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Abstract: Moving target indication (MTI) based on space–time adaptive processing (STAP) has been
widely used in airborne radar due to its ability for clutter suppression performance. However, the
existing MTI methods suffer from the problems of insufficient training samples and low detection
probability in a non-homogeneous clutter environment. To address these issues, this paper proposes
a novel deep learning framework to improve target indication capability. First, combined with the
problems of target indication caused by the non-homogeneous clutter, the clutter-plus-target training
dataset was modeled by simulation, where various non-ideal factors, such as aircraft crabbing, array
errors and internal clutter motion (ICM), were considered. The dataset considers various realistic situ-
ations, making the proposed method more robust. Then, a five-layer two-dimensional convolutional
neural network (D2CNN) was designed and applied to learn the clutter and target characteristics
distribution. The proposed D2CNN can predict the target with a high resolution to implement an
end-to-end moving target indication (ETE-MTI) with a higher detection accuracy. In this D2CNN,
the input was obtained by the clutter-plus-target angle-Doppler spectrum with a low-resolution
estimated only by a few samples. The label was given by the target angle-Doppler spectrum with a
high-resolution obtained by the target’s exact angle and Doppler. Thirdly, the proposed method used
a few samples to improve the target indication and detection probability, which solved the problem
of insufficient samples in the non-homogeneous clutter environments. To elaborate, the proposed
method directly implements ETE-MTI without the support of the conventional STAP algorithm to
suppress the clutter. The results verify the validity and the robustness of the proposed ETE-MTI with
a few samples in the non-homogeneous and low signal-to-clutter ratio (SCR) environments.

Keywords: moving target indication (MTI); space–time adaptive processing (STAP); radar signal
processing

1. Introduction

Radar indication technology is necessary for detecting ground/sea and low-altitude
moving targets due to its all-day and all-weather capability. Since ground-based radars are
susceptible to occlusion effects and low-altitude blind spots, airborne radar has significant
advantages for detecting ground/sea and low-altitude moving targets. Moving target
indication (MTI) is one of the most critical tasks in airborne radar. MTI is the presence
or absence of a moving target with a certain relative velocity in an interesting scenario,
also referred to as the cell under test (CUT). However, it is difficult to detect the target
due to the severe ground and sea clutter when the airborne radar is working downward-
looking. Moreover, one-dimensional filtering techniques based on the conventional moving
target indication and moving target detection (MTD) often suffer from ineffective clutter
suppression, especially in the non-homogeneous environments. Therefore, an efficient
method for clutter suppression and target indication is needed for target detection.

To suppress the clutter and detect the moving target effectively, space–time adap-
tive processing (STAP) is proposed. Space–time adaptive processing (STAP) utilizes two-
dimensional joint adaptive filtering in the spatial and temporal domains to achieve effective
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clutter suppression. Currently, STAP technology has been widely used in airborne radar
systems [1–3]. In general, the optimal filters for MTI and STAP require a known clutter and
noise covariance matrix (CNCM) of the CUT. Since the clutter covariance matrix (CCM) of
the CUT in the optimal filter is unknown, Reed et al. [4] proposed an adaptive STAP filter
using the sample covariance matrix (SCM) instead of the real CCM, which is called sample
matrix inversion (SMI). To obtain an excellent adaptive clutter suppression performance,
the training samples and the CUT need to have the same clutter statistical characteristics
and to satisfy the independent and identically distributed (IID) condition. However, due to
the non-homogeneous environments, the SMI faces two main challenges in practice. First,
the samples of the range cells near the CUT may not satisfy the IID condition, resulting
in a large performance loss of the simple training sample selection methods. Second, the
number of samples with the IID condition among all available training samples is limited
and less than two times the system’s degrees of freedom. These problems lead to the
degradation of adaptive clutter suppression performance, which in turn causes the loss of
target detection performance. Therefore, it is of great theoretical significance and practical
application to study the adaptive clutter suppression and target indication techniques in
non-homogeneous environments.

To solve the problem of insufficient training samples, researchers propose that the
problem’s impact can be mitigated or overcome with techniques such as training samples
selection and single-sample processing. Such methods are collectively referred to as the
non-homogeneous STAP, including the classic methods such as Doppler compensation [5]
(DC), angle-Doppler compensation [6] (ADC), and adaptive ADC [7] (A2DC). Although
these algorithms can improve clutter suppression performance in non-homogeneous envi-
ronments, there are also some shortcomings. For example, DC, ADC and A2DC all use a
single point as a reference for the mainlobe center compensation, which cannot simultane-
ously compensate the clutter spectrum in all directions. Therefore, the drawbacks degrade
the algorithms’ MTI performance. At present, the advanced STAP techniques based on
knowledge-aid [8–11] (KA) and sparse recovery [12–16] (SR) are also applied in airborne
radar MTI, which can reduce the negative effects caused by the clutter non-homogeneous
to a certain extent. Moreover, the KA-STAP techniques aim to improve the performance of
the conventional STAP algorithms through prior knowledge of various forms and proper-
ties. However, the exact form of prior knowledge is difficult to obtain, resulting in a poor
real-time performance. Though SR-STAP can effectively reduce the demand for the IID
training samples, it is accompanied by a large amount of computation and grid mismatch.
Therefore, the existing STAP techniques in practice have limited ability to suppress the
clutter due to the insufficient training samples, thus reducing the detection performance.
As a result, the emphasis of STAP-MTI is mainly on breaking the limited IID samples in the
CCM estimation.

