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Abstract

Event cameras are vision sensors that record asyn-

chronous streams of per-pixel brightness changes, referred

to as “events”. They have appealing advantages over

frame-based cameras for computer vision, including high

temporal resolution, high dynamic range, and no motion

blur. Due to the sparse, non-uniform spatiotemporal lay-

out of the event signal, pattern recognition algorithms typi-

cally aggregate events into a grid-based representation and

subsequently process it by a standard vision pipeline, e.g.,

Convolutional Neural Network (CNN). In this work, we in-

troduce a general framework to convert event streams into

grid-based representations through a sequence of differen-

tiable operations. Our framework comes with two main ad-

vantages: (i) allows learning the input event representation

together with the task dedicated network in an end-to-end

manner, and (ii) lays out a taxonomy that unifies the major-

ity of extant event representations in the literature and iden-

tifies novel ones. Empirically, we show that our approach to

learning the event representation end-to-end yields an im-

provement of approximately 12% on optical flow estimation

and object recognition over state-of-the-art methods.

Multimedia Material

The project’s code is available on the follow-

ing page: https://github.com/uzh-rpg/rpg_

event_representation_learning. Additionally,

qualitative results can be viewed in this video: https:

//youtu.be/bQtSx59GXRY

1. Introduction

Event cameras are bio-inspired vision sensors that op-

erate radically differently from traditional cameras. In-

stead of capturing brightness images at a fixed rate, event

cameras measure brightness changes (called events) for

each pixel independently. Event cameras, such as the Dy-

Figure 1. General framework to convert asynchronous event data

into grid-based representations using convolutions, quantization,

and projections. All of these operations are differentiable. Best

viewed in color.

namic Vision Sensor (DVS) [34], possess appealing prop-

erties compared to traditional frame-based cameras, includ-

ing a very high dynamic range, high temporal resolution

(in the order of microseconds), and low power consump-

tion. In addition, event cameras greatly reduce bandwidth.

While frame-based cameras with comparable temporal res-

olution and/or dynamic range cameras exist, they are typi-

cally bulky, power-intensive, and require cooling [48].

The output of an event camera consists of a stream of

events that encode the time, location, and polarity (sign)

of the brightness changes. Consequently, each event alone

carries very little information about the scene. Event-based

vision algorithms aggregate information to enable further

processing in two ways: (i) use a continuous-time model

(e.g., Kalman filter) that can be updated asynchronously
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with each incoming event [3, 19, 29, 40, 44] or (ii) pro-

cess events simultaneously in packets [27, 52, 57, 66, 67],

i.e., spatiotemporal localized aggregates of events. The for-

mer methods can achieve minimal latency, but are sensitive

to parameter tuning (e.g., filter weights) and are compu-

tationally intensive, since they perform an update step for

each event. In contrast, methods operating on event pack-

ets trade-off latency for computational efficiency and per-

formance. Despite their differences, both paradigms have

been successfully applied on various vision tasks, including

tracking [19, 21, 40, 42], depth estimation [3, 52, 67], visual

odometry [27, 54, 57, 66], recognition [29, 44], and optical

flow estimation [7, 69]. A good survey on the applications

of event cameras can be found in [18]. Motivated by the

broad success of deep learning in computer vision on frame-

based imagery, a growing number of recent event-based

works have adopted a data driven approach [2,32,36,47,69].

Spiking Neural Networks (SNNs) are a natural fit to process

event streams, since they enable asynchronous inference at

low power on specialized hardware [2, 32, 47]. However,

SNNs are notoriously difficult to train, as no efficient back-

propagation algorithm exists [24]. In addition, the special-

purpose hardware required to run SNNs is expensive and in

the development stage, which hinders its widespread adop-

tion in the vision community.

Most closely related to the current paper are meth-

ods that pair an event stream with standard frame-based

deep convolutional neural network (CNN) or recursive ar-

chitectures, e.g., [29, 36, 41, 59, 69]. To do so, a pre-

processing step typically converts asynchronous event data

to a grid-like representation, which can be updated either

synchronously [36, 69] or asynchronously [29, 59]. These

methods benefit from their ease of implementation using

standard frame-based deep learning libraries (e.g., [1, 46])

and fast inference on commodity graphics hardware. How-

ever, these efforts have mainly focused on the downstream

task beyond the initial representational stage and simply

consider a fixed, possibly suboptimal, conversion between

the raw event stream and the input grid-based tensor. To

date, there has not been an extensive study on the impact

of the choice of input representation, leaving the following

fundamental open question: What is the best way to con-

vert an asynchronous event stream into a grid-based (ten-

sor) representation to maximize the performance on a given

task? In this paper, we aim to address this knowledge gap.

Contributions We propose a general framework that con-

verts asynchronous event-based data into grid-based repre-

sentations. To achieve this, we express the conversion pro-

cess through kernel convolutions, quantizations, and pro-

jections, where each operation is differentiable (see Fig. 1).

