
International Journal of Computer Vision (2020) 128:997–1011

https://doi.org/10.1007/s11263-019-01237-6

End-to-End Learning of Decision Trees and Forests

Thomas M. Hehn1 · Julian F. P. Kooij1 · Fred A. Hamprecht2

Received: 6 March 2019 / Accepted: 17 September 2019 / Published online: 9 October 2019

© The Author(s) 2020

Abstract

Conventional decision trees have a number of favorable properties, including a small computational footprint, interpretability,

and the ability to learn from little training data. However, they lack a key quality that has helped fuel the deep learning

revolution: that of being end-to-end trainable. Kontschieder et al. (ICCV, 2015) have addressed this deficit, but at the cost

of losing a main attractive trait of decision trees: the fact that each sample is routed along a small subset of tree nodes only.

We here present an end-to-end learning scheme for deterministic decision trees and decision forests. Thanks to a new model

and expectation–maximization training scheme, the trees are fully probabilistic at train time, but after an annealing process

become deterministic at test time. In experiments we explore the effect of annealing visually and quantitatively, and find that

our method performs on par or superior to standard learning algorithms for oblique decision trees and forests. We further

demonstrate on image datasets that our approach can learn more complex split functions than common oblique ones, and

facilitates interpretability through spatial regularization.

Keywords Decision forests · End-to-end learning · Efficient inference · Interpretability

1 Introduction

Neural networks are currently the dominant classifier in com-

puter vision (Russakovsky et al. 2015; Cordts et al. 2016),

whereas decision trees and decision forests have proven their

worth when training data or computational resources are

scarce (Barros et al. 2012; Criminisi and Shotton 2013). One

can observe that both neural networks and decision trees are

composed of basic computational units, the perceptrons and

nodes, respectively. A crucial difference between the two is

that in a standard neural network, all units are evaluated for

Communicated by Mario Fritz.

The authors gratefully acknowledge financial support by DFG Grant

HA 4364/10-1.

B Thomas M. Hehn

T.M.Hehn@tudelft.nl

Julian F. P. Kooij

J.F.P.Kooij@tudelft.nl

Fred A. Hamprecht

fred.hamprecht@iwr.uni-heidelberg.de

1 Intelligent Vehicles Group, Delft University of Technology,

Mekelweg 2, 2628 CD Delft, The Netherlands

2 HCI/IWR, Heidelberg University, 69120 Heidelberg,

Germany

every input, while in a reasonably balanced decision tree with

I inner split nodes, only O(log I) split nodes are visited. That

is, in a decision tree, a sample is routed along a single path

from the root to a leaf, with the path conditioned on the sam-

ple’s features. Various works are now exploring the relation

between both classification approaches (Ioannou et al. 2016;

Wang et al. 2017), such as the Deep Neural Decision Forests

(DNDFs) (Kontschieder et al. 2015). Similar to deep neural

networks, DNDFs require evaluating all computational paths

to all leaf nodes in a tree for each test sample, which results

in high accuracy, but incurs large computational and memory

costs especially as trees grow deeper.

Our work proposes an orthogonal approach. We seek

to stick to traditional decision trees and forests as infer-

ence models for their advantages, while improving learn-

ing of such trees through end-to-end training with back-

propagation, one of the hallmarks of neural networks. It is

efficiency, induced by the sparsity of the sample-dependent

computational graph, that piques our interest in decision

trees. Further, we also hope to profit from their relative inter-

pretability. End-to-end training allows optimizing all levels

of a decision tree jointly. Furthermore, features can now be

jointly learned through linear nodes, but also through more

complex split functions such as small convolutional neu-

ral networks (CNNs). This is a feature that has so far been

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-019-01237-6&domain=pdf
http://orcid.org/0000-0002-4062-6222
http://orcid.org/0000-0001-9919-0710
http://orcid.org/0000-0003-4148-5043

998 International Journal of Computer Vision (2020) 128:997–1011

missing in deterministic decision trees, which are usually

constructed greedily without subsequent tuning. We propose

a mechanism to remedy this deficit.

1.1 RelatedWork

Random forests are ensembles of decision trees, and were

introduced by Breiman (2001). In this section, we review

use cases for trees and forests, choices for split functions,

different optimization strategies, and the connection to deep

neural networks.

Applications While neural networks have these days super-

seded all other approaches in terms of achievable accuracy

on many benchmarks (Cardona et al. 2010; Lin et al. 2014;

Russakovsky et al. 2015; Cordts et al. 2016), state-of-the-

art networks are not easy to interpret, are fairly hungry for

training data, often require weeks of GPU training and have

a computational and memory footprint that limits their use

on small embedded devices. Decision trees and decision tree

ensembles, such as random forests, generally achieve lower

accuracy on large datasets, but are fundamentally more fru-

gal. They have shown their effectiveness on a variety of

classification tasks (Barros et al. 2012; Fernández-Delgado

et al. 2014) and also found wide application in computer

vision, e.g. Viola and Jones (2001), Shotton et al. (2011),

Criminisi and Shotton (2013), Dollár et al. (2014), Zhang

et al. (2017), Cordts et al. (2017). They are well suited for

tasks where computational resources are limited, e.g. real-

time human pose estimation in the Microsoft Kinect (Shotton

et al. 2011), or few and unbalanced training samples are avail-

able, e.g. during online object tracking (Zhang et al. 2017).

Decision trees are also found in expert systems, since

they are widely recognized as interpretable models which

divide a complex classification task in several simpler ones.

For instance, Worachartcheewan et al. (2010), Pinhas-Hamiel

et al. (2013), Huang et al. (2015) use their interpretability for

diabetes research, and Guh et al. (2011) interpret their out-

come prediction of in vitro fertilization. Likewise, De Ville

(2006) explains the application of decision trees in business

analytics.

Split functions There have been several attempts to train deci-

sion trees with more complex split functions. Menze et al.

(2011) have benchmarked oblique random forests on various

binary classification problems. These oblique random forests

used linear and non-linear classifiers at each split in the deci-

sion trees and thereby combined more than one feature at a

time. Montillo et al. (2013) have successfully approximated

the information gain criterion using a sigmoid function and a

smoothness hyperparameter. Expanding these ideas, Laptev

and Buhmann (2014) have trained small convolutional neural

networks (CNNs) at each split in a decision tree to perform

binary segmentation. Rota Bulo and Kontschieder (2014)

also apply a greedy strategy to learn neural networks for each

split node and hence learn the structure of the tree. Notably,

these approaches use gradient optimization techniques, but

are lacking joint optimization of an entire tree, i.e. end-to-end

learning of the entire model.

Optimization Hyafil and Rivest (1976) have shown that the

problem of finding an optimal decision tree is NP-complete.

As a consequence, the common approach is to find axis-

aligned splits by exhaustive search, and learn a decision tree

with a greedy level-by-level training procedure as proposed

by Breiman et al. (1984). In order to improve their perfor-

mance, it is common practice to engineer split features for a

specific task (Lepetit et al. 2005; Gall and Lempitsky 2009;

Kontschieder et al. 2013; Cordts et al. 2017). Evolutionary

algorithms are another group of optimization methods which

can potentially escape local optima, but are computationally

expensive and heuristic, requiring to tune many parameters

(cf. Barros et al. (2012) for a survey).

Norouzi et al. (2015b) propose an algorithm for optimiza-

tion of an entire tree with a given structure. They show a

connection between optimizing oblique splits and structured

prediction with latent variables. As a result, they formulate

a convex–concave upper bound on the tree’s empirical loss.

The same upper bound is used to find an initial tree structure

in a greedy algorithm. Their method is restricted to linear

splits and relies on the kernel trick to introduce higher order

split features. Alternating Decision Forests (Schulter et al.

2013) instead include a global loss when growing the trees,

thereby optimizing the whole forest jointly.

Some works have explored gradient-based optimization of

a full decision tree model already. While Suárez and Lutsko

(1999) focused on a fuzzy approach of decision tree, Jordan

(1994) introduced hierarchical mixtures of experts. In the

latter model the predictions of expert classifiers are weighted

based on conditional path probabilities in a fully probabilistic

tree.

Kontschieder et al. (2015) make use of gradient-based

decision tree learning to learn a deep CNN and use it as

a feature extractor for an entire ensemble of decision trees.

