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End to End Learning of Spiking Neural Network based on R-STDP for

a Lane Keeping Vehicle

Zhenshan Bing1, Claus Meschede1, Kai Huang2, Guang Chen3,

Florian Röhrbein1, Mahmoud Akl1, and Alois Knoll1

Abstract— Learning-based methods have demonstrated clear
advantages in controlling robot tasks, such as the information
fusion abilities, strong robustness, and high accuracy. Mean-
while, the on-board systems of robots have limited computation
and energy resources, which are contradictory with state-of-
the-art learning approaches. They are either too lightweight
to solve complex problems or too heavyweight to be used
for mobile applications. On the other hand, training spiking
neural networks (SNNs) with biological plausibility has great
potentials of performing fast computation and energy efficiency.
However, the lack of effective learning rules for SNNs impedes
their wide usage in mobile robot applications. This paper
addresses the problem by introducing an end to end learning
approach of spiking neural networks for a lane keeping vehicle.
We consider the reward-modulated spike-timing-dependent-
plasticity (R-STDP) as a promising solution in training SNNs,
since it combines the advantages of both reinforcement learning
and the well-known STDP. We test our approach in three
scenarios that a Pioneer robot is controlled to keep lanes based
on an SNN. Specifically, the lane information is encoded by
the event data from a neuromorphic vision sensor. The SNN is
constructed using R-STDP synapses in an all-to-all fashion. We
demonstrate the advantages of our approach in terms of the
lateral localization accuracy by comparing with other state-of-
the-art learning algorithms based on SNNs.

I. INTRODUCTION

Pursuing robots to perform complex tasks autonomously

has become a realistic prospect, e.g. in the form of self-

driving vehicles, space exploration, and collaborative in-

dustrial robots. To acquire this high-level intelligence and

operate within the real world, robots need to perceive

their environment via sensors, which typically deliver high-

dimensional data. Today deep network architecture has be-

came a possible solution, since its superiority for extracting

highly non-linear functions from training data. However, the

high computational demands of deep networks still take a

toll, since training them is time consuming, energy-intensive,

and typically produces high response delay. In self-driving

cars for example, the overall computation consumes a few

thousand Watts compared to the human brain, which only

needs around 20 Watts of Power [1]. These are considerable

disadvantages, especially in mobile applications where real-

time responses are important and energy supply is limited.
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Fig. 1: Robot task: Lane keeping.

A promising solution to these drawbacks could be given

by event-based spiking neural networks that mimic the

underlying mechanisms of the brain much more realistically.

In nature, information is usually processed using impulses or

spikes, making seemingly simple organisms able to perceive

and act in the real world exceptionally well and outperform

state-of-the-art robots in almost every aspect of life [2]. For

example, human brains can carry out visual pattern analysis

and classification in just 100 ms, in spite of the fact that it

involves a minimum of 10 synaptic stages from the retina

to the temporal lobe [3]. Therefore, SNNs have tremendous

potential to process information more efficiently both in

terms of accuracy and speed.

On the other hand, training these kinds of networks is

notoriously difficult. The error back-propagation mechanisms

commonly used in conventional neural networks can not be

directly transferred to SNNs due to the non-differentiabilities

at spike times. Therefore, there has been a void of practical

learning rules to train SNNs [4]. Initially, SNN-based control

tasks were done by manually setting network weights, e.g. in

[5], [6], and [7]. Although this approach is able to solve sim-

ple behavioral tasks, such as wall following [8] or lane keep-

ing [9], it is only feasible for lightweight networks with few

connections. On the level of single synapses, experiments

have shown that the precise timing of pre and post-synaptic

spikes seems to play a crucial part in the change of synaptic

efficacy [10]. With this Spike-Timing-Dependent-Plasticity

(STDP) learning rule, networks have been trained in various

tasks. For example, Wang constructed a single-layer SNN

using proximity sensor data as conditioned stimulus input

was then trained in tasks such as obstacle avoidance and

target reaching [11, 12]. However, it is still not clear how

the brain assigns credit as efficiently as back-propagation

does, even some preliminary research tries to bridge the gap

by combining back-propagation with SNNs [13, 4].

After that, some research has been done trying to
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Fig. 2: Pioneer P3-DX robot with dynamic vision sensor

(DVS).

implement biologically plausible reinforcement learning

algorithms based on experimental findings in SNNs.