For image processing in the MTI, different approaches have been investigated [17–19].
For signal data processing, STAP adaptively filters the space–time observation (STO) echo
data, while the subsequent constant-false-alarm-rate (CFAR) can be considered a two-class
classifier in STAP-MTI. The two classes represent the target-present case or the target-absent
case. In addition to STAP-MTI, researchers have recently proposed other alternative MTI
methods. The MTI method based on the pattern recognition first transforms the traditional
filtering problem into the pattern classification. Khatib et al. [20] proposed a STAP method
based on least squares for moving target indication (LI-MTI). The method avoids CCM
estimation and constructs a classifier identifier to process the radar space–time echo data.
To reduce the moving target energy required by LI-MTI, Khatib et al. [21] constructed a
polynomial classifier for target indication (POLY-MTI). However, due to the limited fitting
and poor feature extraction ability, the above methods need to be further improved in terms
of the non-homogeneous clutter environments and low signal-to-clutter ratio (SCR).

In recent years, deep learning technologies, represented by the convolutional neural
network (CNN), have developed rapidly, and have gained extensive attention and great
success in the field of computer vision [22–24]. Deep learning automatically learns to
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extract the hierarchical and expressive features directly from the STO data. It provides new
ideas for problems such as radar image processing [25–28] and radar signal processing
[29–31]. Recently, deep learning techniques have been applied to clutter suppression in
airborne radar. CNN-STAP [32] utilizes the low-resolution clutter angle-Doppler spectrum
to reconstruct the high-resolution clutter angle-Doppler spectrum and then calculates
the CCM to derive the STAP weight vector. However, this method is aimed at clutter
suppression by CNN. In the field of airborne radar, CNN-MTI [31] uses AlexNet to construct
a classifier to achieve effective target indication. However, the CNN-MTI method suffers
from a large number of network parameters and a low detection accuracy.

Despite its widespread applications and great advantages, deep learning has rarely
been applied to angle-Doppler domain estimation tasks in the field of MTI. We propose an
end-to-end moving target indication method based on the D2CNN to improve the target
detection capability with a few training samples. First, the established training dataset
considered various realistic situations in the non-homogeneous clutter environments, such
as aircraft crabbing, array errors, and internal clutter motion (ICM). Then, a D2CNN with
five layers was built to train and fit the network parameters. Finally, the high-resolution
target spectrum after training was used to obtain the velocity and space information.
To the best of our knowledge, this paper is the first work to apply deep learning tech-
niques to angle-Doppler spectrum estimation for target indication in non-homogeneous
clutter environments.

The main contributions of this paper are as follows:

(1) The proposed method can obtain higher detection accuracy using a few samples,
which solves the problem of insufficient samples in non-homogeneous clutter en-
vironments. The simulation demonstrates that the proposed ETE-MTI has a much
lower computational load and a higher detection accuracy in non-homogeneous and
low-SCR environments than the existing CNN-MTI [31] method;

(2) The five-layer D2CNN was constructed with the requirement of the high resolution,
which achieved end-to-end target indication to improve the detection accuracy. The
D2CNN’s input was built by the clutter-plus-target angle-Doppler spectrum with
a low-resolution estimated by a few samples. The label was constructed by the
target angle-Doppler spectrum with a high-resolution obtained by the exact angle and
Doppler. Once trained, the D2CNN can be used to predict the target properly with
a high resolution using a few samples in near real-time. We also took into account
the spatial–temporal sparsity of the clutter and target, which helps network design
and training.

The rest of the paper is organized as follows. In Section 2, the space–time signal
model is introduced. In Section 3, the deep learning framework and the principle of the
proposed ETE-MTI method are proposed. In Section 4, the simulation results and discussion
are provided to demonstrate the proposed method’s computational efficiency and target
detection performance. The conclusions are presented in Section 5.

Notation: Boldface lowercase letters denote vectors and boldface uppercase letters
denote matrices. The transposition and conjugate transposition operations are denoted
by superscripts T and H, respectively. The symbols ⊗,� and * represent the Kronecker
product, Hadamard product and convolution, respectively. E[·] is the notation of the
expectation operation. ‖·‖F denotes the Frobenius norm.

