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End-to-end optimization of coherent optical
communications over the split-step Fourier method
guided by the nonlinear Fourier transform theory

Simone Gaiarin, Francesco Da Ros, Rasmus T. Jones, and Darko Zibar

Abstract—Optimizing modulation and detection strategies for
a given channel is critical to maximizing the throughput of a com-
munication system. Such an optimization can be easily carried
out analytically for channels that admit closed-form analytical
models. However, this task becomes extremely challenging for
nonlinear dispersive channels such as the optical fiber. End-to-
end optimization through autoencoders (AEs) can be applied
to define symbol-to-waveform (modulation) and waveform-to-
symbol (detection) mappings, but so far it has been mainly shown
for systems relying on approximate channel models. Here, for
the first time, we propose an AE scheme applied to the full
optical channel described by the nonlinear Schrödinger equation
(NLSE). Transmitter and receiver are jointly optimized through
the split-step Fourier method (SSFM) which accurately models
an optical fiber. In this first numerical analysis, the detection is
performed by a neural network (NN), whereas the symbol-to-
waveform mapping is aided by the nonlinear Fourier transform
(NFT) theory in order to simplify and guide the optimization on
the modulation side. This proof-of-concept AE scheme is thus
benchmarked against a manually-optimized NFT-based system
and a three-fold increase in achievable distance (from 2000 to
6640 km) is demonstrated.

Index Terms—auto-encoder, modulation, detection, nonlinear
frequency division multiplexing, nonlinear Fourier transform

I. INTRODUCTION

OPTICAL communication systems are striving to maxi-
mize the achievable information rate distance product. In

order to achieve this goal, optimizing the signal constellation
(e.g. constellation shaping [1]–[4]) may not be sufficient
and modulation and detection strategies need to be jointly
improved. Whereas for simple transmission channels, such as
additive white Gaussian noise (AWGN) channels, it is pos-
sible to analytically derive optimal modulation and detection
strategies, such an optimization is particularly challenging for
the nonlinear optical channel. As a closed-form expression to
describe the signal propagation through an optical fiber is not
available, current research relies on approximate analytical or
numerical models achieving only a limited degree of accuracy
[5]. Even following this direction though, no definitive answer
to optimal modulation and detection strategies is known. In
order to address these challenges, full end-to-end learning
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through autoencoders (AEs), which does not require closed-
form channel models, has been proposed [6]. The first proposal
analyzing an AWGN channel [6] was followed by a number
of works focusing on the optical fiber channel, e.g. [4],
[7]–[10], however, all relying on approximate channel models.
A general AE model of a coherent communication system
(complex signal transmission) targets using the full nonlinear
dispersive channel model and replacing the transmitter and
the receiver with neural networks (NNs). After the training
phase, this model can provide two key functions: the optimal
encoding of symbols onto time-domain waveforms resilient to
the optical channel impairments; the decoding of the received
waveforms to recover the transmitted symbols. An ideal AE
should therefore both be trained on an accurate channel model,
as well as provide symbol-to-waveform and waveform-to-
symbol transformation.

In this work, we extend our initial proposal of [11], dis-
cussing the first numerical analysis of an AE scheme for
coherent communication making use of the split-step Fourier
method (SSFM) to accurately model the optical fiber channel.
However, in order to restrict the space of all possible modu-
lation strategies, in this work, we demonstrate our proposed
method by guiding the optimization through the mathematical
theory of the nonlinear Fourier transform (NFT) [12], [13].
Our proposed AE scheme jointly optimizes an NFT-aided
transmitter with an NN-based receiver over the channel mod-
eled by solving the nonlinear Schrödinger equation (NLSE)
through the SSFM. This choice results in pulse-shapes (soli-
tons) which do not suffer from significant pulse broadening
over propagation, therefore enabling a small (low-complexity)
and memoryless (1-symbol in input) NN to be used at the
receiver. Due to the system similarity with nonlinear frequency
division multiplexing (NFDM) systems, the proposed scheme
is benchmarked against standard NFDM transmission (NFT
transmitter and receiver). This proof-of-concept demonstration
shows more than three times extension in transmission reach
compared to a manually-optimized NFDM system. The 2000
km achieved by standard NFDM transmission are extended to
more than 6000 km through the end-to-end optimization.

The remaining of the paper is organized as follows. In Sec-
tion II the concept of AE is reviewed, discussing its application
to communication systems and positioning this work within
the state-of-the-art on this topic. In Section III the numerical
setup is presented, including a brief review of the fundamentals
of NFT. The specific system model and its implementation are
also described in detail. In Section IV the training procedure
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Fig. 1. Ideal autoencoder model for an optical communication system.

used is detailed and key practical trade-offs are identified.
The key transmitter and receiver parameters that have been
optimized are introduced, and the different optimization cases
are presented. In Section V the main results of this work are
reported, starting with the results of the optimization and the
training performance and following with the performance of
the system during the testing phase. The different optimized
transmission schemes are compared against each other and
benchmarked against a conventional NFDM system. Finally,
the conclusions are summarized in Section VI.