They use sigmoid functions to model the probabilistic routes

and employ a log-likelihood objective for training. However,

their inference model is unlike a standard tree as it stays fuzzy

or probabilistic after training. When predicting new samples,

all leaves and paths need to be evaluated for every sample,

which subverts the computational benefits of trees. Further-

more, they consider only balanced trees, so the number of

evaluated split functions at test time grows exponentially with

increased tree depth.

Connections to deep neural networks Various works explore

the connections between neural networks and traditional

123

International Journal of Computer Vision (2020) 128:997–1011 999

decision tree ensembles. Sethi (1990), Welbl (2014) cast

decision tree ensembles to neural networks, which enables

gradient descent training. As long as the structure of the trees

is preserved, the optimized parameters of the neural network

can also be mapped back to the decision forest. Subsequently,

Richmond et al. (2016) map stacked decision forests to CNNs

and found an approximate mapping back. Frosst and Hinton

(2017) focus on using the learned predictions of neural net-

works as a training target for probabilistic decision trees.

A related research direction is to learn conditional com-

putations in deep neural networks. In Ioannou et al. (2016),

Bolukbasi et al. (2017), McGill and Perona (2017), Wang

et al. (2018), Huang et al. (2018), several models of neural

networks with separate, conditional data flows are discussed.

Still, the structure of the resulting inference models is fixed

a priori.

1.2 Contributions

This work extends our previous conference contribution

(Hehn and Hamprecht 2018) where we introduced end-to-

end learning for decision trees. Here, we add an extension to

decision forests, which we compare to state-of-the-art meth-

ods for training forests, and provide additional results on

interpretability and the effect of the steepness parameter.

Compared to existing research, our work provides the fol-

lowing contributions:

– We propose to learn deterministic decision trees and

forests in an end-to-end fashion. Unlike related end-to-

end approaches (Kontschieder et al. 2015), we obtain

trees with deterministic nodes at test time. This results

in efficient inference as each sample is only routed along

one unique path of only O(log I) out of the I inner nodes

in a tree. To reduce variance, we can also combine mul-

tiple trees in a decision forest ensemble. Furthermore, an

end-to-end trainable tree can provide interpretable clas-

sifiers on learned visual features, similar to how decision

trees are used in financial or medical expert systems on

handcrafted features. In this context, we show the benefit

of regularizing the spatial derivatives of learned features

when samples are images or image patches.

– To enable end-to-end training of a decision tree, we pro-

pose to use differentiable probabilistic nodes at train time

only. We develop a new probabilistic split criterion that

generalizes the long-established information gain (Quin-

lan 1990). A key aspect of this new tree formulation is

the introduction of a steepness parameter for the deci-

sion (Montillo et al. 2013). The proposed criterion is

asymptotically identical to information gain in the limit

of very steep non-linearities, but allows to better model

class overlap in the vicinity of a split decision boundary.

– A matching optimization procedure is proposed. Dur-

ing training, the probabilistic trees are optimized using

the Expectation–Maximization algorithm (Jordan and

Jacobs 1994). Importantly, the steepness parameter is

incrementally adjusted in an annealing scheme to make

decisions ever more deterministic, and bias the model

towards crispness. The proposed procedure also con-

structs the decision trees level-by-level, hence trees will

not grow branches any further than necessary. Compared

to initialization with balanced trees (Kontschieder et al.

2015) our approach reduces the expected depth of the

tree, which further improves efficiency.

Section 2 formalizes the new optimization procedure and

probabilistic decision tree formulation. In Sect. 3, we com-

pare the performance of the proposed method to that of

related work on decision trees and decision forests. We also

evaluate the benefits of the annealing scheme when training

decision forests for a given number of epochs, demonstrate

improved interpretability by regularizing the spatial deriva-

tives of learned features on images or image patches, and

show the use of CNNs as split features. Finally, Sect. 4

presents the conclusions and suggests future work.

2 Methods

Consider a classification problem with input space X ⊂ R
p

and output space Y = {1, . . . , K }. The training set is defined

as {x1, . . . , xN } = Xt ⊂ X with corresponding classes

{y1, . . . , yN } = Yt ⊂ Y .

We propose training a probabilistic decision tree model to

enable end-to-end learning. Nevertheless, we train a model

which is deterministic at test time. To account for this dis-

crepancy, we introduce a steepness parameter to gradually

enforce more deterministic splits during training. This addi-

tion is further motivated by the connection of our learning

objective to the information gain criterion (see Sect. 2.6).

2.1 Standard Decision Tree and Notation

In binary decision trees (Fig. 1c), split functions s : R →

[0, 1] determine the routing of a sample through the tree, con-

ditioned on that sample’s features. The split function controls

whether the splits are deterministic or probabilistic. The pre-

diction is made by the leaf node that is reached by the sample.

Split nodes Each split node i ∈ {1, . . . , I } computes a split

feature from a sample, and sends that feature into a split func-

tion. That function is a map fβi
: R

p → R parametrized by

β i . For example, oblique splits are a linear combination of the

input, i.e. fβi
(x) = (x

T , 1) · β i with β i ∈ R
p+1. Similarly,

an axis-aligned split perpendicular to axis a is represented

123

1000 International Journal of Computer Vision (2020) 128:997–1011

x2

x1

β1

1

2

3

4

A

B C

D

E

0

0.5

1

A

B

C

D

E

x1

x2

p(y = red | x)
1

2

A 4

B C

1−
s(
fβ1

(x
))

3

D E

s(f
β
1 (

x))

(a) (b) (c)

Fig. 1 Probabilistic oblique decision trees. a A feature space with a

binary classification problem tessellated by an example oblique deci-

sion tree. The oblique splits (1–4) partition the feature space into five

different leaves (A–E). b The predicted p(y = red | x) (Eq. 2) of the

oblique decision tree when a probabilistic split (Eq. 3) is used. c The

corresponding tree diagram (Color figure online)

by an oblique split whose only non-zero parameters are at

index a and p + 1. We write θβ = (β1, . . . ,β I) to denote

the collection of all split parameters in the tree.

Leaf nodes Each leaf ℓ ∈ {1, . . . , L} stores the parameters

of a categorical distribution over classes k ∈ {1, . . . , K } in a

vector πℓ ∈ [0, 1]K . These vectors are normalized such that

the probability of all classes in a leaf sum to
∑K

k=1(πℓ)k = 1.

We define θπ = (π1, . . . ,π L) to include all leaf parameters

in the tree.

Paths Each leaf is reached by precisely one unique set of

split outcomes, called a path. We define the probability that

a sample x takes the path to leaf ℓ as

μℓ(x; s, θβ) =
∏

r∈Rℓ

s(fβr
(x))

∏

l∈Lℓ

(

1 − s(fβl
(x))

)

. (1)

Here, Rℓ ⊂ {1, . . . , I } denotes the splits on the path which

contain ℓ in the right subtree. Analogously, Lℓ ⊂ {1, . . . , I }

denotes splits which contain ℓ in the left subtree. In Fig. 1c

this means that RB = {2} and LB = {1, 4}. Also note that

in the following, we will omit the dependency on s, except

when we consider a specific function s.

The prediction of the entire decision tree is given by

multiplying the path probability with the corresponding leaf

prediction:

p(y|x; θ) =

L
∑

ℓ=1

(πℓ)yμℓ(x; θβ). (2)

Here, θ = (θβ , θπ) comprises all parameters in the tree. This

representation of a decision tree allows choosing between dif-

ferent split features and different split functions, by varying

the functions f and s, respectively.

In standard deterministic decision trees as proposed in

Breiman et al. (1984), the split function is a step function

s(x) = Θ(x) with Θ(x) = 1 if x > 0 and Θ(x) = 0

otherwise.

2.2 Probabilistic Decision Tree

A defining characteristic of our method is that the decision

tree is probabilistic during training, similar to Kontschieder

et al. (2015). Rather than sending a sample deterministically

down the right (or left) subtree depending on its features x ,

we send it right with a probability

s(f (x)) = σ(f (x)) =
1

1 + e− f (x)
. (3)

This corresponds to regarding each split in the tree as a

Bernoulli decision with mean σ(f (x)). As a result, Eq. 2

is the expected value over the possible outcomes. Figure 1b

shows the prediction from Eq. 2 in the probabilistic case for

a class y = “red” on the classification problem illustrated in

Fig. 1a.