2. Signal Model

Assume that the antenna array of the airborne phased array pulse radar system with a
uniform linear array (ULA) consisting of N elements is moving with constant velocity v
at altitude H. The distance between the two adjacent array elements is equal to the half
wavelength. Figure 1 shows the model between the ULA and the ground geometry. The
pulse repetition frequency is fr, and M pulses are transmitted at a constant pulse repetition
frequency (PRF) during each coherent processing interval (CPI). Set O− XYZ as the carrier
coordinate system, where ULA is placed parallel to the Y-axis, and the angle between v
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and the Y-axis is θcrab. P is a clutter patch of a certain range cell on the ground plane. The
angle of the clutter patch relative to the antenna array is φ, and the azimuth and elevation
angles relative to the antenna axis are θ and ϕ, respectively.

Figure 1. The geometry of uniform linear array airborne radar.

The space–time snapshot vector x can be expressed as:

x = xc + xt + n, (1)

where xt is the target space–time snapshot vector, xc is the clutter space–time snapshot
vector, and n is the complex Gaussian white noise vector.

In the ULA radar system, the target velocity relative to the airborne radar platform is
vt, then the spatial steering vector vs,t( fs,t) and the temporal steering vector vd,t( fd,t) can
be written as:

vs,t( fs,t) = [1, exp(j2π fs,t), · · · , exp(j2π(N − 1) fs,t)]
T (2)

vd,t( fd,t) = [1, exp(j2π fd,t), · · · , exp(j2π(M− 1) fd,t)]
T , (3)

where fs,t(θ, ϕ) = d cos(θ) cos(ϕ)/λ and fd,t(θ, ϕ) = 2vt/(λ fr) are the normalized spatial
frequency (NSF) and normalized Doppler frequency (NDF) of the target, respectively.

The space–time snapshot vector of a single-point target xt can be expressed as the
multiplication of the complex amplitude σt and the corresponding space–time steering
vector vt( fs,t, fd,t) of the target:

xt = σtvt( fs,t, fd,t), (4)

where
vt( fs,t, fd,t) = vs,t( fs,t)⊗ vd,t( f(d, t)). (5)

For the clutter scattering point P of a certain range gate, its spatial steering vector
vs,c( fs,c) and temporal steering vector vd,c( fd,c) can be described for:

vs,c( fs,c) = [1, exp(j2π fs,c), · · · , exp(j2π(N − 1) fs,c)]
T (6)

vd,c( fd,c) = [1, exp(j2π fd,c), · · · , exp(j2π(M− 1) fd,c)]
T (7)

where fs,c(θ, ϕ) = d cos(θ) cos(ϕ)/λ and fd,c(θ, ϕ) = 2v cos(θ + θcrab) cos(ϕ)/(λ fr) are the
clutter patch’s NSF and NDF.

Considering the non-ideal factors in non-heterogeneous clutter environments with
array errors and internal clutter motion (ICM), the clutter space–time snapshot vectors
of all range cells are the accumulation of the echo signal of each clutter block at different
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ambiguous ranges. Assuming that each clutter scattering point is statistically independent,
the clutter space–time snapshot is defined as:

xc =
Na

∑
p=1

Nc

∑
q=1

a
(
θq, ϕp

)[
κ� vd,c

(
θq, ϕp

)]
⊗
[
εs,c
(
θq, ϕp

)
� vs,c

(
θq, ϕp

)]
,

(8)

where Na, Nc, a(θq, ϕp) denote the number of ambiguous range rings, the number of
spurious scattering points on a single range ring, and the complex scattering ampli-
tude of the qth spurious scattering point on the pth ambiguous range ring, respectively;
κ = [κ1, κ2, . . . , κM]T represents the real temporal weight vector brought by ICM; εs,c(θ, ϕ) =
[ε1(θ, ϕ), ε2(θ, ϕ), · · · , εN(θ, ϕ)]T represents the real spatial weight vector caused by the
array errors. εi(θ, ϕ) obeys the complex Gaussian distribution with mean-zero and vari-
ance σ2

e .
Since each clutter block is statistically independent and a(θ, ϕ) is a Gaussian random

variable with mean-zero and variance σ2
c (θ, ϕ), the corresponding CCM of this clutter data

is defined as:

Rc = E
{

xcxH
c

}
=

Na

∑
n=1

Nc

∑
a=1

σ2
c
(
θq, ϕp

)
[Td ⊗ Ts]�

[
v
(
θq, ϕp

)
vH(θq, ϕp

)]
,

(9)

where v(θ, ϕ) = vd,c(θ, ϕ)⊗ vs,c(θ, ϕ) denotes the clutter space–time steering vector; the
time autocorrelation matrix is Td =Toeplitz(rd(0), rd(1), · · · , rd(M− 1)) due to the ICM,

where rd(m) , E
{

κi+mκ∗i
}

= exp
{
− 8π2σ2

v m2

λ2 f 2
r

}
i = 0, 1, · · · , M − 1; σ2

v represents the
variance of the spreading of the clutter spectrum caused by the wind speed and λ denotes
the wavelength; Ts = E

