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ABSTRACT We study end-to-end learning-based frameworks for amplify-and-forward (AF) relay net-

works, with and without the channel state information (CSI) knowledge. The designed framework resembles

an autoencoder (AE) where all the components of the neural network (NN)-based source and destination

nodes are optimized together in an end-to-end manner, and the signal transmission takes place with an

AF relay node. Unlike the literature that employs an NN-based relay node with full CSI knowledge, we

consider a conventional relay node that only amplifies the received signal using CSI gains. Without the

CSI knowledge, we employ power normalization-based amplification that normalizes the transmission

power of each block of symbols. We propose and compare symbol-wise and bit-wise AE frameworks

by minimizing categorical and binary cross-entropy loss that maximizes the symbol-wise and bit-wise

mutual information (MI), respectively. We determine the estimated MI and examine the convergence of

both AE frameworks with signal-to-noise ratio (SNR). For both these AE frameworks, we design coded

modulation and differential coded modulation, depending upon the availability of CSI at the destination

node, that obtains symbols in 2n-dimensions, where n is the block length. To explain the properties

of the 2n-dimensional designs, we utilize various metrics like minimum Euclidean distance, normalized

second-order and fourth-order moments, and constellation figures of merit. We show that both these AE

frameworks obtain similar spherical coded-modulation designs in 2n-dimensions, and bit-wise AE that

inherently obtains the optimal bit-labeling outperforms symbol-wise AE (with faster convergence under

low SNR) and the conventional AF relay network with a considerable SNR margin.

INDEX TERMS Amplify-and-forward, autoencoder, feed-forward neural networks, learning, and relay

networks.

I. INTRODUCTION

End-to-end learning has appeared as a promising solution

for jointly optimizing all the components of the point-to-

point (P2P) communication network consisting of a neural

network (NN)-based encoder and decoder at the transmit-

ter and receiver by employing an autoencoder (AE) frame-

work [1]. More complicated than the P2P networks is the

relay networks, which include a relaying node assisting the

transmission of the signals from the source to the destina-

tion node. We can broadly classify the relaying schemes as

amplify-and-forward (AF) [2], [3] and decode-and-forward

(DF) [4]. However, the AF scheme is employed practically

because it provides us with low implementation complexity,

and the signal is received, amplified, and re-transmitted all in

the analog domain. Therefore in this work, we consider an

end-to-end learning-based framework for AF relay network,

wherein all the components at the source and destination

nodes are optimized together in an end-to-end manner, sim-

ilar to the AE-based P2P networks proposed in [1], but the

signal transmission between the source and destination nodes

takes place with the aid of an AF relay node.

A. LITERATURE REVIEW

In general, for any k bits transmitted using the n complex-

baseband symbols, the AE frameworks can be broadly clas-

sified as symbol-wise AE (SWAE) and bit-wise AE (BWAE)

frameworks. In a symbol-wise AE framework, one-hot vector

representation of the 2k possible symbols forms the input and

output of the AE, while the AE is optimized by minimizing

the categorical cross-entropy (CE) loss [1]. The symbol-
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wise AE for P2P communication networks has been widely

investigated in [1], [5]– [11] and for the multi-user networks

in [12]. Further, the authors in [13]– [16] studied symbol-

wise AE framework for the AF and DF relay networks.

However, as the symbol-wise AE’s input and output are in the

form of symbols, bit-labeling has to be done separately either

by exhaustively searching through the 2k! combinations or

by heuristic search method, leading to the sub-optimal bit-

labelings and bit-error-rate (BER) performance [17].

On the other hand, the bit-wise AE framework, takes k bits

as input and output of the AE, while the AE is optimized by

minimizing the binary CE loss. The bit-wise AE framework

has been investigated for P2P networks in [17], and for

AF and DF relay networks in [18] and [19], respectively.

Although the bit-wise AEs seem like a trivial modification

of the symbol-wise AEs, but by providing the bit-wise AE’s

input and output in the form of bits, we obtain automatic

bit-labeling. Further, the authors in [17] analyzed the 2-

dimensional (I and Q) modulation design comparing the bit-

wise and symbol-wise AE frameworks for the P2P networks.

The authors in [17] show that while the symbol-wise AE-

based trained constellation improves the symbol-error-rate

(SER), it degrades the BER in comparison to the bit-wise

AE, in a P2P network. This is because symbol-wise AE

aims to maximize the symbol-wise mutual information (MI),

whereas bit-wise AE aims to maximize the bit-wise MI.

The symbol-wise AE-based coded-modulation design has

been investigated for P2P and relay networks widely by

replacing the channel-coding and modulation blocks with a

NN at the encoder, and channel-decoding and demodulation

blocks with a NN at the deoder [1], [5]– [16]. Recently,

the bit-wise AE-based coded-modulation design has been

investigated in [17] for the P2P networks. Until now no

tool was known that can obtain block codes with auto-

matic bit-labeling as a result of mathematical modeling of

the communication system. In fact, the Shannon’s coding

theorem only states the existence of a good code without

specificity, and only for infinite block lengths [20]. Thus,

bit-wise AE has appeared as a novel research direction to

obtain block codes for short block lengths in a P2P network.

Although the authors in [18] focussed on bit-wise AE-based

2-dimensional modulation design with the achievable-sum-

rate analysis for the AF relay networks, the bit-wise AE-

based coded-modulation design has never been studied in the

literature for AF relay networks, but also its BER analysis.

Furthermore, as the channel estimation still remains a

challenging task, especially in a relay network, where two-

hop channel state information (CSI) knowledge needs to

be known accurately at the destination node to decode the

signals correctly. The differential coded-modulation design is

another important research topic, which has been investigated

for the symbol-wise AE frameworks in [1], [5]– [16]. How-

ever, the bit-wise AE-based differential coded-modulation

design has never been studied for the AF relay networks.

The analysis of the coded-modulation design comes up

with new challenges, as these codewords are designed in

the 2n-dimensional space (n denotes the block length).

In some of the previous works where the insights to the

symbol-wise AE-based coded-modulation designs in 2n-

dimensional space is shown [1], [13], [16] it remains con-

fined to the t-stochastic neighbour embedding (t-SNE) repre-

sentation [21]. Although the t-SNE representation helps us

to collapse the 2n-dimensional space to 2 dimensions, but it

does not reveal much information of designed coded modula-

tion in 2n-dimensional space, by only indicating the clusters

of symbols in 2-dimensions. Moreover, the authors in [11]

analyzed the packing density of symbol-wise AE frameworks

in P2P networks. However, none of the works [1], [5]– [17],

have analyzed and contrasted the bit-wise AE-based designed

constellations over that of the symbol-wise AE by analyzing

the coded-modulation designs either for the P2P or relay

networks. Furthermore, comparison of bit-wise and symbol-

wise AE from an information-theoretic perspective, such

as by comparing their minimized CE loss functions and

estimated MI, has never been investigated in the literature

to determine the impact of AE framework on its convergence

with the signal-to-noise ratio for the AF relay networks.

Thus, there exists a need to contrast the AE-based (dif-

ferential) coded-modulation designs for the symbol-wise and

bit-wise AE frameworks to understand the 2n-dimensional

codewords designed in both the frameworks and their po-

tential BER performance gains. Further, to the best of the

authors’ knowledge, no such comparative study between bit-

wise and symbol-wise AE frameworks exists for relay net-

works or coded-modulation designs even for P2P networks.

In particular, end-to-end learning-based relay networks

using AE frameworks have been studied for AF relaying

networks in [13], [18] and for DF relaying networks in [14]–

[16], [19]. The authors in [18] studied a two-way AF relay

network using a bit-wise AE performing only modulation

design in 2-dimensions by employing NN-based multiple

fully-connected (dense) layers at the AF relay node, while the

authors in [13] studied a one-way AF relay network using

a symbol-wise AE with NN-based multiple dense layers at

the AF relay node. However, conventionally AF scheme is

designed to have lower complexity at the relay node, with just

the amplification operation to take place. Whereas, the NN-

based processing by the use of dense layers at the relay node

in [13], [18] contradicts the low implementation complexity

intended for the AF scheme. Furthermore, the authors in

[13], [18] considered full CSI knowledge at the AF relay

node in their AE frameworks. However, conventionally the

AF relay node only has the information about the channel

gain knowledge, thereby providing an inherent advantage of

utilizing the phase information at the AE-based framework

over the conventional AF relay networks. Therefore, to the

best of the authors’ knowledge, none of the previous works

have studied bit-wise AE-based coded-modulation design,

and/or, have considered a minimal complexity AF relay node

with the fair CSI requirements as the conventional networks.

Moreover, the removal of the CSI knowledge is studied

in [13] for the AF relay network and in [14]– [16], [19] for
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DF relay networks. The authors in [13] employed a single

NN at relay node to decode and re-encode the signal together,

whereas the authors in [14]– [16], [19] employed a greater

decoding power by explicitly decoding and encoding signals

at the relay with the help of separate NN-based decoders and

encoders. However, to the best of the authors’ knowledge,

none of the previous works have removed the necessity of

the CSI knowledge without utilizing NN-based processing

at the relay node either for a bit-wise or symbol-wise AE

framework, and/or, have studied bit-wise AE-based differen-

tial coded-modulation designs for an AF relaying networks.