Reward-modulated spike-timing-dependent-plasticity (R-

STDP) [14][15], which is a learning rule that incorporates a

global reward signal in combination with STDP, is recently

raised. This approach intends to mimic the functionalities

of those neuromodulators, which are chemicals emitted in

human brain, e.g. dopamine. Therefore, R-STDP can be

very useful for robot control, because it might simplify the

requirements of an external training signal and leads to

more complex tasks.

However, practical robotic implementations based on R-

STDP are rarely found due to its complexity in feeding sen-

sor data into SNNs, constructing and assigning the reward to

neurons, and training the SNNs. Specifically, typical sensor

data is time-based, such as proximity sensor and conventional

vision sensor, rather than event or spike-based. In order

to feed the data into a SNN, it has to be converted into

spikes somehow. In addition, the reward should be carefully

assigned to the SNN, either too high or too low value will

both get the learning instable. The network weights are

critical for learning as well, otherwise the learning process

will consume more time or even cause failures.

To this end, our paper looks to explore the SNNs training

algorithms based on R-STDP learning rule and implement

them for end to end control in robotics domain. Our main

contributions are summarized as follows. First, a simulated

lane environment is constructed and adapted with different

lane patterns for evaluating algorithms, in which a Pioneer

robot mounted with a dynamic vision sensor (DVS) is de-

ployed to generate visual spikes directly. Second, we propose

an event-based neural network which use the DVS [16]

as the input and calculate the motor commands as the

output for a lane keeping task. Instead of manually setting

weights or connections like [9, 17], all the neurons in our

network are fully connected with R-STDP synapses and the

network is trained directly to learn the synaptic weights all

by itself. The reward given to the SNN is defined for each

motor individually as a linear function of the lane center

distance. The network is implemented in NEST using the

STDP dopamine synapse model and trained with the rewards

calculated from the distance between the robot and lanes.

Finally, simulation results of our event-based neural network

are analyzed to demonstrate the feasibility to different lanes,

and compared with a Braitenberg vehicle controller [9] to
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Fig. 3: Different lane keeping scenarios. (a) Scenario 1:

The simple lane-keeping scenario consists of a road with 2

lanes and 6 different sections A, B, C, D, E and F. Starting

positions are marked with s. Dimensions: r1inner = 1.75 m,

r2inner = 3.25 m, r1outer = 2.25 m, r2outer = 2.75 m, l1 =
5.0 m. (b) Scenario 2: Single lane pattern without boundaries.

(c) Scenario 3: Lanes with two different patterns.

embody the accuracy superiority in terms of the deviation of

the robot from the center line.

The rest of this paper is structured as follows: Section II

describes the simulation environment for the lane keeping

tasks. Section III presents the architecture of the SNN and

the training results. In Section IV, the simulation results

are analyzed and compared to other algorithms. Section V

concludes this paper.

II. RIGHT LANE KEEPING TASKS

In order to provide a simple and flexible environment

to test and compare different algorithms, simulated right

lane keeping tasks with different lane patterns for a pioneer

robot [18] are set up as case studies (See Fig. 1)

Instead of using the on-board ultrasonic sensors, a DVS

camera is attached to the front of the robot with a 30◦

depression angle as shown in Fig. 2. For further validating

the effectiveness and adaptability of the proposed approach,

three scenarios with different lane patterns (See Fig. 3).

The first scenario in Fig. 3a consists of a circular course

with a two-lane road. The road is comprised of two solid

lines and a uniformly dashed line in the middle. From the

starting position onwards, the outer lane can be divided into
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Fig. 4: Conversion of consecutive DVS frames into state

input for reinforcement learning. This is done by dividing

the original 128×128 DVS frames into small 4×4 regions

and counting every event over consecutive frames regardless

of increase or decrease illumination. Furthermore, the image

is cropped at the top and bottom resulting in a 32×16 image.

six sections, namely, (A) straight, (B) le f t, (C) straight,

(D) le f t, (E) right, (F) le f t. During each episode in

the training, the robot will switch the start position and

moving direction between inner and outer lane at each reset.

Therefore, it will experience both left and right turns equally

and with different radii as well.