{
εs,c(θ, ϕ)εs,c(θ, ϕ)H} denotes the spatial autocorrelation matrix

caused by the array errors.
In general, the CCM is unknown, so it is usually obtained by maximum likelihood

estimation (MLE) using the adjacent datasets of the CUT as training samples. Hence, the
corresponding covariance matrix can be represented by:

R̂MLE =
1
L

L

∑
l=1

xlx
H
l , (10)

where L is the number of training samples. xl represents the STO data of the lth training sample.
According to the RMB rule, the number of training samples must be at least twice

the number of the system degrees of freedom to keep the loss of SNR within 3 dB. After
obtaining the CCM, the space–time adaptive optimal weight vector can be obtained:

w = µR̂−1
MLEvt( fs,t, fd,t), (11)

where µ = 1/
(
vH

t R−1vt
)

is the normalization constant. It can be seen that if the esti-
mated CCM is inaccurate, the calculated space–time adaptive filter weight vector and the
theoretical STAP optimal filter weight vector have a large gap in the clutter suppression
performance, which will affect the performance of subsequent target detection.

Due to the severe clutter, noise and jamming, the moving target is always buried in
the interference. The goal of MTI is to detect the moving target’s Doppler frequency and
spatial frequency from the STO. In this paper, we make use of the D2CNN to learn the
distribution characteristics of the clutter and the target. The D2CNN extracts information
about the target directly from the clutter-plus-target spectrum. Hence, the proposed method
avoids reconstructing the clutter spectrum to achieve the end-to-end target indication for
airborne radar.
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3. Proposed Method
3.1. Whole Framework of Proposed Method

In essence, ETE-MTI can be viewed as a classification problem, where the pairing of
NDF and candidate NSF of the moving target are considered as one class. Furthermore, the
clutter and target are separable in the space–time domain. As a result, through the mapping
characteristics of deep learning, the target and clutter are distinguished in the space–time
domain. Therefore, the clutter is actually filtered out and the target can be better indicated
to improve the detection.

The whole framework is shown in Figure 2. In the framework of the proposed method,
there are two main steps to obtain the high-resolution target angle-Doppler spectrum.

Figure 2. Deep learning framework for ETE-MTI.

Firstly, we can discretize the angle-Doppler plane into Ns = ρsN and Nd = ρd M(ρs, ρd � 1)
cells, where ρs and ρd are the angle and Doppler frequency discretization factors, respectively.
Then, the collection of all steering vectors in the two-dimensional space–time plane is given by:

V =
[
v( fs,1, fd,1), . . . , v( fs,Ns , fd,1), . . . , v

(
fs,Ns , fd,Nd

)]
, (12)

where fs,i, 1 ≤ i ≤ Ns and fd,k, 1 ≤ k ≤ Nd denote the normalized spatial and Doppler
frequencies, respectively.

The power spectrum estimation is performed on the training sample of the STO data
X = [x1, x2, · · · , xL] ∈ CNM×L. P( fs,i, fd,k) is the spectrum intensity of the corresponding
grid. Therefore, the Fourier spectrum transform can be defined as:

P( fs,i, fd,k) =
(

v( fs,i, fd,k)
HX
)(

v( fs,i, fd,k)
HX
)H

= v( fs,i, fd,k)
HR̂MLEv( fs,i, fd,k). (13)
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The Fourier spectrum transform plays an important role in the network’s input. Ac-
cording to Figure 2, it converts STO data into the form of the angle-Doppler spectrum as
the network’s input.

Similarly, the Minimum Variance Distortionless Response (MVDR) spectrum transform
is represented by:

P( fs,i, fd,k) =
1

v( fs,i, fd,k)HR̂−1
MLEv( fs,i, fd,k)

. (14)

The MVDR spectrum transform converts the target data with the exact angle and
Doppler into the form of the angle-Doppler spectrum as the network’s label.

In this paper, the angle-Doppler spectrum is obtained by superimposing each grid’s
spectrum intensity. Therefore, the angle-Doppler spectrum can be represented by:

P[X] =
Ns

∑
i=1

Nd

∑
k=1

P( fs,i, fd,k). (15)

The Rayleigh resolution limits the Fourier spectrum transform. However, the MVDR
spectrum transform has a high resolution due to its ability to break the Rayleigh limit.
Based on these properties, CNN-STAP [32] and SR-CNN [33], we use the low-resolution
clutter-plus-target angle-Doppler spectrum as the network’s input. The D2CNN is a specific
neural network for reconstructing and filtering the input so that we can obtain the expected
high-resolution target angle-Doppler spectrum of the output. The task of achieving the
high-resolution target angle-Doppler spectrum can be formulated as a supervised deep
learning problem. The whole mathematical model process is given by:

Z = F[P[X]], (16)

where Z ∈ RNs×Nd is the expected target high-resolution space–time spectrum at the
network’s output. F : RNs×Nd → RNs×Nd characterizes the D2CNN operator.