To train our probabilistic decision trees, we choose the

empirical log-likelihood of the training data as the maxi-

mization objective:

max
θ

£(θ;Xt ,Yt) = max
θ

N
∑

n=1

log p(yn|xn; θ). (4)

Importantly, while we propose to use a probabilistic deci-

sion tree for training, we use a deterministic decision tree

for prediction on test samples. To better match the models

used at train and test time, we introduce a hyperparameter γ ,

which steers the steepness of the split function by scaling the

split feature (Montillo et al. 2013)

123

International Journal of Computer Vision (2020) 128:997–1011 1001

s(f (x)) = σγ (f (x)) = σ(γ f (x)). (5)

Note, for γ → ∞ the model resembles a deterministic deci-

sion tree, since σ∞(f (x)) = Θ(f (x)). During training, we

iteratively increase γ , akin to a temperature cooling schedule

in deterministic annealing (Rose et al. 1990).

2.3 Expectation–Maximization

To optimize the log-likelihood of Eq. 4, we propose a

gradient-based, EM-style optimization strategy, which req-

uires f and s to be differentiable with respect to the split

parameters β i . The derivation of the EM-algorithm for this

model follows the spirit of Jordan and Jacobs (1994). We

introduce additional latent random variables zn,ℓ, which indi-

cate that leaf ℓ generated the class label of a given data point

xn . Including these latent variables, the optimization objec-

tive now becomes the complete data log-likelihood

£(θ;Xt ,Yt ,Zt) =

N
∑

n=1

L
∑

ℓ=1

zn,ℓ log
(

(πℓ)yn μℓ(xn; θβ)
)

.

(6)

E-Step In the Expectation-Step, the expected value of the

complete-data log-likelihood over the latent variables given

the previous parameters θ ′ is computed

Q(θ |θ ′) = EZt |Xt ,Yt ;θ
′ [£(θ;Xt ,Yt ,Zt)]. (7)

For this purpose, it is necessary to compute the probability

that zn,ℓ = 1 for each training sample n:

hn,ℓ := p(zn,ℓ = 1 | xn, yn; θ ′) (8)

=
p(yn | zn,ℓ = 1, xn; θ ′)p(zn,ℓ = 1 | xn; θ ′)

p(yn | xn; θ ′)
(9)

=
(π ′

ℓ)yn μℓ(xn; θ ′
β)

∑L
ℓ′=1(π

′
ℓ′)yn μℓ′(xn; θ ′

β)
. (10)

Thus, the expectation value of the complete-data log-

likelihood yields

Q(θ |θ ′) =

N
∑

n=1

L
∑

ℓ=1

hn,ℓ log
(

(πℓ)yn μℓ(xn; θβ)
)

. (11)

M-Step In the Maximization-Step, the expectation value

computed in the E-Step (Eq. 11) is maximized to find the

updated parameters θ ,

max
θ

Q(θ |θ ′). (12)

Due to the latent variables we introduced, it is now possible

to separate the parameter dependencies in the logarithm into

a sum. As a result, the leaf predictions and split parameters

are optimized separately.

The optimization of the leaf predictions including the nor-

malization constraint can be computed directly,

(πℓ)k =

∑N
n=1 1(yn = k)hn,ℓ

∑N
n=1 hn,ℓ

. (13)

Here, the indicator function 1(yn = k) equals 1 if yn = k

and 0 otherwise.

The optimization of the split parameters in the M-Step is

performed using gradient based optimization. The separated

objective for the split parameters without the leaf predictions

is

max
θβ

N
∑

n=1

L
∑

ℓ=1

hn,ℓ log μℓ(xn; θβ). (14)

In practice we use the first-order gradient-based stochastic

optimization Adam (Kingma and Ba 2015) to optimize this

objective.

In summary, each iteration of the algorithm requires eval-

uation of Eqs. 10 and 13, as well as at least one update of the

split parameters based on Eq. 14. This iterative algorithm can

be applied to a binary decision tree of any given structure.

2.4 Complex Splits and Spatial Regularization

The proposed optimization procedure only requires the split

features f to be differentiable with respect to the split param-

eters. As a result, it is possible to implement more complex

splits than axis-aligned or oblique splits. For example, it is

possible to use a small convolutional neural network (CNN)

as split feature extractor for f and learn its parameters

(Sect. 3.4).

Furthermore, the optimization objective can also include

regularization constraints on the parameters. This is useful

to avoid overfitting and learn more robust patterns. When the

inputs are from images, spatial regularization also reveals

more discernible spatial structures in the learned parameters

without sacrificing accuracy (Sect. 3.3). To encourage the

learning of coherent spatial patterns at each split, we add a

spatial regularization term (Eilers and Marx 1996)

−λ

I
∑

i=1

βT
i Mβ i (15)

to the maximization objective of the split features of Eq. 14.

Here, matrix M denotes the Laplacian matrix when inter-

preting the image as a grid graph. For a single pixel,

123

1002 International Journal of Computer Vision (2020) 128:997–1011

corresponding to weight βi , the diagonal element Mi i con-

tains the number of neighboring pixels. If pixels i and j are

neighboring pixels, then Mi j = M j i = −1. All remain-

ing elements in M are 0. This regularization term penalizes

spatial finite differences, encouraging similar parameters

for neighboring pixels. The hyperparameter λ controls the

regularization strength, with higher λ leading to stronger reg-

ularization.

2.5 Decision Tree Construction

The previous sections outlined how to fit a decision tree

to training data, given a fixed tree topology (parameter

learning). Additionally to this deterministic decision tree

Finetuning, we propose a Greedy algorithm to construct a

tree by successively splitting nodes and optimizing them on

subsets of the training data.

As a stopping criterion for training of a single split, we

limit the number of training epochs. The size of the tree can

be limited either by a maximum number of leaf nodes or the

depth of the tree. Furthermore, in cases with a very small

subset of the training data, it may happen that training of a

split fails and all training samples are passed to a single child

of that node. For these cases we set a maximum number

of attempts to fit a split function. Step-by-step, the Greedy

algorithm works as follows:

1. Initialize the decision tree with a single candidate node

as the tree root.

2. Split the training data into subsets. Starting from the root

node with the entire training dataset, the data is suc-

cessively decomposed using deterministic routing. As a

result, non-overlapping subsets are assigned to the can-

didate nodes.

3. For each candidate node:

(a) If the training data subset of the candidate node is

pure or the maximum number of attemps has been

reached, skip steps 3b to 3d for this node and fix it as

a leaf node.

(b) Replace node with a new tree stump, i.e. one split

node and two leaf nodes.

(c) Optimize only the tree stump using the Finetune algo-

rithm (see Sect. 2.3) on the assigned training data

subset for the specified number of epochs.

(d) If training the stump failed, then try training a new

stump by repeating from 3a.

4. Find leaf node candidates that may be split according to

the specified tree limits.

5. If candidate nodes are found, repeat from 2. Otherwise,

stop, the decision tree construction is finished.

The main intent for this greedy algorithm is that trees are

only grown further when necessary and thereby reduce the

amount of computations and parameters in the model (see

Sect. 3.6). The distribution of the training data in step 2 means

that each node only shares training data with its ancestors.

In particular this means that, at first, the root split is trained

on the entire training data. At some point the training data is

pure, i.e. all samples are of same class, and this node can be

fixed as a leaf node.

During training of a tree stump, only one split node and

two leaf nodes are optimized. As a result, the log-likelihood

objective (Eq. 4) then resembles an approximation of the

widely used information gain criterion Quinlan (1990, 1993)

(Sect. 2.6).

After this greedy structure learning, the nodes in the

entire resulting tree can be finetuned jointly as described in

Sect. 2.3, this time with probabilistic routing of all training

data.

2.6 Relation to Information Gain and Leaf Entropies

We now show that maximization of the log-likelihood of the

probabilistic decision tree model approximately minimizes

the weighted entropies in the leaves. The steeper the splits

become, the better the approximation.

To establish this connection we use hyperparameter γ

to control the steepness of the probabilistic split function

(Eq. 5). We introduce the function ℓ(x) that returns the index

of the leaf that sample x reaches when the path is evaluated

deterministically

ℓ(x) =

L
∑

ℓ=1

ℓ lim
γ→∞

μℓ(x; σγ , θβ). (16)

This simplifies the log-likelihood objective (Eq. 4) to

max
θ

N
∑

n=1

log(πℓ(xn))yn (17)

because each sample reaches only one leaf. Let Nℓ,k be

the number of training samples in leaf ℓ with class k and

Nℓ =
∑K

k=1 Nℓ,k denote all training samples in leaf ℓ. Since

training samples with the same class and in the same leaf con-

tribute the same term, the equations may be rearranged to

max
θ

L
∑

ℓ=1

K
∑

k=1

Nℓ,k log(πℓ)k . (18)

With γ → ∞, the optimal leaf predictions are the same as

in a standard, deterministic decision tree, i.e. (πℓ)k =
Nℓ,k

Nℓ
.