Our framework comes with two main advantages. First, it

makes the conversion process fully differentiable, allowing

to learn a representation end-to-end from raw event data to

the task loss. In contrast, prior work assumes the input event

representation as fixed. Second, it lays out a taxonomy that

unifies the majority of extant event representations in the lit-

erature and identifies novel ones. Through extensive empir-

ical evaluations we show that our approach to learning the

event representation end-to-end yields an improvement of

12% on optical flow and 12.6% on object recognition over

state-of-the-art approaches that rely on handcrafted input

event representations. In addition, we compare our method-

ology to asynchronous approaches in term of accuracy and

computational load to shed light on the relative merits of

each category.

2. Related Work

Traditionally, handcrafted features were used in frame-

based computer vision, e.g., [14, 33, 35, 60, 63]. More

recently, research has shifted towards data-driven mod-

els, where features are automatically learned from data,

e.g., [4, 22, 25, 37, 55]. The main catalyst behind this

paradigm shift has been the availability of large training

datasets [12, 15, 16], efficient learning algorithms [30, 61]

and suitable hardware. Only recently has event-based vi-

sion made strides to address each of these areas.

Analogous to early frame-based computer vision ap-

proaches, significant effort has been made in designing effi-

cient spatiotemporal feature descriptors of the event stream.

From this line of research, typical high-level applications

are gesture recognition [31], object recognition [29, 45, 59]

or face detection [6]. Low-level applications include optical

flow prediction [8, 9] and image reconstruction [5].

Another line of research has focused on applying data-

driven models to event-based data. These include asyn-

chronous, spiking neural networks (SNNs)1 [32], which

have been applied to several tasks, e.g., object recogni-

tion [32, 44, 47, 64], gesture classification [2], and optical

flow prediction [7, 8]. However, the lack of specialized

hardware and computationally efficient backpropagation al-

gorithms still limits the usability of SNNs in complex real-

world scenarios. A typical solution to this problem is learn-

ing parameters with frame-based data and transferring the

learned parameters to event data [13,47]. However, it is not

clear how much this solution can generalize to real, noisy,

event data that has not been observed during training.

Recently, several works have proposed to use standard

learning architectures as an alternative to SNNs [36, 41,

59, 68, 69]. To process asynchronous event streams, Neil

et al. [41] adapted a recursive architecture to include the

time dimension for prediction. Despite operating asyn-

chronously, their approach introduces high latency, since

1Here we use the term SNNs as in the neuromorphic literature [32],

where it describes continuous-time neural networks. Other networks which

are sometimes called SNNs are low precision networks, such as binary

networks [51]. However, these are not well suited for asynchronous inputs.
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Representation Dimensions Description Characteristics

Event frame [53] H ×W Image of event polarities Discards temporal and polarity information

Event count image [36, 69] 2×H ×W Image of event counts Discards time stamps

Surface of Active Events (SAE) [7, 69] 2×H ×W Image of most recent time stamp Discards earlier time stamps

Voxel grid [70] B ×H ×W Voxel grid summing event polarities Discards event polarity

Histogram of Time Surfaces (HATS) [59] 2×H ×W Histogram of average time surfaces Discards temporal information

Event Spike Tensor (EST, our work) 2×B ×H ×W Sample event point-set into a grid Discards the least amount of information

Table 1. Comparison of grid-based event representations used in prior work on event-based deep learning. H and W denote the image

height and width dimensions, respectively, and B the number of temporal bins.

events have to pass sequentially through the entire recur-

sive structure. To reduce latency, other methods convert

event streams into a grid-based representation, compatible

with learning algorithms designed for standard frames, e.g.,

CNNs [36, 59, 68, 69]. Sironi et al. [59] obtained state-of-

the-art results in object recognition tasks by transforming

events into histograms of averaged time surfaces (HATS),

which are then fed to a support vector machine for infer-

ence. The main advantage of their representation is that it

can not only be used in conjunction with standard learn-

ing pipelines, but it can also be updated asynchronously, if

sufficient compute is available. A simpler representation

was proposed by Maqueda et al. [36] to address steering-

angle prediction, where events of different polarities are ac-

cumulated over a constant temporal window. To perform a

low-level task, i.e., optical flow estimation, Zhu et al. [69]

proposed to convert events into a four-dimensional grid that

includes both the polarity and spike time. Finally, Zhu et

al. [70] converted events into a spatiotemporal voxel-grid.

Compared to the representation proposed in [36], the two

latter representations have the advantage of preserving tem-

poral information. A common aspect among these works

is the use of a handcrafted event stream representation. In

contrast, in this paper we propose a novel event-based rep-

resentation that is learned end-to-end together with the task.

A comparison of event-based representations and their de-

sign choices is summarized in Table 1.