Based on the same layout and dimensions, a second

scenario has been implemented testing the algorithms on a

different road pattern where the left and right solid lines are

missing (See Fig. 3b). In a third scenario, two different road

patterns have to be learned in parallel (See Fig. 3c).

III. EVENT-BASED SNN CONTROLLER

In this section, the SNN controller is construed and trained

for steering the robot in aforementioned lane keeping tasks.

A. R-STDP Learning Rule

As the most important theory in neuroscience explain-

ing the adaption of synaptic efficacies in the brain during

the learning process, the Spike-Timing-Dependent-Plasticity

(STDP) learning rule [19] has been successfully proven by

neuroscience experiments [20, 21].

For this work, the weight update rule under STDP as a

function of the time difference between pre- and postsynaptic

spikes is defined as

∆t = tpost − tpre (1)

W (∆t) =

{

A+e−∆t/τ+ , if ∆t ≥ 0

−A−e∆t/τ− , if ∆t < 0
(2)

∆w = ∑
tpre

∑
tpost

W (∆t) (3)

, where w is the synaptic weight. ∆w is the change of

the synaptic weight. tpre and tpost stand for the timing of

the firing spike from pre-neuron and post-neuron. A+ and

A− representing positive constants scaling the strength of

potentiation and depression, respectively. τ+ and τ− are

positive time constants defining the width of the positive and

negative learning window.

 
40 px

24 px

128 x 128 DVS frame

 

1. Raw images are 

scaled and accumulated 

as input to excite 8 x 4  

Poisson neurons.

2. R-STDP synapses

are connected to 

2 LIF output 

motor neurons.

Steering wheel

model

3. Left and right motor

output spikes are used

as input for the steering

wheel model and translated

into motor speeds. vleft vright

nright
nleft

16 x 16

 

t

tt

Fig. 5: Network architecture of the R-STDP implementation

using DVS frames as input.

A simple learning rule combining models of STDP and a

global reward signal was proposed by Izhikevich [22] and

Florian [15]. In the R-STDP, the synaptic weight w changes

with the reward signal R. The eligibility trace of a synapse

can be defined as,

ċ(t) =−
c

τc

+W (∆t)δ (t − spre/post)C1 (4)

where c is an eligibility trace. spre/post means the time of a

pre- or post-synaptic spikes. C1 is a constant coefficient. τc

is a time constant of the eligibility trace. ∆ is the Dirac delta

function.

ẇ(t) = R(t)× c(t) (5)

where R(t) is the reward signal. More details of R-STDP

mechanism can be found in [23, 24].

B. DVS Input Generation

Dynamic vision sensors are biologically inspired vision

sensors with a continuous output of independent pixel events

and a temporal resolution in the order of microseconds. In

order to reduce noise in the images, the DVS camera is set

up to only detect the road markings and other deliberately

placed objects in the simulation. Intensity changes on the

ground for example are ignored. First, in order to reduce the

computational complexity of the task, images are reduced

to a lower resolution as well. Second, due to the event-

based nature of the DVS data, image frames coming from

the simulation do not always contain sufficient information

for the network to make meaningful decisions. Therefore,
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Fig. 6: Reward given by the R-STDP controller: It is defined

for each motor individually as a linear function of the lane-

center distance scaled by a constant cr. The lane markings are

0.25m away from the lane-center. If the robot will go further

than 0.2m from the lane-center, episodes are terminated and

the robot will be positioned at its starting position.

the state input was computed by condensing information

of several consecutive DVS frames into a single image.

As shown in Fig. 4, this is done by dividing the original

128×128 DVS frames into small 4×4 regions and counting

every event over ten consecutive frames regardless of the

polarity. Furthermore, the image is cropped at the top and

bottom resulting in a 32×16 image.

DVS frames are calculated and published every 50ms

(with every simulation time-step). Actions are executed every

500ms. Therefore, during one action step, DVS frames are

stored in a first-in-first-out (FIFO) queue of length 10. And

the last 10 DVS frames are then converted into the final state

input.