Furthermore, for an end-to-end learning framework with-

out the CSI knowledge, the radio transformer network (RTN)

was first introduced in [1], and since then has been widely

employed for decoding the signal in the absence of CSI

knowledge at the decoder, such as in [14], [19]. However,

to the best of the authors’ knowledge, none of the previous

works have proposed an RTN for AF relay networks for

either the symbol-wise or bit-wise AE frameworks.

B. CONTRIBUTIONS

Now, we summarize the major contributions of this work as

follows:

• We propose a novel end-to-end learning-based AF relay

network using the AE frameworks. Specifically, we

propose to employ NNs consisting of dense layers at

the source and destination nodes that constitute the AE

framework and employ a conventional AF relay node

to minimize the implementation cost and maintain a

fair CSI requirement between the proposed and conven-

tional relay networks, compared to [13], [18].

• We design both the bit-wise and symbol-wise AE frame-

work for the AF relay assisted network, and show that

these frameworks are optimized by maximizing the

bit-wise MI and symbol-wise MI of an AF relaying

network, respectively, while minimizing the relative en-

tropy between the posterior distributions at the encoder

and decoder. Later, we formulate the AF relay assisted

AE-based framework as a multilabel (multiclass) classi-

fication task for the bit-wise (symbol-wise) AEs.

• Both the proposed AE frameworks perform joint chan-

nel coding and modulation (coded-modulation) design.

In particular, at the source node, the NN encoder of

the bit-wise AE takes k bits as input and provides n
complex-baseband symbols as output, while the NN

encoder of the symbol-wise AE takes one-hot vector

representation of the 2k possible symbols as input to

provide n complex-baseband symbols output. While at

the destination node, the decoder utilizes a separate NN

to decode k bits (or one-hot vector representation of

the 2k possible symbols) from the n symbols. Thus, the

coded-modulation (demodulation) design takes place in

2n-dimensional space. We train the encoder-decoder in

an end-to-end manner by minimizing the binary CE

and categorical CE loss functions in the bit-wise and

symbol-wise AE, respectively. For greater insights, we

compare the CE loss functions from an information-

theoretic perspective and the estimated MI to analyze

the convergence of the proposed AE frameworks.

• We remove the need for CSI knowledge and noise

variances of the links for the proposed AE-based frame-

works, even without the NN-based processing at the re-

lay node, unlike [14]– [16], [19]. We show that training

the encoder and decoder in an end-to-end manner leads

to block-by-block differential coded-modulation (de-

modulation) design in 2n-dimensional space, thereby

enabling the AE framework to decode the signals with-

out the CSI knowledge. Furthermore, we propose and

investigate the impact of NN-based RTN on the AF

relaying network.

• Further, without CSI knowledge, the amplification fac-

tor for the conventional AF relay node becomes a fixed

value depending on the second-order statistics of the

channel between the source to relay node and noise vari-

ances [22]– [28]. It is evident that fixed amplification

factor is a sub-optimal approach for the AF scheme,

thus, we also show that by utilizing a power normal-

ization layer that normalizes the transmission power of

n symbols to n at the AF relay node, we can improve

the process of deciding the amplification factor, while

keeping the signal transmission-reception in the analog

domain and removing the requirement of second-order

channel statistics and noise variances at the relay and

CSI knowledge at the destination node.

• We focus on interpretability and analysis of the AE-

based designed coded modulation in the 2n-dimensional

space, by utilizing various metrics, such as the minimum

Euclidean distance, normalized second- and fourth-

order moments, and constellation figure of merit. We

compare the AE-based coded modulation designs for

various scenarios, such as with and without CSI knowl-

edge, between symbol-wise and bit-wise AEs, etc.

C. PAPER ORGANIZATION

The rest of the paper is organized as follows. We detail

the system model for the considered AF relay network in

Section II. In Section III we propose the bit-wise and symbol-

wise AE and analyze the CE loss. In Section IV we detail

the NN architecture, and process of training and testing.

In Section V we show the performance evaluation for the

proposed AE frameworks, and conclude this work with future

directions in Section VI.

D. LIST OF ABBREVIATIONS AND NOTATIONS

To improve the readability of the paper, we have summarized

the abbreviations in Table 1 and notations in Table 2, 3.

II. SYSTEM MODEL

In this section, we present the conventional AF relay net-

works, where the source node (S) wants to exchange its

intended signal with the destination node (D) by employing

an AF relay node (R) in two-phases, as shown in Fig. 1. Each
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TABLE 1: Summary of abbreviations in the paper.

Abbreviation Description

AE Autoencoder

AF Amplify-and-forward

AWGN Additive white Gaussian noise

BER Bit-error-rate

BWAE Bit-wise Autoencoder

CE Cross-entropy

CS Channel statistics

CSI Channel state information

D Destination node

LLR Log-likelihood ratio

MI Mutual information

MLD Maximum likelihood detector

NN Neural network

P2P Point-to-point

PN Power normalization

R Relay node

RBF Rayleigh block fading

RTN Radio transformer network

S Source node

SNR Signal-to-noise ratio

SWAE Symbol-wise Autoencoder

TP Transmit power

t-SNE t-Stochastic neighbour embedding

TABLE 2: Summary of notations in the paper.

Notations Description

2k Total possible symbols or codewords

1s ∈ {1, ..., 2k} One-hot input of SWAE

1̂s ∈ R2k One-hot output of SWAE

θs NN encoder parameters (weights and bias terms)

θd NN decoder parameters (weights and bias terms)

δl Number of neurons in lth layer

σl(·) Activation function in lth layer

π Parameters of AE

τ Learning-rate

▽ Gradient operator

χ Normalized fourth order-moment

α Amplification factor

σ2
r Noise variance at relay node

σ2
d

Noise variance at destination node

σ2
sr Second-order channel statistics

σ(x)i Softmax activation

σ(x) Sigmoid activation

of the nodes has a single antenna and the direct link between

the S and D nodes is strongly attenuated because of severe

path-loss and shadowing, and the communication can take

place only via the AF relay node (R). We consider block-

by-block encoding and decoding operation at the source

and destination nodes, whereas the signal transmission in

each phase takes place as symbol-by-symbol1. We consider

independent and identically distributed (i.i.d.) Rayleigh block

fading (RBF) channels ∼ CN (0, 1), such that it remains

constant for the n transmissions (block length) in each phase,

1The encoder at the source node takes k bits as input and converts it to
j bits via channel coding and then transmit the modulated n symbols to the
destination node via 2n independent channel reuse in two-phases, then the
destination node takes n symbols demodulates it to j bits and then perform
channel decoding to get the k intended bits. Thus rate for the AF relay
network becomes R = k/2n [bits/channel use]. For the sake of clarity in
explanation, we consider n = 1 in this subsection.

TABLE 3: Summary of notations in the paper.

Notations Description

B Batch-size

C All possible alphabets

CFM Constellation figures of merit

DKL KL-divergence

dmin Minimum Euclidean distance

En Normalized second-order moment

es Input of the AE

fθs
(1s, xs) NN encoder of SWAE at source node

fθs
(us, xs) NN encoder of BWAE at source node

gs Modulation process

gθd
(yd, 1̂s) NN decoder of SWAE at destination node

gθd
(yd, l) NN decoder of BWAE at destination node

H Entropy

hrd Channel between relay and destination node

hsr Channel between source and relay node

I Mutual information

IBWAE Estimated MI of BWAE

ISWAE Estimated MI of SWAE

k Total number of bits

L Total number of dense layers in the AE

LLR Log-likelihood ratio

L(fθs
, gθd

) Cross-entropy loss

l ∈ Rk k logits output at destination node in BWAE

M Total constellation points (codewords)

n Total number of channel-reuse (block length)

nd AWGN at destination node

nr AWGN at relay node

Pr Transmission power of relay node

Ps Transmission power of source node

PN Power-normalization layer

p̃gθd
(1s|yd) Probabilities over 2k output message in SWAE

pfθs
(1s|yd) Probabilities over 2k input message in SWAE

pfθs
(um

s |yd) Probabilities over k input bits in BWAE

p̃gθd
(um

s |yd) Probabilities over k output bits in BWAE

Qtrain Training dataset

Qtest Testing dataset

rl ∈ Rδl Bias terms in lth layer

s Symbol decoded by the decoder of SWAE

S Training dataset SNR values

t Iteration number (epochs)

us ∈ {0, 1}k Bits input at source node

ûs ∈ {0, 1}k Bits decoded at destination node

Wl ∈ R
δl−1×δl Weight matrix between (l − 1)th and lth layer

xs Source node signal

yd Signal received at destination node

yr Signal received at relay node

Z
(l) Output of lth layer

FIGURE 1: System model for AF relay networks.

while changes randomly in each phase and with time. In the

first phase, the source node transmits us ∈ {0, 1}k bits by

mapping us to complex baseband symbol xs = gs(us) 7→
C, where gs(·) denotes the modulation process, such that

E
{
|xs|2

}
= 1. The signal received by the AF relay node

(R) can be given by

yr =
√

Pshsrxs + nr (1)
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where Ps represents the source transmission power, hsr

denotes the channel in the first phase transmission, and nr

is the additive white Gaussian noise (AWGN) at the AF relay

node with nr ∼ CN (0, σ2
r).