Coupling event-based data with standard frame-based

learning architectures has the potential to realize the flex-

ibility of learning algorithms with the advantages of event

cameras. It is however not yet clear what is the impact of

the event representation on the task performance. In this

work, we present an extensive empirical study on the choice

of representation for the the tasks of object recognition and

optical flow estimation, central tasks in computer vision.

3. Method

In this section, we present a general framework to con-

vert asynchronous event streams into grid-based represen-

tations. By performing the conversion strictly through dif-

ferentiable operators, our framework allows us to learn a

representation end-to-end for a given task. Equipped with

this tool, we derive a taxonomy that unifies common rep-

resentations in the literature and identifies new ones. An

overview of the proposed framework is given in Fig. 2.

3.1. Event Data

Event cameras have pixels which trigger events indepen-

dently whenever there is a log brightness change:

L(x, y, t)� L(x, y, t�∆t) � pC, (1)

where C is the contrast threshold, p 2 {�1, 1} is the polar-

ity of the change in brightness, and ∆t is the time since the

last event at u = (x, y)>. In a given time interval ∆⌧ , the

event camera will trigger a number of events:

E = {ek}
N
k=1 = {(xk, yk, tk, pk)}

N
k=1. (2)

Due to their asynchronous nature, events are represented as

a set. To use events in combination with a convolutional

neural network it is necessary to convert the event set into

a grid-like representation. This means we must find a map-

ping M : E 7! T between the set E and a tensor T . Ideally,

this mapping should preserve the structure (i.e., spatiotem-

poral locality) and information of the events.

3.2. Event Field

Intuitively, events represent point-sets in a four-

dimensional manifold spanned by the x and y spatial co-

ordinates, time, and polarity. This point-set can be summa-

rized by the event field, inspired by [11, 32]:

S±(x, y, t) =
X

ek2E±

�(x� xk, y � yk)�(t� tk), (3)

defined in continuous space and time, for events of posi-

tive (E+) and negative (E�) polarity. This representation

replaces each event by a Dirac pulse in the space-time man-

ifold. The resulting function S±(x, y, t) gives a continuous-

time representation of E which preserves the event’s high

temporal resolution and enforces spatiotemporal locality.

3.3. Generating Representations

Measurements In this section, we generalize the notion

of the event field and demonstrate how it can be used to gen-

erate a grid-like representation from the events. We observe

that (3) can be interpreted as successive measurements of a

function f± defined on the domain of the events, i.e.,

S±(x, y, t) =
X

ek2E±

f±(x, y, t)�(x� xk, y � yk)�(t� tk).

(4)
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We call (4) the Event Measurement Field. It assigns a

measurement f±(xk, yk, tk) to each event. Examples of

such functions are the event polarity f±(x, y, t) = ±1,

the event count f±(x, y, t) = 1, and the normalized time

stamp f±(x, y, t) = t�t0
∆t

. Other examples might include

the instantaneous event rate or image intensity provided

by such sensors as the Asynchronous Time-based Image

Sensor (ATIS) [10]. Various representations in the litera-

ture make use of the event measurement field. In several

works [29, 36, 59, 69], pure event counts are measured, and

summed for each pixel and polarity to generate event count

images. Other works [7, 69] use the time stamps of the

events to construct the surface of active events (SAE) which

retains the time stamp of the most recent event for each

pixel and polarity. Other representations use the event po-

larities and aggregate them into a three-dimensional Voxel

Grid [70] or a two-dimensional Event Frame [53].

Kernel Convolutions Although the event measurement

field retains the high temporal resolution of the events, it

is still ill-defined due to the use of Dirac pulses. Therefore,

to derive a meaningful signal from the event measurement

field, we must convolve it with a suitable aggregation ker-

nel. The convolved signal thus becomes:

(k ⇤ S±)(x, y, t)

=
X

ek2E±

f±(xk, yk, tk)k(x� xk, y � yk, t� tk). (5)

In the literature, (5) is also known as the membrane

potential [32, 39, 49]. Several variations of this ker-

nel have been used in prior works. The two most

commonly used ones are the alpha-kernel, k(x, y, t) =
�(x, y) et

τ
exp (�t/⌧) [32, 39], and the exponential kernel,

k(x, y, t) = �(x, y) 1
τ
exp (�t/⌧) [49]. In fact, the ex-

ponential kernel is also used to construct the hierarchy of

time-surfaces (HOTS) [29] and histogram of average time-

surfaces (HATS) [59], where events are aggregated into ex-

ponential time surfaces. In the case of HATS [59], the ex-

ponential time surfaces can be interpreted as a local convo-

lution of the spike train with an exponential kernel. Another

kernel which is typically used is the trilinear voting ker-

nel, k(x, y, t) = �(x, y)max (0, 1� | t
∆t

|) [26]. Generally,

the design of kernel functions is based on task-dependent

heuristics with no general agreement on the optimal kernel

to maximize task performance.