C. Reward Generation

Instead of dividing the input data and feeding it into two

separate networks with static weights as [9], a single SNN

based on R-STDP is designed as Fig. 5. The input data is

scaled and used for excitation of Poisson neurons, in a single

network with 8×4 = 32 input neurons. Then, the input layer

is connected to two LIF output neurons in an ”all to all”

fashion using R-STDP synapses. The reward signal given at

each simulation time step is shown in Fig. 6. It is defined

for each motor with opposite signs linearly depending on

the robot’s distance to the lane-center. When the robot is

right from the lane-center and should turn left to get back,

connections that lead the right motor neuron to fire are

strengthened, connections that lead the left motor neuron to

fire are weakened. On the opposite side of the lane-center this

process is turned around. Over time, the robot should learn

to associate certain input stimuli with left or right turns and

act accordingly. These considerations lead to the following

rewards for left and right motor neuron connections with d

being the distance to the lane-center and cr a constant scaling

the reward:

rle f t/right =−/+(d · cr) (6)

D. Encoding and Decoding

For communicating with robot sensors and motors in

SNNs, the sensory information should be encoded into input

spikes and the output spikes should be decoded into motor

commands. Similar processing procedure for the encoding

and decoding can be found in [9] The same model is

implemented in this paper as well with only one change.

Instead of steering angles, turn speeds are computed and

added or subtracted for left and right motor. First, the output

spike count n
le f t(right)
t is scaled by the maximum possible

output nmax:

m
le f t(right)
t =

n
le f t(right)
t

nmax

∈ [0;1], with nmax =
Tsim

Tre f rac

, (7)

where Tsim denotes the simulation time step length and Tre f rac

describes the refractory period length of the LIF neuron.

Based on the difference of the normalized activities m
le f t
t

and m
right
t and a turn constant cturn, the turn speed is defined

as

St = cturn ·at , with at = m
le f t
t −m

right
t ∈ [−1;1]. (8)

Furthermore, in order to ensure slower speed in turns, the

overall speed is controlled according to

Vt =−|at | · (vmax − vmin)+ vmax, (9)

where vmin and vmax are predefined speed limits. Since

controlling a car is generally a continuous process, overall

and turn speed (vt and st ) were smoothened based on the

activities:

vt = c ·Vt +(1− c) · vt−1, (10)

st = c ·St +(1− c) · st−1, (11)

with c =

√

(mle f t
t )2 +(mright

t )2

2
(12)

Finally, the control signals for the left and right motor were

computed by

v
le f t
t = vt + st and v

right
t = vt − st . (13)

E. Training

In order to train the network successfully, the parameters

of the R-STDP controller have to be carefully chosen (See

Tab. I in Appendix). First, the training result is closely related

to the reward in 6. If the value is too low, the learning

will take too much time and it might be difficult to see any

progress at all. If it is too high, on the other hand, the learning

will get increasingly instable and the robot will not learn

anything. Second, the initial network weights are critical

for learning as well. In this work, weights are initialized

uniformly at a relatively low value of 200. The weights have

to be larger than zero, because both motor neurons must be

excited from the beginning in order to induce weight changes

following the R-STDP learning rule. In the best case the

initial weight values are as close as possible to their final

values after learning. Therefore, the initial weight value has

been set to an estimated mean value of the weights after

learning. Furthermore, the weights are clipped to [0 : 3000]
only allowing excitatory synaptic connections.

In Fig. 7 the training progress of the R-STDP controller in

the first scenario is shown. Specifically, it shows the termi-

nation position of the robot at each trail when it exceeds the



Fig. 7: Scenario 1. Learning progress of the R-STDP con-

troller. The termination position and the network weights are

shown over the number of simulation steps (1step = 50ms).

During the first 10000 simulation steps, the robot causes

resets at each trial in the first turn in both directions (Section

B). Afterwards, it has successfully learned how to keep the

lane only causing a reset when a complete lap is finished.

lane-center distance of 0.2 m and causes a reset. Moreover,

the changes of the synaptic weights are shown over the

course of the simulation. A simulation step is equivalent

to 50 ms both for the simulation of the SNN as well as

the robot simulator itself. In the beginning of the training

procedure, the robot will go straight forward, because all

connection weights for both motor neurons have been set to

the same value. Therefore, during the first 10000 simulation

steps, trials are mostly terminated at the first turn in both

directions when the robot misses the turn and the lane-center

distance exceeds 0.2m. Each time the robot misses a turn, it

will periodically induce high reward values in the beginning

changing the synaptic weights. Shortly before step 10000,

the robot has learned to take the turn, but it still deviates

from the optimal lane-center position. Consequently, the high

reward over a longer period of time causes a significant

change in the connection values. Evidence for that can also

be found by looking at the termination position on the outer

lane shortly before step 10000 that lies beyond the first turn.

