dyadic inter-rater agreement measures calculated on the test set, and including the network as one of the raters. 
Human annotators A, B and C are compared to each other and to the network. 3a shows the agreement score (empirical 
probability of agreement); 3b shows Cohen’s Kappa. 

Task Variable Human Machine 
Dolls Task Engagement 0.497 0.395 

Social Engagement 0.790 0.000 
Shaker Task Engagement 0.734 0.176 

Social Engagement 0.524 0.219 
Drum Task Engagement 0.529 0.422 

Social Engagement 0.382 0.000 
Table 3: Average Cohen’s Kappa over all human-human pairs (column "Human") and over all human-machine pairs (column 
"Machine"), separated by (task, variable) pair (i.e., per network). Some networks failed, while others performed at almost-human 
level. 

(a) Gradient Saliency (b) Guided Backpropagation (c) Grad-CAM (d) Guided Grad-CAM 

Figure 4: All four attention mapping methods, displayed at the same frame. Task shaker, target variable social engagement. All 
annotators marked this sample as not engaged. The network correctly classifed the sample as negative. The target class for 
these maps is the matching class (negative). Faces anonymized for the illustration. 
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(a) Gradient Saliency (b) Guided Backpropagation (c) Grad-CAM (d) Guided Grad-CAM 

Figure 5: Same frame and same mapping methods as in Figure 4. In this case, the target class is the opposite class (positive). 
Faces anonymized for the illustration. There is no discernible diference in Gradient Saliency nor Guided Backpropagation, but 
we can see that the focus changes to the experimenter in the class-sensitive methods Grad-CAM and Guided Grad-CAM. 

Figure 6: Four consecutive frames from a manually annotated attention map (task: dolls, variable: social engagement). All 
annotators labeled the sample as positive. Faces anonymized for the illustration. 

Figure 7: Left to right: original frame, Guided Backpropagation, Grad-CAM, and human attention. Top row: original resolution 
(160 × 160px except for Grad-CAM, 10 × 10px). Bottom row: homogeneous resolution (32 × 32px). Faces anonymized for the 
illustration. 
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Method Guided Grad-CAM Guided Backpropagation Grad-CAM Gradient Saliency 
Mean 7.19 8.35 9.60 10.27 
Standard Deviation 3.66 1.93 2.30 1.35 

Table 4: Attention mapping methods ranked by increasing mean EMD (lower is better), calculated over all full-agreement 
samples in the comparison set. The EMD mean and standard deviation for every method are listed under the method’s name. 

as the best method and Gradient Saliency as the worst. Notice, 
however, that the standard deviation has a similar magnitude as 
the diference between means. 

5 CONCLUSIONS 
In this paper, we have shown that end-to-end Deep Learning models 
can learn to classify the afective states of an infant during guided 
play, specifcally their task engagement with the toy at hand, and 
social engagement with the experimenter and the intended activity. 
We achieved this with very little data for Deep Learning standards: 
23 videos, totalling 4 hours, of which only around 50 minutes were 
used in each training session – several orders of magnitude smaller 
than standard video datasets. Furthermore, we achieved this with a 
single video feed showing a general view of the interaction from a 
side angle, which would be unusable by standard feature extraction 
tools. The networks we trained showed varying degrees of agree-
ment with human annotators – from bad as chance, to human-like 
performance. It appears the dominating factor is the task: some 
interaction scenarios are easier than others. We expected the classi-
fcation of social engagement to be intrinsically more difcult than 
that of task engagement, but this was not supported by the results. 

We have also shown how careful consideration of the available 
data can help mitigate the lack of training examples. Part of our 
pipeline uses standard solutions for this problem: pre-training on 
bigger datasets, strong data augmentation, good data stratifcation. 
But another part is tailored to the video domain: using interval an-
notations to obtain a continuum of snippets we can sample. Keeping 
in mind that samples from the same video are likely to show strong 
correlation, this technique greatly increases the efective number 
of samples at our disposal. The considerations about data extend 
to the targeted ground truth: when faced with disagreeing coders, 
we can avoid synthesizing a joint annotation, and let the network 
learn from every individual’s perspective. 

We have analysed four common post-hoc attention mapping 
methods: Gradient Saliency, Guided Backpropagation, Grad-CAM 
and Guided Grad-CAM. We have calculated attention maps for a 
comparison set, and discussed their diferences when performing 
example-based subjective analysis – in our experience, the domi-
nant use case in the literature. Through this approach, we observed 
head, body and contextual cues identifed by the network as im-
portant to discriminate engagement levels. We also observed the 
(shaker, social engagement) network using contextual information: 
in negative samples, it correctly focuses on the infant to determine 
not engaged. But, when asked about evidence for engaged, it focuses 
on the researcher. 