Discretized Event Spike Tensor After kernel convolu-

tions, a grid representation of events can be realized by sam-

pling the convolved signal, (5), at regular intervals:

S±[xl, ym, tn] = (k ⇤ S±)(xl, ymtn) (6)

=
X

ek2E±

f±(xk, yk, tk)k(xl � xk, ym � yk, tn � tk).

Typically, the spatiotemporal coordinates, xl, ym, tn, lie on

a voxel grid, i.e., xl 2 {0, 1, ...,W�1}, ym 2 {0, 1, ..., H�

1}, and tn 2 {t0, t0 + ∆t, ..., t0 + B∆t}, where t0 is the

first time stamp, ∆t is the bin size, and B is the number of

temporal bins. We term this generalized representation the

Event Spike Tensor (EST). Summing over both the polarity

and time dimensions, one can derive the event-frame rep-

resentation introduced in prior work [57]. Previous works

considered quantizing various dimensions, including spa-

tiotemporal binning [70], and quantizing both the polarity

and spatial dimensions [36, 69]. However, the generalized

form that retains all four dimensions has not been previ-

ously considered, and thus is a new representation.

End-to-end Learned Representations The measure-

ment and kernel in (6) are generally hand crafted functions.

Previous works manually tuned those functions to maxi-

mize task performance. In contrast, we propose to leverage

the data directly to find the best function candidate, thus

learning the representation end-to-end. We achieve this by

replacing the kernel function in (6) with a multilayer per-

ceptron (MLP) with two hidden layers each with 30 units.

This MLP takes the coordinates and time stamp of an event

as input, and produces an activation map around it. For each

grid location in the representation we evaluate the activa-

tion maps produced by each event and sum them together

according to (6). This operation is repeated for every point

in the final grid, resulting in a grid-like representation. To

enforce symmetry across events, we limit the MLP input

to the difference in coordinates xl � xk, ym � yk, tl � tk.

For the sake of simplicity, we do not learn the measurement

function as well, choosing it instead from a set of fixed func-

tions. To speed up inference, at test time the learnt kernel

can be substituted with an efficient look-up table, thus hav-

ing comparable computation cost to handcrafted kernels.

These design choices make the representation both efficient

and fully differentiable. In contrast to previous works that

used sub-optimal heuristics to convert events into grids, our

framework can now tune the representation to the down-

stream task, thus maximizing performance.

Projection From the generalized event spike tensor we

can further instantiate novel and existing representations.

Many works for example deal with three-dimensional ten-

sors, such as [29, 36, 59, 69, 70]. The event spike tensor,

being a four-dimensional data structure (two spatial, one

temporal, and one polarity), thus acts as a precursor to

these three-dimensional constructs, which can be obtained

by summing over one of the four dimensions. For exam-

ple, the Two-Channel Image [36, 59, 69], can be derived by

contracting the temporal dimension, either through summa-

tion [36, 59, 69] or maximization [69]. The voxel grid rep-

resentation [70] can be derived by summing across event

polarities. All of these operations can be generalized via
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Figure 2. An overview of our proposed framework. Each event is

associated with a measurement (green) which is convolved with a

(possibly learnt) kernel. This convolved signal is then sampled on

a regular grid. Finally, various representations can be instantiated

by performing projections over the temporal axis or over polarities.

the projection operator Hv , where H can be summation Σ,

maximization max, etc. and v denoting the dimension can

be xl, ym, tn, or over polarity ±, yielding 16 possible pro-

jections. Here, we list only the representations that retain

the spatial dimension, of which there are four, including the

EST without projection:

S±[xl, ym, tn] (7)

S[xl, ym, tn] = H±(S±[xl, ym, tn]) (8)

S±[xl, ym] = Htn(S±[xl, ym, tn]) (9)

S[xl, ym] = Htn,±(S±[xl, ym, tn]). (10)

We refer to these representations as the EST (7), Voxel Grid

(8), Two-Channel Image (9), and Event Frame (10). The di-

rection of projection has an impact on the information con-

tent of the resulting representation. For example, projecting

along the temporal axis greatly compresses the event rep-

resentation, but at the cost of temporal localization infor-

mation. In contrast, projecting the event polarities leads to

the cancellation of positive and negative events, potentially

removing information in the process. Of these representa-

tions, the EST stands out, as it retains the maximum amount

of event information by forgoing the projection operation.

4. Empirical Evaluation

In this section, we present an extensive comparative eval-

uation of the representations identified by our taxonomy

for object recognition (Sec. 4.1) and optical flow estimation

(Sec. 4.2) on standard event camera benchmarks.

