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Robust to Channel Condition Uncertainties

Ognjen Jovanovic, Graduate Student Member, IEEE, Metodi P. Yankov, Member, IEEE, Francesco Da Ros, Senior
Member, IEEE, and Darko Zibar

(Invited Paper)

Abstract—Vendor interoperability is one of the desired future
characteristics of optical networks. This means that the transmis-
sion system needs to support a variety of hardware with different
components, leading to system uncertainties throughout the
network. For example, uncertainties in signal-to-noise ratio and
laser linewidth can negatively affect the quality of transmission
within an optical network due to e.g. mis-parametrization of
the transceiver signal processing algorithms. In this paper, we
propose to geometrically optimize a constellation shape that is
robust to uncertainties in the channel conditions by utilizing
end-to-end learning. In the optimization step, the channel model
includes additive noise and residual phase noise. In the testing
step, the channel model consists of laser phase noise, additive
noise and blind phase search as the carrier phase recovery
algorithm. Two noise models are considered for the additive noise:
white Gaussian noise and nonlinear interference noise model for
fiber nonlinearities. The latter models the behavior of an optical
fiber channel more accurately because it considers the nonlinear
effects of the optical fiber. For this model, the uncertainty in
the signal-to-noise ratio can be divided between amplifier noise
figures and launch power variations. For both noise models, our
results indicate that the learned constellations are more robust to
the uncertainties in channel conditions compared to a standard
constellation scheme such as quadrature amplitude modulation
and standard geometric constellation shaping techniques.

Index Terms—Optical fiber communication, end-to-end learn-
ing, geometric constellation shaping, phase noise.

I. INTRODUCTION

OPTICAL networks have to continuously evolve to keep
up with the growth of data traffic demand. To efficiently

meet the demand, the optical communication systems have
to offer higher spectral efficiency. Geometric constellation
shaping (GSC) may be used to optimize high-order modulation
formats to improve the spectral efficiency and maximize the
mutual information (MI) for the given channel. However,
including all noise sources present in the entire chain of
coherent optical communication system is difficult and often
disregarded for such optimization. One of the noise source that
should be included is the residual phase noise (RPN) which is
the result of an imperfect carrier phase estimation (CPE) and
compensation of the laser phase noise (PN).

The parametrization of CPE algorithms is sensitive to chan-
nel conditions, such as the signal-to-noise ratio (SNR) and
the linewidth (LW) which might be challenging to measure
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in practical scenarios. Furthermore, variations in the chan-
nel conditions throughout the network can occur, e.g. due
to vendor interoperability and aging. Network operators are
seeking vendor interoperability over their networks [1], [2]
to reduce the cost of the infrastructure. This means that the
transmission needs to support a variety of different optical
network elements. Parameters characterizing these elements,
such as amplifier noise figures (NF) and laser linewidth (LW)
can be vendor dependent and vary throughout the network.
Also, as a result of aging, the launch powers may shift over
time. Due to these variations, the knowledge of the channel
conditions is imperfect and might lead to a mis-parametrized
digital signal processing (DSP) blocks, such as the CPE.

In probabilistic shaping (PS), the constellation shape is by
definition changed with the SNR and the target data rate [3].
There have been some studies on the robustness of a chosen
shape to SNR variation [4], and also how to select the shapes
to be robust to RPN [5]. In general, PS requires a distribution
matcher to be implemented, which leads to higher complexity
of the transceiver. Instead, GCS is directly compatible with
classical bit-interleaved coded modulation (BICM). Therefore,
finding a robust GCS that maintains good performance under
channel condition uncertainties is of the utmost importance.
A possible strategy to perform GCS is by utilizing end-to-end
learning.

End-to-end learning was introduced in [6], where it was
shown that a communication system (or some of its processes)
can be optimized for a specific channel and performance
metric by utilizing a deep learning concept known as au-
toencoders (AEs) [7]. End-to-end learning has been applied
in optical communication for GCS [8]–[14] mainly focusing
on the mitigation of the nonlinear effects of the optical fiber.
Apart from GCS, end-to-end learning was applied in optical
communication for waveform optimization for dispersive fiber
[15]–[17], waveform optimization for nonlinear frequency
division multiplexing [18], [19] and superchannel transmission
[20]. In [15], [17], they have demonstrated that by varying the
distance in the optimization process, the learned waveform is
robust to variations in transmission distances for short-reach
intensity-modulated communication systems.