In the second phase, the relay node performs symbol-wise

amplification with the amplification factor represented as

α =
(
Ps|hsr|2 + σ2

r

)−1/2
(2)

And re-transmit the amplified signal to the destination node

(D), given by

yd =
√

Prhrdαyr + nd

=
√

PsPrhrdhsrαxs
︸ ︷︷ ︸

Intended Signal

+
√

PsPrhrdhsrαnr + nd
︸ ︷︷ ︸

Noise

(3)

where Pr is the transmission power of the relay node, hrd

denotes the channel in the second phase transmission, and

nd is the AWGN with nd ∼ CN (0, σ2
d). The destination

node decodes the intended signal us by using the optimal

maximum-likelihood detector (MLD) as

ûs = argmin
x∈C

∣
∣
∣

∣
∣
∣yd −

√

PsPrhrdhsrαx
∣
∣
∣

∣
∣
∣

2

(4)

where C denotes all the possible alphabets, for example

±
√

1/2±
√

1/2i (for QPSK), etc.

In the differential scenario, i.e. without the CSI knowledge,

we utilize traditional differential modulation and demodu-

lation techniques at the source and destination node, such

as differential QPSK (d-QPSK) and MLD decoding. The

traditional differential schemes are near optimal because

there is no selection combining cooperative diversity at the

destination nodes [22]– [28]. However, the amplification fac-

tor designed in (2) utilizes the channel gain information and

noise variances. In the case of absence of the CSI knowledge,

there are two distinct ways proposed in literature to design

the amplification factor, as detailed below:

• Transmit power-based amplification factor (TP-based

α) – This approach decides the amplification factor

on the basis of the transmission power of the source

node [22], [23], as follows

α = (Ps + 1)
−1/2

(5)

• Channel statistics-based amplification factor (CS-based

α) – This approach utilizes the second-order statistics of

the first hop channel between the source and relay node

σ2
sr = E{|hsr|2} and noise variance at the relay node to

determine the amplification factor [24]– [28], given by

α =
(
Psσ

2
sr + σ2

r

)−1/2
(6)

III. PROPOSED AUTOENCODERS FRAMEWORK FOR

AF RELAY NETWORKS

In this section, we propose the end-to-end learning-based

symbol-wise and bit-wise AE framework for AF relay net-

work, as detailed in Fig. 2 and Fig. 3, respectively.

A. SYMBOL-WISE AE (SWAE) FRAMEWORK FOR AF

RELAY NETWORKS

The source node’s input message is a one-hot representa-

tion vector 1s ∈ {1, ..., 2k} of the 2k possible symbols

of which only one of the element is 1 while the rest are

zeros. The source node aims to map the one-hot encoded

vector to a complex baseband symbol xs, by a mapping

function fθs
(1s, xs) : 1s 7→ xs ∈ C, where fθs

is the

trainable parameters of the NN encoder with weights and

bias terms. We impose a power normalization constraint on

the output of the encoder, such that ||fθs
(1s, xs)||22 = 1,

and the signal received by the relay node can be given as

yr =
√
Pshsrfθs

(1s, xs) + nr. The relay node is a conven-

tional AF relay node, thus the received signal is amplified

as xr = αyr. The amplified signal is re-transmitted over

the second phase and the signal received by the destination

node is given as yd =
√
Prhrdxr + nd. The destination

node implements the de-mapping gθd
(yd, 1̂s) : yd ∈ C 7→

1̂s ∈ R
2k , where gθd

denotes the trainable parameters of

the NN decoder and the 2k outputs represent the decoded

one-hot vector representation, also referred as logits [29].

These outputs are then passed through a softmax function,

σ(x)i = exi

/∑2k

i=1 e
xi to obtain the probabilities over the

2k output message denoted by p̃gθd
(1s|yd). Now, we utilize

the categorical CE loss [20] to train the symbol-wise AE,

averaged over yd, as follows:

L(fθs
, gθd

) := Eyd

[

H
(

pfθs
(1s|yd), p̃gθd

(1s|yd)
)]

(7a)

= −Eyd





2k∑

i=1

pfθs
(1i

s|yd) log p̃gθd
(1i

s|yd)



 (7b)

= −
2k∑

m=1

∫

yd

p(yd)pfθs
(1i

s|yd) log p̃gθd
(1i

s|yd) dyd (7c)

=
2k∑

m=1

∫

yd

pfθs
(1i

s, yd) log

[

pfθs
(1i

s|yd)
pfθs

(1i
s|yd)p̃gθd

(1i
s|yd)

]

dyd

(7d)

=
2k∑

m=1

∫

yd

pfθs
(1i

s, yd) log

[

pfθs
(1i

s|yd)
p̃gθd

(1i
s|yd)

]

dyd

−
2k∑

m=1

∫

yd

pfθs
(1i

s, yd) log pfθs
(1i

s|yd) dyd (7e)

= DKL

(

pfθs
(1s|yd)||p̃gθd

(1s|yd)
)

+Hfθs
(1s|yd) (7f)

= DKL

(

pfθs
(1s|yd)||p̃gθd

(1s|yd)
)

+Hfθs
(1s)

− Ifθs
(1s;Yd) (7g)

Where (7a) defines the categorical CE, (7b) comes from

the definition of CE, (7c) opens the expectation along yd,

in (7d) we multiply and divide by pfθs
(1i

s|yd), in (7e)

we open the log function, (7f) comes from the definition

of KL divergence and entropy, and (7g) utilizes the iden-

tity H(a|b) = H(a) − I(a; b) [20]. By minimizing the
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FIGURE 2: Symbol-wise autoencoder (SWAE) framework for amplify-and-forward relay networks.

FIGURE 3: Bit-wise autoencoder (BWAE) framework for amplify-and-forward relay networks.

categorical CE loss in (7g), we are optimizing the SWAE

framework to maximize the symbol-wise MI between input

bits at the source node and received signal at the destina-

tion node Ifθs
(1s;Yd), while minimizing the KL-divergence

DKL

(

pfθs
(1s|yd)||p̃gθd

(1s|yd)
)

between the posterior dis-

tributions learned at the encoder and the prior distribution

learned at the decoder. Further, the entropy of the one-hot

vector Hfθs
(1s) remains constant.

We can now obtain the estimated MI, which is defined as

the MI subtracted by the relative entropy between the learnt

distributions at the encoder and decoder. For the AF relay

network, the estimated MI will be divided by 2 because the

transmission takes place in two time-slots, given as ISWAE =
ĨSWAE
fθi

(1s;Yd)
/
2. By rearranging the terms in (7g) we have

ĨSWAE
fθs

(1s;Yd) , Ifθs
(1s;Yd)−DKL

(
pfθs

(1s; yd)||
p̃gθd

(1s; yd)
)

= Hfθs
(1s)− LSWAE(fθs

, gθd
) (8)

Since the first term in (8) remains a constant, we can see

that the estimated MI of a symbol-wise AE depends on the

training loss only.

Once the symbol-wise AE is trained with the input-output

of the network as a one-hot vector 1s representing the 2k

possible symbol for the k bits. We can obtain the symbol with

highest probability as the decoded symbol at the destination

node. However, we need to perform bit-labelling separately

on the AE-based designed constellation to map the 1̂s vector

to ûs bit vector. But, bit-labelling remains a challenging

task, especially as the modulation order increases, or while

designing AE-based coded modulation in 2n-dimensional

space. Because in such scenarios, the AE-based designed

modulation might not form grids as conventional QAM, lead-

ing to 2k! possible combinatorial problem to be solved [17].

B. BIT-WISE AE (BWAE) FRAMEWORK FOR AF RELAY

NETWORKS

The source node takes bits as input, given by us ∈
{0, 1}k, and maps it to a symbol xs, by mapping function

fθs
(us, xs) : us 7→ xs ∈ C. We impose a power nor-

malization constraint on the output of the encoder, such that

||fθs
(us, xs)||22 = 1, and the signal received by the relay

node can be given as yr =
√
Pshsrfθs

(us, xs) + nr. We

consider a conventional relay node, thus the received signal is

amplified as xr = αyr. The amplified signal is re-transmitted

over the second phase channel and the signal received by

the destination node is given as yd =
√
Prhrdxr + nd.

The destination node implements the demapping gθd
(yd, l) :

yd ∈ C 7→ l ∈ R
k. The destination node outputs k logits

(one per bit) given by l ∈ R
k. Then we apply a sigmoid

activation function σ(x) = 1
1+e−x [29] on each of the k

logits, to obtain the probabilities p̃gθd
(um

s |yd), m = 1, ..., k.