II. END-TO-END COMMUNICATION SYSTEMS

A communication system is composed of three main blocks:
a transmitter, a channel, and a receiver. The goal of the
system is to faithfully reproduce the information entered at
its input to its output, i.e. to estimate the transmitted symbol
sequence with the lowest error probability. The structure of
the communication system resembles that of an AE [6], as
shown in Fig. 1. In its general definition, an AE consists of
two key transformations: an encoder function that maps the
input data to a code, i.e. an encoded version of the data, and
a decoder function that tries to reconstruct the original data
from the code [14]. According to the specific problem and
context, different AE architectures can be chosen to generate
codes optimized according to different metrics, e.g. lower
dimensionality compared to the input data, or robustness to
noise and distortion sources. For the case of a communication
system, the transmitter, i.e. the encoder, maps the information
(symbols) to a time-domain waveform, i.e. the code, that
is transmitted over the channel. The channel is the source
of noise and distortion. The receiver, i.e. the decoder, is
responsible to recover the original data symbols from the
corrupted version of the code, which is the waveform after
the transmission. The goal for training the transmitter and the
receiver of this communication system is to minimize the error
probability of the transmitted symbols, and it is achieved by
generating transmitter waveforms that are resilient to the noise
and distortions introduced by the channel.

The ideal AE for optical coherent communication systems
needs to consider the full nonlinear dispersive channel model
and can be constructed by replacing the transmitter and
the receiver with NNs. Indeed a sufficiently large NN can
theoretically approximate any function, including the one that

generates this optimal set of waveforms [15]. Nonetheless, to
achieve this final goal the correct optimization strategy and NN
architecture must be devised, and this is challenging to do in
practice, especially for non-trivial channels such as the optical
fiber. Therefore, the preliminary demonstrations reported for
optical communications have considered a simplified version
of the overall structure of Fig. 1. All the works reported
consider approximate channel models such as a simplified
memoryless nonlinear channel model [7], a dispersive linear
fiber channel model [9], [10], and perturbative models of the
nonlinear fiber channels [4], [8]. End-to-end learning for the
full nonlinear dispersive fiber channel, i.e. not relying on
perturbative/approximate models, has yet to be reported. In
order to approach the desired system shown in Fig. 1, in this
work, the AE considers the SSFM to numerically implement
the physical channel. The encoder and decoder are therefore
trained over a highly accurate representation of the channel,
moving one step closer to the final goal of Fig. 1.

Concerning the encoder, however, of the available literature,
only the work from [9], [10] discussed full encoding, i.e. from
symbols to waveforms, whereas the other reports focused on
mapping from bit/symbol to complex constellations, and as-
sumed conventional pulse shaping. A fully blind AE consisting
of two NNs incurs in the challenge of a vast and complex
optimization landscape. In [9], [10], the optimization was
aided by considering intensity-only modulation and, therefore,
halving the dimensionality of the problem. Here, in order to
avoid this challenge worsened by the even more complex
optimization landscape introduced by the accurate channel
model, the receiver/decoder is replaced by an NN whereas the
transmitter/encoder is implemented as a conventional NFDM
transmitter with trainable parameters. The NFT theory helps in
guiding the optimization of the encoder by liming the solutions
space of the time-domain waveforms generated by the trans-
mitter. In particular, the NFDM transmitter is constrained to
solitonic pulse-shapes, which are exact analytical solutions of
the NLSE in absence of loss, and have been shown to provide
appropriate pulse shapes also for practical transmissions with
losses [16], [17]. Moreover, given that solitons do not disperse
with the transmission distance (the pulse broadening can be
kept minimal also in the presence of losses [12]), they are
not subject to strong inter-symbol interference (ISI) and can
be detected with a low-complexity memoryless receiver as the
NN considered in this work.

III. NUMERICAL SETUP

The complete simulation setup used for both the end-
to-end optimization of the communication system and the
performance evaluation is depicted in Fig. 2 and its parameters
are summarized in TABLE I. The same figure also shows
the standard NFDM receiver that has been used to compute
a benchmark test performance. The setup was implemented
in Tensorflow to perform the optimization of the parameters
(training phase, Section IV) while the performances of the
system using the optimal parameters have been estimated
using our existing MATLAB implementation of the setup
(test phase, Section V). In the following sub-sections, after
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Fig. 2. Setup of the optical communication system used for both the end-to-end optimization of the system parameters and the BER performance evaluation.

a brief introduction to the NFT theory, transmitter, channel,
and receivers (both NN-based and conventional for NFDM)
of Fig. 2 are described in detail.

A. Nonlinear Fourier transform

The complex field envelope E = E(τ, `) of a single
polarization signal propagating in a standard single-mode fiber
(SSMF) with losses evolves according to the NLSE

∂E

∂`
= −α

2
E − j β2

2

∂2E

∂τ2
+ jγ|E|2E. (1)

where τ is the retarded time, ` the distance, α the attenuation
coefficient, β2 the group velocity dispersion (GVD), and γ the
Kerr nonlinear coefficient of the fiber. The direct and inverse
NFT transforms are defined for a lossless and noiseless NLSE
[13]. To abstract from the specific channel parameters this
NLSE is usually presented in its normalized form that for the
anomalous dispersion regime (β2 < 0) becomes

j
∂q

∂z
=
∂2q

∂t2
+ 2|q|2q (2)

where t is the normalized retarded time, and z the normalized
distance. This equation is derived from (1) ignoring the loss
term and through the change of variables

q(t) =
E(τ)√
P
, t =

τ

T0
, z = − `

L
, (3)

with P = |β2|/(γT 2
0 ), L = 2T 2

0 /|β2|, and T0 a free
normalization parameter.

The direct NFT maps a time-domain waveform to a so-
called nonlinear spectrum. When the time-domain waveforms
are solitons, the nonlinear spectrum is said to be discrete and
it is composed of a set of complex eigenvalues (nonlinear
frequencies) λi with associated complex scattering coefficients
a(λi), b(λi) with a(λi) = 0 [17].