Candidate Representations We start out by identifying

12 distinct representations based on the event spike ten-

sor (6). In particular, we select the measurement function

(4) from three candidates: event polarity, event count, and

normalized time stamp. We use the summation operator Σ

to project out various axes defined in (7) - (10), resulting

in four variations: Event Spike Tensor, Voxel Grid, Two-

Channel Image, and Event Frame. We split the event spike

tensor (a four-dimensional tensor) along the polarity dimen-

sion and concatenate the two tensors along the temporal di-

mension, effectively doubling the number of channels. This

is done to make the representation compatible with two-

dimensional convolutions. As a first step we apply a generic

trilinear kernel to convolve the event spike signal, and later

study the effect of different kernels on performance when

applied to the EST. Finally, we report results for our end-to-

end trained variant that directly utilizes raw events.

4.1. Object Recognition

Object recognition with conventional cameras remains

challenging due to their low dynamic range, high latency,

and tendency to motion blur. In recent years, event-based

classification has grown in popularity because it can address

all these challenges.

In this section, we investigate the performance of the

event representations proposed in Sec. 4 on the task of

event-based object recognition. In particular, we aim to

determine the relationship between the information con-

tent of the representation and classification accuracy. We

show that our end-to-end learned representation signifi-

cantly outperforms the state-of-the-art [59]. We use two

publicly available datasets in our evaluation: N-Cars [59]

(Neuromorphic-Cars) and N-Caltech101 [43]. N-Cars pro-

vides a benchmark for the binary task of car recognition in

a scene. It contains 24, 029 event samples of 100 ms length

recorded by the ATIS event camera [50]. N-Caltech101

(Neuromorphic-Caltech101) is the event-based version of

the popular Caltech101 dataset [17], and poses the task of

multiclass recognition for event cameras. It contains 8, 246
samples and 100 classes, which were recorded by placing an

event camera on a motor and moving it in front of a screen

projecting various samples from Caltech101.

Implementation We use a ResNet-34 architecture [22]

for each dataset. The network is pretrained on color RGB

images from ImageNet [58]. To account for the different

number of input channels and output classes between the

pre-trained model and ours, following approach [36]: we

replace the first and last layer of the pre-trained model with

random weights and then finetune all weights on the task.

We train by optimizing the cross-entropy loss and use the

ADAM optimizer [28] with an initial learning rate of 1e�5,

which we reduce by a factor of two every 10, 000 iterations.

We use a batch-size of 60 and 100 for N-Caltech101 and

N-Cars, respectively.

Results The classification results are shown in Table 2.

From the representations that we evaluated, the event spike

tensor with time stamp measurements has the highest ac-

curacy on the test set for both N-Cars and N-Caltech101.
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Representation Measurement Kernel N-Cars N-Caltech101

Event Frame

polarity trilinear

0.866 0.587

Two-Channel Image 0.830 0.711

Voxel Grid 0.865 0.785

EST (Ours) 0.868 0.789

Event Frame

count trilinear

0.799 0.689

Two-Channel Image 0.861 0.713

Voxel Grid 0.827 0.756

EST (Ours) 0.863 0.784

Event Frame

time stamps trilinear

0.890 0.690

Two-Channel Image 0.917 0.731

Voxel Grid 0.847 0.754

EST (Ours) 0.917 0.787

EST (Ours) time stamps

alpha 0.911 0.739

exponential 0.909 0.782

learnt 0.925 0.817

Table 2. Classification accuracy for all event representations using

different measurement functions, as described in Sec. 4. For each

representation the temporal dimension was discretized into nine

bins. For the best performing representation (EST and time stamp

measurements) we additionally report results for different kernel

choices: trilinear [26], exponential [49], alpha kernels [32], as well

as a learnable kernel.

Representation Measurement Kernel N-Cars N-Caltech101

H-First [44]

- -

0.561 0.054

HOTS [29] 0.624 0.210

Gabor-SNN [59] 0.789 0.196

HATS [59] 0.902 0.642

HATS + ResNet-34 0.909 0.691

Two-Channel Image [36] count
trilinear

0.861 0.713

Voxel Grid [70] polarity 0.865 0.785

EST (Ours) time stamps
trilinear 0.917 0.787

learnt 0.925 0.817

Table 3. Comparison of the classification accuracy for different

baseline representations [36, 70] and state-of-the-art classification

methods [29, 44, 59]. As an additional baseline we pair the best

performing representation from previous work (HATS [59]) with a

more powerful classification model (ResNet-34, used in this work)

as the original numbers were reported using a linear SVM.

From these results we can make two conclusions. First, we

observe that representations that separate polarity consis-

tently outperform those that sum over polarities. Indeed,

this trend is observed for all measurement functions: dis-

carding the polarity information leads to a decrease in ac-

curacy of up to 7%. Second, we see that representations

that retain the temporal localization of events, i.e., the Voxel

Grid and EST, consistently outperform their counterparts,

which sum over the temporal dimension. These observa-

tions indicate that both polarity and temporal information

are important for object classification. This trend explains

why the EST leads to the most accurate predictions: it re-

tains the maximum amount of information with respect to

the raw event data.