Accordingly, the objective can be rewritten as

123

International Journal of Computer Vision (2020) 128:997–1011 1003

max
θ

lim
γ→∞

£(θ;Xt ,Yt) = min
θ

L
∑

ℓ=1

Nℓ

N
Hℓ. (19)

Here, Hℓ = −
∑K

k=1(πℓ)k log(πℓ)k denotes the entropy in

leaf ℓ.

In conclusion, we have shown that for γ → ∞, max-

imizing the log-likelihood objective minimizes a weighted

sum of leaf entropies. For the special case of a single split

with two leaves, this is the same as maximizing the informa-

tion gain. Consequently, the log-likelihood objective (Eq. 4)

can be regarded as a generalization of the information gain

criterion (Quinlan 1990) to an entire tree.

2.7 Decision Forest

Following the ideas introduced by Breiman (2001), we com-

bine decision trees to a decision forest. Specifically, each

decision tree is constructed with our Greedy algorithm on

the full dataset. Afterwards, using our Finetune algorithm,

each tree is optimized end-to-end. Note that the result is a

decision forest rather than a random forest, since each tree

is trained independently on all train data rather instead of on

random subsets.

In order to reduce correlation between the decision tree

predictions, we train each split function only on a subset of

the available features. For each split, this feature subset is

sampled from a uniform distribution or, in the case of 2D

images, will consist of connected 2D patches of the image.

Let θ t denote all parameters of a single tree t out of T

trees in the ensemble T of learned trees. The final prediction

of the decision forest for a single sample x is computed as

the mean prediction of the single trees (Eq. 2):

p(y|x; T) =
1

T

∑

t∈T

p(y|x; θ t). (20)

3 Experiments

We conduct experiments on data from various domains. For

quantitative comparison of our end-to-end learned oblique

decision trees (E2EDT), we evaluate the performance on

the multivariate but unstructured datasets used in Norouzi

et al. (2015b) (Sect. 3.1). In order to understand the learn-

ing process of the probabilistic training and deterministic

inference model, we visually examine the models on an

image segmentation dataset (Sect. 3.2). Next, we show that

the proposed algorithm can learn meaningful spatial fea-

tures on MNIST, FashionMNIST and ISBI, as has previously

been demonstrated in neural networks but not in decision

trees (Sect. 3.3). We also demonstrate that a deterministic

decision tree with complex split nodes can be trained end-

to-end, by using a small neural network in each split node

(Sect. 3.4). Further, we quantitatively evaluate the effect of

the steepness annealing in an end-to-end learned decision

forest (E2EDF, Sect. 3.5) and compare the trade-off between

computational load and accuracy to state-of-the-art decision

forests (Sect. 3.6).

For gradient-based split parameter optimization, we use

the Adam optimizer (Kingma and Ba 2015) with default

parameters (α = 0.001, β1 = 0.9, β2 = 0.999, ǫ = 10−8)

and a batch size of 1000 with shuffled batches. All data is nor-

malized to zero mean and unit variance based on the training

data. Unless stated otherwise, we use this setup for all our

experiments. The source code of our implementation using

PyTorch (Paszke et al. 2017) is available online1.

3.1 Performance of Oblique Decision Trees

We compare the performance of our algorithm in terms of

accuracy to all results reported in Norouzi et al. (2015b). In

order to provide a fair comparison, we refrain from using

pruning, ensembles and regularization.

Datasets Norouzi et al. (2015b) reports results on the follow-

ing four datasets: MNIST (LeCun et al. 1998), SensIT (Duarte

and Hu 2004), Connect4 (Dua and Graff 2017) and Pro-

tein (Wang 2002). The multi-class classification datasets are

obtained from the LIBSVM repository (Fan and Lin 2011).

When a separate test set is not provided, we randomly split

the data into a training set with 80% of the data and use 20%

for testing. Likewise, when no validation set is provided, we

randomly extract 20% of the training set as validation set.

Compared algorithms We compare algorithms that use a

deterministic decision tree for prediction, with either oblique

or axis-aligned splits. The following baselines were evalu-

ated in Norouzi et al. (2015b): Axis-aligned: conventional

axis-aligned splits based on information gain; OC1: oblique

splits optimized with coordinate descent as proposed in

Murthy (1996); Random: selected the best of randomly

generated oblique splits based on information gain; CO2:

greedy oblique tree algorithm based on structured learning

(Norouzi et al. 2015a); Non-greedy: non-greedy oblique deci-

sion tree algorithm based on structured learning (Norouzi

et al. 2015b).

We compare the results of these algorithms with two vari-

ants of our proposed method. Here, Greedy E2EDT denotes

a greedy initialization where each oblique split is computed

using the EM optimization. For each depth, we apply the

Finetune E2EDT algorithm to the tree obtained from the

1 Code is available at http://www.github.com/tomsal/

endtoenddecisiontrees

123

http://www.github.com/tomsal/endtoenddecisiontrees
http://www.github.com/tomsal/endtoenddecisiontrees

1004 International Journal of Computer Vision (2020) 128:997–1011

5 10 15

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Finetuned E2EDT

Greedy E2EDT

Non-greedy

CO2

Axis-aligned

OC1

Random

Tree depth

5 10 15

Tree depth

5 10 15

Tree depth

5 10 15

Tree depth

T
es

t
a
cc

u
ra

cy
T
ra

in
in

g
a
cc

u
ra

cy

(a) MNIST (b) SensIT (c) Connect4 (d) Protein

Fig. 2 Accuracy on test and training sets of various optimization

methods for deterministic oblique decision trees. For of our proposed

approach, we show results with Greedy initialization only (solid, light

red line), and after being Finetuned (solid, dark red line). The results of

the baseline algorithms (dashed lines) were reported in Norouzi et al.

(2015b), see text for more details. The maximum tree depth varies from

2 to 18 with stepsize 2 (Color figure online)

Greedy E2EDT algorithm at that depth. In the following we

refer to them as Greedy and Finetune.

Hyperparameters and initialization We keep all hyperparam-

eters fixed and conduct a grid search over the number of

training epochs in {20, 35, 50, 65}, using a train/validation

split. The test data is only used to report the final perfor-

mance.

The split steepness hyperparameter is set to γ = 1.0

initially and increased by 0.1 after each epoch (one epoch

consists of the split parameter θβ updates of all training

batches as well as the update of the leaf predictions θπ).

Initial split directions are sampled from the unit sphere and

the categorical leaf predictions are initialized uniformly.

Results Figure 2 shows the test and training statistical accu-

racy of the different decision tree learning algorithms. The

accuracy of a classifier is defined as the ratio of correctly

classified samples in the respective set. It was evaluated for

a single tree at various maximum depths. The red solidlines

show the result of our proposed algorithm, the dashed lines

represent results reported by Norouzi et al. (2015b).

Our algorithms achieve higher test accuracy than previ-

ous work, especially in extremely shallow trees. The highest

increase in test accuracy is observed on the MNIST data set.

Here, we significantly outperform previous approaches for

oblique decision trees at all depths. In particular, an oblique

decision tree of depth 4 is already sufficient to surpass all

competitors.

On SensIT and Protein we perform better than or on par

with the Non-greedy approach proposed in Norouzi et al.

(2015b). Note that further hyperparameter tuning may reduce

overfitting, e.g. on the Protein dataset, and thus the results

may improve. We did not include this here, as we aimed to

provide a fair comparison and show the performance given

very little parameter-tuning.

In conclusion, our proposed (E2EDT) algorithm is able to

learn more accurate deterministic oblique decision trees than

the previous approaches.