Performing GCS using end-to-end learning, which usually
relies on gradient-based optimization, can be difficult on a
channel that includes CPE because it is usually complex and
non-differentiable, e.g. the blind phase search (BPS) algorithm
[21]. It was shown that this optimization is possible by using
a gradient-free optimization method [22]. Recently, a differ-
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entiable version of the BPS was proposed in [23]. However, a
more typical approach, used in previous works on GCS that do
not use end-to-end learning [24]–[28], is artificially modeling
the RPN. These previous works assume ideal knowledge of
the channel conditions which does not reflect the true RPN
after the mis-parametrized CPE.

This paper is an extension of [29], which shows how to
learn a constellation robust to signal-to-noise ratio (SNR)
and laser linewidth (LW) uncertainties by utilizing end-to-end
learning. In this paper, the results from [29] are discussed
and the analysis is extended also to an optical communication
channel modeled with the nonlinear interference noise (NLIN)
model [30]. The launch power and the amplifier noise figure
(NF) uncertainties are considered as the main cause of the
SNR uncertainty within optical networks [31]. Therefore, a
constellation shape that is robust to variations in the launch
power, the amplifier NF and the laser LW is learned in
this case. This constellation is learned by varying the launch
power, the amplifier NF and the RPN severity in a simple
differentiable channel during the training step. Afterwards, the
constellation is tested on a more realistic channel, that includes
laser PN, NLIN and BPS, which better reflects the true RPN.

The remainder of the paper is organized as follows. Mutual
information (MI) is used as the performance metric and the
basic principles of estimating it are described in Section II.
A detailed description of the training and testing setups is
provided in Section III. Section IV describes the used channel
models and different optimization scenarios for each of them.
Section V provides the results on the mutual information
obtained by different constellations in the testing setup. The
conclusions are summarized in Section VI.

II. PERFORMANCE METRIC

Let X be a set of complex constellation points (sym-
bols) with cardinality |X| = " = 2<, where < is the
number of bits carried by a symbol. Consider - and . to
be the input and the output sequence of a communication
channel, respectively and that their relation is governed by
the channel transition probability density ?. |- (H |G). The
symbol sequence - is sampled from X with a uniform
probability mass function %- (G) = 1

"
and has entropy

� (-) = −∑
G∈X %- (G) log2 (%- (G)) = log2 (") = <. The

sequence . ∈ C and has a probability distribution ?. (H),
where C denotes the set of complex numbers. The conditional
entropy of - given . is �? (- |. ) = E? (G,H) [?- |. (G |H)].
The expectation E? (G,H) should be taken over the true joint
probability density function of ?-,. (G, H). The entropy � (-)
and conditional entropy �? (- |. ) can be used to calculated the
amount of information . contains about - in bits per symbol

� (-;. ) = � (-) − �? (- |. ) = < − �? (- |. )

=
∑
G∈X

%- (G)
∫
C
?. |- (H |G) log2

?. |- (H |G)
?. (H)

3H, (1)

known as MI � (-;. ). Even though %- (G) is a uniform proba-
bility mass function, it is included to the equation because the
method could be extended to other probability mass functions,
e.g. optimized for probabilistic shaping.

(a)

(b)
Fig. 1. The illustration of the: (a) training setup for geometrical constellation
shaping which is an autoencoder with an embedded channel model. The
embedded channel model consists of additive noise and residual phase noise;
(b) testing setup of the learned constellation. The setup consists of the trained
encoder (constellation under test), phase noise and additive noise channel,
BPS as the phase recovery algorithm, and mismatched Gaussian receiver to
estimate the mutual information.

In order to evaluate Eq. (1), the transition probability
?. |- (H |G) must be known and this is usually not the case.
A typical approach when ?. |- (H |G) is unknown, is to bound
Eq. (1). The mismatched decoding approach can be used to
obtain a lower bound on the MI. It assumes the transition
probability @. |- (H |G) of an auxiliary channel instead of the
true ?. |- (H |G) [32]. Then a lower bound on the MI, also
known as the achievable information rate (AIR), is formulated
as

� (-;. ) ≥ � (-) − �̂@ (- |. ) = < − �̂@ (- |. ), (2)

where �̂@ (- |. ) = E? (G,H) [@- |. (G |H)] is the upper bound of
the true conditional entropy �? (- |. ). The inequality in Eq.
(2) turns to equality when @. |- (H |G) = ?. |- (H |G).

