
 Bunyakitanon, M., Vasilakos, X., Nejabati, R., & Simeonidou, D.
(2020). End-to-End Performance-Based Autonomous VNF Placement
With Adopted Reinforcement Learning. IEEE Transactions on
Cognitive Communications and Networking, 6(2), 534-547.
https://doi.org/10.1109/TCCN.2020.2988486

Publisher's PDF, also known as Version of record
License (if available):
CC BY
Link to published version (if available):
10.1109/TCCN.2020.2988486

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Institute of
Electrical and Electronics Engineers at https://ieeexplore.ieee.org/document/9070195/keywords#keywords .
Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1109/TCCN.2020.2988486
https://doi.org/10.1109/TCCN.2020.2988486
https://research-information.bris.ac.uk/en/publications/3d025298-bb07-46c3-a8a1-b3e49c54eac6
https://research-information.bris.ac.uk/en/publications/3d025298-bb07-46c3-a8a1-b3e49c54eac6

534 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 2, JUNE 2020

End-to-End Performance-Based Autonomous VNF

Placement With Adopted Reinforcement Learning
Monchai Bunyakitanon , Xenofon Vasilakos , Reza Nejabati , Senior Member, IEEE,

and Dimitra Simeonidou , Fellow, IEEE

Abstract—The autonomous placement of Virtual Network
Functions (VNFs) is a key aspect of Zero-touch network
and Service Management (ZSM) in Fifth Generation (5G)
networking. Therefore, current orchestration frameworks need
to be enhanced, accordingly. To address this need, this work
presents an Adapted REinforcement Learning VNF Performance
Prediction module for Autonomous VNF Placement, namely
AREL3P. Our solution design bears a dual novelty. First, it lever-
ages end-to-end service-level performance predictions for placing
VNFs. Second, whereas the majority of other Machine Learning
efforts in the literature use Supervised Learning (SL) tech-
niques, AREL3P is based on a particular form of Reinforcement
Learning adapted to predictions. This makes placement decisions
more resilient to dynamic conditions, as well as portable to other
network nodes, and able to generalize in heterogeneous network
environments. Backed by a meticulous performance evaluation
over a real 5G end-to-end testbed, we verify the above prop-
erties after integrating AREL3P to Open Source Management
and Orchestration (OSM MANO) decisions. Among other high-
lights, we show increased VNF performance predictions accuracy
by 40–45%, and an overall improved VNF placement efficiency
against other SL benchmarks reflected by near-optimal decision
scores in 23 out of a total of 27 investigated scenarios.

Index Terms—Machine learning, network function virtualiza-
tion, end-to-end communication, zero-touch management, cloud
and edge computing.

I. INTRODUCTION

C
ONTEMPORARY networks are becoming increasingly

programmable based on two key concepts: (i) Software-

Defined Networking (SDN) and (ii) Network Function

Virtualization (NFV). SDN facilitates network management

and network configuration by enabling networks to be directly

programmable, whereas NFV decouples Network Functions

(NFs) from special-purpose dedicated hardware by virtualiz-

ing them into software building blocks. Building on top of

SDN and NFV, fifth generation networks (5G) and, in par-

ticular, their network and service management, are envisioned

to be fully autonomous based on the Zero-touch network and

Manuscript received August 30, 2019; revised December 11, 2019 and April
5, 2020; accepted April 8, 2020. Date of publication April 17, 2020; date
of current version June 9, 2020. This work is funded by the EPSRC Grant
EP/L020009/1: TOwards Ultimate Convergence of All Networks (TOUCAN).
The associate editor coordinating the review of this article and approving it for
publication was C. X. Wang. (Corresponding author: Monchai Bunyakitanon.)

The authors are with the Smart Internet Lab, University of Bristol,
Bristol BS8 1UB, U.K. (e-mail: m.bunyakitanon@bristol.ac.uk;
xenofon.vasilakos@bristol.ac.uk; reza.nejabati@bristol.ac.uk;
dimitra.simeonidou@bristol.ac.uk).

Digital Object Identifier 10.1109/TCCN.2020.2988486

Service Management (ZSM) concept, as the next-generation

management and operation model defined by ETSI [1]. At the

same time, recent advances in Machine Learning (ML) have

enhanced the performance of corresponding ML techniques as

well as their applicability in real-life problems, thus enabling

intelligent and autonomously operated systems such as in the

case of autonomous vehicles.