Furthermore, in [17] it is shown that the logits correspond to

the log-likelihood ratios (LLRs) as:

LLR(m) := log
1− p̃gθd

(um
s = 0|yd)

p̃gθd
(um

s = 0|yd)
= lms , ∀m (9)
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FIGURE 4: Block diagram of training for the proposed bit-wise AE-based end-to-end learning system.

where, p̃gθd
(um

s = 1|yj) = σ(lms ). We train the bit-wise AE

by minimizing the binary CE loss, averaged over yd, as:

L(fθs
, gθd

) :=
k∑

m=1

Eyd

[

H
(

pfθs
(um

s |yd), p̃gθd
(um

s |yd)
)]

, DKL

(

pfθs
(us|yd)||p̃gθd

(us|yd)
)

+Hfθs
(Us)− Ifθs

(Us;Yd) (10)

where, (10) is obtained following the similar steps as (7a)–

(7g). In contrast to (7g) we can see that we are maximizing

the bit-wise MI Ifθs
(Us;Yd) in (10) and minimizing the

KL divergence between the posterior distributions learned at

the encoder and the prior distribution learned at the decoder

DKL

(

pfθs
(us|yd)||p̃gθd

(us|yd)
)

. Further, entropy of bits

Hfθs
(Us) remains constant and equal to the Hfθs

(1s) in

(7g).

Now, the estimated MI for the bit-wise MI is given as

IBWAE = ĨBWAE
fθi

(Us;Yd)
/
2 and by using (10), we have

ĨBWAE
fθs

(Us;Yd) , Ifθs
(Us;Yd)−DKL

(
pfθs

(us|yd)||
p̃gθd

(us|yd)
)

= Hfθs
(Us)− LBWAE(fθs

, gθd
) (11)

Since the first term in (11) remains a constant, we can see that

the estimated MI of a bit-wise AE depends on the training

loss only.

Once the bit-wise AE is trained with the bits as its input-

output, we can directly obtain the bit-labelling for designed

complex baseband symbols xs. We will later show that the

bit-wise AE produces gray coded bit-labelling automati-

cally. Thus, bit-wise AE removes the 2k! complexity of bit-

labelling required in the symbol-wise AE.

In contrast to the previous bit-wise AE works on P2P

networks in [17] where the SNR information was required to

train an AE, and two-way AF relay networks in [18] where

a separate NN was created for each SNR, we also remove

the necessity to acquire the SNR information for correctely

encoding or decoding the signals. In fact, we create a single

bit-wise AE framework that can be tested on a range of SNRs

reducing the floating parameters in the NN by 95% [13].

IV. IMPLEMENTATION OF AUTOENCODER

FRAMEWORK – PARAMETERS AND TRAINING

As the output of the bit-wise AE are bits and that of symbol-

wise AE are symbols. We can formulate the proposed AF re-

lay assisted AE-based framework as a multilabel (multiclass)

classification task for the bit-wise (symbol-wise) AEs. We

can optimize the bit-wise and symbol-wise AE framework

by maximizing the minimum Euclidean distance between

the constellation points, but it is not an optimal metric for

designing channel-coding [30], [31]. More specifically, op-

timizing the binary CE and categorical CE loss obtained in

(10) and (7g) is a better metric, as it directly optimizes the

AE frameworks by maximizing the bit-wise MI and symbol-

wise MI, respectively [30], [31]. In fact, the minimization

of the binary CE loss directly leads to the maximization

of the generalized MI. Now, we detail the NN architecture

for the encoder and decoder and process of training the AE

framework for the CE losses below.

For the sake of brevity, in Fig. 4 we show the block dia-

gram for the training of the proposed bit-wise AE framework

for the AF relay networks, and a similar representation can

be done for the symbol-wise AE framework. In this work,

we utilize dense layers in the neural network. Let there be

L layers in a NN with L − 1 hidden layers performing the

encoding (or decoding) operations, wherein the number of

VOLUME 4, 2016 7
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TABLE 4: NN architecture of encoder.

Layer No. (l) Nodes (δe
l
) Remarks

l = 0 δ0 Input (ei)
l = 1 64 σ1 = Tanh

l = 2 32 σ2 = Tanh

l = 3 16 σ3 = Tanh

l = 4 2n σ4 = Linear

l = 5 2n Power normalization (PN)

nodes in the lth ∈ {1, ...., L} layer is given by δl. Then, the

lth dense layer [29] can be represented as

Z(l) = σl

(

WlZ
(l−1) + rl

)

(12)

where σl(·) denotes the activation function, Wl ∈ R
δl−1×δl

is the weight matrix and rl ∈ R
δl represents the bias terms.

Now, we detail the AE frameworks for AF relay networks

below.

A. DESIGNING NEURAL NETWORK-BASED ENCODER

The source node is equipped with its own NN-based encoder

that performs block-by-block encoding, wherein k bits (or 2k

symbols) are modulated to n symbols. Since we perform joint

channel coding and modulation design, this can be referred as

NN-based coded modulation design. The encoder consists of

M+1 layers with M dense layers and a power normalization

(PN) layer, given as

fθs
(es, xs) = PN (σM (WMσM−1 (WM−1σM−2 (...

σ1 (W1es + r1) ...) + rM−1) + rM )) (13)

where es represents the input to the encoder and PN denotes

the power normalization layer, with no trainable parameters,

mandating that the transmission power is ||fθs
(es, xs)||22 =

n, given as

PN (X) : ||X||22 = n (14)

For the case of symbol-wise AE the input to the encoder

becomes symbols, whereas the input to the encoder is bits

for the bit-wise AE. Thus, the input to the encoder with the

number of input nodes can be given as follows

{es, δ0} =

{

{1s, 2
k}, for Symbol-wise AE

{us, k}, for Bit-wise AE
(15)

For the sake of fair comparison between symbol-wise and bit-

wise AE frameworks, we keep the encoder’s NN architecture

same for all the scenarios, as summarized in Table 42.

Note that the output of the power normalization layer is the

output of the source node’s encoder, i.e. xs ∈ R
2n. As NN

can support only real values, thus we have 2n outputs, where

{1, ...., n} denotes the real part and {n + 1, ..., 2n} denotes

the imaginary part of the n complex baseband symbols.

2In particular, we consider M = 4 dense layers for designing the encoder,
with δe1 = 64, δe2 = 32, δe3 = 16, δe4 = 2n. Also, we keep σ{1,2,3} as
Tanh activation function, whereas σ4 as Linear activation function. The Tanh

activation function can be given as σ(x) = tanh(x) = 2
1+e−2x

− 1, and

the Linear activation function can be given as σ(x) = linear(x) = x [29].

Also, note that the signal transmission takes place symbol-

by-symbol.

B. DESIGNING AF RELAY NODE

The relay node is deigned on the basis of the presence or

absence of the CSI knowledge, as follows:

• With the CSI Knowledge – In this case, we use a conven-

tional AF relay node that amplifies the received signal

using the amplification factor in (2) and re-transmits the

signal to the destination node. The process of signal

transmission–reception remains the same as conven-

tional scenario for both the bit-wise and symbol-wise

AEs, as shown in Table 5. Where, in the first time-slot

the source node transmits the signal to the relay node

while the relay node remains silent, and in the second

time-slot the relay transmits the signal to the destination

node while the source node remains silent.

• Without the CSI Knowledge – In this case, we propose

two approaches as detailed below:

-- Using Conventional AF Relay – In this case, we

use a conventional AF relay node that amplifies

the received signal using the amplification factor

in (5) or (6) depending if the amplification factor

is determined using TP-based α or CS-based α
method. Further, the process of signal transmission

and reception remains the same as conventional

scenario for both the bit-wise and symbol-wise

AEs, as shown in Table 5.

-- Using Power Normalized AF Relay (PN at relay) –

In this case, we modify the signal transmission and

reception process, as detailed in Table 6. Herein,

the source node transmits the complete block of

data comprising n symbols to the relay node in

the first n time-slots, while the relay node remains

silent. Then the relay node performs amplification

by normalizing the power of n symbols using

the power normalization layer PN given in (14),

with no trainable parameters, mandating that the

transmission power is ||xr||22 = n. Then in the

next n time slots, the relay node performs symbol-

by-symbol transmission, while the source node

remains silent.

C. DESIGNING NEURAL NETWORK-BASED DECODER

The symbols re-transmitted by the AF relay node are decoded

by the destination node. The decoder performs block-by-

block decoding, where n symbols are demodulated to k bits.

Since we perform joint channel decoding and demodulation it

can also be referred as NN-based coded demodulation design.

The decoder at the destination node consists of N dense

layers, given as

gθd
(yd, ês) = σN (WNσN−1 (WN−1σN−2 (...σ1 (

W1LL (yd) + r1) ...) + rN−1) + rN ) (16)
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TABLE 5: Process of signal transmission–reception of a block of data (block length n) for conventional AF relay network, and

AE-based scenarios – with CSI knowledge and without CSI knowledge using conventional AF relay.

Time-instants [κ] [1] [2] [3] [4] · · · · · · [2n− 1] [2n]
Symbol Tx by S xs[1] − xs[2] − · · · · · · xs[n] −
Symbol Rx by R yr[1] − yr[2] − · · · · · · yr[n] −
Symbol Tx by R − xr[1] − xr[2] · · · · · · − xr[n]
Symbol Rx by D − yd[1] − yd[2] · · · · · · − yd[n]

TABLE 6: Process of signal transmission–reception of a block of data (block length n) for AE-based scenarios without CSI

knowledge using power normalized AF relay.