The nonlinear spectrum can be modulated and used to carry
information. A discrete NFDM communication system works
as follows: the data is encoded onto the discrete nonlinear
spectrum that is then mapped to a solitonic time-waveform
through an inverse nonlinear Fourier transform (INFT) opera-
tion. The waveform is transmitted through the nonlinear fiber
channel. At the receiver, the waveform is mapped back to a
nonlinear spectrum (direct NFT) to retrieve the encoded data.

Specific details of the NFDM communication system are given
in the following sections.

B. Transmitter

The transmitter is a standard single-polarization NFDM
transmitter with the same structure as the one reported in [18]
and experimentally validated in [19].

In details, a sequence of uniform random symbols
x ∈ X = {i | i = 1, . . . ,M}, with M = 16 the size of the
chosen symbol alphabet, is generated. Each symbol is mapped
onto a discrete nonlinear spectrum consisting of two discrete
eigenvalues λi and their associated complex scattering coef-
ficients b(λi), i = 1, 2, which are independently modulated
using 4-phase-shift keying (PSK) as illustrated in Fig. 2. The
set of values {λi, b(λi)}, i = 1, 2 constitutes an NFDM
symbol that carries a total of four information bits, similar
to two parallel 4-PSK channels, at the symbol rate of 1 GBd.
Note that the cardinality of the alphabet, as well as the number
of eigenvalues, have not been optimized. The values have
been chosen mainly to simplify the comparison with existing
literature on NFDM systems [17]–[22]. The choice of b-
modulation stems from its better noise resilience, as discussed
in [23].

An INFT implemented with a Darboux transform (DT) [24]
maps each NFDM symbol into a time-domain waveform q(t)
with 96 samples-per-symbol and solitonic pulse shape.

TABLE I
SIMULATION PARAMETERS

Parameter name Parameter Value
Transmitter # Polarizations 1

Symbol rate 1 GBd
Oversampling 96
NFT free normalization factor T0 47 ps
Lossless path-averaged γ̄ γ̄LPA 0.34

Channel Span length Ls 80 km
Dispersion parameter D 17.5 ps / (nm km)
Nonlinear coefficient γ 1.25 (W km)−1

Attenuation α 0.195 dB/km
EDFA noise figure 5 dB

Receiver NN # nodes in input layer 192
Activation functions SeLu
# hidden layers 2
# nodes per hidden layer 32
# nodes in output layer 16
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In order to obtain an optical field, E(τ), matched to the
NLSE in (1), the waveform q(t) needs to be de-normalized
(Denorm. block in Fig. 2) using (3) with the parameters
reported in TABLE I. This last operation ensures that the
optical field, which carries the information, is matched to
a lossless optical channel. Given that the fiber loss is not
accounted for by the NFT theory, which relies on upon (2),
the obtained waveform is not perfectly matched to the actual
channel constituted of lossy single-mode fiber (SMF) spans
interleaved by erbium-doped fiber amplifiers (EDFAs). It is
possible to obtain a better match by performing the de-
normalization in (3) replacing the fiber nonlinear coefficient γ
with a different value γ̄. In a standard NFDM communication
system this value is usually set to the one provided by the
lossless path-averaged (LPA) approximation [12], which for
the channel considered in this work is γ̄LPA = 0.34.

After de-normalization, the field E(τ) is used to ideally
modulate a laser, thus disregarding transmitter impairments
such as laser phase noise and distortions introduced by the
Mach-Zehnder modulator (MZM). The obtained signal is
loaded with AWGN noise to limit its optical signal-to-noise
ratio (OSNR) to 30 dB and finally transmitted over the
channel.

C. Channel
The channel is composed of Ns spans of Ls = 80-km

long SSMF interleaved by EDFAs (5-dB noise figure) used
to compensate for the fiber loss. The full set of channel
parameters are reported in TABLE I.

The signal propagation is numerically simulated using the
well-know SSFM [25]. Being the SSFM a composition of
basic differentiable mathematical operations, it is possible to
numerically compute the gradient propagation from the output
of the channel to its input, thus enabling an optimization of the
performance of the communication system in terms of BER
across the channel. The SSFM in this work is implemented
in Tensorflow, and thanks to the automatic differentiation
capability of the Tensorflow framework [26], the gradient
is automatically computed. One limitation of a Tensorflow
implementation of the channel is that it is not possible to
use the variations of the SSFM using an adaptive step size.
Indeed Tensorflow requires that the computational graph that
implements the channel must be created before the com-
putation happens. However, using a predetermined constant
step size within the SSFM yields very slow and unpractical
computations for the batch size and oversampling rate used
in this work, especially for long transmission distances. As
a trade-off between computing time, SSFM precision and
Tensorflow requirements, the SSFM is implemented with 80
fixed step sizes per span, that increase logarithmically along
the fiber length [27]. This choice of step sizes guarantees
that at each step of the propagation the signal undergoes a
maximum nonlinear phase rotation of 0.01 degrees when the
simulation is performed with the reference configuration (see
Section IV). Additionally, the simulation bandwidth of 96-
GHz IV is sufficient to ensure that the SSFM provides an
accurate solution to the NLSE describing the optical signal
propagation.

D. Nonlinear Fourier transform receiver

The NFT receiver is a simplified version of the one in [28].
In particular, a bandpass filter with a bandwidth of 20 GHz
has been used to filter the out-of-band noise prior to the
nonlinear spectrum computation with the NFT. The detected
discrete nonlinear spectrum was processed with a blind phase
search (BPS) carrier phase estimation algorithm to compensate
for the phase rotation introduced by the nonlinear domain
transfer function of the channel over the b(λi) [12], [28].
The compensated spectrum was finally equalized with a linear
minimum mean square error (LMMSE) equalizer [28] prior to
computing the BER.