Consequently, there are two stages in the deep learning from Figure 2. In the proposed
D2CNN, the input was constructed by the clutter-plus-target angle-Doppler spectrum with
a low-resolution estimated by a few samples according to Equation (13). The label was
constructed by the target angle-Doppler spectrum with a high-resolution obtained by the
exact spatial and Doppler frequency according to Equation (14). In the training stage, the
training data set was used for the D2CNN parameter optimization and fitting. Once trained,
the D2CNN can be used to predict the target high-resolution angle-Doppler spectrum using
a few samples in near-real-time in the test stage.

3.2. Construction of D2CNN

Based on the CNN-STAP [32], we constructed the convolutional neural network
structure, as shown in Figure 3. The network consisted of five convolution layers. The
input was the low-resolution clutter-plus-target spectrum estimated by Fourier spectrum
transform, and the output was the high-resolution target spectrum estimated by MVDR
spectrum transform after filtering out the clutter and noise.

The low-resolution angle-Doppler spectrum contains the clutter-plus-target rough
information of the actual position and energy distribution. Its characteristics are more
intuitive and effective. Therefore, the characteristics of the training samples can be extracted
in the first layer:

F1 = max(0, W1 × Y + b1), (17)

where Y = P[X]; W1 and b1 denote the convolution kernel and bias, respectively; W1 is of
a size c× f1 × f1 × n1, where c, f1 and n1 denote the number of input image channels, the
size of the kernels, and the number of convolution kernels, respectively.
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Figure 3. Architecture of the proposed convolutional neural network.

The five convolutional layers all utilize the ReLU activation function, which acts as
feature extraction and high-dimensional mapping. The edge-complementary zero operation
ensures that each layer’s input and output images are the same sizes. The second to fourth
layers are all features nonlinear mapping where the extracted feature is mapped nonlinearly
into the transformed high-dimensional:

Fi = max(0, Wi × Fi−1 + bi) i = 2, 3, 4, (18)

where Wi denotes a size of ni−1 × fi × fi × ni and bi is an ni-dimensional vector. The fifth
layer is the image reconstruction layer, which generates the high-resolution output image:

Z = W5 × F4 + b5, (19)

where W5 is of a size n4 × f5 × f5 × c. b5 is a c-dimensional vector.
Assume that the low-resolution clutter-plus-target angle-Doppler spectrum is the

input (Yt)
T
t=1, and the high-resolution target angle-Doppler spectrum is the label

(
Ẑt
)T

t=1.

(Yt)
T
t=1 and

(
Ẑt
)T

t=1 are passed through the minimization model mean squared error (MSE),
resulting in a nonlinear mapping relationship between the label and output:

Loss(Θ) =
1
T

T

∑
t=1

∥∥F(Yt; Θ)− Ẑt
∥∥2

F, (20)

where T is the number of the training data. Θ = {Wi, bi}, i = 1, 2, · · · , 5 are the network
parameters, while the stochastic gradient descent method is used to update the parameters.

3.3. Construction of Training Dataset

The inputs (Yt)
T
t=1 and the labels

(
Ẑt
)T

t=1 should be included in the training dataset,
which is defined as:

Γ =
(
Yt, Ẑt

)T
t=1. (21)

In the proposed method, we first apply a beamforming procedure, using V in
Equation (12), to the clutter-plus-target echo data X, which constructs an initial clutter-
plus-target angle-Doppler spectrum Y. Consequently, the input Y clutter-plus-target angle-
Doppler spectrum is constructed by the Fourier transform in Equation (13). In the CNN,
the label Ẑ target angle-Doppler spectrum is constructed by the MVDR transform in
Equation (14), which has a high-resolution performance. Therefore, the input uses the
clutter-plus-target covariance matrix, and the label uses the target covariance matrix in
Equation (10). As a result, to improve the target detection and suppress the clutter, we apply
the D2CNN to the intermediate reconstruction and filter, which outputs a high-resolution
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target angle-Doppler spectrum Z according to Equation (16). In a word, this process can be
viewed as a supervised deep learning problem.