123

International Journal of Computer Vision (2020) 128:997–1011 1005

(a) input (b) probabilistic, 4 epochs (c) probabilistic, 8 epochs (d) probabilistic, 24 epochs

(e) groundtruth (f) deterministic w.r.t. (b) (g) deterministic w.r.t. (c) (h) deterministic w.r.t. (d)

Fig. 3 Posterior probability (Eq. 2) after various epochs of learning a

single oblique decision tree on the ISBI binary segmentation dataset.

a Shows the input image and e the corresponding groundtruth labels.

b–d Illustrate the posterior of the probabilistic tree as γ increases at

various stages during training. f–h illustrate the posterior of the deter-

ministic equivalents at those stages after setting γ → ∞. Except for

(a), darker means higher probability for class “membrane”. Note how

discrepancies between the predictions of the probabilistic tree and its

deterministic counterpart disappear as steepness γ increases. The high-

lighted region is discussed in the text

3.2 Visual Convergence of Training and Inference
Model

During training, we gradually steer the probabilistic training

model towards a deterministic model by increasing the steep-

ness γ . We now visually examine the difference between the

probabilistic training model and the deterministic inference

model. For this purpose, we train an oblique decision tree

for a binary image segmentation task on the ISBI challenge

dataset (Cardona et al. 2010). This challenging image seg-

mentation benchmark comprises serial section Transmission

Electron Microscopy images (Fig. 3a) and binary annotations

of neurons and membranes (Fig. 3e). For every pixel, we take

a 9×9 window around the current pixel as input features to

an oblique decision tree. Consequently, the learned parame-

ters at each split node can be regarded as a spatial kernel. We

initialize a balanced oblique decision tree of depth 6 and use

the Finetune algorithm to optimize the entire tree. We use the

default steepness increase of Δγ = 0.1 per epoch.

Results Figure 3a shows a sample image of the input and

Fig. 3e the correspondinggroundtruth labels. Figure 3b–d

illustrate the posterior probability (Eq. 2) predicted by the

probabilistic training model at different training stages. The

posterior probabilities of the corresponding inference models

are shown below, in Fig. 3f–h. The visualization of the pre-

diction shows pixels more likely to be of class “membrane”

with darker color.

The gradual convergence of the probabilistic training

model and the deterministic inference model is well visi-

ble. After 4 epochs, the probabilistic model (Fig. 3b) already

reflects the structure of the segmentation problem. The cor-

responding deterministic model is more fragmented and also

exhibits stronger confidence values, i.e. darker pixels. This is

especially clear to see in the highlighted red squares in Fig. 3.

The discrepancy between the probabilistic and deterministic

model is reduced after 8 epochs (Fig. 3c, g). However, the

deterministic posterior estimate reveals high confidence even

in misclassified areas (higher contrast). This effect is damp-

end after 24 epochs. The corresponding leaf probabilities

now learned to estimate confidence and thus show more gray

areas in difficult regions. The differences between the prob-

abilistic (Fig. 3d) and the deterministic (Fig. 3h) predictions

are hardly visible anymore.

123

1006 International Journal of Computer Vision (2020) 128:997–1011

MNIST

FashionMNIST

ISBI

(a) Without spatial regularization (b) With spatial regularization

Fig. 4 Visualizations of oblique split parameters learned with and

without spatial regularization (Sect. 2.4). Each row shows a selec-

tion of parameters which were learned on a different dataset, namely

MNIST (LeCun et al. 1998), FashionMNIST (Xiao et al. 2017), and

ISBI (Cardona et al. 2010). Parameters trained with spatial regulariza-

tion show visible structures and patterns, whereas parameters learned

without regularization appear noisy

3.3 Interpretation of Spatially Regularized
Parameters

We now investigate the effects of spatial regularization

(Sect. 2.4) on the parameters of oblique decision trees learned

with our algorithm. Recall that regularization penalizes dif-

ferences in adjacent parameters. For this purpose, we train

oblique decision trees on the MNIST digit dataset (LeCun

et al. 1998), the FashionMNIST fashion product dataset (Xiao

et al. 2017) and the ISBI image segmentation dataset (Car-

dona et al. 2010). For MNIST and FashionMNIST, the

training images consist of 28 × 28 images. For the segmen-

tation task on ISBI, a sliding window of size 31 × 31 is used

as input features for each pixel in the center of the window.

Results In Fig. 4 we visualized selected parameters of the

oblique splits at various depths with and without regular-

ization. The learned parameter vectors are reshaped to the

respective training image dimensions, and linearly normal-

ized to the full grayscale range. In both cases, we select

parameter vectors that display interesting visible structures.

The parameters without regularization appear very noisy.

In contrast, with regularization the algorithm learns smoother

parameter patterns, without decreasing the accuracy of the

decision trees. The patterns learned on the MNIST show vis-

ible sigmoidal shapes and even recognizable digits. On the

FashionMNIST dataset, the regularized parameters display

the silhouettes of coats, pants and sneakers. Likewise, our

algorithm is able to learn the structures of membranes on the

real-world biological electron microscopy images from the

ISBI dataset.

Figure 5 visualizes half of a learned tree for the Fash-

ionMNIST dataset. One can see that at deeper splits, more

distinctive features of various fashion products are tested.

The split parameters of the first split at depth 3 show bright

trousers and its right child predicts the class “trousers”. The

same holds for the second split at depth 3, showing a bright

silhouette of a dress and its right child predicts “dress”. The

parameters of the third split at depth 3 reveal some kind of

upper body clothes, but it is difficult to determine the kind.

Yet, these parameters separate samples of class “pullover”

and “shirt” (left child) from class “coat” (right child). Such

decision tree illustrations thus reveal important features that

drive the internal decisions made towards the final prediction.

This provides a useful tool to interpret our model, akin to the

use of decision trees in expert systems of other domains (De

Ville 2006; Huang et al. 2015).

3.4 CNN Split Features

We test the effectiveness of CNNs as split features in a deci-

sion tree on MNIST. At each split, we trained a very simple

CNN of the following architecture: Convolution 5×5 kernel

@ 3 output channels → Max Pool 2 × 2 → ReLU → Con-

volution 5 × 5 @ 6 → Max Pool 2 × 2 → ReLU → Fully

connected layer 96 × 50 → ReLU → Fully connected layer

50 × 1. The final scalar output is the split feature, which is

the input to the split function.

123

International Journal of Computer Vision (2020) 128:997–1011 1007

0 2 4 6 8
0

1

0 2 4 6 8
0

1

0 2 4 6 8
0

1

0 2 4 6 8
0

1

0 2 4 6 8
0

1

0 2 4 6 8
0

1

0 2 4 6 8
0

1

0 2 4 6 8
0

1

Depth 0

Depth 1

Depth 3

Depth 2

0 T-shirt/top

1 Trouser

2 Pullover

3 Dress

4 Coat

5 Sandal

6 Shirt

7 Sneaker

8 Bag

9 Ankle boot

Fig. 5 Visualization of an oblique decision tree learned on FashionM-

NIST (Xiao et al. 2017) with spatial regularization. The right branch of

the root (dashed arrow) is hidden for clarity. The split parameters are

visualized as in Fig. 4. Intuitively, the better the input image matches

the parameter image, the more likely the sample will go to the right

child. If the input image better resembles the negative parameter image,

the sample will go to the left. The thickness of an arrow indicates the

number of training samples following the path when the decision tree

is evaluated deterministically. Distributions at the leaves are visualized

as bar plots. The x-axis denotes classes (see legend in the top-left), and

the y-axis corresponds to the class probability

Again, we train greedily to initialize the tree, however we

split nodes in a best-first manner, based on highest infor-

mation gain. As a result, the trees can be fairly unbalanced

despite impure leaves. We now choose to stop at a maxi-

mum of 10 leaves, as we aim to increase interpretability and

efficiency by having one expert leaf per class.

Results In this setting, a single decision tree achieves a test

accuracy of 98.2%±0.3% deterministic evaluation of nodes.

For comparison, a standard random forest ensemble with 100

trees only reaches 96.79% ± 0.07%.

Such decision tree models provide interesting benefits in

interpretability and efficiency, which are the main advan-

tages of decision trees. When a sample was misclassified it

is straightforward to find the split node that is responsible

for the error. This offers interpretability as well as the pos-

sibility to improve the overall model. Other methods, such

as OneVsOne or OneVsRest multi-class approaches, provide

similar interpretability, however at a much higher cost at test

time. This is due to the fact that in a binary decision tree with

K leaves, i.e. a leaf for each class, it is sufficient to evaluate

O(log K) split nodes. In OneVsOne and OneVsAll it is nec-

essary to evaluate K (K − 1)/2 and K different classifiers at

test time, respectively.

3.5 Steepness Annealing Analysis

In Sect. 2, we motivate the introduction and annealing of the

steepness hyperparameter based on two observations. Firstly,

steeper decisions, although hindering end-to-end learning,

reflect our final inference model more closely. Secondly, in

the limit of steep decisions, our learning objective approx-

imates the information gain (see Sect. 2.6), which is well

established for decision tree learning.