Time-instants [κ] [1] [2] · · · · · · [n] [n+ 1] [n+ 2] · · · · · · [2n− 1] [2n]
Symbol Tx by S xs[1] xs[2] · · · · · · xs[n] − − · · · · · · − −
Symbol Rx by R yr[1] yr[2] · · · · · · yr[n] − − · · · · · · − −
Symbol Tx by R − − · · · · · · − xr[1] xr[2] · · · · · · xr[n− 1] xr[n]
Symbol Rx by D − − · · · · · · − yd[1] yd[2] · · · · · · yd[n− 1] yd[n]

TABLE 7: NN architecture of decoder.

Layer No. (l) Nodes (δl) Remarks

l = 0 2n Input (Output of LL)

l = 1 256 σ1 = Tanh

l = 2 128 σ2 = Tanh

l = 3 64 σ3 = Tanh

l = 4 32 σ4 = Tanh

l = 5 δ0
σ5 = Softmax (for SWAE) or

σ5 = Sigmoid (for BWAE)

where ês is the output at the decoder corresponding to input

es at the encoder, and LL denotes the L Lambda layers with

no trainable parameters. Please note that the first lambda

layer takes received symbols as input and the output of the

last lambda layer forms the input to the NN decoder. The

Lambda layers changes depending on the scenarios, thus de-

tailed separately in Section V. For the sake of fair comparison

between symbol-wise and bit-wise AE frameworks, we keep

the decoder’s NN architecture same for all the scenarios, as

summarized in Table 73.

D. MODEL TRAINING AND UPDATES

Similar to the previous works [13]– [18], we propose to

employ NNs consisting of dense layers at the source and

destination nodes that constitute the AE framework, both of

these NNs are trained jointly while minimizing the CE loss,

also referred as end-to-end learning. In particular, the input

to the NN encoder at the source node is bits (for BWAE) or

symbols (for SWAE), whereas the input to the NN decoder

at the destination node is the amplified signal by the AF

relay node, distorted in two-phase relay transmission. We

train this AE framework, such that it becomes unaffected

by testing SNR and can handle the two-hop fading channels

effectively. Besides, we are using a conventional AF relay

node, thus we do not need to perform explicit training at the

AF relay node, unlike the works in [13]– [18]. Once trained,

we deploy the NN weights at the source and destination

3In particular, we consider N = 5 dense layers for designing the encoder,
with δd1 = 256, δd2 = 128, δd3 = 64, δd4 = 32, δd5 = δ0. Also, we keep
σ{1,2,3,4} as Tanh activation function, whereas σ5 as Softmax activation
function for symbol-wise AE and σ5 as Sigmoid activation function for bit-
wise AE.

nodes for future predictions. Later in this AE-framework,

the NN-based source node communicates with the NN-based

destination node via an AF relay node.

The expected loss for AE-based AF relay network is given

by L(fθs
, gθd

). Depending on the constructed symbol-wise

or bit-wise AE the loss can be categorical or binary CE

loss as shown in (7g) and (10), respectively. Let there be

{Qtrain, Qtest} training and testing samples, then expected loss

can be estimated via sampling [29] as

L(fθs
, gθd

) =
1

B

∑Q

q=1
Lfθs

,gθd
(eq, êq) (17)

where B denotes the batch size, and since we train the

designed NN for all the Qtrain training samples, thus q =
{1, ..., Q}, where Q = Qtrain

B and {eq, êq} denotes the training

input-output of the AE. Thus, we can write the objective

function as follows

min
fθs

,gθd

L(fθs
, gθd

) (18)

The most widely employed method to solve the optimiza-

tion problem is stochastic gradient descent (SGD) method,

wherein for the NNs, the gradient is obtained by back prop-

agation method [29]. Herein, we update the parameter set

π = {fθs
, gθd

} iteratively in the SGD, as follows

π
(t) = π

(t−1) − τ▽L(π(t−1)) (19)

where τ > 0, t,▽ represent the learning rate, iteration index

and gradient operator, respectively.

E. PREDICTIONS

The process of predictions vary depending on the designed

bit-wise or symbol-wise AE frameworks as:

• For Bit-Wise Autoencoders (BWAE) – We have Sigmoid

activation at the last layer of the decoder, giving us soft

probabilistic outputs p̃gθd
(um

s |yd), ∀m = {1, ..., k}.

Then for each pth = {1, ..., QTest} testing sample,
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the bits can be predicted û
(m,p)
s by keeping a simple

threshold such as 0.5 on the p̃gθd
(u

(m,p)
s |yd), as below

û(m,p)
s =

{

0, if p̃gθd
(u

(m,p)
s |yd) ≤ 0.5,

1, if p̃gθd
(u

(m,p)
s |yd) > 0.5,

∀ m, p.

(20)

• For Symbol-Wise Autoencoders (SWAE) – We have Soft-

max activation at the last layer of the decoder, giving us

output 1s := 1ns ∈ [0, 1], ∀n = 1, ..., 2k, such that
∑2k

n=1 1
n
s = 1, where each of the element denotes a

possible symbol. Then for each qth = {1, ..., QTrain}
training sample, we determine the symbol sq with the

largest probability, as follows

sq = arg max
n=1,...,2k

(

1(n,q)s

)

, ∀ q. (21)

Now, we have to perform bit-labelling, for the 2k sym-

bols. As detailed earlier bit-labelling can become a 2k!
combinatorial problem. Thus, we employ a heuristic

approach to label the symbols, wherein we map the

symbols to bits sq 7→ ûq
s according to the Gray codes.

For example, for QPSK modulation, i.e. (n.k) = (1, 2),
we have 4 symbols as output, we label the symbols as

s1 7→ {0, 0}, s2 7→ {0, 1}, s3 7→ {1, 1}, and s4 7→
{1, 0}, respectively. Then for each pth testing sample

we find the symbol sp with the largest probability, as

sp = arg max
n=1,...,2k

(

1(n,p)s

)

, ∀ p. (22)

And utilize the bit-labelling done for the training dataset

to map ûp
s from sp.

Then, we calculate the bit-error-rate (BER) between the

true bits intended to be transmitted (up
s) and predicted bits

decoded at the receiver (ûp
s).

V. SIMULATION RESULTS

In this section, we evaluate the proposed bit-wise and

symbol-wise AE frameworks for the AF relay networks with

practical SNR values. We utilize QPSK modulation similar to

[14]. To train the proposed architectures we utilize SGD with

Adam optimizer [32], where the weights of the dense layers

are initialized with the Glorot initializer [33]. We keep the

learning rate τ = 0.00125, batch size B = 6000, number of

training epochs as 50, and transmission power of each node

Ps = Pr = 1. We implement the proposed AE framework

using Keras [34] with Tensorflow [35] as back-end. We show

the performance for AWGN and RBF channels, where the

channel remains constant during a transmission block of n
symbols and then changes randomly. For the conventional

scenarios, we utilize the optimal MLD in (4) at the destina-

tion node.

We have created the bit-wise and symbol-wise AE for the

AF relay networks such that it remains unaffected of testing

SNR values. In other words, we create a single AE model

that can be deployed for any testing SNR. Thus, unlike the

previous works in [17], [18], our proposed symbol-wise and
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FIGURE 5: Performance evaluation for Uncoded Scenarios

(n, k) = (1, 2) for the AF relay networks.

bit-wise AE frameworks do not need the SNR value for pre-

diction. For this, we create a training dataset of 105 samples

for each of the SNR values in S , and we test the designed

models on the unseen testing dataset of 105 samples. For

AWGN channels, we keep the S = {4} dB and for the RBF

channels, we keep the S = {3, 10, 23, 28, 38, 42} dB. We

note that for AWGN channels, only one SNR point brings

the best AE performance, in particular, a low SNR point,

intuitively this is because in the presence of large AWGN

the AE learns to map the constellation points as far away as

possible. For the RBF channels, we need multiple SNR points

to obtain the best AE performance, ranging from low SNR

to high SNR points, intuitively this is because the AE needs

to learn to map constellation in the presence of both RBF

channels in two-hop transmission and AWGN at the relay and

destination node, thus when training only a low SNR point

the AE observes only noise and thereby is not able to learn to

map the constellation optimally leading to the stagnation in

BER curves, especially in differential scenarios.

A. AE-BASED MODULATION DESIGN OF THE AF RELAY

NETWORK UNDER AWGN CHANNELS

In this subsection, we evaluate the proposed AE-based mod-

ulation design, i.e. we keep the number of channels reused

n = 1. Particularly we keep (n, k) = (1, 2) and for sake of

10 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3085901, IEEE Access

A. Gupta et al.: End-to-End Learning-based Framework for Amplify-and-Forward Relay Networks

0 5 10 15 20

E
b
/N

0
 [dB]

1

2

3

4

E
s
ti
m

a
te

d
 M

I

BWAE - (n,k) = (1,2)

SWAE - (n,k) = (1,2)

BWAE - (n,k) = (2,4)

SWAE - (n,k) = (2,4)

BWAE - (n,k) = (4,8)

SWAE - (n,k) = (4,8)

FIGURE 6: Estimated MI versus transmit SNR Eb/N0.

clarity, we utilize AWGN channels by considering h(·) = 1,

this assumption holds as there is no direct link between the

source and destination link. Also, there are no Lambda layer

at the decoders.