In the following simulation experiments, we artificially generated sufficient training
dataset Γ using samples from four range cells adjacent to the CUT. For simplicity, the NSF
of the expected target was known, and the NDF varied between [−1, 1]. The experiments
used two datasets corresponding to STO’s ideal and non-ideal cases to fully validate the
ETE-MTI performance. For the ideal case, the dataset was generated for the simulation,
of which 80% was used as the training dataset and the remaining 20% was used as the
validation dataset to verify the performance of the network. In the airborne radar system,
aircraft crabbing, array errors and ICM will affect the clutter distribution on the angle-
Doppler spectrum, thereby affecting the target indication. Therefore, the values of each
non-ideal factor parameter, such as the array errors σ2

e ∈ [0, 0.2], the ICM σ2
v ∈ [0, 0.2]

and the aircraft crabbing angles θcrab ∈ [0, 5◦] can be randomly selected to generate the
clutter space–time snapshot vector to construct the dataset. Additionally, the SNR was set
to between 20 dB and 60 dB in order to verify that the method can obtain good detection
performance even at low SCR environments. Similarly, 80% of the dataset was used for
training and 20% was used for validation.

4. Results and Discussion

In this section, simulation experiments were used to verify the effectiveness of the
proposed method. The simulation parameters are listed in Table 1. The number of used
training samples was 4. The angle frequency discretization factor ρs was 6 and the Doppler
frequency discretization factor ρd was 6. The network parameters were given as: the
number of channels c is 1 and fi × fi × ni, i = 1, 2, . . . , 5 are set to 11× 11× 16, 9× 9× 8,
7× 7× 4, 5× 5× 2, 3× 3× 1, respectively. Meanwhile, the learning rate was set to 10−2.
Moreover, the pairs dataset was used for training with a batch size of 64. Furthermore, we
conducted the experiment using an AMD Ryzen 7 5700 G with Radeon Graphics CPU.

Table 1. Simulation parameters of the radar system.

Parameter Value

Platform height 7 km
Platform velocity 150 m/s
Element number 8
Pulses in one CPI 8
Element spacing 0.15 m

Pulse repetition frequency 4k Hz
CNR 50 dB

Noise power 1 W

4.1. Convergence Analysis

This subsection analyzes each network’s overall training and validation MSEs concern-
ing the number of iterations. Figure 4 presents the variation of the training and validation
MSEs with the training iterations in the ideal and non-ideal cases. Two networks were
trained for 350 and 400 iterations, respectively. The training MSE in both the ideal and
non-ideal cases decreases rapidly in the early training period and essentially reaches con-
vergence at the 300th training iteration with only minor changes in the subsequent training
iterations. In addition, the network converges faster in the ideal case than in the non-ideal
case, since the training dataset in the ideal case does not contain other non-ideal factors.
The clutter distribution is relatively single. Therefore, ETE-MTI can quickly learn the
distribution characteristics between the clutter and the target. In contrast, in the non-ideal
case, the clutter-plus-target contains various non-ideal factors. So the clutter spectrum
distribution is complicated to affect the target indication, which makes ETE-MTI need a
longer period to learn. Moreover, the validation curves level off after about 150 iterations
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and remain roughly constant thereafter. The result confirms that there is no overfitting in
the two networks.

Figure 4. Training and validation MSE versus the number of iterations. (a) ideal case; (b) non-
ideal case.

4.2. Visualization of Prediction Results

This subsection analyzes the prediction performance of ETE-MTI. For simplicity, the
NSF was made to be 0.

If the clutter and the target were easily distinguishable on the space–time spectrum,
the target’s NDF was set to 0.556. Figure 5 shows the predicted target angle-Doppler results.
Figure 5a,b show the clutter-plus-target and the target spectrum in the ideal case. The
target was estimated by the proposed method. ETE-MTI can predict the target position
well without the clutter remaining, realizing end-to-end target indication. The prediction
performance in the case of the aircraft crabbing angle θcrab = 5◦ is shown in Figure 5c,d.
The clutter spectrum is bent due to the influence of the aircraft crabbing and is mixed
with a part of the target in Figure 5c. Nonetheless, It can be seen that, from Figure 5d,
the expected target can be detected after the CNN, but there is a bit of residual clutter
at the zero Doppler position. As shown in Figure 5e, in the presence of array errors, the
energy of the clutter spectrum leaks along the angle direction and undergoes spectral
broadening. The predicted result in the case of crabbing is shown in Figure 5f. Although
the target can be indicated, there is relatively more clutter remaining at zero Doppler
along the angle direction. Figure 5g,h show the clutter-plus-target and the target Fourier
spectrum in the case of ICM. The target was estimated by the proposed method. As shown
in Figure 5g, the clutter spectrum is broadened due to the wind speed. The predicted result
is shown in Figure 5h, that the target can still be indicated with NSF = 0.556 after the deep
learning network.

In the following, we discuss the performance when the target is close to the mainlobe
of the clutter. The target’s NDF was set to 0.1429. Figure 6 shows the predicted target
angle-Doppler results. Figure 6a,b show the clutter-plus-target Fourier spectrum and the
predicted target spectrum in the ideal case. The target was buried in the clutter with the
high power; ETE-MTI could still predict the target after the trained network, but the target’s
power was weakened at this time. In the non-ideal case, the factor parameters were set
to the array error σ2

e = 0.1, the ICM σ2
v = 0.2, and the aircraft crabbing angle θcrab = 5◦.