III. METHODOLOGY

A. Geometric constellation shaping with autoencoders

Geometric constellation shaping may be used to optimize
the position of constellation points in a high-order modulation
formats to improve the spectral efficiency and maximize the
MI � (-;. ). The considered training setup employing an AE
for GCS is shown in Fig. 1 (a). An AE consists of two
neural networks (NNs), an encoder and a decoder with a
channel model in between. The encoder and the decoder are
represented by feed-forward neural networks ##4 (·,w4) and
##3 (·,w3), parameterized with trainable weights (including
biases) w4 and w3 , respectively. The overall goal is to find
the weight set, w = {w4,w3}, that would minimize the cross-
entropy between the input and output of the AE for the
considered channel. The encoder optimizes the position of the
constellation points, whereas the decoder learns the decision
boundaries of the distorted symbols.

The input to the encoder is a one-hot encoded vector
u: ∈ U = {e8 |8 = 1, . . . , "} which is mapped to a normal-
ized complex constellation point G: = ##4 (u: ,w4), where
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: represents the :-th sample and e8 is an all zero vector
with a one at position 8. The output of the network is two-
dimensional, representing the real and imaginary part of the
complex constellation symbol G: . During training, the complex
symbol G: is transmitted over a one sample per symbol channel
model with symbol rate 'B , which consists of complex additive
noise =: and multiplicative RPN q'%# , resulting into the
impaired symbol H: = (G: + =: )48q'%# . The additive noise
=: and the RPN q'%# are modeled as zero-mean Gaussian
distributions with variances f2

= and f2
'%#

, respectively. It
should be emphasized that the additive noise =: is complex
valued and circular symmetric, whereas the RPN q'%# is
real valued. The real and the imaginary part of the impaired
symbol H: are inputs to the decoder, which outputs a vector
of posterior probabilities s: = ##3 (H: ,w3) ∈ [0, 1]" using a
softmax output layer. The optimization of the AE weight set w
is performed by iteratively minimizing the cross-entropy cost
function over a sample set of size # . In each iteration, the
sample set is divided into batches of size � and the cross-
entropy loss for each batch is calculated as

��� (w) =
1
�

�∑
:=1

[
−

"∑
8=1

u(8)
:

log s(8)
:

]
(3)

where (8) denotes the 8-th element of the vector. The output of
the decoder is an approximation @- |. (G |H) of the true posterior
distribution ?- |. (G |H). Therefore, the cross-entropy can used
to calculate the AE-based upper bound on the conditional
entropy �̂@ (- |. ) = E? (G,H) [@- |. (G |H)]. Based on Eq. (2), this
implies that minimizing the cross-entropy maximizes a lower
bound on the MI. In particular, this lower bound is an AIR
when using the decoder NN. Once the training has converged,
the encoder weights are fixed and the testing is performed.
The AE hyperparameters are shown in Table I.

The MI is the best performance a communication system
can attain, however it reflects the achievable information rate
in the cases of iterative demapping and decoding or non-binary
forward error correction (FEC). In optical communication,
BICM is usually used and it requires a constellation with a
Gray-like labeling. Therefore, optimizing a constellation based
on MI could result in penalty in the actual achievable rate.
The current system could be expanded such that it includes
optimization of the bit labeling as done in [9], [23] and this
is left for future work.

B. Testing setup for the learned constellation

The learned constellations are tested on the setup shown
on Fig. 1 (b) which is more realistic than the one used for
training. The encoder output G: is transmitted over a channel
consisting of laser PN q: and additive noise =: , resulting into
an impaired symbol

I: = G:4
8q: + =: . (4)

The additive noise is distributed identically to the noise during
training and the laser PN is modeled as a Wiener process

q: = q:−1 + Δq: , (5)

TABLE I
PARAMETERS OF THE ENCODER AND DECODER NEURAL NETWORK

Encoder NN Decoder NN

# of input nodes " 2

# of hidden layers 0 1

# of nodes per hidden layer 0 "/2
# of output nodes 2 "

Bias No Yes

Hidden layer activation function None Leaky Relu

Output layer activation function Linear Softmax

where Δq: is the random phase increment sampled from
a zero-mean Gaussian with variance f2

q
= 2cΔa)B . The

combined transmitter and receiver laser LW is denoted by Δa,
and )B = 1/'B is the symbol period.