Interestingly, using event time stamps as measurements

is more beneficial than other measurements, since the infor-

mation about polarity and event count is already encoded

in the event spike tensor. Indeed, using the time stamps

explicitly in the tensor partially recovers the high temporal

resolution, which was lost during the convolution and dis-

cretization steps of the event field. We thus established that

the EST with time stamp measurements performs best for

object classification. However, the effect of the temporal

kernel remains to be explored. For this purpose we exper-

imented with the kernels described in Sec. 3.3, namely the

exponential [49], alpha [32], and trilinear [26] kernels. In

addition, we evaluate our end-to-end trainable representa-

tion and report the results in Table 2. We see that using

different handcrafted kernels negatively impacts the test ac-

curacies. In fact, applying these kernels to the event spikes

decreases the effective temporal localization compared to

the trilinear kernel by overlapping the event signals in the

representation. This makes it difficult for a network to learn

efficiently how to identify individual events. Finally, we

see that if we learn a kernel end-to-end we gain a signifi-

cant boost in performance. This is justified by the fact that

the learnable layer finds an optimal way to draw the events

on a grid, maximizing the discriminativeness of the repre-

sentation.

Comparison with State-of-the-Art We next compare

our results with state-of-the-art object classification meth-

ods that utilize handcrafted event representations, such as

HATS [59], HOTS [29], as well as a baseline implementa-

tion of an SNN [59]. For the best performing representa-

tion (HATS) we additionally report the classification accu-

racies obtained with the same ResNet-34 used to evaluate

the EST; the original work used a linear SVM. Two addi-

tional baselines are used for comparison: (i) the histogram

of events [36] (here Two-Channel Image), with event count

measurements, and (ii) the Voxel Grid [70] with polarity

measurements.

The results for these methods are summarized in Table

3. Our method outperforms the state-of-the-art (HATS) and

variant (HATS + ResNet-34), as well as the Voxel Grid

and Two-Channel Image baselines by 2.3%, 1.6%, 6% and

6.5% on N-Cars and 17.5%, 12.6%, 3.2% and 10.4% on N-

Caltech101, respectively. In particular, we see that our rep-

resentation is more suited for object classification than ex-

isting handcrafted features, such as HATS and HOTS, even

if we use more complex classification models with these

features. This is likely due to HATS discarding temporal

information, which, as we established, plays an important

role in object classification. It is important to note, com-

pared to the state-of-the-art, our method does not operate

asynchronously, or at low power with current hardware (as

for example SNNs); however, we show in Sec. 4.3 that our

method can still operate at a very high framerate that is suf-

ficient for many high-speed applications.

4.2. Optical Flow Estimation

Like object recognition, optical flow estimation using

frame-based methods remains challenging in high-dynamic

range scenarios, e.g., at night, and during high speed move-

ments. In particular, motion blur and over/under-saturation

of the sensor often violate brightness constancy in the
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image, a fundamental assumption underlying many ap-

proaches, which leads to estimation errors. Due to their lack

of motion blur and high dynamic range, event cameras have

the potential to provide higher accuracy estimates in these

conditions. Early works on event-based optical flow esti-

mation fit planes to the spatiotemporal manifold generated

by events [7]. Other works have tackled this task by finding

the optimal event alignments when projected onto a frame

[20, 65]. Most recently, the relatively large-scale Multi Ve-

hicle Stereo Event Camera Dataset (MVSEC) [68] made

possible deep learning-based optical flow [69, 70]. It pro-

vides data from a stereo DAVIS rig combined with a LIDAR

for ground-truth optical flow estimation [69]. The dataset

features several driving sequences during the day and night,

and indoor sequences recorded onboard a quadcopter. The

methods in [69, 70] learn flow in a self-supervised man-

ner and use standard U-Net architectures [56], outperform-

ing existing frame-based methods in challenging night-time

scenarios. In [69], a four-channel image representation is

used as input to the network. This image is comprised of

the two-channel event count image used in [36] and two-

channel surface of active events (SAE) [7], divided accord-

ing to event polarities. While the event counts and time sur-

faces combine the temporal and spatial information of the

event stream, it still compresses the event signal by discard-

ing all event time stamps except the most recent ones.

To date, it is unclear which event representation is opti-

mal to learn optical flow. We investigate this question by

comparing the representations listed in Sec. 4 against the

state-of-the-art [69] for the task of optical flow regression,

evaluated on the MVSEC dataset.