Finally, we have provided a numerical comparison of the difer-

technique. Our results indicate that Guided Grad-CAM is closest to 
human attention, while Gradient Saliency is furthest. Previous lit-
erature has shown that both gaze tracking data and explicit mouse-
painting can be successfully used to create the ground truth. In 
this paper we preferred the mouse-painting technique, which can 
capture class sensitivity. 

6 OPEN ACCESS 
The code for this project can be accessed at https://github.com/ 
MarcFraile/infant-engagement 

ACKNOWLEDGMENTS 
Deep thanks to Elisabeth Wetzer and Mengyu Zhong for the many 
hours spent annotating the dataset. 

This work was partly funded by the Centre for Interdisciplinary 
Mathematics, Uppsala University, and the Swedish Research Coun-
cil (grant n. 2020-03167). 

REFERENCES 
[1] Amina Adadi and Mohammed Berrada. 2018. Peeking inside the black-box: a 

survey on explainable artifcial intelligence (XAI). IEEE access 6 (2018), 52138– 
52160. 

[2] Huda Alsofyani and Alessandro Vinciarelli. 2021. Attachment Recognition in 
School Age Children Based on Automatic Analysis of Facial Expressions and 
Nonverbal Vocal Behaviour. In Proceedings of the 2021 International Conference 
on Multimodal Interaction. 221–228. 

[3] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, 
Klaus-Robert Müller, and Wojciech Samek. 2015. On pixel-wise explanations for 
non-linear classifer decisions by layer-wise relevance propagation. PloS one 10, 
7 (2015), e0130140. 

[4] Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency. 2016. Openface: 
an open source facial behavior analysis toolkit. In 2016 IEEE Winter Conference 
on Applications of Computer Vision (WACV). IEEE, 1–10. 

[5] Ali Borji, Hamed R Tavakoli, Dicky N Sihite, and Laurent Itti. 2013. Analysis of 
scores, datasets, and models in visual saliency prediction. In Proceedings of the 
IEEE international conference on computer vision. 921–928. 

[6] Zoya Bylinskii, Tilke Judd, Aude Oliva, Antonio Torralba, and Frédo Durand. 
2018. What do diferent evaluation metrics tell us about saliency models? IEEE 
transactions on pattern analysis and machine intelligence 41, 3 (2018), 740–757. 

[7] Zoya Bylinskii, Adrià Recasens, Ali Borji, Aude Oliva, Antonio Torralba, and 
Frédo Durand. 2016. Where should saliency models look next?. In European 
Conference on Computer Vision. Springer, 809–824. 

[8] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh. 2019. 
OpenPose: realtime multi-person 2D pose estimation using Part Afnity Fields. 
IEEE transactions on pattern analysis and machine intelligence 43, 1 (2019), 172– 
186. 

[9] Claire Chambers, Nidhi Seethapathi, Rachit Saluja, Helen Loeb, Samuel R Pierce, 
Daniel K Bogen, Laura Prosser, Michelle J Johnson, and Konrad P Kording. 2020. 
Computer vision to automatically assess infant neuromotor risk. IEEE Transac-
tions on Neural Systems and Rehabilitation Engineering 28, 11 (2020), 2431–2442. 

[10] Jacob Cohen. 1960. A coefcient of agreement for nominal scales. Educational 
and psychological measurement 20, 1 (1960), 37–46. 

[11] Abhishek Das, Harsh Agrawal, Larry Zitnick, Devi Parikh, and Dhruv Batra. 2017. 
Human attention in visual question answering: Do humans and deep networks 
look at the same regions? Computer Vision and Image Understanding 163 (2017), 
90–100. 

ent post-hoc mapping methods. For this, we collected a human- [12] Abhinav Dhall, Garima Sharma, Roland Goecke, and Tom Gedeon. 2020. Emotiw 
2020: Driver gaze, group emotion, student engagement and physiological signal annotated attention map baseline for the comparison set, and used based challenges. In Proceedings of the 2020 International Conference on Multimodal 

the Earth Mover’s Distance to evaluate the human-likeness of each Interaction. 784–789. 