We show the transmit SNR (Eb/N0) versus the BER

performance in Fig. 5a. As the SNR increases the BER

reduces. As we know that MLD is optimal for AWGN

channels, we can see that the proposed bit-wise AE achieves

performance similar to the optimal MLD of the conventional

AF relay networks. Whereas the proposed symbol-wise AE

performs ≈ 1 dB worse than the optimal MLD. This can be

understood by the constellation learnt by the AEs in Fig. 5b.

The constellation learned by the encoder of the source node

in both the proposed bit-wise and symbol-wise AEs are four

symbols for four possible combinations of bits (k = 2).
Thus, the NN-based encoder forms 2k symbols for k input

bits in both the bit-wise and symbol-wise AE. Further, bit-

wise AE is leading to an automatic bit-labeling in Gray

coding format, whereas bit-labeling for symbol-wise AE is

done heuristically as detailed in Section IV-E. Furthermore,

bit-wise AE leads to optimal rotation and translation leading

to the performance gains, compared to the symbol-wise AE.

B. ESTIMATED MUTUAL INFORMATION OF THE AF

RELAY NETWORK

We now compare the estimated MI for the symbol-wise

and bit-wise AE obtained in (8) and (11) for the AF relay

networks in Fig. 6. We keep (n, k) = {(1, 2), (2, 4), (4, 8)}
under AWGN channels. As the transmit SNR increases the

estimated MI increases, until it reaches the upper bound

k/2. This suggests the KL-divergence loss approaches 0 as

Eb/N0 increases indicating that the proposed AE frame-

works can well approximate at a moderate Eb/N0, but bit-

wise AE shows ≈ 6 dB improvement in estimated MI at

Eb/N0 = 0 dB for AE-based modulation design (n = 1).

The improvement of bit-wise AE further increased with AE-

based coded modulation design (n > 1) where we see that

bit-wise AE shows ≈ 10 dB improvement in estimated MI at

Eb/N0 = 0 dB. As the entropy term in (8) and (11) is equal,

the estimated MI depends only on the classification errors

(or the CE losses) calculated across the 2k input-output for

the SWAE compared to k input-output in the BWAE, and the

low SNR regime leads to more classification errors in AE

training with the additional (2k − k) number of classes in a

symbol-wise AE.

C. AE-BASED DIFFERENTIAL CODED-MODULATION

DESIGN UNDER RBF CHANNELS

In this subsection, we evaluate the performance of the pro-

posed bit-wise and symbol-wise AE-based coded modulation

design, i.e. we keep the number of channels reused n > 1,

in particular, we keep (n, k) = (7, 8), under RBF channels.

Herein we consider a differential scenario, thus none of the

(S, R, D) nodes has the CSI knowledge or noise variance

information for any links. For the conventional scenarios,

we consider (7, 4) Hamming coding, along with differential

QPSK and MLD decoding. We utilize TP-based α in (5) and

CS-based α in (6) for the conventional and the proposed AE

frameworks. Note that we do not have any Lambda layers at

the decoder.

The t-SNE [21] is a widely adopted metric in the ML

wireless community [1], [13], [16] for insights into the AE-

based designed constellations in higher dimensional space,

given as follows:

• t-Stochastic Neighbour Embedding (t-SNE) – In essence

the t-SNE helps us to visualize the 2n-dimensional

data in 2 dimensions. This happens by transforming

the similarities among data points to joint probabilities

to decrease the KL divergence within the joint prob-

abilities of the 2-dimensional embedding and the 2n-

dimensional constellation design.

For greater insights, we propose to evaluate the follow-

ing metrics generally used for sphere packing4 to charac-

terize the optimality of designed coded-modulation in 2n-

dimensions [36]:

• Minimum Euclidean distance – We determine the mini-

mum Euclidean distance between any two points as

dmin = min
u 6=v

||xu − xv||, ∀ {u, v} ∈ M (23)

where x,...,xM denotes the M constellation points

mapped in the 2n-dimensional space.

• Normalized second-order moment – We can define this

metric as the average squared Euclidean distance be-

tween a point in the packing and the origin of the coordi-

nate system, normalized by the square of the minimum

Euclidean distance, given as

En = (Md2min)
−1

∑M

u=1
||xu||2 (24)

This metric remains indifferent to scaling thus pivotal to

differentiate the packing densities.

4We can define the problem of sphere packing as the packing of M points
in a 2n-dimensional space, with each point considered as the center of a 2n-
dimensional hypersphere of a given diameter and the aim remains to pack
each of these spheres as densely as possible without overlapping, such that
the Euclidean distance between any two points is above a defined value.
Generally speaking, the problem of sphere packing increases with increase
in n dimensions and becomes infeasible for large values of n. Whereas,
the AE-based methods provide us an easy solution to learn the mappings in
higher dimensional space.
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FIGURE 7: Performance evaluation for the differential coded-modulation AF relay networks.
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FIGURE 8: t-SNE representation in 2 dimensions.

FIGURE 9: Radio transformer net-

work (RTN)

• Normalized fourth-order moment or kurtosis – It mea-

sures the variation of the squared Euclidean norm

among the constellation points, defined as

χ = (E2
nd

4
minM)−1

∑M

u=1
||xu||4 (25)

The χ = 1 denotes that a spherical code is created

with equal norm for all constellation points which is

an optimal sphere packing if the number of points per

dimension is small enough.

• Constellation figure of merit – This metric is the most

suitable energy metric as the modulation constructions

are being analyzed at the identical bandwidth, given as

CFM = n
/
En (26)

From Fig. 8, we can see that 256 = 28 clusters are formed

in the 2-dimensional space for all the proposed AE models,

indicating that 2k constellation points are formed while de-

signing coded modulation for k bits in bit-wise AE and 2k

symbols in symbol-wise AE frameworks. Apart from this, we

can not obtain any further intuition. Thus, we will focus on

the other metrics hereafter.

1) Conventional versus Proposed AE Frameworks

We compare the performance of conventional (differential

QPSK + (7, 4) Hamming coded) and proposed AE frame-
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TABLE 8: Insights using other metrics for differential coded-modulation design

Model
Minimum Euclidean Normalized second Normalized fourth Constellation Figure

Distance moment moment of Merit

dmin (↑ better) En (↓ better) χ CFM (↑ better)

Conventional Diff. QPSK + Hamming Code 0.76 12.1 1 0.6
State-of-the-art [13] 0.9 8.6 1 0.8

Symbol-wise AE 1.30 4.1 1 1.7
Bit-wise AE 1.32 3.9 1 1.8

Bit-wise AE + PN at relay 1.30 4.1 1 1.7
Bit-wise AE + RTN at dest. 1.27 4.3 1 1.6

Bit-wise AE + PN at relay + RTN at dest. 1.31 4.1 1 1.7

works using TP-based α in (5), in Fig. 7a5. From Table 8,

we can see that the minimum Euclidean distance for the

designed symbol-wise AE is 1.30 compared to only 0.76 in

the conventional scenario, still the symbol-wise AE performs

≈ 0.8 dB worse than the conventional scenario. This can be

explained by Remark 1 below.

Remark 1: From Table 8 we have χ = 1 indicating that a

symbol-wise AE formulates spherical codes in 2n = 14-

dimensional space. Which is not of the form of a grid, thereby

leading to a 28! combinatorial-problem for bit-labeling the

designed symbols in the constellation map. Although we

utilize a heuristic method to label the symbols as bits in

the gray-coding format, it is still sub-optimal leading to the

performance degradation of the symbol-wise AE.

In Fig. 7a, we can see that the bit-wise AE performs ≈ 3.5 dB

better than the conventional scenario. This can be explained

by the following Remark 2.

Remark 2: Firstly, we utilize the minimization of the binary

CE loss which is proven to be equivalent to maximizing

the generalized mutual information (GMI) of the relay net-

work [18]. Secondly, we have shown in (10) that by minimiz-

ing the binary CE loss we maximize the bit-wise MI, which is

closely related to achievable rate by the bit-metric decoding

(BMD) [17]. Thirdly, we are designing joint channel coding

and mdoulation design, thus the constellation design is taking

place in 2n-dimensional space, which from the modulation

perspective, is leading to the maximization of the minimum

Euclidean distance and minimization of packing density of

the points to 1.32 and 3.9 in bit-wise compared to the 0.76
and 12.1 in conventional scenarios, as seen in Table 8; and

from the coding perspective, is leading to the maximization

of the minimum Hamming distance between the codewords.

This is because we have already seen in AWGN channels

that bit-wise AE learns bit-labeling in Gray coded format,

thus the maximum error between two adjacent points is 1
bit. In contrast, the conventional differential-QPSK is taking

place in only 2-dimensions with the addition of parity check

bits using Hamming codes. Thus, end-to-end learning models

can learn the coded-modulation design in n times higher

dimensional space, such that no CSI is required at the decoder

in the destination node to decode the signal.

5Please note that we see similar performance gains by using CS-based
α in (6), thus for the sake of brevity, we show the performance with only
TP-based α in Fig. 7a.

We can compare the bit-wise and symbol-wise AE perfor-

mance with the following Remark 3.