Figure 6c,d show the clutter-plus-target Fourier spectrum and the predicted target in the
non-ideal case. As is shown in Figure 6c, although the clutter spectrum is completely mixed
with the target due to the bending, energy leakage and spectral broadening because of the
aircraft crabbing, array errors and ICM, the expected target can be indicated after the deep
learning from Figure 6d.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5. Processing results of different clutter environments with SCR = −15 dB in the case where
the target and clutter are distinguishable. (a,b) ideal case; (c,d) in the presence of aircraft crabbing;
(e,f) in the presence of spatial error; (g,h) in the presence of ICM.
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(a) (b)

(c) (d)

Figure 6. Processing results of different clutter environments with SCR = −15 dB in the case where
the target and clutter are indistinguishable. (a,b) ideal case; (c,d) non-ideal case.

As a result, when the target is buried and covered by the clutter with high power or
the target is at low speed, ETE-MTI can quickly learn the spatial–temporal distribution
characteristics of the clutter and the target through the neural network to extract the target
information, realizing the end-to-end target indication.

4.3. Detection of Probability under Different SCR Scenarios

In this subsection, we evaluate the target detection performance of different NDFs by
the probability of detection (PD) versus SNR curves. There are 31 artificially generated test
datasets with different SCRs, which are produced by the different target powers under the
same clutter power of 50 dB. In different test datasets, the targets’ powers varied from 20 dB
to 60 dB with equal intervals. In each dataset, 1000 test samples were generated by adding
the target signals with the same power and candidate NDFs to the clutter. The samples
from each test dataset were fed into the trained D2CNN. The detection performance was
evaluated by PD which were obtained by using the adaptive matched filter (AMF) detector.
PD is the average percentage of correctly classified test samples for each target in the test
dataset. Figure 7 shows the effect of non-homogeneous clutter on detection performance.
Two cases are also considered in Figure 7. In the non-ideal case, the non-ideal factors were
set to the array error σ2

e = 0.1, the ICM σ2
v = 0.1, and the aircraft crabbing angle θcrab = 5◦.

The target’s NSF was fixed to 0, while the NDF considers three values; 0.167, 0.367 and
0.5, respectively.

As depicted in Figure 7a,b, with the increase of SCR, the detection performance of the
ETE-MTI method has improved. The three curves indicate that the ETE-MTI method have
superior target detection performance whether in the mainlobe region ( fdt = 0.1667) or in the
sidelobe region ( fdt = 0.367 or fdt = 0.5) at the high SCR conditions. The PD approximately
approaches 100% in the sidelobe region ( fdt = 0.367 or fdt = 0.5) with the SCR of −15 dB.
As the target’s NDF increases, the proposed method’s detection performance improves. It
can be seen that the detection performance of the proposed method in the sidelobe region
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is better than that in the mainlobe region. It will degrade the target detection performance
when the clutter exists with non-ideal factors. From Figure 7a,b, compared with the PD
curves in the ideal case, the PD in the non-ideal case is slightly decreasing, although in non-
homogeneous clutter environments, the PD can remain above 100% in the sidelobe region
( fdt = 0.367 or fdt = 0.5) at −10 dB SCR. Thus, the results demonstrate that the ETE-MTI
method has a good detection performance in the non-homogeneous clutter environments
and low SCR conditions.

(a) (b)

Figure 7. PD versus SCR curves of different NDFs. (a) ideal case; (b) non-ideal case.

4.4. Comparison of Computation Complexity

The calculation burden mainly comes from convolution operations during the D2CNN’s
training and test. For the mentioned D2CNN, the component complexity formula is as
follows [34]:

O

(
C

∑
l=1

nl−1 · s2
l · nl ·m2

l

)
, (22)

where l is the index of a convolutional layer, and C is the depth. nl is the number of filters
in the l-th layer. nl−1 represents the number of input channels of the l-th layer. sl is the
spatial size (length) of the filter. ml is the spatial size of the output feature map. The
calculation complexity of the ETE-MTI method is obtained by substituting the network
parameters set in this paper into Equation (22). According to Table 1 and Figure 3, the
computation complexity of the proposed ETE-MTI is in the order of O(105MN). However,
the computation complexity of the CNN-MTI method is O

(
106MN

)
, which is one order of

magnitude more than the method proposed in this paper.