Implementation We train an optical flow regressor on the

outdoor sequences outdoor day1 and outdoor day2. These

sequences are split into about 40, 000 samples at fixed time

intervals. Each sample consists of events aggregated be-

tween two DAVIS frames, which are captured at 30 Hz. We

use EV-FlowNet [69] as the base network, with the channel

dimension of the initial convolution layer set to the same

number of channels of each input representation. The net-

work is trained from scratch using a supervised loss derived

from ground truth motion field estimates:

l(f, fgt) =
X

x

⇢(f � fgt), (11)

where ⇢ denotes the robust Charbonnier loss [62], ⇢(x) =
(x2 + ✏2)α. For our experiments, we chose ✏ = 1e � 3
and ↵ = 0.5. This loss is minimized using the ADAM

optimizer [28] with an initial learning rate of 5e � 5 and

reducing it by a factor of two after 40, 000 iterations and

then again every 20, 000 iterations with a batch size of eight.

Results As in [69], we measure the performance of our

networks by comparing the average end-point error (AEE =
1

N

P
i |f � fgt|2) on the indoor flying datasets, which are

visually distinct from the training set. The test error on these

datasets thus reflects the generalizability of our network,

and its overall performance. In addition, as events only pro-

vide sparse information in the frame we only report the error

computed at pixels where at least one event was triggered,

as done in [69]. Following the KITTI 2015 benchmark [38],

we report the percentage of pixels which have an end-point-

error larger than three pixels and 5% of the ground-truth

flow, also done in [69]. In the previous classification exper-

iments we observed that time stamp measurements are es-

sential for a discriminative representation. We thus focus on

results obtained from representations using the time stamp

as the measurement function, as well as different kernels.

Table 4 summarizes the results obtained from this experi-

ment. An exhaustive evaluation of the various measurement

functions, i.e., polarities and counts, as well as qualitative

results, is available in the supplemental material.

From Table 4 we see that Voxel Grid and EST have sim-

ilar AEE and outlier ratios. This indicates that optical flow

estimation is not as sensitive to event polarity as observed

for classification. This is further supported by the small per-

formance gap between the Two-Channel image and Event

Frame. A more striking difference comes when we com-

pare representations which retain the temporal dimension

(middle rows), with those that sum over it. Indeed, the ac-

curacies of the Two-Channel Image and the Event Frame

drop approximately 10 � 20% when compared to the EST

and Voxel-Grid. As with the classification evaluation, we

establish that EST is among the most competitive represen-

tations and further explore the influence of different kernels

on the performance. These are summarized in the bottom

set of rows of Table 4. We see that the exponential and al-

pha kernels outperform the trilinear kernel. This indicates a

strong dependency on the kernel shape and we thus proceed

with the fully end-to-end learnable version. As with clas-

sification, we observe that the learnable kernel significantly

improves the accuracy on almost all scenes. The most sig-

nificant improvements are achieved for outlier ratios, indi-

cating that using learnable kernels improves the robustness

of the system.

Comparison with State-of-the-Art We compare our

method with the state-of-the-art [69], as well as other base-

lines based on the representations used in [36] and [70]. Ta-

ble 4 presents a detailed comparison. It is clear that the EST

outperforms the state-of-the-art by a large margin (12%).

There are also significant improvements in terms of out-

lier ratio, reducing the outliers by an average of 49% which

again indicates the robustness of our method. This perfor-

mance difference is likely due the data-driven nature of the

learnable EST. While existing approaches learn the task on

fixed event representations, our method learns the task and

representation jointly. The resulting representation is more

adapted to the task and thus maximizes performance.
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Representation Measurement Kernel
indoor flying1 indoor flying2 indoor flying3

AEE % Outlier AEE % Outlier AEE % Outlier

Two-Channel Image [36] count

trilinear

1.21 4.49 2.03 22.8 1.84 17.7

EV-FlowNet [69] - 1.03 2.20 1.72 15.1 1.53 11.9

Voxel Grid [70] polarity 0.96 1.47 1.65 14.6 1.45 11.4

Event Frame

time stamps trilinear

1.17 2.44 1.93 18.9 1.74 15.5

Two-Channel Image 1.17 1.5 1.97 14.9 1.78 11.7

Voxel Grid 0.98 1.20 1.70 14.3 1.5 12.0

EST (Ours) time stamps

trilinear 1.00 1.35 1.71 11.4 1.51 8.29

alpha 1.03 1.34 1.52 11.7 1.41 8.32

exponential 0.96 1.27 1.58 10.5 1.40 9.44

learnt 0.97 0.91 1.38 8.20 1.43 6.47

Table 4. Average end-point error (AEE) and % of outliers evaluation on the MVSEC dataset for different variations of the EST with

time stamp measurements. For each representation the temporal dimension was discretized into nine bins. Various baselines [36, 70] and

state-of-the-art methods [69] are compared.

4.3. Computational Time and Latency

One of the key advantages of event cameras are their low

latency and high update rate. To achieve high-frequency

predictions, previous works developed lightweight and fast

algorithms to process each incoming event asynchronously.

In contrast, other approaches aggregate events into packets

and then process them simultaneously. While this sacrifices

latency, it also leads to overall better accuracy, due to an

increase in the signal-to-noise ratio. Indeed, in several pat-

tern recognition applications, e.g., object recognition and

optical flow prediction, asynchronous processing is not es-

sential: we may actually sacrifice it for improved accuracy.