In this experiment, we investigate the effectiveness of

annealing the steepness hyperparameter. For this purpose,

we train decision forest ensembles of oblique determinis-

tic decision trees (see Sect. 2.7). We use different annealing

schemes for the steepness to study the impact on the per-

formance. The steepness is always initialized as γ = 1.0

and Δγ > 0 denotes the enforced increase in steepness after

each epoch. Thus, Δγ = 0 effectively ignores the hyperpa-

rameter as it will stay constant during training. We perform

this comparison for three different settings of the number of

epochs (15, 30, 45). This means that during the Greedy tree

construction each split is trained for exactly this number of

epochs. Afterwards, each tree is optimized end-to-end based

on our Finetune algorithm for three times as many epochs

as during the construction phase (e.g. 30 epochs Greedy and

90 epochs Finetune training). This choice is motivated by

validation experiments which showed the importance of the

Finetune algorithm in the decision forest and do not affect

the comparison of different Δγ .

Datasets We follow the procedure described in section 5.1 of

Kontschieder et al. (2015), and use the same datasets, number

of features, and number of trees as they do. These datasets are

Letter (Frey and Slate 1991), USPS (Hull 1994) and MNIST

(LeCun et al. 1998). The features are randomly chosen for

each split separately. For completeness, details on the dataset

and specific settings are listed in Table 2 in the Appendix.

123

1008 International Journal of Computer Vision (2020) 128:997–1011

Table 1 Comparison of the validation accuracy of our end-to-end

learned deterministic decision forests for different values of the gradual

steepness increase Δγ on various datasets (see Appendix, Table 2)

Dataset Δγ 15 Epochs 30 Epochs 45 Epochs

Letter 0.0 76.7 81.1 84.7

Letter 0.01 81.8 89.2 92.5

Letter 0.1 92.6 94.5 95.5

USPS 0.0 88.5 92.3 94.1

USPS 0.01 91.5 95.3 96.3

USPS 0.1 96.1 96.6 96.7

MNIST 0.0 97.9 98.1 98.1

MNIST 0.01 97.9 98.1 98.1

MNIST 0.1 97.7 97.8 97.4

Best results per dataset and number of training epochs are highlighted

bold

Results Table 1 shows the accuracy of our oblique decision

forest when trained with different steepness increase. It is

important to note that Δγ = 0 does not mean that the steep-

ness is fixed throughout training. The model may still learn to

have steeper decisions by increasing the L2-norm of the split

parameters θβ . After training for same number of epochs, a

steepness increase of Δγ = 0.1 per epoch consistently out-

performs the trained models without annealing Δγ = 0.0

on the Letter and USPS datasets. On these two datasets,

final deterministic model improves by a large margin when

trained with steepness increase. Interestingly, on MNIST, the

decision forests without steepness increase perform equally

well as the corresponding models with Δγ = 0.01. A pos-

sible interpretation is that larger datasets do not benefit from

this. Compared to the other datasets and considering the

simplicity of the task, MNIST can be considered a large

dataset. Conversely, further tuning of γ may show different

results. Generally, our default steepness annealing choice of

Δγ = 0.1 per epoch performs well.

3.6 Trade-off Between Computational Load and
Accuracy

Due to the conditional data flow, deterministic decision

forests only evaluate a fraction of the entire model during pre-

diction and thus require significantly less computations than

a probabilistic forest model. We now quantify the trade-off in

computational load and accuracy of our end-to-end learned

deterministic decision forests compared to the state-of-the-

art probabilistic shallow Neural Decision Forests (sNDF) by

Kontschieder et al. (2015). For this purpose, we evaluate our

decision forest (E2EDF) on the same datasets which were

used in their evaluation (see Sect. 3.5). Both models, E2EDF

and sNDF, are based on oblique splits and we use the same

maximum depth per tree and the same number of trees in a

forest as the sNDF.

We additionally compare our results to other determinis-

tic tree ensemble methods: the standard random forest (RF),

boosted trees (BT) and alternating decision forests (ADF).

The corresponding results were reported by Schulter et al.

(2013) and are always based on 100 trees in the ensemble

with maximum depth of either 10, 15 or 25. Since their work

only lists ranges of explored parameter settings, we will base

the estimated computational load (i.e. number of split evalu-

ations) on the most favorable parameter settings.

Since BT, RF and ADF are in practice limited to linear

split functions, we restrict our E2EDF models to oblique

splits as well in this comparison. To train our E2EDF mod-

els, we use our default steepness increase of Δγ = 0.1 per

epoch. On USPS as well as Letter, the models are trained for

45 epochs, whereas on MNIST, training is done only for 15

epochs due to the larger amount of training data. Note that,

as in Sect. 3.5, we Finetune the final tree for three times as

many epochs as during the Greedy training (e.g. for USPS: 45

epochs Greedy and 135 epochs Finetune). Training is done

on the full training data, i.e. including validation data, and

evaluate on the provided test data. The reported accuracy is

averaged over three runs.

Results The trade-off in terms of computational load and

accuracy of the different decision forest models is shown in

Fig. 6. We find that deterministic E2EDF achieves higher

average accuracy than RF and BT on all datasets, and out-

performs all other methods on MNIST. Compared to ADF,

the results of E2EDF are competitive, although relative per-

formance varies between datasets. A possible explanation is

that the ADF results were obtained using different hyperpa-

rameters that allow more and deeper trees, which can lead to

significant differences as shown in Schulter et al. (2013).

On Letter and USPS, sNDF achieves higher accuracy but

at several orders of magnitude higher computational cost as

it lacks the conditional data flow property. In fact, a single

tree in the sNDF requires a total of 1023 split evaluations,

which is more than for our entire forest models, namely up

to 1000 evaluations on USPS. A complete overview of the

number split function evaluations per algorithm is given in

Table 3 in the Appendix.

Figure 6 further presents the impact of using fewer deci-

sion trees in our forest model by illustrating the performance

of small ensembles (T ∈ {1, 3, 5, 10}). On MNIST and USPS

we observe that even smaller E2EDF ensembles with only

T = 10 trees already obtains competitive accuracy.

Finally, we note that due to our greedy initialization of

trees, the actual number of splits is less than the maximum

depth would allow. The trained E2EDF trees only required

on average 758 ± 1 (Letter), 372 ± 2 (USPS) and 938 ± 2

(MNIST) split functions, while the maximum number of split

123

International Journal of Computer Vision (2020) 128:997–1011 1009

Fig. 6 Trade-off between computational load and accuracy of oblique

decision forest models. The computational load is represented by the

number split function evaluations (x-axis, log scale) in the forest

required for a single sample at test time. For RF, BT and ADF, the

split function evaluations are estimated in favor of those methods. For

our E2EDF models, we show results with the same number of trees as

used by sNDF, and additionally include results with fewer trees in the

forest, namely T ∈ {1, 3, 5, 10} (Color figure online)

decisions for a tree of depth 10 is 210 − 1 = 1023. Overall,

having fewer trees and fewer decisions in the forest reduces

the required number of split evaluations at test time, and thus

enables even more efficient inference.

4 Conclusion

We presented a new approach to train deterministic deci-

sion trees with gradient-based optimization in an end-to-end

manner, E2EDT. The approach uses a probabilistic tree for-

mulation during training to facilitate back-propagation and

optimize all splits of a tree jointly.

We found that by adjusting the steepness of the deci-

sion boundaries in an annealing scheme, the method learns

increasingly more crisp trees that capture uncertainty as dis-

tributions at the leaf nodes, rather than as distributions over

multiple paths. The resulting optimized trees are therefore

deterministic rather than probabilistic, and run efficiently

at test time as only a single path through the tree is evalu-

ated. This approach outperforms previous training algorithms

for oblique decision trees. In a forest ensemble, our method

shows competitive or superior results to the state-of-the-art

sNDF, even though our trees only evaluate a fraction of the

split functions at test time. Unlike ADF, we are not restricted

to only use oblique split functions, thanks to the gradient-

based optimization. We show that it is straightforward to

include more complex split features, such as convolutional

neural networks, or to add spatial regularization constraints.

Another demonstrated benefit is that the learned decision tree

can also help interpret how the decision of a visual classifi-

cation tasks is constructed from a sequence of simpler tests

on visual features.