As we approach closer to the 5G era, the combination of

network programmability and enhanced ML models opens a

promising and wide spectrum of ML in Networking (MLN)

applications against emerging issues like ZSM and more tra-

ditional –yet challenging– ones such as traffic prediction,

dynamic traffic steering, and dynamic resource manage-

ment after Quality-of-Service (QoS) or Quality-of-Experience

(QoE) requirements.

Currently proposed MLN applications face two big con-

cerns, namely, (i) the lack of model adaptability and the

related (ii) (in)feasibility to apply in practice due to the high

costs implied for training and maintain the models. To under-

stand these concerns, we need to focus on two aspects. First

off, large 5G networks such as the 5GinFIRE1 and 5GCity2

testbeds are usually custom-made in order to achieve enhanced

performance levels. Due to being custom-made and config-

ured, the corresponding Supervised Learning (SL) models can

not generalize sufficiently and their performance is signifi-

cantly degraded when applied to other networks or even to

other parts of the same network.3 Second, the inborn dynam-

icity and natural evolution of all networks (particularly, 5G)

forces SL models to become quickly outdated even for the

networks that they were trained for. Due to this lack of adapt-

ability in both points above, many models need to be not only

specially trained, but also specially maintained, in some cases

even per deployed model instance3. This implies a very high

cost, challenging the feasibility of applying such solutions in

practice.

The above concerns raise the following important ques-

tion: “How can we train MLN models that can be (i)

adoptable (i.e., able to generalize and to tolerate network

dynamics), (ii) feasible (i.e., cost-efficient w.r.t. training and

1https://5ginfire.eu
2https://www.5gcity.eu
3For instance, our comparative evaluation study in the context of our Smart

City Safety (SCS) use case shows that SL-based benchmark models fail com-
pletely to adopt to other VNF hosting nodes of the same network. This means
that they need to be not only trained per node, but also maintained per node
to capture local network conditions and dynamics.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-4137-0457
https://orcid.org/0000-0001-8361-3803
https://orcid.org/0000-0003-4664-9369
https://orcid.org/0000-0002-7046-544X

BUNYAKITANON et al.: END-TO-END PERFORMANCE-BASED AUTONOMOUS VNF PLACEMENT WITH ADOPTED REINFORCEMENT LEARNING 535

maintaining the models), and (iii) sufficiently accurate for the

purposes of ZSM in 5G?” Motivated by this question, the

current work proposes an Adapted REinforcement Learning

VNF Performance Prediction module for Autonomous VNF

Placement (AREL3P). The purpose of this module is to

enhance network orchestrator systems based on online learn-

ing. As we discuss in Section II, both the problem of

autonomous Virtual Network Function (VNF) placement

and the adopted approach of Q-learning are contemporary,

interesting and challenging. Most existing approaches are SL-

based and focus mainly on local system-level monitoring

information and performance predictions. Unlike that, ours

sees the “greater view” by providing accurate end-to-end

(e2e) service-level performance predictions to orchestrators

like the Open Source MANagement and Orchestration frame-

work (OSM MANO)4 or Openstack.5 To the best of our

knowledge, well-established orchestrators possess solid VNF

placement mechanisms, yet most of them without any native

support for ML modules including Reinforcement Learning

(RL). AREL3P covers this gap by serving as an extension

module to orchestrators, being embedded with its own e2e

service-level monitoring and corresponding intelligent VNF

performance prediction mechanism at candidate VNF hosting

nodes.

A. Contribution

The main contributions of this article can be summarized as:

1) A novel, adoptable, feasible and accurate RL-based

approach to VNF placement: Despite the increasing

interest of the networking community on ML, only a

few efforts focus on RL for autonomous VNF placement,

such as in [2], [3], [4], [5], (see discussion in Section V).

Most solutions use SL for resource allocation such in

[6], [7]. As verified by our evaluation results, this leads

to costly models that can not generalize without signif-

icant performance degradation, nor can keep up-to-date

with network dynamics. To cover this gap, we adopted a

Q-learning scheme in our novel AREL3P solution. This

particular type of RL exhibits good resilience to network

dynamics over a realistic testbed environment and use

case setup. Moreover, our real-testbed evaluation results

show that AREL3P can also generalize well, hence it

can address adaptability concerns. Last, our approach

is feasible in practice due to achieving a good trade-

off between the predictions accuracy and the costs for

model training and maintenance.

2) A novel approach to autonomous VNF placement based

on e2e service-level predictions: Most works in the lit-

erature, including ML-based ones, narrow their focus

on low/system-level monitoring and predictions, thus

missing a holistic, e2e, service-level point of view. To

cover this gap, our approach monitors and forecasts e2e

service-level performance across system layers spanning

from the network layer up until the application layer.