At the receiver, the laser PN is estimated with a blind
phase search (BPS) [21], which is a standard phase noise
compensation algorithm. The BPS is a pure feedforward phase
recovery algorithm which estimates the phase by rotating the
received symbol by #B test phases defined by

\ 9 =
9

#B
· 2c, 9 ∈ {0, 1, . . . , #B − 1}, (6)

where 9 represents the 9-th test phase. Each of the rotated
symbols I:, 9 = I:4

−8 \ 9 is fed into a minimum distance de-
cision operator to determine the closest symbol. The distance
between the decided symbol Î:, 9 and the rotated symbol I:, 9
is calculated as

3:, 9 = |I:, 9 − Î:, 9 |. (7)

In order to mitigate the effect the additive noise has on the
performance of the phase recovery, the squared distances of
symbols rotated by the same test phase are summed over a
window of size 2, + 1

A:, 9 =

,∑
8=−,

32
:−8, 9 . (8)

Finally, the optimal test phase is chosen by the minimum sum
of squared distances [21]

q̂: = argmin
\ 9

A:, 9 , (9)

where argmin is a non–differentiable operation. The received
symbol is rotated by the chosen test phase to output the phase
compensated sample

H: = I:4
−8 q̂: . (10)

The BPS algorithm is non-differentiable due to its hard-
decision directed nature given by Eq. (9). Therefore, the
gradient of the BPS algorithm cannot be computed, making
it difficult to use for training that relies on gradient-based
optimization. Instead, the RPN as described above is adopted
during training.

For optical communication, it is a common approach to
use a mismatched Gaussian receiver [33], [34] to estimate the
MI between the channel input and output. The mismatched
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Gaussian receiver assumes the transition probability @. |- (H |G)
in Eq. (2) is of an auxiliary Gaussian channel

@. |- (H |G) =
1√

2cf2
�

exp

(
− |H − G |

2

2f2
�

)
, (11)

where f2
�

is the estimated noise variance of the auxiliary chan-
nel. Applying the Bayes’ theorem, the posterior distributions
are

@- |. (G |H) =
?- (G)@. |- (H |G)∑

G8 ∈X ?- (G = G8)@. |- (H |G = G8)
. (12)

The combined distortion of the the additive noise and the RPN
is assumed to be purely Gaussian and parametrized by the
noise variance f2

�
estimated from the received sequence as

f2
�
= E[|H − G |2]. Then, the Monte Carlo approach can be

used to evaluate Eq. (12). The auxiliary function @- |. (G |H)
is an approximation to ?- |. (G |H) in two ways: 1) it is
modeled using a decoder NN or a Gaussian receiver; 2) it
is memoryless. Both of these approximations lead to an upper
bound on the conditional entropy and a lower bound on the
MI.

It should be mentioned that in the training scenario, the RPN
is added after the additive noise because it occurs as a result
of an imperfect compensation of the PN at the receiver. In the
testing scenario, ideally, there should be two PN sources, the
transmitter and the receiver laser. Since the two processes are
independent of each other, independent of the additive noise,
and they do not alter the circular Gaussian distribution of the
additive noise, they can be combined into a single process with
a variance that is the sum of the two variances. The resulting
PN may be added on either side of the additive noise without
changing the statistics of the channel model.

IV. ADDITIVE NOISE MODELS

In this paper, two additive noise models are used, additive
white Gaussian noise (AWGN) and nonlinear interference
noise (NLIN) model for fiber communication.

A. Additive white Gaussian noise

The noise variance in the case of the AWGN is determined
by the signal-to-noise ratio (SNR): f2

= =
1

(#'
. The training

scenarios for the AWGN are [29]:
AWGN 1) Constellations trained on SNR and RPN vari-

ance f2
'%#

pairs which are fixed, similar to what was done
in [28]. The SNR values were chosen from a set SNR ∈
{15, 16, ..., 20} dB and the RPN variance is taken from a
coarsely chosen set f2

'%#
∈ {0.001, 0.005, 0.01, 0.02, 0.05}.

Therefore, a constellation is learned for each SNR and f2
'%#

combination. The best performing constellations with regards
to MI for known SNR and laser LW pairs should be found
this way.