453

https://github.com/MarcFraile/infant-engagement
https://github.com/MarcFraile/infant-engagement


End-to-End Learning and Analysis of Infant Engagement During Guided Play: Prediction and Explainability ICMI ’22, 7-11 Nov 2022, Bangalore 

[13] Paul Ekman, Wallace V. Friesen, and Joseph C. Hager. 2002. The Facial Action 
Coding System. 

[14] Ruth Fong, Mandela Patrick, and Andrea Vedaldi. 2019. Understanding deep 
networks via extremal perturbations and smooth masks. In Proceedings of the 
IEEE/CVF international conference on computer vision. 2950–2958. 

[15] Marc Fraile, Joakim Lindblad, Christine Fawcett, Nataša Sladoje, and Ginevra 
Castellano. 2021. Automatic analysis of infant engagement during play: An end-
to-end learning and Explainable AI pilot experiment. In Companion Publication 
of the 2021 International Conference on Multimodal Interaction. 403–407. 

[16] Jennifer A Fredricks, Phyllis C Blumenfeld, and Alison H Paris. 2004. School 
engagement: Potential of the concept, state of the evidence. Review of educational 
research 74, 1 (2004), 59–109. 

[17] Darshan Gera and S Balasubramanian. 2020. Afect expression behaviour analysis 
in the wild using spatio-channel attention and complementary context informa-
tion. arXiv preprint arXiv:2009.14440 (2020). 

[18] Zakia Hammal, Wen-Sheng Chu, Jefrey F Cohn, Carrie Heike, and Matthew L 
Speltz. 2017. Automatic action unit detection in infants using convolutional 
neural network. In 2017 Seventh International Conference on Afective Computing 
and Intelligent Interaction (ACII). IEEE, 216–221. 

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual 
learning for image recognition. In Proceedings of the IEEE conference on computer 
vision and pattern recognition. 770–778. 

[20] Nathan Henderson, Wookhee Min, Jonathan Rowe, and James Lester. 2021. En-
hancing multimodal afect recognition with multi-task afective dynamics mod-
eling. In 2021 9th International Conference on Afective Computing and Intelligent 
Interaction (ACII). IEEE, 1–8. 

[21] Hifza Javed, WonHyong Lee, and Chung Hyuk Park. 2020. Toward an automated 
measure of social engagement for children with autism spectrum disorder—a 
personalized computational modeling approach. Frontiers in Robotics and AI 
(2020), 43. 

[22] Emily JH Jones, K Venema, R Earl, R Lowy, K Barnes, A Estes, G Dawson, and 
SJ Webb. 2016. Reduced engagement with social stimuli in 6-month-old infants 
with later autism spectrum disorder: a longitudinal prospective study of infants 
at high familial risk. Journal of neurodevelopmental disorders 8, 1 (2016), 1–20. 

[23] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra 
Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. 2017. 
The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017). 

[24] Qiuxia Lai, Salman Khan, Yongwei Nie, Hanqiu Sun, Jianbing Shen, and Ling 
Shao. 2020. Understanding more about human and machine attention in deep 
neural networks. IEEE Transactions on Multimedia 23 (2020), 2086–2099. 

[25] J Richard Landis and Gary G Koch. 1977. The measurement of observer agreement 
for categorical data. biometrics (1977), 159–174. 

[26] Sebastian Lapuschkin, Stephan Wäldchen, Alexander Binder, Grégoire Montavon, 
Wojciech Samek, and Klaus-Robert Müller. 2019. Unmasking clever hans pre-
dictors and assessing what machines really learn. Nature communications 10, 1 
(2019), 1–8. 

[27] Chloë Leclère, Marie Avril, S Viaux-Savelon, N Bodeau, Catherine Achard, Syl-
vain Missonnier, Miri Keren, R Feldman, M Chetouani, and David Cohen. 2016. 
Interaction and behaviour imaging: a novel method to measure mother–infant 
interaction using video 3D reconstruction. Translational Psychiatry 6, 5 (2016), 
e816–e816. 

[28] Séverin Lemaignan, Charlotte ER Edmunds, Emmanuel Senft, and Tony Belpaeme. 
2018. The PInSoRo dataset: Supporting the data-driven study of child-child and 
child-robot social dynamics. PloS one 13, 10 (2018), e0205999. 

[29] Brais Martinez, Michel F Valstar, Bihan Jiang, and Maja Pantic. 2017. Automatic 
analysis of facial actions: A survey. IEEE transactions on afective computing 10, 3 
(2017), 325–347. 

[30] Michael Morales, Peter Mundy, Christine EF Delgado, Marygrace Yale, Daniel 
Messinger, Rebecca Neal, and Heidi K Schwartz. 2000. Responding to joint atten-
tion across the 6-through 24-month age period and early language acquisition. 
Journal of applied developmental psychology 21, 3 (2000), 283–298. 