4https://osm.etsi.org/
5https://www.openstack.org/

3) Real testbed and use case-based evaluation & vali-

dation: Unlike most past studies on VNF placement

that use simulation environments, we present real-life

experimental results with all performance evaluation

and validation experiments conducted over 5GinFIRE

testbed at the University of Bristol (UNIVBRIS) [8].

We use the OSM MANO and take a use case-driven

approach by adopting the dynamic environment scenario

defined in the SCS [9] use case, which involves an

e2e application running VNF video transcoding. Note

though, that the applicability of our solution extends to

all e2e services beyond this use case and scenario, and

to other orchestrators apart from OSM MANO.

4) Meticulous performance evaluation study including SL-

based models, and compliance to ZSM: We engage

into different scenarios and show that the integration

of AREL3P to OSM MANO improves the efficiency of

its VNF placement decisions while complying to the

ZSM concept in terms of self-healing. Besides our own

model, we trained and deployed five well-known SL-

based models, which we studied both separately as well

as in a head-to-head comparison against AREL3P. Our

findings denote both a better ability to generalize and

a higher resilience of AREL3P under dynamic network

conditions where nodes can be added or depart at any

time (a.k.a. high node churn).

Regarding static network circumstances, the custom-

trained SL-based benchmark models exhibited a higher

predictions accuracy compared to AREL3P. This is

largely due to the non-realistic assumption of candi-

date hosting nodes (physical or Virtual Machines (VMs))

and resource demand levels remaining static over time.

Even more importantly, the higher accuracy achieved by

the SL models did not translate to more efficient VNF

placement decisions by OSM MANO compared to using

AREL3P. In further, AREL3P exceeds the performance

of both (i) a traditional and (ii) a random VNF place-

ment method used also as benchmarks, due to combining

resource availability and a good accuracy level of VNF

performance predictions.

B. Outline

The remainder of this paper is organized as follows.

Section II discusses the background and motivation. Section III

describes the system model. Section IV provides a meticulous

discussion of our system evaluation and validation. Section V

is dedicated to the state of the art. Finally, we conclude this

paper and refer to our future work goals in Section VI.

II. BACKGROUND AND MOTIVATION

VNFs are in essence VMs that work as NFs. Their place-

ment is on its own one of the most challenging problems

that emerged with modern programmable networks, hence the

significant amount of work in the literature (see Section V).

Although the efficiency of VNF placement depends on pro-

cessing power and network performance, most existing place-

ment algorithms merely consider resource availability for

536 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 2, JUNE 2020

selecting a VNF host. In practice though, this approach does

not provide any performance guarantee for the VNFs for a

number of reasons including the dynamic nature of network

demand. Another aspect which hinders ZSM, regards the

engagement of human decisions in the loop. Despite their

powerful VNF placement systems, today’s well-established

orchestrators still call for human interaction.

This reality calls for exploring VNF placement from a

different perspective: an (i) autonomous and intelligent one

that (ii) learns in operation in order to adapt to network

dynamics and (iii) leverages accurate service-level end-to-end

performance predictions. This combination of intelligence and

resilience to dynamics results in autonomous VNF placement

in accordance to ZSM, thus increasing the level of interest and

motivation for exploring the potential of an appropriate ML

technique.

Networks are typically composed of a variety of servers,

client nodes, switches and routers. Some of them are static,

whereas a continuously increasing number of them in 5G are

virtual and/or mobile. Particularly the latter two types of nodes

can be added, depart or fail at any time (a.k.a. “node churn”).

Not only that, but also each node possesses different hardware

and software capabilities. Therefore, VNF placement is diffi-

cult to address and beyond just considering the capabilities of

VNF hosting nodes. Moreover, predicting VNF performance

using the same ML model for all nodes is inaccurate. Most

network nodes need a ML model trained (tailored) for them to

achieve a high level of prediction accuracy. Nevertheless, this

is not cost-inefficient because data need to be sufficiently large

and comprehensive to allow the algorithm to learn individually

for every candidate hosting node. The problem is even harder

for dynamic nodes whose status change with time due to churn

or other changes happening to their connected devices. This

so-called “Concept Drift” affects the prediction model over

time in an unpredictable way [10].

A. Why Adopting Reinforcement Learning

Despite the increased interest of the research community on

applied ML for networking, only a limited amount of effort

such as in [2], [3] has been put on using RL for managing VNF

resources; and even in these works, without any consideration

to end-to-end service performance. This gap is largely due to

the fact that applying RL in networking constitutes a non-

trivial task. It carries diversity and the complexity of both the

concept of RL and the networking problems it tries to address.