AWGN 2) A constellation trained on a fixed SNR and
varying RPN, resulting in a constellation robust to laser LW
uncertainties for a fixed SNR. The SNR= 17 dB and the RPN
variance is sampled each training batch from a log-uniform
distribution in the range of f2

'%#
∈ [0.005, 0.02].

TABLE II
CHANNEL PARAMETERS

Symbol rate ('B) 32 GHz

Carrier frequency (�2) 193.41 THz

# of channels 5

Channel spacing 50 GHz

# of polarizations (#?>;) 2

# of spans (#B?) 10

Span length (!) 100 km

Attenuation (U) 0.2 dB/km

Amplifier gain (�) ! · U
Nonlinear coefficient 1.3(W km)−1

Dispersion parameter 16.464 ps/(nm km)

AWGN 3) A constellation trained on varying SNR and
RPN, resulting in a constellation robust to both SNR and
LW uncertainties. Each training batch, the SNR is sampled
from a uniform distribution SNR ∈ [15, 20] dB and the
RPN variance is sampled from a log-uniform distribution
f2
'%#

∈ [0.005, 0.05].

B. Nonlinear interference noise

Constellations optimized with regards to AWGN can be
sub-optimal for a nonlinear channel such as the optical fiber.
An optimal constellation for the optical channel should be
jointly robust to amplification noise and signal dependent
nonlinear interference [34]. The NLIN model [30] for fiber
communication takes into account the nonlinear interference
dependent on the launch power per channel and the mo-
ments of the constellation. The NLIN model assumes that
the nonlinear effects degrading the transmitted signal can be
modeled as additive Gaussian noise for which the variance
is determined by the parameters of the fiber communication
channel. Based on this model, the channel impairments depend
on the amplified spontaneous emission (ASE) noise governed
by the amplifier noise figure �=, the average launch power
per channel %8= (in the rest of the paper referred to as launch
power) and the high order moments of the constellation,

`4 =
E[|- |4]
(E[|- |2])2

and `6 =
E[|- |6]
(E[|- |2])3

. (13)

In the case of the NLIN model, the noise variance is defined
as

f2
= = f

2
�(� (�=) + f

2
#!� # (%8=, `4, `6), (14)

where f2
�(�
(�=) is the variance of the ASE noise and

f2
#!� #

(%8=, `4, `6) is the variance of the nonlinear interfer-
ence. Other parameters of the optical channel that contribute
to the noise variances are not included in Eq. (14) because
they are fixed. These parameters are provided in Table II.

In optical networks, the SNR uncertainty is essentially due
to uncertainties in launch power %8=, that normally has values
in the interval [−2, 2] dBm, and amplifier noise figure �=
which normally has values in the interval [5, 7] dB [31]. It
should be mentioned that for this channel model the encoder
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Fig. 2. Performance in MI with respect to LW at SNR = 17 dB for QAM,
AWGN 1) and AWGN 2), where AWGN 1) and AWGN 2) represent scenarios
1) and 2) for the AWGN model, respectively. The AWGN 1) is the scenario
where both the SNR and the RPN are fixed values, whereas the AWGN 2) is
the scenario where the SNR is fixed and the RPN value varies during training.

output G: is rescaled by the launch power %8= such that
G: =

√
%8= · ##4 (u: ,w4). The training scenarios for NLIN

are:

NLIN 1) Constellations trained on a fixed noise figure �=,
launch power %8= and RPN variance f2

'%#
triplets. The

noise figure values are chosen from a set �= ∈ {5, 6, 7} dB,
the launch power values are chosen from a set %8= ∈
{−2,−1.5, ..., 2} dBm and RPN variance is taken from a
coarsely chosen set f2

'%#
∈ {0.001, 0.005, 0.01, 0.02, 0.05}.

Therefore, a constellation is learned for each �=, %8= and
f2
'%#

combination. Similarly to scenario 1) for AWGN
model, the goal is to find a best performing constellation with
regards to MI for a given noise figure �=, launch power %8=
and laser LW triplet.

NLIN 2) Constellations trained on a fixed noise figure
�=, varying %8= and RPN variance f2

'%#
, resulting in a

constellation for each �= value robust to %8= and laser LW
uncertainties. The noise figure values are chosen from a
set �= ∈ {5, 6, 7} dB, for each training batch the launch
power is sampled from a continuous uniform distribution
%8= ∈ [−2, 2] dBm and the RPN variance is sampled from
a log-uniform distribution f2

'%#
∈ [0.005, 0.05]. In this

scenario three constellation are learned, one for each noise
figure value.