[31] Alicja Niedźwiecka, Sonia Ramotowska, and Przemysław Tomalski. 2018. Mu-
tual gaze during early mother–infant interactions promotes attention control 
development. Child Development 89, 6 (2018), 2230–2244. 

[32] Pooja Prajod, Tobias Huber, and Elisabeth André. 2022. Using Explainable AI to 
Identify Diferences Between Clinical and Experimental Pain Detection Models 
Based on Facial Expressions. In International Conference on Multimedia Modeling. 
Springer, 311–322. 

[33] Philipp V Rouast, Marc TP Adam, and Raymond Chiong. 2019. Deep learning for 
human afect recognition: Insights and new developments. IEEE Transactions on 
Afective Computing 12, 2 (2019), 524–543. 

[34] Skipper Seabold and Josef Perktold. 2010. statsmodels: Econometric and statistical 
modeling with python. In 9th Python in Science Conference. 

[35] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. 2017. Grad-cam: Visual explanations from 
deep networks via gradient-based localization. In Proceedings of the IEEE interna-
tional conference on computer vision. 618–626. 

[36] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2013. Deep inside 
convolutional networks: Visualising image classifcation models and saliency 
maps. arXiv preprint arXiv:1312.6034 (2013). 

[37] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Ried-
miller. 2014. Striving for simplicity: The all convolutional net. arXiv preprint 
arXiv:1412.6806 (2014). 

[38] Shivam Srivastava, Saandeep Aathreya SIdhapur Lakshminarayan, Saurabh Hin-
duja, Sk Rahatul Jannat, Hamza Elhamdadi, and Shaun Canavan. 2020. Recog-
nizing emotion in the wild using multimodal data. In Proceedings of the 2020 
International Conference on Multimodal Interaction. 849–857. 

[39] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar 
Paluri. 2018. A closer look at spatiotemporal convolutions for action recognition. 
In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 
6450–6459. 

[40] Panagiotis Tzirakis, George Trigeorgis, Mihalis A Nicolaou, Björn W Schuller, 
and Stefanos Zafeiriou. 2017. End-to-end multimodal emotion recognition using 
deep neural networks. IEEE Journal of Selected Topics in Signal Processing 11, 8 
(2017), 1301–1309. 

[41] Peter Wittenburg, Hennie Brugman, Albert Russel, Alex Klassmann, and Han 
Sloetjes. 2006. ELAN: A professional framework for multimodality research. In 
5th international conference on language resources and evaluation (LREC 2006). 
1556–1559. 

[42] Jianming Wu, Bo Yang, Yanan Wang, and Gen Hattori. 2020. Advanced multi-
instance learning method with multi-features engineering and conservative 
optimization for engagement intensity prediction. In Proceedings of the 2020 
International Conference on Multimodal Interaction. 777–783. 

[43] Matthew D Zeiler and Rob Fergus. 2014. Visualizing and understanding convolu-
tional networks. In European conference on computer vision. Springer, 818–833. 

[44] Bin Zhu, Xinjie Lan, Xin Guo, Kenneth E Barner, and Charles Boncelet. 2020. 
Multi-rate attention based gru model for engagement prediction. In Proceedings 
of the 2020 International Conference on Multimodal Interaction. 841–848. 

[45] Yi Zhu, Xinyu Li, Chunhui Liu, Mohammadreza Zolfaghari, Yuanjun Xiong, Chon-
gruo Wu, Zhi Zhang, Joseph Tighe, R Manmatha, and Mu Li. 2020. A Compre-
hensive Study of Deep Video Action Recognition. arXiv preprint arXiv:2012.06567 
(2020). 

454


	Abstract
	1 Introduction
	2 Related Work
	2.1 Automatic Infant Engagement Recognition
	2.2 Machine Attention
	2.3 Comparison with Human Attention

	3 Method
	3.1 Data Collection
	3.2 Engagement Annotation
	3.3 Classification Algorithm
	3.4 Human Attention Annotation
	3.5 Machine Attention Computation
	3.6 Attention Comparison

	4 Results and Analysis
	4.1 Network Performance
	4.2 Agreement with the Network
	4.3 Subjective Analysis of Machine Attention
	4.4 Subjective Analysis of Human Attention
	4.5 Quantitative Comparison of Attention Maps

	5 Conclusions
	6 Open Access
	Acknowledgments
	References