E. Neural network receiver

The signal coming from the channel is sliced in non-
overlapping blocks y of 96 samples (each corresponding to
a single NFDM symbol) that are sequentially fed to the
receiver, which consists of a feed-forward NN for multi-class
classification with M = 16 output classes corresponding to all
the possible transmitted symbols. As the NN is implemented
as a real-valued network, the input layer consists of 192 nodes,
considering the real and the imaginary parts of each sample
as separate inputs. The NN takes as input the sequence y
and provides at the output node i the probability p(xi|y) of
having transmitted the symbol xi ∈ X given the received
vector y. The activation function of the hidden layers is a
scaled exponential linear unit (SELU) [29] while the output
layer uses a softmax activation function [14]. The NN weights
are initialized using the Glorot algorithm [30], and optimized
within the end-to-end training discussed in Section IV. The
receiver NN parameters are reported in TABLE I. An argmax
operation on the NN output probabilities is used to perform a
hard decision that provides the estimated transmitted symbol
x̂. The detected symbols are finally used to compute the
BER. Remark that the use of a memoryless (1-input symbols)
receiver is enabled by the choice of an NFT-aided transmitter,
which in turn results in transmitted waveforms (solitons) not
affected by significant pulse broadening.

IV. END-TO-END TRAINING

The goal of training the AE is to maximize the probability
that the output symbol x̂ of the communication system is
equal to the input symbol x [6], [31]. The training consists of
iteratively varying a set of trainable parameters and evaluating
the performance of the system in terms of cross-entropy loss
[14]. The details on the trainable parameters and the training
process are given in the next two sections and the whole
process is highlighted in Fig. 3. Note that, due to the data
processing inequality, the joint optimization of transmitter and
receiver through an AE approach, will theoretically yield equal
or better performance compared to independent optimization
of transmitter and receiver. The disadvantage of an indepen-
dent optimization of the different blocks of a communication
system is already introduced in [9].
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A. Trainable parameters

The parameters of the transmitter chosen for the optimiza-
tion are the imaginary part of the purely-imaginary eigen-
values λi, and the radius ri and phase φi of the two PSK
b(λi)-constellations:

Ci = ri exp
(
j
(
k
π

2
+ φi

))
, k = 0, 1, 2, 3; i = 1, 2. (4)

Unlike a classical coherent modulation where the impulse
response of a fixed pulse shaping filter is linearly modulated
by the amplitude and phase of the transmitted symbols, the
INFT nonlinearly maps the symbols-eigenvalue pairs to a time-
domain waveform that is theoretically optimal for transmission
over the nonlinear channel modeled by the lossless NLSE.
Therefore, by constraining the transmitter pulse shape through
the INFT, it is the nonlinear relation between symbols and
waveforms which is kept fixed. This is in contrast with
previous literature [4], [8] where the pulse shape is kept fixed
regardless of the symbols optimization. This choice, whereas
not reaching the target AE scheme of Fig. 1, moves one
step closer in that direction. The components of the nonlinear
spectrum affect the generated waveform q(t) pulse shape in
the following way [13]:

a) The imaginary part of the eigenvalues controls the energy
E of the waveform according to

E = 4

2∑
i=1

Im(λi), (5)

and, at the same time, the waveform duration. Indeed
the amplitude and duration of soliton pulses are inversely
related. The energy of the waveform is only dependent on
the λis and it is independent on the b(λi)-constellations.

b) The radii ri of the constellations control the temporal
position of the two components constituting the soliton
waveform and thus their temporal overlap/separation.

c) The difference ∆φ between the constellation phases φi
governs the shape, and thus the bandwidth, of the wave-
form. The absolute phase of each Ci is not particularly
relevant. A constant phase offset of both Cis maps to the
same phase offset in the time-domain waveform [32].

To study the individual effects of these transmitter pa-
rameters on the performance of the communication system,
four different training configurations are considered. In each
configuration, a subset of these parameters is trained, while the
remaining transmitter parameters are kept constant. For each of
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Fig. 3. Setup used for the training phase highlighting the transmitter and
receiver parameters jointly optimized by the AE.

TABLE II
TRANSMITTER TRAINABLE PARAMETERS (γ̄ OPTIMIZED IN
γ̄E2E -SCENARIO, γ̄ KEPT FIXED TO γ̄LPA OTHERWISE.)

Configuration λ1, λ2 φ1, φ2 r1, r2 θ

0 0.3j, 0.6j 0, 0.25π 1, 1 [γ̄,wNN ]
1 0.3j, 0.6j trained trained [Ci, γ̄,wNN ]
2 trained 0, 0.25π 1, 1 [λi, , γ̄wNN ]
3 trained trained trained [λi, Ci, γ̄,wNN ]

the configurations considered, the weights and biases (one bias
per layer) of the NN that constitutes the receiver, denoted with
wNN , are trained. For each configuration, the set of trained
parameters θ and the static values used for the parameters that
are not trained are reported in TABLE II. The static values are
the same as those used in [18]. In the configuration 0, none of
the transmitter parameters are optimized. This configuration is
used as a benchmark to compare the performance of the other
configurations. In configuration 1, only the constellations, i.e.
radii and phases, are trained, in configuration 2 only the
eigenvalues, and finally, in configuration 3 all parameters,
constellations, and eigenvalues are fully trainable.

The choice of guiding the encoder optimization through the
NFT allows to restrict the solution space that the AE has to
search, but it results in enforcing a strict constraint on the
waveform amplitude-duration relation [13]. For example, the
AE can decrease the imaginary part of the eigenvalues, thus
decreasing the amplitude and average power of the waveform
while extending its temporal duration. The temporal broad-
ening is however restricted by the NFDM symbol temporal
slot of 1 ns. By further decreasing the amplitude, and thus
further broadening the waveforms, it will spread beyond the
available symbol slot yielding a negative impact on the system
performance. This condition can be relaxed by making the
variable γ̄ a trainable parameter.