NLIN 3) A constellation trained on varying NF, %8= and
RPN, resulting in a constellation robust to �=, %8= and laser
LW uncertainties. For each training batch, the noise figure
values are sampled from a continuous uniform distribution
�= ∈ [5, 7] dB, the launch power is sampled from a con-
tinuous uniform distribution %8= ∈ [−2, 2] dBm and the
RPN variance is sampled from a log-uniform distribution
f2
'%#

∈ [0.005, 0.05].

V. NUMERICAL RESULTS

The size of the constellation is " = 64 and the training is
performed using the Adam optimizer [35] as the backpropaga-
tion algorithm. In each training epoch, a new sample set of size
# = 256 · " is generated with uniformly distributed one-hot
encoded vectors and divided into batches of size � = 32 · " .
The testing was done by running 100 simulations with 105

symbols per simulation in each case. A square quadrature
amplitude modulation (QAM) is used as the benchmark in
this study. The BPS algorithm parameters, number of test
phases #B = 60 and window size , = 64, are fixed. These
parameter values were chosen so that the non-shaped QAM
constellation performs well on average across the studied
channel conditions. In optical communication, an external
cavity laser with LW of up to 100 kHz is normally used [36].
The combined LW of the transmitter and receiver laser can
amount up to 200 kHz. In this paper, the considered region is
Δa ∈ [50, 250] kHz in order to allow a slight margin in the
high-end of supported LWs. In the case of the AWGN (NLIN)
model, the studied SNR interval (noise figure �= and launch
power %8= intervals) in the testing stage is (are) the same as
in the training stage.

A. Additive white Gaussian noise model

The testing results of the learned constellations from the sce-
narios described in subsection IV-A are denoted as AWGN 1),
AWGN 2) and AWGN 3), respectively. It should be empha-
sized that the results for AWGN 1) are not from a single
constellation but by using the constellation which obtained
the best MI for the given SNR and laser LW pair. This can
be viewed as the MI performance that would be achieved if
we had perfect knowledge about the channel conditions at all
time and the transmitter was allowed to select the constellation
accordingly.

The simulation results for QAM, AWGN 1) and AWGN 2)
are shown in Fig. 2 which illustrates the MI performance with
respect to laser LW for a fixed SNR = 17 dB. In this case,
the studied laser LWs are extended to Δa = 300 kHz to better
illustrate the benefits of AWGN 2). As it was mentioned, the
testing results for AWGN 1) consider the results of multiple
constellations and the individual testing results for each of
these constellations are shown as well. The constellations
learned with a fixed variance are only beneficial for a limited
range of laser LW. For example, the constellation learned with
a fixed f2

'%#
= 0.005 could potentially be optimal for a fixed

LW Δa = 100 kHz. However, this constellation is sub-optimal
for larger laser LWs. The AWGN 2) constellation has a slight
penalty compared to AWGN 1) and it is not optimal for any
of the observed LWs. However, it achieves gain compared to
QAM over the whole observed LW interval, with a maximum
gain of 0.15 bits/symbol. From Fig. 2, it can be seen that
a certain RPN variance is near-optimal for a range of LWs,
which is due to the chosen step. However, if the LW sweep
was with a step of 100 kHz instead of 50 kHz there would
be a unique relation: RPN variances 0.005, 0.01 and 0.02
would have been optimal for the chosen LWs of 100, 200
and 300 kHz, respectively.
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Fig. 3. Performance in MI with respect to SNR for different LW values for QAM, IPM, AWGN 1) and AWGN 3), where AWGN 1) and AWGN 3) represent
scenarios 1) and 3) for the AWGN model, respectively. The AWGN 1) is the scenario where both SNR and RPN are fixed values, whereas the AWGN 3) is
the scenario where both the SNR and the RPN values vary during training. The constellation denoted as non-robust is optimized for the pair SNR = 18 dB
and Δa = 150 kHz.