4.5. Comparison of Detection of Probability

In this subsection, PD verifies the detection performance of different methods. First,
we evaluated the proposed ETE-MTI method’s detection performance under different
doppler channels’ PD compared with other methods. Other conditions were the same; the
target’s power was set to 30 dB and the target’s velocity in different test datasets varied from
−150 m/s to 150 m/s. Fifteen test datasets with different target velocities were generated,
which corresponded to the 15 Doppler channels. The results of the traditional optimal
method (OPT-STAP-MTI) and the CNN-MTI method in [31] for comparison were used
to verify the ETE-MTI method’s accuracy and effectiveness. ETE-MTI used four IID data
range cells, CNN-MTI used 105 IID data range cells around the CUT, and OPT-STAP-MTI
used all range cells. The PD of the three methods in different Doppler channels were
compared as shown in Figure 8. ETE-MTI had the lowest PD of 53% in the zero Doppler
channel since the clutter entirely buried the target. As the target velocity increased, the
target was further and further away from the main lobe of the clutter spectrum. Therefore,
the distinguishability between the target and the clutter increased and ETE-MTI could
detect the target more accurately with PD of up to 100%.
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Figure 8. Performance comparison of the proposed ETE-MTI, the OPT-STAP-MTI and the CNN-MTI
method [31].

It can be observed that the detection performance of CNN-MTI is poor, and its PD
is lower than that of the other two methods in the zero Doppler channel. The detection
performance of all three methods improves as the Doppler channel increases, and ETE-MTI
and STAP-MTI can detect the target with the PD of 100% in multiple Doppler channels.
Moreover, ETE-MTI and STAP-MTI can detect the target when the target’s velocity is low.
The reason for the improved detection performance of the three methods is that, as the
Doppler channel increases, the target velocity increases relative to the stationary clutter.
Hence, the clutter and the target can be distinguished in the spectrum, making it easier to
detect the target.

The comparison shows that the average PD of ETE-MTI exceeds that of CNN-MTI.
Moreover, the ETE-MTI ’s PD curve is very close to that of OPT-STAP-MTI. Thus, the results
demonstrate that ETE-MTI can achieve an excellent performance under different Doppler
channels and excels in detecting low-speed targets. Furthermore, the ETE-MTI method will
outperform the traditional STAP method when the training sample is limited.

In addition, we compared the detection performance of the proposed method ETE-MTI
and CNN-MTI with different SCRs. The target’s NDF was set as 0.367 and the number of
test samples was 1000. The test samples’ generation was the same as in Section 4.3. The
performance comparison is shown in Figure 9. The PD of both methods gradually improves
with the increase of the SCR. The highest PD of ETE-MTI can reach 100%, while the highest
PD of CNN-MTI is close to 92%. The detection performance of the proposed ETE-MTI
is better than that of CNN-MTI at low SCRs. Therefore, the result demonstrates that the
proposed ETE-MTI has a much lower computational load and a higher detection accuracy
than the existing CNN-MTI method with a few samples in the non-homogeneous and low
SCR environments.

Consequently, the two methods—ETE-MTI and CNN-MTI—differ in the form of the
data entered. The proposed method’s input is the power spectrum amplitude data of the
clutter-plus-target. In CNN-MTI, the input is the space–time observation data. Furthermore,
the five-layer D2CNN built in this paper considers the target’s high resolution for target
indication, allowing our method to detect the target more easily in the non-homogeneous
clutter and low SCR environments. From the results, the proposed simpler D2CNN with
less computation is more efficient in learning the power spectrum amplitude data and
therefore has a better detection performance.
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Figure 9. PD versus SCR curves of the proposed ETE-MTI and the CNN-MTI method [31] .

5. Conclusions

This paper proposes an end-to-end moving target indication method for airborne
radar based on deep learning. First, we constructed the training dataset including non-
ideal factors in non-homogeneous clutter environments. In the dataset, the low-resolution
clutter-plus-target spectrum was considered as the D2CNN’s input, which was estimated
by a few samples to solve the problem of insufficient samples. Then, the high-resolution
target spectrum is taken as the D2CNN’s label. Secondly, the proposed five-layer D2CNN
is established to extract the input’s feature. Finally, once the clutter and target distribution
characteristics are learned, the D2CNN can predict the target space–time information from
the output’s high-resolution spectrum, realizing the end-to-end moving target indication.
The D2CNN with five layers is in consideration of the high-resolution requirements, which
can improve the target detection. Furthermore, unlike other traditional STAP technologies,
the proposed method mainly uses the D2CNN’s mapping characteristics to complete
clutter filtering to realize the target indication directly. The results demonstrate that the
proposed ETE-MTI with a few samples has a much lower computational load and a higher
detection accuracy in non-homogeneous and low-SCR environments than the existing
CNN-MTI [31] method.

The limitation of the proposed method is that it has studied the target indication
performance in the non-homogeneous environments for the time being. Target indication
in the heterogeneous environments is the next research goal. In our future research, the
more realistic physical effects, such as heterogeneous clutter environments, should also be
considered to validate the robustness of our method.
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