It should be noted that the parameter γ̄ affects only the
amplitude de-normalization parameter P , thus, given that the
symbol period is fixed at 1 ns, changing γ̄ is equivalent to
changing the launch power of the signal E(τ, `).

By training γ̄, any launch power can be set for a given
transmitted waveform shape. Whereas this slightly deviates
from the strict NFT theory, it gives the AE one additional
degree of freedom to improve the overall system performance.
It is therefore interesting to compare the two scenarios to
understand how strictly the NFT theory can be applied to a
lossy channel while aiming to improve transmission perfor-
mance. The four different configurations of TABLE II have
been optimized for both scenarios: γ̄ is set equal to the value
provided by the LPA approximation explained in Section III-B
(γ̄ = γ̄LPA) and γ̄ is optimized jointly with the other trainable
variables (γ̄ = γ̄E2E).

B. Training

The AE optimization procedure is reported in Algorithm 1.
The transmission distance was fixed at 69 × 80 km. This
distance has been chosen so that for all the configurations
the accuracy of the AE during the training is not too close to
saturation. This, in turn, results in BER values for the testing



SUBMITTED TO IEEE JOURNAL OF LIGHTWAVE TECHNOLOGY 6

0.3

0.6

Im
(

)

-1.5

0

1.5

Im
(b

(
))

0.3

0.6

Im
(

)

-1.5

0

1.5

Im
(b

(
))

0.3

0.6

Im
(

)

-1.5

0

1.5

Im
(b

(
))

0.3

0.6

Im
(

)

-1.5 0 1.5

Re(b(
1
))

-1.5

0

1.5

Im
(b

(
))

-1.5 0 1.5

Re(b(
2
))

i

ii

iii

iv

(a) Power factor unoptimized (γ̄ = γ̂LPA)

-1.5 0 1.5

Re(b(
1
))

-1.5

0

1.5

Im
(b

(
))

-1.5 0 1.5

Re(b(
2
))

-0.1 0 0.1

Re( )

0.3

0.6

Im
(

)

-1.5

0

1.5

Im
(b

(
))

0.3

0.6

Im
(

)

-1.5

0

1.5

Im
(b

(
))

0.3

0.6

Im
(

)

-1.5

0

1.5

Im
(b

(
))

0.3

0.6

Im
(

)

i

ii

iii

iv

(b) Power factor optimized (γ̄ = γ̂E2E )

|s
(

)|

0

0.1

0.2

|s
(

)|

0

0.1

0.2

0

0.1

0.2

|s
(

)|

LPA E2E

i

ii

iii

iv

0 1 2 3

Time (ns)

0

0.1

0.2

|s
(

)|

(c) Transmitted waveforms

Fig. 4. Trained transmitter parameters - Eigenvalues and constellations for the four configurations (i) to (iv) and scenario γ̄ = γ̂LPA (a) and γ̄ = γ̂E2E

(b). Transmitted waveforms for γ̄ = γ̂LPA (solid) and γ̄ = γ̂E2E (dashed) for the four configurations (i) to (iv).

Algorithm 1 End-to-end training procedure

Inputs: Trainable parameters θ(0)

Outputs: Optimized trainable parameters θ(Niter)

1: Initialize trainable parameters
2: [Ci, λi] i = 1, 2← configuration 0 in TABLE II
3: γ̄ ← γ
4: wNN ← Glorot uniform initialization
5: Initialize feature vector θ(0) as in Table II
6: for n← 1, . . . , Niter do
7: Generate B random symbols {x}B
8: Map {x}B to {b(λi)}B using C(n)

i , i = 1, 2
9: Generate B waveforms E(τ) = INFT(λi, b(λi))

10: Construct channel input s(τ) by serializing {E(τ)}B
11: Propagate s(τ) in the channel using SSFM to get r(τ)
12: Slice r(τ) into B waveforms {y}B
13: Detect {y}B using rx NN with wNN

14: Rx NN outputs B symbols {x̂}B
15: Compute cross-entropy L(θ) = xentr({x}B , {x̂}B)
16: Backpropagate to compute gradient ∇θL̃(θ(n))
17: Compute θ(n+1) ← θ(n) − η Nadam(∇θL̃(θ(n)))
18: Update trainable parameters from θ(n+1)

19: end for

phase which are neither too low (and thus challenging to count
accurately), nor too high, overall allowing for a non-trivial
comparison of the performance of the different configurations.

The AE is trained using the Adam optimizer with Nes-
terov gradient [33]. The optimization is run for a total of
Niter = 6400 iterations, a fixed value that was observed to
ensure the convergence of all the 2 × four training configura-
tions considered.

In each iteration, a batch of B = 64 symbols x ∈ X is
generated. This batch size is the maximum size for which
the entire AE network (including the SSFM) fits into the

available memory of our graphics processing unit (GPU) using
the memory saving gradient technique [34], [35]. During the
forward propagation of one training iteration, the results of
each operation throughout the whole communication model
- including the results of each step of the SSFM - need to
be saved, to be used later during the backpropagation that
computes the gradient of the loss function. This implies large
memory requirements that limit the training batch size, which,
in turn, causes a noisy estimation of the gradient at each
training iteration. Being able to increase the batch size by
increasing the available computing memory, may lead to im-
proved performance or shorter training time [6]. A systematic
complexity analysis of the proposed approach is beyond the
scope of this work. Nevertheless, the current implementation is
particularly time-consuming within the training phase whereas
compares favorably against our implementation of the NFT
receiver in the testing phase.