Afterwards, the controller follows the lane in both directions

without causing a reset. Episodes are only terminated once

the robot has completed a lap. Following both lanes close

to the optimal lane-center position means low reward values

as well. Therefore, the weight changes after step 10000 are

considerably smaller than before. The learned weights after

Fig. 8: Scenario 1. Learned connection weights to the left

and right motor neuron of the R-STDP controller after 30000

simulation steps.

30000 simulation steps are shown in Fig. 8. Interestingly,

the connection weights resemble the theoretically derived

weights of the Braitenberg controller with very low values

at one half of the image and increasing values from the top

corner to the bottom center at the other half of the image.

Furthermore, it can be seen that left and right motor neurons

seem to be triggered mostly through middle and right road

line enclosing the lane.

IV. DISCUSSION

In this section, two more lane-keeping scenarios are also

implemented to inspect the practicability of our algorithm

as well as the performance comparison with Braitenberg

controller [9].

A. Different Task Scenarios

To examine the practicality of the proposed algorithm,

another two lane scenarios are implemented (See Fig. 3b

and Fig. 3c).

The training progress of the controller in scenario 2 is

shown in Fig. 9 and seems very similar to the first scenario,

completing the first full lap in less than 5000 simulation

steps. The weights of the controller network after 30000

simulation steps are shown in Fig. 10. While the networks

weights on the left side from both motor neurons resemble

the connection weights learned in scenario 1, it can easily

be seen that the weights on the right side have been left

unchanged, due to the missing lines in this scenario and the

consequential lack of activity during training.

Fig. 11 shows the learning progress during training in

scenario 3. First, learning a successful control strategy takes



Fig. 9: Scenario 2. The termination position when the robot

causes a reset and the network weights are shown over the

number of simulation steps.

Fig. 10: Scenario 2. Learned connection weights to the left

and right motor neuron of the R-STDP controller after 30000

simulation steps.

considerably more time than in the first two scenarios. The

obvious explanation for this is that scenario 3 incorporates

two different road patterns making the environment more

complicated. Therefore, the controller has to distinguish
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Fig. 11: Scenario 3. After an initial learning phase, the robot

is mostly reset in sections B and D until laps are completed

on both lanes after approximately 75000 steps.

Fig. 12: Scenario 3. Learned connection weights to the

left and right motor neuron of the R-STDP controller after

100000 simulation steps.

between a higher number of different situations as well

as slowing down the learning procedure. Moreover, due to

the simple fact that the robot does not encounter certain

situations until it has learned how to get there, it will



Fig. 13: Comparison of the different controllers on the outer lane of the simple lane keeping scenario. The deviation from

the lane-center is shown over the robot position projected to the lane-center. Positive lane-center distances correspond to

deviations to the right side, negative distances to the left side. Course sections are marked by vertical dashed lines (A=straight,

B=left, C=straight, D=left, E=right, F=left). On the right side, error distributions for all controllers as well as mean errors

e (mean distance to the lane-center) are shown.

only start learning a generalized control strategy that works

for both lanes towards the end. In the left motor plot it

can be seen that some weights might even be increased

in the beginning and decreased again afterwards. After an

initial learning phase until approximately step 20000, the

controller is mostly reset in section B (outer lane) and D

(inner lane). When the weights have adapted sufficiently after

approximately 75000 steps, the robot finished the laps on

both lanes. In Fig. 12, the learned weights after 100000 steps

are shown. In comparison to the first scenario the weight

patterns seem very similar, which makes sense considering

the fact that the road pattern in scenario 1 is the combination

of both road patterns in scenario 3.

B. Performance Comparison

To verify the superiority of the proposed algorithm, the

performance is compared to the Braitenberg controller in [9].

To get comparable performance metrics for both controller,

they are evaluated completing one lap on the outer lane in the

first scenario. Fig. 13 shows the deviation of the robot from

the lane-center over the projected course position during the

performed lap. Moreover, the course is divided into the six

sections as shown in Fig. 3a. The robot path is represented

as a projection to the lane-center line, which allows for a

numerical analysis of the controllers performance. Specifi-

cally, the error distribution (distance to the lane-center) can

be shown in the form of a histogram as well as the mean

error for each controller.