Future work can proceed in various directions. First, alter-

natives for the annealing scheme could be explored, e.g. the

changes in the steepness of tree splits might be adjusted

dynamically rather than in a fixed schedule. Second, we have

so far only optimized each tree independently, but potentially

optimizing and refining the whole forest jointly could yield

further improvements, similar to ADF and sNDF.

Overall, the presented approach provides high flexibility

and the potential for accurate models that maintain inter-

pretability and efficiency due to the conditional data flow.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing, adap-

tation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indi-

cate if changes were made. The images or other third party material

in this article are included in the article’s Creative Commons licence,

unless indicated otherwise in a credit line to the material. If material

is not included in the article’s Creative Commons licence and your

intended use is not permitted by statutory regulation or exceeds the

permitted use, you will need to obtain permission directly from the copy-

right holder. To view a copy of this licence, visit http://creativecomm

ons.org/licenses/by/4.0/.

Appendix

Table 2 lists the dataset specific parameters used in the exper-

iments of Sects. 3.5 and 3.6. These parameters are the same

as in Kontschieder et al. (2015).

Table 2 Properties of the datasets used in our decision forest experi-

ments, respectively published by Frey and Slate (1991), Hull (1994),

LeCun et al. (1998)

Dataset Letter USPS MNIST

Features 16 16 × 16 28 × 28

Classes 26 10 10

No. training samples 16,000 7291 60,000

No. test samples 4000 2007 10,000

No. validation samples 3000 1500 10,000

Features per split 8 10 × 10 15 × 15

Trees 70 100 80

The lower part describes our processing of the data. We also list the size

of our validation data that was randomly taken from the training data.

Features per split indicate the number of features that are randomly

sampled to find a split in a tree. In the case of 2D inputs, these random

features are 2D patches located randomly at different positions of the

input. The final row lists the number of trees in our forest on each dataset,

which are taken equal to the number of trees used in Kontschieder et al.

(2015)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1010 International Journal of Computer Vision (2020) 128:997–1011

Table 3 Comparison of the computational load of the models evaluated

in the experiments

Letter USPS MNIST

sNDF (single tree) 1023 1023 1023

sNDF (forest) 71,610 102,300 81,840

RF, BT, ADF (forest) ≤ 1000 ≤ 1000 ≤ 1000

E2EDF (single tree) ≤ 10 ≤ 10 ≤ 10

E2EDF (forest) ≤ 700 ≤ 1000 ≤ 800

We show the number of oblique splits that need to be evaluated in each

model per prediction of a single sample. Probabilistic trees in sNDF

evaluate every split function in the tree and thus requires 2Dmax − 1 dot

products per sample and tree. In deterministic trees (RF, BT, ADF and

E2EDF), the number of split function evaluations grows linearly with

increasing depth. Due to the tree construction, trees may not always

reach the maximum depth. Here we report the worst case, but assuming

the most favorable maximum tree depth for RF, BT and ADF

Table 3 lists the number of the split function evaluations

for the methods discussed in Sect. 3.6.

References

Barros, R. C., Basgalupp, M. P., De Carvalho, A. C., & Freitas, A.

A. (2012). A survey of evolutionary algorithms for decision-tree

induction. IEEE Transactions on Systems, Man, and Cybernetics,

Part C (Applications and Reviews), 42(3), 291–312.

Bolukbasi, T., Wang, J., Dekel, O., & Saligrama, V. (2017). Adaptive

neural networks for fast test-time prediction. arXiv:1702.07811

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

https://doi.org/10.1023/A:1010933404324.

Breiman, L., Friedman, J., Olshen, R. A., & Stone, C. J. (1984). Classi-

fication and regression trees. Boca Raton: Chapman & Hall/CRC.

Cardona, A., Saalfeld, S., Preibisch, S., Schmid, B., Cheng, A., Pulokas,

J., et al. (2010). An integrated micro- and macroarchitectural anal-

ysis of the drosophila brain by computer-assisted serial section

electron microscopy. PLOS Biology, 8(10), 1–17. https://doi.org/

10.1371/journal.pbio.1000502.

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benen-

son, R., Franke, U., Roth, S., & Schiele, B. (2016). The cityscapes

dataset for semantic urban scene understanding. In 2016 IEEE

computer society conference on computer vision and pattern

recognition.

Cordts, M., Rehfeld, T., Enzweiler, M., Franke, U., & Roth, S. (2017).

Tree-structured models for efficient multi-cue scene labeling.

IEEE Transactions on Pattern Analysis and Machine Intelligence,

39(7), 1444–1454.

Criminisi, A., & Shotton, J. (2013). Decision forests for computer vision

and medical image analysis. Berlin: Springer.

De Ville, B. (2006). Decision trees for business intelligence and data

mining: Using SAS enterprise miner. Cary: SAS Institute.

Dollár, P., Appel, R., Belongie, S., & Perona, P. (2014). Fast feature pyra-

mids for object detection. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 36(8), 1532–1545.

Dua, D., & Graff, C. (2017). UCI machine learning repository. Retrieved

February 18, 2019 from http://archive.ics.uci.edu/ml.

Duarte, M. F., & Hu, Y. H. (2004). Vehicle classification in distributed

sensor networks. Journal of Parallel and Distributed Computing,

64(7), 826–838.

Eilers, P. H. C., & Marx, B. D. (1996). Flexible smoothing with B-

splines and penalties. Statistical Science, 11, 89–121.

Fan, R. E., & Lin, C. J. (2011). Libsvm data: Classification, regression

and multi-labe. Retrieved May 30, 2017 from http://www.csie.ntu.

edu.tw/~cjlin/libsvmtools/datasets/.

Fernández-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. (2014).

Do we need hundreds of classifiers to solve real world classification

problems? Journal of Machine Learning Research, 15, 3133–3181.

Frey, P. W., & Slate, D. J. (1991). Letter recognition using Holland-style

adaptive classifiers. Machine Learning, 6(2), 161–182.

Frosst, N., & Hinton, G. (2017). Distilling a neural network into a soft

decision tree. arXiv:1711.09784.

Gall, J., & Lempitsky, V. (2009). Class-specific hough forests for object

detection. In 2009 IEEE computer society conference on computer

vision and pattern recognition (pp. 1022–1029). https://doi.org/10.

1109/CVPR.2009.5206740.

Guh, R. S., Wu, T. C. J., & Weng, S. P. (2011). Integrating genetic

algorithm and decision tree learning for assistance in predicting

in vitro fertilization outcomes. Expert Systems with Applications,

38(4), 4437–4449. https://doi.org/10.1016/j.eswa.2010.09.112.

Hehn, T. M., & Hamprecht, F. A. (2018). End-to-end learning of

deterministic decision trees. In German conference on pattern

recognition (pp. 612–627). Berlin, Springer.

Huang, G., Chen, D., Li, T., Wu, F., van der Maaten, L., & Weinberger,

K. (2018). Multi-scale dense networks for resource efficient image

classification. In International conference on learning representa-

tions (ICLR).

Huang, G. M., Huang, K. Y., Lee, T. Y., & Weng, J. T. Y. (2015).

An interpretable rule-based diagnostic classification of diabetic

nephropathy among type 2 diabetes patients. BMC Bioinformatics,

16(1), S5.

Hull, J. J. (1994). A database for handwritten text recognition research.

IEEE Transactions on Pattern Analysis and Machine Intelligence,

16(5), 550–554.

Hyafil, L., & Rivest, R. L. (1976). Constructing optimal binary decision

trees is NP-complete. Information Processing Letters, 5(1), 15–17.

Ioannou, Y., Robertson, D., Zikic, D., Kontschieder, P., Shotton, J.,

Brown, M., & Criminisi, A. (2016). Decision forests, convolutional

networks and the models in-between. arXiv:1603.01250.

Jordan, M. I. (1994). A statistical approach to decision tree modeling.

In Proceedings of the seventh annual conference on computational

learning theory, New York, NY, USA, COLT ’94 (pp. 13–20).

Jordan, M. I., & Jacobs, R. A. (1994). Hierarchical mixtures of

experts and the EM algorithm. Neural Computation, 6(2), 181–

214. https://doi.org/10.1162/neco.1994.6.2.181.

Kingma, D., & Ba, J. (2015). Adam: A method for stochastic optimiza-

tion. In ICLR.

Kontschieder, P., Fiterau, M., Criminisi, A., & Rota Bulò S. (2015).

Deep neural decision forests. In ICCV.

Kontschieder, P., Kohli, P., Shotton, J., & Criminisi, A. (2013). Geof:

Geodesic forests for learning coupled predictors. In 2013 IEEE

computer society conference on computer vision and pattern

recognition.