The learning rate was tuned according to a step decay
schedule that sets it to η = 0.01 in the first 1600 iterations,
η = 0.003 for the following 2400 iterations, and η = 0.001 for
the remaining 2400 iterations. This scheduling allowed a quick
convergence in the initial part of the training and a fine-tuning
of the performance on the final part.

The architecture and hyper-parameters of the receiver NN
have been kept fixed to provide a fair comparison among
the different transmitter configurations. The chosen NN ar-
chitecture yielded a sufficiently small network size while still
guaranteeing good detection performances. A fine optimization
of the receiver hyper-parameters for the optimal transmitter
configuration would potentially improve the communication
system performance, but doing it is beyond the scope of this
work.

As the EDFAs noise in the channel is randomly generated
at each training iteration, no identical batch is seen more
than once by the AE during the training, even though the
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transmitted symbols may be the same due to the finite batch
size (online learning). This prevents overfitting problems that
may instead arise when using a training dataset of fixed and
limited size that is reused multiple times during the training
process (batch learning). This choice allows for avoiding a
separate cross-validation loss analysis to monitor eventual
overfitting.

V. SIMULATION RESULTS

In this section, the results of the AE training and testing
are discussed. In Sections V-A and V-B, the trained transmitter
parameters and the training performance are reported, whereas
Sections V-C and V-D show the performance under testing for
an NFT- and NN-based receiver, respectively.

A. AE-trained transmitter parameters

The values of the transmitter trainable parameters found by
the end-to-end optimization of the communication system are
reported in TABLE III for γ̄ = γ̄LPA, and in TABLE IV
for γ̄ = γ̄E2E . The tables also report the average power
of the transmitted waveforms generated using those parame-
ters. These optimized transmitter parameters (eigenvalues and
b(λi)-constellations) and the resulting time-domain waveforms
are shown in Fig. 4 for (a) γ̄ = γ̄LPA and (b) γ̄ = γ̄E2E .

Starting from the (γ̄ = γ̄LPA) scenario, a qualitative
analysis of the optimized constellations (Fig. 4a) indicates
that the AE optimizes the eigenvalues (configurations 2 and 3)
by decreasing their imaginary part. As the transmitted power
in this scenario is only determined by the imaginary part of
the eigenvalues, decreasing the eigenvalues is equivalent to
reducing the average power of the waveforms and extending
their temporal duration. Observing the corresponding wave-
forms (dashed curves in Fig. 4c-(iii, iv)), the imaginary parts
of the eigenvalues are decreased up to the point where the
waveforms would not fit any more within the symbol slot of
1 ns. For the case where only the b(λi)-constellations can
be optimized (configuration 1), the constellations found have
a relative phase difference of 0.25π. More importantly, the
radius of the first constellation (r1) is decreased during the
optimization whereas the radius of the second constellation is
increased (r2). These radius values cause the time waveform
to have the first (second) solitonic component respectively
delayed (anticipated) with respect to the center of the time
window, as can be seen in Fig. 4c-(iii). Interestingly, the AE
optimization (both in terms of phase difference and radii)
converges to a set of constellations very similar to that reported
in [17] where the constellations were manually optimized
to maximize performance by minimizing the peak-to-average
power ratio (PAPR) of the generated waveforms, and further
investigated in [19]. Note that the transmission system in [17],
[19] was equivalent, i.e. 80-km spans with lumped EDFA
amplification. In the following, this system will therefore be
considered as the reference NFDM system for benchmarking
Finally, in configuration 3 the radii of the constellations are
tuned by the AE similarly to the previous case, but given
that now the imaginary part of the eigenvalues is reduced,
enlarging the temporal duration of the soliton, the value of

TABLE III
OPTIMIZED PARAMETERS (γ̄ = γ̄LPA).

THE HIGHLIGHTED VALUES ARE THE RESULTS OF THE TRAINING.

Configuration λ1, λ2 ∆φ r1, r2 γ̄LPA Power
(dBm)

0 0.3j, 0.6j 0.25π 1, 1 0.34 7.03
1 0.3j, 0.6j 0.25π 0.08, 2.03 0.34 7.03
2 0.33j, 0.37j 0.25π 1, 1 0.34 5.97
3 0.18j, 0.43j 0.32π 0.35, 1.10 0.34 5.34

TABLE IV
OPTIMIZED PARAMETERS (γ̄ = γ̄E2E )

THE HIGHLIGHTED VALUES ARE THE RESULTS OF THE TRAINING.

Configuration λ1, λ2 ∆φ r1, r2 γ̄E2E Power
(dBm)

0 0.3j, 0.6j 0.25π 1, 1 1.09 1.96
1 0.3j, 0.6j 0.29π 0.90, 0.99 0.97 2.46
2 0.42j, 0.66j 0.25π 1, 1 2.41 -0.67
3 0.44j, 0.64j 0.26π 0.93, 1.07 2.04 0.04

the radii of the constellations are closer to 1 compared to the
configuration 1. A deviation from unitary radii would quite
rapidly result in waveforms extending beyond the allowed
symbol slot.

When the constraint of the amplitude-duration of the soliton
is removed (γ̄ = γ̄E2E), the strategy of the AE to reduce the
average power of the generated waveforms is even more evi-
dent. As shown by comparing TABLE IV to TABLE III, γ̄ is
optimized in order to significantly reduce the power launched
into the channel. As the power can be reduced through γ̄, for
this scenario, the eigenvalues are not varied as heavily as for
the previous scenario, and their imaginary part is rather slightly
increased instead. Additionally, the radii of the constellations
are less affected and they keep values close to unity even for
configurations 1 and 3, leading to a lower separation in time
between the two solitonic components. Finally, the relative
phase rotations, instead, converge to similar values as for the
scenario of γ̄ = γ̄LPA as can be inferred by comparing the
values reported in TABLE IV with those in TABLE III.