The greatest challenges refer to the creation of the RL model

itself, on how to monitor the necessary input parameters, and

on how to feed these parameter values to the RL model.

Our approach adopts a particular form of RL, Q-learning.

Q-learning is an off-policy RL algorithm that seeks to learn a

placement policy that maximizes a target reward while min-

imizing the end-to-end service delay by being continuously

updated in operation. This makes AREL3P fundamentally dif-

ferent than most ML-based solutions in the literature, which

are SL-based, thus they are tightly coupled to their training

nodes. As a result, these models can not generalize to other

nodes, they raise both feasibility and adaptability concerns (as

discussed in the introduction), and in general show limited or

no resilience to new/dynamic network conditions.

Regarding the limited number of past work in the literature

that uses RL [2], [3], these works focus on classification or on

policy selection. Unlike that, our approach lies in the fact that

we employ Q-learning to solve a regression problem. What is

more, AREL3P can take advantage of end-to-end service-level

information and other metrics, which are generally neglected

by both ML and non-ML based frameworks when forecast-

ing VNF performance on the basis of its placement. As we

show in our realistic evaluation, this enhances the efficiency

of placement decisions made by the OSM MANO.

Finally, our approach can work as a cross-platform

prediction model for end-to-end VNF communication

performance, exactly because it uses end-to-end service-level

information, rather than system-level information. Note that

using service-level information helps further to generalize to

different hosts other than the ones the model was trained. All

above mark the use of Q-learning as both interesting and chal-

lenging, not only due to its advantages over both traditional

and SL-based models, but also due to applying Q-learning in

networking itself.

B. Q-Learning

RL is one of the main types of ML alongside SL and

Unsupervised Learning (UL) It uses online data to train a

model that learns (i) to achieve a certain goal based on the

cumulative positive outcome of a series of actions and (ii) to

avoid mistakes stemming from negative action results. This

capability allows trained RL models to be updated in opera-

tion, which can help to maintain accuracy levels despite the

changes that take place in the network environment, e.g., in a

network node.

Q-learning, in particular, is an off-policy RL algorithm that

seeks for the best next action given the current state. This

is done with the use of the Q-learning function, which is

designed to maximize a reward. More specifically, the applied

model explores an unknown environment by executing an

action and then learning from feedback regarding the state

change stored in a table, namely, the Q-table. Q-Table con-

tains the states after actions and the implied action rewards for

the action. Consequent actions are taken based on current state

and the current knowledge, while the environment is (usually)

modeled as Markov Decision Process (MDP) defined by the

following five tuples:

M = (S ,A,Pa ,Ra , γ), (1)

where:

• S is a finite set of states;

• A is a finite set of actions;

• Pa is the transition probability from state s at time t to

state s′ at time t + 1 after action a (see formula (2));

• Ra is the immediate reward after moving from state s to

s′ after action a (see formula (3));

• γ is a discount factor 0 ≤ γ ≤ 1 that describes the

importance of future rewards on the current decision.

Pa

(

s , s ′
)

= P
(

st+1 = s ′|st = s , at = a
)

(2)

BUNYAKITANON et al.: END-TO-END PERFORMANCE-BASED AUTONOMOUS VNF PLACEMENT WITH ADOPTED REINFORCEMENT LEARNING 537

Ra

(

s , s ′
)

= E
(

sr+1|st = s , at = a, st+1 = s ′
)

(3)

The optimal decision policy for the next steps, namely π(s),
used for the selection of action a at state s is calculated after

the expected return of the following value function:

Vπ(s) = maxπE

(

∞
∑

t=0

γ
tRt

(

s , s ′
)

)

(4)

In dynamic network environments, the entire domain is not

known and keeps changing over time. Therefore, the MDP

problem cannot be solved with dynamic programming meth-

ods. However, Q-learning is model-free RL and can be used

to identify the optimal policy at any time t because it does not

require the entire knowledge of the environment. A Q-learning

agent constantly takes an action a in a state s for each time

t, observes the rewards Ra and the state transitions s′ and,

finally, updates the Q value using the weighted average of the

old and the new Q values. Formula (5) below shows how Q

values get updated:

Qupt (st , at) ← (1− α) ·Q(st , at)

+ α ·
(

rt + γ ·max
a

Q(st+1, a)
)

, (5)

where:

• Q(st , at) is the old Q value and Qupt (st , at the updated

one,

• α is the learning rate ranged as 0 < α ≤ 1;

• rt is a reward received from action at ;

• γ is the discount factor defined above (see formula (1));

• max
a

Q(st+1, at+1) is an estimation of the optimal future

value, which means that rt + γ · max
a

Q(st+1, a) as a

whole denotes the learned value.