Remark 3: In Table 8, we can see that the minimum Euclidean

distance, packing density, and constellation figure of merit of

the points designed by the symbol-wise AE and bit-wise AE

becomes {1.30, 4.1, 1.7} and {1.32, 3.9, 1.8}, respectively,

both of which are very close to each other. Thus, minimizing

the binary CE in bit-wise AE and categorical CE in symbol-

wise AE almost forms similar coded-modulation design as a

spherical code (since χ = 1 in both the cases). The major

difference in the BER performance (≈ 5 dB as seen in

Fig. 7a) comes from the fact that automatic bit-labeling is

done in a gray coded format in bit-wise AE.

2) Using Power Normalized AF Relay Node

We know that as the transmit SNR increases the noise power

at the relay node decreases, thus the amplification factor

defined as (2) will increase. But as we do not have CSI

knowledge or noise variance of the links in the TP-based α in

(5), we obtain the constant amplification factor of α = 0.707,

which remains sub-optimal in low SNR regimes but remains

not accurate for high SNR regimes. However, CS-based α
in (6) utilizes the second-order channel statistics and noise

variance to determine the amplification factor. As a result, in

Fig. 7b we can see that the knowledge of channel statistics

and noise variance at the relay node helps in designing

more accurate amplification factor, leading to ≈ 2 dB gain

with CS-based α in BER performance compared to the TP-

based α. As now, we have understood the importance of

determining the accurate amplification factor, we wanted

to create an amplification factor that satisfies the following

constraints – (1) does not include any deep learning layers

at the relay node, and (2) does not require noise variance or

CSI knowledge. Both of these conditions will be satisfied if

we utilize a power normalization layer. Hence, we replace

the process of constant amplification with a PN layer as

discussed in Section IV-B. In Fig. 7b, we can see that in-

clusion of the PN layer brings performance improvement

of ≈ 8.5 dB over the conventional scenario with TP-based

α. This is because the PN layer is helping in normalizing

the n symbols’ power to n, proving extremely beneficial

especially for higher SNR regimes. Interestingly, in Table 8

we can see that bit-wise AE with power normalization layer

at relay forms spherical codes with χ = 1 and slightly worsen
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the AE-based coded modulation design by reducing dmin

and increasing En compared to conventional relay-based bit-

wise AE. This indicates that the performance improvement

by adding PN layer is only because the PN layer is creating

a better amplification factor at the relay node than designed

with the CS or TP-based α.

3) Including an Additional RTN in Lambda Layers at the

Destination Node

We propose a RTN as shown in Fig. 9, and evaluate the

impact of including an RTN with the NN decoder in a bit-

wise AE for the AF relaying (having cascaded channels)

in Fig. 7c. In particular, we include RTN in Lambda layers

in the NN decoder in Table 7. Including an RTN in the

decoder of the proposed bit-wise AE gives the same BER

performance as without an RTN in the decoder. Intuitively,

this might be because we have cascaded channels from two-

hops in AF relaying that needs to be decoded together, but

also because even without RTN the decoder was able to

decode the signals with higher accuracy so including an RTN

is not helpful to improve the performance in AF relaying

networks. In fact, from Table 8, we can see that including

an RTN at the destination node slightly worsen the AE-based

coded modulation design.

We check the convergence of the training accuracy of the

bit-wise AE with and without an RTN in the decoder in

Fig. 7d. The RTN in decoder starts with higher accuracy

(or lower loss), and starts converging in 2 epochs, whereas

if we do not have an RTN in decoder it starts with lower

accuracy and needs approximately 7 epochs for convergence.

We can see that including RTN will give the same accuracy

as without RTN once 15 epochs are reached. Thus, RTN in

destination node for the AF relay networks can be helpful

in scenarios where re-training time plays an important role

in deciding the deployment of the AE network in real-world

scenarios, but at the expense of slightly worse AE-based

coded modulation design.

4) Comparison of Proposed BWAE with [13]

We compare the proposed bit-wise AE with the state-of-

the-art symbol-wise AE-based AF relay network in [13] in

Fig. 7c. The authors in [13] utilized a NN-based relay node.

In the proposed bit-wise AE, we utilize a conventional relay

node with TP-based α in (5). Still, the proposed bit-wise AE

with constant amplification factor performs better than [13]

for up to Eb/N0 ≤ 17 dB and BER performance remains

close thereafter. Further, if we utilize a power-normalization

layer at the relay node, the proposed bit-wise AE always

outperforms [13]. This is because in Table 8 we can see that

the minimum Euclidean distance, second order moment and

CFM of the proposed bit-wise and symbol-wise AE frame-

works is {(1.32, 3.9, 1.8), (1.30, 4.1, 1.7)} which is much

better compared to the symbol-wise AE framework designed

in [13] {0.9, 8.6, 0.8}. Thus, utilizing a conventional relay

node with a power normalization layer is better than utilizing

NN-based relay node, but also utilizing conventional AF
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FIGURE 10: AF relay networks with CSI knowledge.

TABLE 9: Insights for coded-modulation design with CSI

knowledge.

Metrics

Conventional Bit-wise Bit-wise

QPSK + Hamming AE AE + PN

Code at relay

Minimum Euclidean

1.4 1.8 1.7Distance

dmin (↑ better)

Normalized second

3.5 2.3 2.5moment

En (↓ better)

Normalized fourth

1 1 1moment

χ
Constellation Figure

2 3.1 2.9of Merit

CFM (↑ better)

relay node with TP-based α gives better performance com-

pared to NN-based relay node up to moderate SNR, without

utilizing any channel statistics or noise variance at the relay

node. However, if we utilize CS-based α then a conventional

AF relay node always outperforms the NN-based relay node.

D. AE-BASED CODED MODULATION DESIGN UNDER

RBF CHANNELS

A major concern with previous works in [13], [18] was that

the AF relay node had the unfair advantage of knowing the

full CSI knowledge (thus additional phase information) and

presence of deep learning layers (thus additional processing-

power) at the relay node. In this subsection, we consider that

the relay node only knows channel gains and noise variance

information, and has no deep learning layers. Also, destina-

tion node has full CSI knowledge. We keep (n, k) = (7, 8).
For the conventional scenario, we consider (7, 4) Ham-

ming coding, along with QPSK modulation-demodulation

and MLD decoding. We first detail the configuration of two

Lambda layers for the decoder (in destination node) of the

bit-wise AE with CSI knowledge – (1) in the first lambda
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TABLE 10: Total parameters in the NN-based encoder, de-

coder and RTN.

NN Node
Total Parameters

BWAE SWAE

NN-based Encoder 3, 422 19, 294
NN-based Decoder 47, 336 55, 520

NN-based RTN 3, 488 3, 488

layer, we perform channel equalization for the first-hop chan-

nel hsr on received signal yd, (2) in the second lambda layer,

we perform channel equalization for the second-hop channel

hrd on the output of first lambda layer. Now the output after

the second step is processed output of Lambda layers LL,

given to the decoder in the destination node to predict the

output es.

In Fig. 10, we see that as Eb/N0 increases the BER re-

duces. Again, similar to the reasons mentioned in Remark 2,

bit-wise AE (with CSI knowledge) performs better than the

conventional scenario (with CSI knowledge) by ≈ 3 dB.

We also evaluated the performance of the proposed bit-

wise AE with a power-normalization layer, instead of the

amplification factor, at the relay node. Unlike, the differential

scenario in Fig. 7c, we see that BER performance remains the

same with the PN relay, this is because we have varying am-

plification factor as detailed in (2) for conventional AF relays.

Furthermore, in Table 9 we can see that spherical codes are

formed (χ = 1). Also, the bit-wise AE with conventional

relay node obtains the superior coded-modulation design

compared to the relay node with a power normalization layer,

similar to the differential scenario in Table 8. Lastly, for sake

of comparison to the differential scenario shown in Fig. 7c,

we can see that even without CSI knowledge the proposed

bit-wise AE with a power-normalization layer performs only

1 dB worse than conventional with CSI knowledge. Also,

comparing the AE-based coded modulation design for the

without CSI knowledge (differential) scenario and with CSI

knowledge scenario using the Tables 8, 9, we can say that

by using the CSI knowledge AE can design the coded-

modulation by reducing the packing density to 2.3 compared

to 3.9 in the scenario when no CSI knowledge is present,

whereas the AE-based coded modulation designed for differ-

ential scenario is only short of 0.4 packing density compared

to the conventional scenario with CSI knowledge.

E. COMPUTATIONAL COMPLEXITY AND TIME-COST

ANALYSIS

In this subsection, we detail the computational complexity

and time-cost analysis for the relay with/without CSI knowl-

edge for all the proposed AE-based end-to-end learning

frameworks below

• Total Number of Parameters – We consider dense layers

in this work, which have associated weights Wl ∈
R

δl−1×δl and bias rl ∈ R
δl terms as optimization pa-

rameters for each lth dense layers. The total number of

parameters in each of the proposed NN-based encoder,

TABLE 11: Time-cost analysis.

CSI
AE-based Model

Training Cost Testing Cost

knowledge (in sec.) (in ×10−5 sec.)