Laptev, D., & Buhmann, J. M. (2014). Convolutional decision trees

for feature learning and segmentation. In German Conference on

Pattern Recognition (pp. 95–106). Springer, Berlin.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-

based learning applied to document recognition. Proceedings of

the IEEE, 86(11), 2278–2324.

Lepetit, V., Lagger, P., & Fua, P. (2005). Randomized trees for real-time

keypoint recognition. In 2005 IEEE computer society conference

on computer vision and pattern recognition (vol. 2, pp. 775–781

vol. 2). https://doi.org/10.1109/CVPR.2005.288.

Lin, T., Maire, M., Belongie, S. J., Bourdev, L. D., Girshick, R. B., Hays,

J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014).

Microsoft COCO: Common objects in context. arXiv:1405.0312.

123

http://arxiv.org/abs/1702.07811
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1371/journal.pbio.1000502
https://doi.org/10.1371/journal.pbio.1000502
http://archive.ics.uci.edu/ml
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://arxiv.org/abs/1711.09784
https://doi.org/10.1109/CVPR.2009.5206740
https://doi.org/10.1109/CVPR.2009.5206740
https://doi.org/10.1016/j.eswa.2010.09.112
http://arxiv.org/abs/1603.01250
https://doi.org/10.1162/neco.1994.6.2.181
https://doi.org/10.1109/CVPR.2005.288
http://arxiv.org/abs/1405.0312

International Journal of Computer Vision (2020) 128:997–1011 1011

McGill, M., & Perona, P. (2017). Deciding how to decide: Dynamic

routing in artificial neural networks. In Precup, D., & Teh,

Y.W. (Eds.) Proceedings of the 34th international conference on

machine learning, PMLR, International Convention Centre, Syd-

ney, Australia, Proceedings of Machine Learning Research (vol.

70, pp. 2363–2372).

Menze, B. H., Kelm, B. M., Splitthoff, D. N., Koethe, U., & Hamprecht,

F. A. (2011). On oblique random forests. Springer (pp. 453–469).

Montillo, A., Tu, J., Shotton, J., Winn, J., Iglesias, J., Metaxas, D., &

Criminisi, A. (2013). Entanglement and differentiable information

gain maximization. In Decision forests for computer vision and

medical image analysis, Chapter 19 (pp. 273–293). Springer.

Murthy, K. V. S. (1996). On growing better decision trees from data.

Ph.D. thesis, The Johns Hopkins University.

Norouzi, M., Collins, M. D., Fleet, D. J., & Kohli, P. (2015a). Co2 forest:

Improved random forest by continuous optimization of oblique

splits. arXiv:1506.06155.

Norouzi, M., Collins, M. D., Johnson, M., Fleet, D. J., & Kohli, P.

(2015b). Efficient non-greedy optimization of decision trees. In

NIPS.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z.,

Lin, Z., Desmaison, A., Antiga, L., & Lerer, A. (2017). Automatic

differentiation in pytorch. In NIPS-W.

Pinhas-Hamiel, O., Hamiel, U., Greenfield, Y., Boyko, V., Graph-

Barel, C., Rachmiel, M., et al. (2013). Detecting intentional insulin

omission for weight loss in girls with type 1 diabetes mellitus.

International Journal of Eating Disorders, 46(8), 819–825. https://

doi.org/10.1002/eat.22138.

Quinlan, J. R. (1990). Induction of decision trees. In Shavlik, J. W.,

Dietterich, T. G. (Eds.), Readings in machine learning, Morgan

Kaufmann, originally published in Machine Learning 1:81–106,

1986.

Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Fran-

cisco, CA: Morgan Kaufmann Publishers Inc.

Richmond, D., Kainmueller, D., Yang, M., Myers, E., & Rother, C.

(2016). Mapping auto-context decision forests to deep convnets

for semantic segmentation. In Richard C Wilson, E. R. H., Smith,

W. A. P. (Eds.), Proceedings of the British machine vision confer-

ence (BMVC), BMVA Press (pp. 144.1–144.12). https://doi.org/

10.5244/C.30.144.

Rose, K., Gurewitz, E., & Fox, G. C. (1990). Statistical mechanics and

phase transitions in clustering. Physics Review Letters, 65, 945–

948. https://doi.org/10.1103/PhysRevLett.65.945.

Rota Bulo, S., & Kontschieder, P. (2014). Neural decision forests for

semantic image labelling. In 2014 IEEE computer society confer-

ence on computer vision and pattern recognition.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,

et al. (2015). ImageNet large scale visual recognition challenge.

International Journal of Computer Vision (IJCV), 115(3), 211–

252. https://doi.org/10.1007/s11263-015-0816-y.

Schulter, S., Wohlhart, P., Leistner, C., Saffari, A., Roth, P. M., &

Bischof, H. (2013). Alternating decision forests. In 2013 IEEE

computer society conference on computer vision and pattern

recognition (pp. 508–515). https://doi.org/10.1109/CVPR.2013.

72.

Sethi, I. K. (1990). Entropy nets: From decision trees to neural networks.

Proceedings of the IEEE, 78(10), 1605–1613.

Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore,

R., Kipman, A., & Blake, A. (2011). Real-time human pose recog-

nition in parts from single depth images. In 2011 IEEE computer

society conference on computer vision and pattern recognition (pp.

1297–1304). https://doi.org/10.1109/cvpr.2011.5995316.

Suárez, A., & Lutsko, J. F. (1999). Globally optimal fuzzy decision trees

for classification and regression. IEEE Transactions on Pattern

Analysis Machine Intelligence, 21(12), 1297–1311.

Viola, P., & Jones, M. (2001). Rapid object detection using a boosted

cascade of simple features. In 2001 ieee computer society confer-

ence on computer vision and pattern recognition (p. 511). IEEE.

Wang, J. Y. (2002). Application of support vector machines in bioinfor-

matics. Master’s thesis, National Taiwan University, Department

of Computer Science and Information Engineering.

Wang, S., Aggarwal, C., & Liu, H. (2017). Using a random forest to

inspire a neural network and improving on it. In Proceedings of

the 2017 SIAM international conference on data mining (pp. 1–9).

SIAM.

Wang, X., Yu, F., Dou, Z. Y., Darrell, T., & Gonzalez, J. E. (2018).

Skipnet: Learning dynamic routing in convolutional networks. In

The European conference on computer vision (ECCV).

Welbl, J. (2014). Casting random forests as artificial neural networks

(and profiting from it). In GCPR.

Worachartcheewan, A., Nantasenamat, C., Isarankura-Na-Ayudhya,

C., Pidetcha, P., & Prachayasittikul, V. (2010). Identification

of metabolic syndrome using decision tree analysis. Diabetes

Research and Clinical Practice, 90(1), e15–e18.

Xiao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-mnist: a novel

image dataset for benchmarking machine learning algorithms.

arXiv:1708.07747.

Zhang, L., Varadarajan, J., Nagaratnam Suganthan, P., Ahuja, N., &

Moulin, P. (2017). Robust visual tracking using oblique random

forests. In 2017 IEEE computer society conference on computer

vision and pattern recognition (pp. 5589–5598). IEEE.

Publisher’s Note Springer Nature remains neutral with regard to juris-

dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1506.06155
https://doi.org/10.1002/eat.22138
https://doi.org/10.1002/eat.22138
https://doi.org/10.5244/C.30.144
https://doi.org/10.5244/C.30.144
https://doi.org/10.1103/PhysRevLett.65.945
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/CVPR.2013.72
https://doi.org/10.1109/CVPR.2013.72
https://doi.org/10.1109/cvpr.2011.5995316
http://arxiv.org/abs/1708.07747

	End-to-End Learning of Decision Trees and Forests
	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Methods
	2.1 Standard Decision Tree and Notation
	2.2 Probabilistic Decision Tree
	2.3 Expectation–Maximization
	2.4 Complex Splits and Spatial Regularization
	2.5 Decision Tree Construction
	2.6 Relation to Information Gain and Leaf Entropies
	2.7 Decision Forest

	3 Experiments
	3.1 Performance of Oblique Decision Trees
	3.2 Visual Convergence of Training and Inference Model
	3.3 Interpretation of Spatially Regularized Parameters
	3.4 CNN Split Features
	3.5 Steepness Annealing Analysis
	3.6 Trade-off Between Computational Load and Accuracy

	4 Conclusion
	Appendix
	References