First, the Braitenberg controller is evaluated performing

the same lap. While the controller successfully finishes the

course, it can be seen clearly that it strongly tends to the right

side of the lane (left: negative, right: positive, See Fig. 5),

which can be explained by the vision field of the robot. In

the right half of the DVS images, the robot usually only sees

the right solid line. In the left half, however, the robot sees

the left solid line as well as the dashed middle line of the

road, leading to a higher number of detected events and a

higher activity of the left motor neuron eventually. This will

shift the robot to the right until it reaches a balance in the

activity of the motor neurons. Even in the right turn (section

E) the robot is mostly left from the lane-center. In left turns

the distance to the lane-center grows until a point is reached

where previously unstimulated neurons with high weights are

now excited. These will push the right motor neuron activity

leading to a movement correction back to the center. This

can be seen in all 3 left turns (sections B, D and F).

Of both controllers, the R-STDP controller shows the

better performance in this task with comparatively very small

deviations from the lane-center. This gets even clearer when

looking at the performance histogram and the mean error

that is almost an order of magnitude lower than the ones

before. First, one explanation for this behavior can be found

in the very nature of SNNs that allow for high frequency

decision making without the need of splitting time into

discrete steps. Second, the R-STDP training algorithm and

the related reward are to a great extent tailored to this specific

problem. Basically, the R-STDP reward can be interpreted as

a pre-defined value function with a global maximum that

the algorithm will seek. Therefore, the R-STDP training

algorithm leaves out the state evaluation step that is typical

for every classical reinforcement learning algorithm.

V. CONCLUSION AND OUTLOOK

R-STDP learning rule, by combining the advantages of

the reinforcement learning and STDP mechanism, offers

a promising solution to train SNNs. However, it lacks of

practical robotic implementations since its complexities in

constructing and training a SNN. To bridge this gap, we have

trained a SNN controller based on R-STDP and implemented

it in lane-keeping tasks for a Pioneer robot. First, with the

advantages of DVS for data acquisition, our algorithm tends

to be fast and robust from illumination conditions. Further,

this algorithm is capable of learning to follow different

road patterns, even if they are changing within a single

scenario. Finally, comparing to the static SNN controller, the

proposed algorithm exhibits better performance in terms of

the deviation of the robot from the center line.

For future work, the R-STDP controller is build as first

step towards more sophisticated algorithms with real rein-

forcement learning capabilities. Currently research has not



incorporated reward prediction errors yet, even though this

phenomenon was observed in the brain. Therefore, such

networks based on R-STDP should be also implemented

using deep architectures in the future.

APPENDIX

All the simulation parameters are listed in Tab. I.

TABLE I: Simulation parameters specification

Steering model

max. speed vmax = 1.5m/s

min. speed vmin = 1.0m/s

turn constant cturn = 0.5
max spikes during nmax = 15
a simulation step

Poisson neurons
max. firing rate 300 Hz
number of DVS events for n = 15
max. firing rate

SNN simulation
simulation time 50 ms
time resolution 0.1 ms

LIF

NEST model iaf psc alpha
Resting membrane potential EL =−70.0mV

Capacity of the membrane Cm = 250.0 pF

Membrane time constant τm = 10.0ms

Time constant of postsynaptic τsyn,ex = 2.0ms

excitatory currents
Time constant of postsynaptic τsyn,in = 2.0ms

inhibitory currents
Duration of refractory period tre f = 2.0ms

Reset membrane potential Vreset =−70.0mV

Spike threshold Vth =−55.0mV

Constant input current Ie = 0.0 pA

R-STDP synapse

NEST model dopamine synapse
Amplitude of weight change A+ = 1.0
for facilitation
Amplitude of weight change A− = 1.0
for depression
STDP time constant τ+ = 20.0ms

for facilitation
Time constant of τc = 1000.0ms

eligibility trace
Time constant of τn = 200.0ms

dopaminergic trace
Minimal synaptic weight 0.0
Maximal synaptic weight 3000.0
Initial synaptic weight 200.0
Reward constant cr = 0.01
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