In Fig. 3, the MI performance of QAM, AWGN 1) and
AWGN 3) as a function of SNR for different laser LW values is
shown. Only the results for laser LWs Δa ∈ {50, 150, 250} kHz
are shown to avoid showing similar results. The performance
of a constellation labelled "non-robust" that is optimized for
the pair SNR = 18 dB and Δa = 150 kHz is shown as well.
Additionally, iterative polar modulation (IPM) [37] is included
in the comparison as a near-optimal constellation shape for the
AWGN channel. The constellation AWGN 3) has a similar
trend for all of the observed laser LW values. For low SNR
values it achieves gains comparable to the constellation with
perfect knowledge of the channel conditions. The gain reduces
as the SNR increases but there is never a penalty compared to
QAM. Up to 0.3 bits/symbol gain is achieved by AWGN 3)
compared to QAM. The constellation AWGN 3) is robust to
both SNR and laser LW uncertainties. The IPM constellation
shows comparable performance to the optimized constellations
for high SNR values and low laser LW. However, with the
degradation of SNR or laser LW the performance of IPM
significantly deteriorates.

The non-robust constellation has superior performance com-
pared to AWGN 3) and almost no penalty compared to
AWGN 1) for SNR ≥ 17 dB at laser LWs Δa = 50
and Δa = 150 kHz. By only observing narrow intervals of
SNR ∈ [17, 20] dB and laser LW Δa ∈ [50, 150] kHz, it
can be noticed that the non-robust constellation is almost
optimal. This result implies that for narrower intervals, a
single constellation with close to optimal performance for
given channel variations could be learned. For these laser
LWs, the penalty increases with the degradation of SNR.
Observing the results for laser LW Δa = 250 kHz, the non-
robust constellation does not even outperform QAM in the
studied SNR region. This constellation demonstrates good
performance for some of the cases, however it does not exhibit
robustness to the desired degree.

B. Nonlinear interference noise model

Similar to the previous channel model, the testing results
of the learned constellations from the scenarios described

in subsection IV-B are denoted as NLIN 1), NLIN 2) and
NLIN 3), respectively. It should be emphasized that the results
for NLIN 1) are not from a single constellation but by using
the constellation which obtained the best MI for the given
�=, %8= and laser LW triplet. It should be viewed the same
way as AWGN 1). Also, each of the constellations from
NLIN 2) have been tested only on the noise figure they have
been trained on. A dual polarization transmission, where both
polarizations have the same constellation, was modeled but the
MI performance per polarization is reported.

In Fig. 4, the MI performance of QAM, NLIN 1), NLIN 2)
and NLIN 3) as a function of the launch power %8= for
different noise figures (rows) and laser LW values (columns) is
shown. As in the case of the AWGN model, only the results
for laser LWs Δa ∈ {50, 150, 250} kHz are illustrated. The
performance of a constellation labelled "non-robust" that is
optimized for the triplet %8= = 0 dBm, �= = 6 dB and
Δa = 150 kHz is shown as well. The NLIN 2) achieves
substantial gain compared to QAM and has a slight penalty
compared to NLIN 1) in most of the cases. Observing the
results for laser LWs Δa = 50 and Δa = 150 kHz, the gains
NLIN 2) achieves for lower studied launch powers are compa-
rable to NLIN 1). Therefore, the NLIN 2) is exhibiting similar
behavior as AWGN 3) since a lower launch power is equivalent
to a lower SNR value. Furthermore, the same can be noticed
when increasing the noise figure which is also equivalent to
reducing the SNR. Therefore, as the launch power decreases
and the noise figure increases the penalty compared to NLIN 1)
becomes marginal for laser LWs Δa = 50 and Δa = 150 kHz.
However, the same behavior cannot be seen when observing
Δa = 250 kHz. The results for NLIN 2) overlap with NLIN 1)
with the exception of the lower studied launch powers for
which there is a penalty. Overall, the results for NLIN 2)
indicate that the learned constellations for each of the noise
figures have shaping gains compared to QAM and that they
are robust to launch power and laser LW uncertainty.

The constellation NLIN 3), shown on Fig. 5, is trained to be
robust to launch power, noise figure and laser LW variations.
In all of the observed test cases the MI performance of constel-
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Fig. 4. Performance in MI with respect to launch power for different LW (columns) and NF (rows) values for QAM, NLIN 1), NLIN 2) and NLIN 3),
where NLIN 1), NLIN 2) and NLIN 3) represent scenarios 1), 2) and 3) for the NLIN model, respectively. The NLIN 1) is the scenario where %8=, �= and
the RPN are fixed values during training. The NLIN 2) is the scenario where �= is fixed, and %8= and the RPN values vary during training. The NLIN 3)
is the scenario where all three parameters,%8=, �= and the RPN, vary during training. The constellation denoted as non-robust is optimized for the triplet
%8= = 0 dBm, �= = 6 dB and Δa = 150 kHz.