We compare these two modes of operation in Table 5 where

we show the number of events that can be processed per sec-

ond, as well as the total time used to process a single sample

of 100 ms from the N-Cars dataset. It can be seen that if we

allow for batch computation, our method using a learnt ker-

nel and lookup table can run at a very high speed that is

comparable to other methods. For applications where asyn-

chronous updates or low-power consumption have higher

priority than accuracy, other methods, e.g., SNNs, hold an

advantage with respect to our approach.

We further report the computation time per inference for

different architectures in Table 6. We report the timing

in two stages: representation computation and inference.

While representation computation is performed on a CPU

(Intel i7 CPU, 64bits, 2.7GHz and 16 GB of RAM), infer-

ence is performed on a GPU (GeForce RTX 2080 Ti). Table

6 shows that the computation of the representation only con-

tributes a small part to the overall computation time, while

most of the time is spent during inference. Nonetheless, we

see that a full forward pass only takes on the order of 6 ms,

which translates to a maximum inference rate of 146 Hz.

Although not on the order of the event rate, this value is

high enough for most high-speed applications, such as mo-

bile robotics or autonomous vehicle navigation. Moreover,

we see that we can reduce the inference time significantly if

we use smaller models, achieving 255 Hz for a ResNet-18.

Shallower models could potentially be run at minimal loss

in accuracy by leveraging distillation techniques [23].

Method Asynchronous Time [ms] Speed [kEv/s]

Gabor SNN [59] Yes 285.95 14.15

HOTS [29] Yes 157.57 25.68

HATS [59] Yes 7.28 555.74

EST (Ours) No 6.26 632.9

Table 5. Computation time for 100 ms of event data and number

of events processed per second.

Model Inference [ms] Representation [ms] Total [ms] Rate [Hz]

ResNet-18 3.87 0.38 4.25 235

ResNet-34 6.47 0.38 6.85 146

ResNet-50 9.14 0.38 9.52 105

EV-FlowNet 5.70 0.38 6.08 164

Table 6. Computation time split into EST generation (0.38 ms) and

inference for several standard network architectures. Both ResNet-

34 [22] and EV-FlowNet [69] allow processing at approximately

146 Hz which is sufficient for most high-speed applications.

5. Conclusions

This paper presented a general framework for convert-

ing asynchronous event data into grid-based representa-

tions. By representing the conversion process through dif-

ferentiable operations, our framework allows learning input

representations in a data-driven fashion. In addition, our

framework lays out a taxonomy which unifies a large num-

ber of extant event representations and identifies new ones.

Through an extensive evaluation we show that learning rep-

resentations end-to-end together with the task yields an in-

crease of about 12% in performance over state-of-the-art

methods, for the tasks of object recognition and optical flow

estimation. With this contribution, we combined the ben-

efits of deep learning with event cameras, thus unlocking

their outstanding properties to a wider community. As an

interesting direction for future work, we plan to allow asyn-

chronous updates by deploying recurrent architectures, sim-

ilar to [41]: this will bridge the gap between synchronous

and asynchronous approaches for event-based processing.
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Bernabé Linares-Barranco. Mapping from frame-driven

to frame-free event-driven vision systems by low-rate rate

coding and coincidence processing–application to feedfor-

ward ConvNets. IEEE Trans. Pattern Anal. Mach. Intell.,

35(11):2706–2719, Nov. 2013. 2

[48] https://www.phantomhighspeed.com/, 2019. 1

[49] Filip Ponulak. ReSuMe – new supervised learning method

for spiking neural networks. 2005. 4, 6

[50] Christoph Posch, Daniel Matolin, and Rainer Wohlgenannt.

A QVGA 143 dB dynamic range frame-free PWM image

sensor with lossless pixel-level video compression and time-

domain CDS. IEEE J. Solid-State Circuits, 46(1):259–275,

Jan. 2011. 5

[51] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,

and Ali Farhadi. XNOR-Net: Imagenet classification using

binary convolutional neural networks. In Eur. Conf. Comput.

Vis. (ECCV), pages 525–542, 2016. 2

[52] Henri Rebecq, Guillermo Gallego, Elias Mueggler, and Da-

vide Scaramuzza. EMVS: Event-based multi-view stereo—

3D reconstruction with an event camera in real-time. Int. J.

Comput. Vis., pages 1–21, Nov. 2017. 2

[53] Henri Rebecq, Timo Horstschaefer, and Davide Scaramuzza.

Real-time visual-inertial odometry for event cameras using

keyframe-based nonlinear optimization. In British Machine

Vis. Conf. (BMVC), Sept. 2017. 3, 4

[54] Henri Rebecq, Timo Horstschäfer, Guillermo Gallego, and
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