B. Autoencoder training performance

Looking at the cross-entropy loss curves as a function of
the end-to-end training iteration in Fig. 5, it is possible to
observe that in the scenario when γ̄ is not trained ( γ̄LPA,
Fig. 5a), the loss curve does not converge to values as low as
those for the scenario when γ̄ is optimized (scenario γ̄E2E ,
Fig. 5b). Moreover, in the first scenario the loss curves do
not decrease monotonically nor as quickly and smoothly as
in the second scenario. In order to reduce the instability in
the convergence, the learning rate of the AE was optimized.
Nevertheless, the curves are still unstable and the performance
reported in Fig. 5a shows the lowest losses achieved. The
unstable behavior and the poorer performance obtained suggest
that the loss function for the γ̄ = γ̄LPA scenario is not smooth
and contains multiple local minima that slow down and hinder
the overall optimization.

Focusing on configuration 1 for both scenarios though, the
optimization brings improvement in terms of loss compared
to the reference case (configuration 0), but not as great as
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Fig. 5. Training performance Cross-entropy loss (training loss) during the training process for the four configurations within the two scenarios.

optimizing the imaginary part of the eigenvalues (configuration
2). By optimizing both degrees of freedom (configuration
3) it is possible to further reduce the cross-entropy loss but
only minimally compared to configuration 2, i.e. eigenvalue-
only optimization. This shows that the optimization of the
eigenvalues is critical for the performance of the system. These
general trends during the training phase are well aligned with
the results achieved during the testing phase and shown in
Section V-D.

C. Nonlinear Fourier transform receiver BER performance

Although the transmitter parameters are optimized for an
NN receiver, and thus are not necessarily optimal for an NFT
receiver, the performance of a conventional NFDM system
(NFT transmitter + NFT receiver) is presented here. The
counted BERs as a function of the transmission distance for
the four configurations are shown in Fig. 6. Only the scenario
where γ̄ = γ̄LPA has been considered, as once the power of
the waveform is not matched to the channel according to the
NFT theory, a conventional NFDM receiver fails to correctly
demodulate the received signal. The BER of the NFT receiver
has been computed using 5× 105 symbols.

For configuration 0 (unoptimized transmitter), the BER de-
grades rapidly and reaches values above the hard-decision for-
ward error correction (HD-FEC) threshold (BER = 3.8×10−3)
already after a 3×80 km transmission. This is consistent with
the results from [18], and it is due to the presence of fiber loss
and long fiber spans. As the power varies significantly over
the fiber length, the channel strongly deviates from the lossless
fiber channel over which the NFT is defined, even considering
the LPA approximation. When only the eigenvalues are opti-
mized (configuration 2) the receiver cannot decode the data
for any of the transmission distances. This is expected as the
two eigenvalues are almost overlapped making it extremely
challenging for the receiver to discriminate between them.
When the b(λi)-constellations are optimized (configurations
1 and 3) the BER performance improves drastically compared
to the previous configurations, and it is possible to reach a
transmission distance of 24 × 80 km spans and 25 × 80 km,
respectively, still considering an HD-FEC BER target.

In the future, to fully test the limits of the NFT system, the
end-to-end training can be performed using the NFT receiver.
This, however, requires to implement the NFT transform in
Tensorflow using only non-adaptive algorithms. This limitation
poses a challenge because it excludes the possibility to use
some commonly used algorithms for locating the eigenvalues
such as the search methods [36].

0 5 10 15 20 25 30 35
Distance (# spans)

10
-4

10-3

10
-2

10-1

B
E

R HD-FEC

Config. 0 (no opt)
Config. 1 (C)
Config. 2 ( )
Config. 3 ( , C)

Fig. 6. Test performance NFT receiver - BER as a function of the transmission
distance using the AE-optimized transmitter with γ̄ = γ̄LPA and the NFT
receiver.

D. Neural network receiver BER performance

The performances of the communication system, which was
trained at a distance of 69×80 km, have been evaluated over a
range of transmission distances from 49×80 km to 89×80 km
in order to verify the robustness of the optimized transmitter
to a transmission distance mismatch. The transmitter of the
system uses the parameters optimized by the AE (eigenvalues,
b(λi)-constellations, and γ̄). The receiver NN used for the
performance evaluation has the same topology as the one de-
scribed in Section III-E but it was re-trained independently for
each of the transmission distances considered. The re-training
was performed using a training dataset of 500× 103 symbols,
a batch size of 1000 symbols, and 1000 training iterations.
The re-training is necessary for the different transmission
lengths, as the different amounts of accumulated dispersion
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Fig. 7. Test performance NN receiver - BER as a function of the transmission distance. The vertical dashed line marks the optimization distance.

and nonlinear phase shift lead to significant variations in the
time-domain waveforms seen by the receiver. The re- training
was also performed for 69× 80 km. As already shown in [9],
re-training the receiver NN once the transmitter parameters
have been optimized by the AE improves the performance. An
intuitive explanation is that during the training of the AE, both
the transmitter and the receiver NN parameters are changed at
each training iteration so that the final NN is effectively trained
for the specific transmitter parameters only for a single batch.
The small batch size may not allow converging to the optimal
set of weights. The re-training is particularly useful in this
work given the very limited size of the batch used during the
training of the AE. Larger batch sizes may provide improved
performance potentially removing the need for re-training at
69 × 80 km [6]. Note that, alternatively to re-training for
each transmission distance, the receiver NN could be trained
with a dataset containing samples from several transmission
distances. As shown in [9], this may lead to stronger robustness
to variation in the target link length, but overall sub-optimal
performance compared to selectively training for each distance
independently. After re-training, the BER has been computed
using a testing dataset of 5× 105 symbols.