lation NLIN 3) is superior to regular QAM. The highest gain
achieved by NLIN 3) compared to QAM is 0.27 bits/symbol.
For lower SNR values the constellation NLIN 3) achieves the
highest gains, therefore it exhibits similar behavior to NLIN 2)
and AWGN 3). Based on the results for NLIN 3), it can be
concluded that the learned constellation is robust to variations
in all three observed parameters, launch power, noise figure
and laser LW. When comparing NLIN 3) to NLIN 2) for
�= = 6 and �= = 7 dB, the differences in MI performance
are marginal with the exception for Δa = 250 kHz where
NLIN 3) has penalty compared to NLIN 2) for some launch
powers. In the case of �= = 5 dB, the NLIN 3) is clearly
inferior to NLIN 2).

Finally, let us observe a non-robust constellation that is close
to optimal for the triplet %8= = 0 dBm, �= = 6 dB and Δa =
150 kHz. For laser LW Δa = 50 kHz with noise figure �= =
5 and �= = 6 dB, the non-robust constellation has greater
performance than NLIN 3). This can be also seen for Δa =
150 kHz and �= = 5 dB, however for Δa = 150 kHz and �= =
6 dB the non-robust constellation outperforms NLIN 3) only
in the launch power range %8= ∈ [0, 1] dBm. Similarly to the
AWGN model, by only observing narrow intervals of launch
power %8= ∈ [0, 1] dBm, noise figure �= ∈ [5, 6] dB and
laser LW Δa ∈ [50, 150] kHz, it can be noticed that the non-
robust constellation achieves performance close to NLIN 1)

which is almost optimal. In the rest of the cases, the non-
robust constellation does not even outperform the QAM for all
of the observed launch power. Observing the results for laser
LW Δa = 250 kHz, the non-robust constellation has significant
penalty to QAM.

For each of the noise figures, the NLIN 2) has superior
performance to NLIN 3), however this comes at the expense
of lower robustness, as illustrated in Fig 6. In Fig 6, the MI
performance of the NLIN 2) constellations, trained on �= = 5
and �= = 6 dB (dashed lines), as a function of the launch
power %8= for �= = 7 dB and Δa = 250 kHz is shown.
The constellation trained on �= = 5 dB has a significant
penalty compared to NLIN 3) and does not even outperform
QAM. The constellation trained on �= = 6 dB overlaps with
NLIN 1) for high launch powers. However as the launch power
decreases below %8= = 0 dBm the MI performance of this
constellation rapidly decays and it has a penalty compared to
NLIN 3). The NLIN 3) is more robust than NLIN 2), showing
that there is a trade–off between performance and robustness.

These results imply that if the parameters in the optical
network have small variations it would be enough to perform
training on a fixed set of parameters. However, for wider varia-
tion intervals, this is not the case and robust optimization such
as NLIN 2) and NLIN 3) needs to be performed. Achieving
robustness to the desired degree comes at the expense of MI
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Fig. 5. Constellation NLIN 3) which is robust to launch power, noise figure
and laser LW uncertainties.

performance, therefore it can be concluded that there is a
trade–off between performance and robustness.

VI. CONCLUSION

An autoencoder was proposed for optimization of a geomet-
ric shape that is robust to uncertainties in channel conditions,
such as signal-to-noise ratio (SNR) and laser linewidth. By
utilizing a simpler channel model and by imposing channel
variability during the training phase, the AE can be trained
to produce a constellation which is robust to the uncertainty
in the channel and equipment parameters, such as amplifier
noise figure, launch power and laser linewidth. The test results,
obtained on a more realistic channel model have indicated
that using the proposed method, a robust constellation can
be learned. Two additive noise models were considered, ad-
ditive white Gaussian noise (AWGN) and nonlinear inter-
ference noise (NLIN). For both noise models, the learned
robust constellations achieve superior mutual information (MI)
performance compared to quadrature amplitude modulation
(QAM) over the studied parameter intervals. Up to 0.3 and
0.27 bits/symbol of gain with respect to QAM was achieved
for AWGN and NLIN models, respectively. It can be also
concluded that there is a trade–off between robustness and
MI performance, meaning that robustness is achieved at the
expense of MI.
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