Without CSI BWAE (TP-based α) 33.2 3.7
Without CSI BWAE (CS-based α) 33.2 3.7
Without CSI BWAE + PN at relay 33.2 3.7
Without CSI BWAE + RTN at dest 39.4 4.2
Without CSI BWAE + PN at relay

39.7 4.2
+ RTN at dest

Without CSI SWAE (TP-based α) 49.6 4.7

Without CSI [13] 251.4 6.1

With CSI BWAE 137.3 4.8
With CSI BWAE + PN at relay 137.2 4.8

decoder and RTN (for both the BWAE and SWAE) can

be given as

P =
J∑

l=0

δl × δl+1 +
J∑

l=1

δl (27)

where for the NN-based encoder we have J = 4,

δ0 = k in BWAE, δ0 = 2k in SWAE; for the NN-

based decoder we have J = 5, δ5 = k in BWAE,

δ5 = 2k in SWAE; and for the NN-based RTN we have

J = 4, δ0 = 2n, respectively. Furthermore, the power

normalization layer and Lambda layer in the proposed

AE-based frameworks does not have any optimization

parameters. For sake of summary, we provide the total

parameters in the NN-based encoder, decoder and RTN

in Table 10.

Directly, the total number of optimization parameters

in BWAE and SWAE can be calculated as the sum of

individual optimization parameters in Table 10, which

is much less, especially for a BWAE, than the AE-

based AF relay network proposed in [13] where the

total number of parameters are 114, 286.

• Memory Space – The memory space of the proposed

AE-based frameworks directly depends on the total

optimization parameters in the NN (detailed above).

However in this work, we propose to utilize either a

conventional or a PN-based AF relay node. As detailed

in Table 5, the conventional AF relay does not require

a memory buffer since it amplifies and re-transmit the

received signal at each time-instant. However as detailed

in Table 6, the PN-based AF relay requires a memory

buffer to store n symbols to perform power normaliza-

tion. Thus, utilizing a PN-based AF relay has a higher

memory cost compared to the conventional AF relay

node.

• Training and Testing Cost – In this work, we utilize an

Intel Core i7-6700 CPU, with a GeForce RTX 2080 Ti

GPU of 11 GB RAM on an Ubuntu 18.04.4 LTS OS to

run our simulations both during the training and testing

phase. We detail the training and testing time-cost for

the with CSI and without CSI scenarios in Table 11,

wherein we utilize ≈ 41% and ≈ 36% of the GPU

during training and testing, respectively. In Table 11, we

can make the following observations:
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-- The training and testing cost without CSI AEs is

lesser compared to with CSI AEs, this is because in

the scenario with CSI knowledge the proposed AE-

based frameworks additionally include Lambda

layers at the NN decoder that performs the channel

equalization.

-- BWAE takes lesser training time in comparison to

the SWAE (even though they both have the same

NN architectures) this is because BWAE has k
input-output compared to 2k input-output in SWAE

leading to a larger number of parameters (as de-

tailed in Table 10) in SWAE.

-- BWAE takes lesser testing time in comparison to

the SWAE this is because we have an additional

step of performing heuristic-bit labeling in the

SWAE.

-- Including a PN layer at the relay node does not

impact on training-testing time cost of the AE-

based frameworks.

-- In the case of without CSI knowledge, the RTN at

the destination node increases the NN parameters

in the AE (as detailed in Table 10) thereby increas-

ing the training and testing time cost.

-- The proposed AE frameworks take almost 6.6×
lesser training time and 39% lesser testing time

in comparison to the AE-based AF relay networks

in [13].

VI. CONCLUSION AND FUTURE WORKS

In this work, we propose end-to-end learning-based coded-

modulation and differential coded-modulation designs in 2n-

dimensional space using the bit-wise and symbol-wise AE

frameworks for the AF relaying network. Further, we propose

to employ a conventional AF relay node instead of an NN-

based relay node to minimize the implementation cost. We

create a single AE model trained on multiple values of SNRs,

that can be deployed for any testing SNR, without the need

of the SNR value for prediction. We show that the NN-based

encoder forms 2k constellation points as a spherical code

for both symbol-wise or bit-wise AE frameworks. Also, we

show that minimizing the binary CE loss in bit-wise AE and

categorical CE loss in symbol-wise AE almost forms a sim-

ilar coded-modulation design as a spherical code. The major

difference in the BER performance ≈ 5 dB comes from the

fact that automatic bit-labeling is done in a gray-coded format

in bit-wise AE, whereas we need to perform the bit-labeling

in symbol-wise AE by solving a 2k! combinatorial problem.

We show that minimizing the binary CE loss for the bit-wise

AE instead of the categorical CE loss for the symbol-wise

AE leads to significant gains in estimated MI in low SNR

regimes, while both the AEs converge to the upper bound

of estimated MI at a similar moderate SNR. Furthermore,

we show that the bit-wise AE takes lesser training and

testing time in comparison to the symbol-wise AE because of

automatic bit-labeling and reduced input-output dimensions.

The proposed AE frameworks are capable of decoding the

signal without the CSI knowledge and noise variances of any

links. Also, the traditional AF relay network is outperformed

by the proposed AE by 3 dB. Moreover, including a power

normalization layer at the relay node, that normalizes the

n transmit symbols’ power to n helps us to improve our

performance by additional 5 dB. Further, including an RTN

in the decoder of the proposed bit-wise AE gives the same

BER performance as without an RTN in the decoder, but

can be helpful in scenarios where re-training time plays

an important role in deciding the deployment of the AE

network. Furthermore, utilizing a conventional relay node

with a power normalization layer is better than utilizing deep

learning layers (or NN) at the relay node, but also utilizing

a conventional AF relay node gives similar performance as

the relay node with a NN. Lastly, we show that by using

the CSI knowledge AE can design the coded-modulation

by increasing the packing density by 1.5 compared to the

differential scenario. Furthermore, the proposed bit-wise AE

frameworks take almost 6.6× lesser training time and 39%
lesser testing time in comparison to the AE-based relay

networks in [13].

As an end-to-end learning-based relay network using AE

optimization is new paradigm research, we provide some

insights of some future necessary research below:

• Multi-User and Multi-Relay Networks – We con-

sidered a simple single-user single-relay network in

this work. Moreover, multi-user single-relay networks

presents challenges of interference and noise amplifica-

tion [2]– [4]. The authors in [12] considered a multi-

user network, wherein firstly the interference strength is

determined using DL-based approaches and then subse-

quently utilized to update the AE’s decoders. Inspired

by [12], we can consider a multi-user AF relay net-

works [2]– [4], wherein the interference due to multi-

user from both the transmission hops can be estimated

and employed to update the AE’s decoders. Moreover,

a single-user multi-relay network can be a direct exten-

sion of this work because we considered a conventional

AF relay node and in the case of multiple relays, the

proposed AE framework can be investigated. We can

also extend this work by combining multi-user multi-

relay AE frameworks by extending works in [2].

• I/Q Imbalance and Additional Hardware Impairments

– In practice, relaying systems are compromised by the

hardware impairments, e.g., in-phase (I) and quadrature-

phase (Q) imbalance (IQI), power amplifier non-

linearities, and phase noise [37], [38]. The IQI can

be described as a phase and/or amplitude mismatch

between the I and Q arms at the transmitter (Tx) and/or

receiver (Rx) sides, leading to undesirable effects such

as added image signal, frequency interference, etc, de-

teriorating the network performance [39]. Apart from

the IQI, tackling the additional hardware impairments

(AHI) is of notable importance as discussed by the

authors in [37]. Since there exists no works considering

16 VOLUME 4, 2016
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IQI and AHI in the AE-based frameworks literature,

it will be an interesting research topic to analyze the

performance of coded-modulation design using bit-wise

AE frameworks in the presence of IQI and AHI.

• Two-Way AF Relay Networks – In this work, we consid-

ered a one-way AF relay network, wherein a terminal

node communicates with another terminal node using

a relay node in two-time slots and if both the terminal

nodes want to communicate with each other, then we

require four time-slots. However, in two-way relaying

two terminal nodes communicate messages to each

other at the same time using a relay node in two-time

slots. In a two-way AF (TWAF) relay network, both

the terminal nodes transmit their data simultaneously to

the relay node, which then amplifies and re-transmit the

amplified signal to the terminal nodes [40]. Although

each terminal node can perform self-interference can-

cellation (SIC) to remove its signal, the major challenge

of a TWAF relay network comes in the management

of the interference of simultaneously received signals at

the TWAF relay node and noise amplification with the

amplification of the received signals [40]. The TWAF

relay network was designed using a symbol-wise AE

with BER metric in [13] and using a bit-wise AE with

achievable-sum-rate (ASR) metric in [18]. However,

both of these works [13], [18] employ NN-based re-

encoding of the received signal at the TWAF relay

node and utilize symbol-wise AE frameworks. Thus it

will be interesting to research bit-wise AE-based coded-

modulation designs for the TWAF relay networks with

a conventional TWAF relay node.

• Error Correction – In this work, we consider Hamming

codes as a baseline error correction scheme. Recently,

the authors in [17] considered a bit-wise AE-based

modulation design for P2P communication networks

and designed an iterative LDPC decoding algorithm at

the destination node. Inspired by [17], we can utilize

the LLRs obtained in (9) in the proposed bit-wise AE

frameworks and design more powerful iterative decod-

ing based AE frameworks.
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