Fig. 7 shows the BER performance as a function of
the transmission distance for (a) the transmitter power un-
optimized scenario (γ̄ = γ̄LPA) and (b) the power-optimized
scenario (γ̄ = γ̄E2E).

In Fig. 7 (a) (γ̄ = γ̄LPA), the worst performance is
shown by configuration 0, i.e. when none of the transmitter
parameters are optimized. The BER is close to 0.5 at the
trained distance and drops only slightly for shorter transmis-
sion distances. When the b(λi)-constellations are optimized
(configuration 1), the performance is improved compared to
configuration 0, but the BER is still above 1 × 10−2 over
the full range of distances considered. Separating the solitonic
components in time provides only a slight improvement.
When the AE optimizes the imaginary part of the eigenvalues
(configuration 2), the BER at optimization distance is further
reduced by almost one order of magnitude. Finally when
both the eigenvalues and the b(λi)-constellations are optimized
(configuration 3) the BER is similar to that configuration 2

for all the distances considered, consistently with the training
performance. The optimization of the imaginary part of the
eigenvalue, which controls the transmitted power, plays a key
role in the system performance. The fact that a reduction of
the signal power reduces the BER hints that the system per-
formance at the optimization distance might be more limited
by nonlinear effects and not by the OSNR so that reducing
the transmitted power improves the performance.

In Fig. 7 (b) the curves for the second scenario (γ̄ = γ̄E2E)
are shown. At the optimization distance, all configurations
show an improved BER, with values of 1.72× 10−2, 5.63×
10−3, 2.14×10−4 and 3.56×10−4 for configurations 0 to 3,
respectively. The relative performance between the four con-
figurations follows the discussion reported for the γ̄ = γ̄LPA
scenario, but the additional degree of freedom provides a
significant improvement for all the configurations. This proves
that the average launch power (through the parameter γ̄) is a
critical optimization parameter. The BER obtained in the best
case (configuration 2, γ̄ = γ̄E2E) is three orders of magnitudes
lower than the reference case (configuration 0, γ̄ = γ̄LPA)
where none of the transmitter parameters are optimized. This
best configuration among those considered allows reaching a
transmission distance more than three times what is achievable
with a manually-optimized NFT receiver (approx. 83 spans vs.
the 25 spans of Fig. 6).

We can observe in Fig. 7 (b) that the configuration 3
performs slightly worse than the configuration 2, despite
having more optimization degrees of freedom. This is likely
due to the presence of local optima in the cost function from
where the optimization procedure was not able to escape. This
result further justifies our choice of guiding the encoder rather
than performing a fully blind optimization. The re-training of
the receiver can only partially improve on the negative impact
of local optima as the transmitter parameters are not improved
and they have a clear impact on the overall performance. In
the future, strategies to move towards this latter goal without
suffering from local optima in the optimization landscape need
to be devised [37]. Overall, the comparison between configura-
tion 1 and configuration 2, under both optimization conditions
(γ̄ = γ̄LPA and γ̄ = γ̄E2E), hints that the optimization of
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the eigenvalues is more critical than the optimization of the
spectral amplitudes.

For all the eight different configurations tested we can
observe that the performance gain is preserved across all the
transmission distances between 49 and 89 × 80 km, even
though the optimization was performed at 69 spans, showing
the robustness of the transmitter parameters optimization to
the transmission distance.

VI. CONCLUSION

In this work, we proposed for the first time an AE scheme
for coherent fiber-optic communications considering the ac-
curate model of a nonlinear dispersive fiber channel. The
system uses an NFDM transmitter that performs the symbol-
to-waveform encoding and an NN-based receiver that performs
the waveform-to-symbol decoding. The chosen transmitter
constraints the solutions space of the generated time-domain
waveforms to solitonic pulse-shapes, facilitating the optimiza-
tion of the AE. Moreover the minimal dispersion of the soli-
tons, even in the presence of losses, allows using a memory-
less receiver implemented with a low-complexity NN. The full
optical nonlinear channel model has been implemented using
the SSFM. Given that this method is a composition of basic
differentiable operations, it was possible to use the automatic
differentiation capabilities of the Tensorflow library to perform
the training of the AE across this channel model.

The AE has been trained using 2 × four different configu-
rations of the transmitter trainable parameters (eigenvalues,
b(λi)-constellations, and γ̄). The numerical results of the
performance testing of the system demonstrated that the best
configuration of these parameters allows a reduction of three
orders of magnitude in BER at the optimization distance com-
pared to the un-optimized transmitter configuration. In partic-
ular, it was shown that the system performance is particularly
sensitive to the imaginary part of the eigenvalues. Moreover,
it was shown that the best results are obtained when the AE is
also free to optimize the waveform launch power through the
optimization of γ̄. Compared to a manually-optimized NFDM
communication system used as a benchmark, the proposed
proof-of-concept system allows extending the transmission
reach from 2000 to 6640 km at the HD-FEC threshold.

We believe that this work moves the research on the end-to-
end optimization of communication systems a step closer to
the final goal of realizing a general AE communication scheme
employing NNs for both the transmitter and the receiver and
defined over a nonlinear dispersive fiber-optic channel.
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