Last, we note that if γ < 1, then the action values are finite

even for problems that contain infinite loops.

We return and discuss how we adopt Q-learning in

our solution in Section III-B including action selection

strategies.

C. The Smart City Safety Use Case

As stated earlier, we take a use case-driven approach to

study and exhibit the performance merits of AREL3P. Smart

City Safety (SCS) [9] is defined in the context of the EU

research project 5GinFIRE, which enhances public safety by

providing mobility and flexibility to surveillance systems. It

uses VNF and ML to enable the dynamic allocation of pro-

cessing units for live stream 360o video. SCS is latency

sensitive and requires optimal VNF placement to ensure

QoS.

Our corresponding system is composed of three node types,

namely: a Source Node (SN), i.e., a 360 degrees camera and

a Raspberry Pi (Raspi); a Processing Node (PN), i.e., a VNF

video transcoder running at a server in the cloud/edge; and an

End-user Node (EN), i.e., a generic computer such as laptop

or tablet. All components are connected to an access point

wirelessly. The workflow starts from the camera recording the

video and streaming it to the Raspi. The Raspi converts the

proprietary format video to standard format video allowing

Fig. 1. Smart City Safety architecture and Workflow.

Fig. 2. Generic workflow of End-to-End services.

the video to be processed afterward and transmits it to the

VNF. Then, the VNF splits this video into frames, executes

face detection and face recognition, assembles these frames

into a video. Finally, the processed video is transmitted and

displayed at the EN.

III. SYSTEM MODEL

Figure 2 portrays a generic end-to-end workflow, which

we adopt here for our SCS use case described earlier. As

shown in the figure, a camera SN sends raw video data to

some PN which in turn processes the data and transmits the

output to a service end-user device such as laptop, namely,

the EN.

In essence, the PN is the middle point that holds suf-

ficient processing capabilities compared to the SN and the

EN. Therefore, it is selected to place a VNF for perform-

ing, e.g., transcoding or image processing based on some

policy.

We return and explain Q-learning in further in the context

of our proposed adopted RL scheme in Section III-B.

Given this context, VNF performance is defined after the

total response time of the end-to-end service Ttot. This

embodies the overall time needed to complete every task in

the end-to-end workflow of Figure 2 from the moment that

SN starts to transmit raw data up until the EN has received

the result of the VNF processing, i.e.,

Ttot = Trcv + Tp + Treq (6)

where Trcv is the time spent during data generation

(phase m1); Tp is the time spent during data processing

538 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 2, JUNE 2020

Fig. 3. High-level architecture of AREL3P.

(phase m2); and Treq is the time spent for receiving the

processed results from the VNF (phase m3).

A. Architecture Overview

Figure 3 presents an overview of the AREL3P architec-

ture, which comprises of three layers, namely: (i) Devices,

(ii) Network Function Virtualization Infrastructure (NFVI) and

(iii) OSM MANO. The devices layer lies at the low level

of this architecture where end-point devices are located. The

NFVI holds the role of the middle layer between Devices and

OSM MANO where the cloud/edge components are installed.

OSM MANO lies at the top layer as the high-level orches-

tration framework. Devices and NFVI are connected through

the provider network. From a user’s perspective, this is the

main network that provides connectivity to every compo-

nent of the whole end-to-end service, including devices and

cloud/edge resources. In contrast, OSM MANO plays a differ-

ent, crucial role from an administrator’s side by interlinking

the NFVI and OSM MANO layers, thus allowing management

and orchestration of NFVI resources through the Virtualized

Infrastructure Manager (VIM) or the OSM MANO.

In further, AREL3P applies four different agents in order

to improve VNF placement at the OSM MANO: an appli-

cation monitoring agent (m), a node monitoring agent (M),

a prediction agent (P) and a placement agent (Pl). In more

detail, agent (m) is collocated with the VNF to keep track of

all information regarding application performance by gather-

ing the performance values from the SNs, the PNs where the

VNF and m itself actually reside, and the ENs. Agent (M), on

the other hand, periodically monitors the resource utilization

of a compute node and saves it for further use (see Table I).

Agent m feeds this information to agent P, based on which P

predicts the VNF performance and sends it to OSM MANO.

Finally, the placement agent (Pl) puts the VNF to the best

location.

In this work, we adapt the generic workflow of Figure 2

to the SCS use case that involves an end-to-end application

running VNF video transcoding. Accordingly, we (re)define

the following times per service phase:

TABLE I
NOTATIONS. INCLUDES MONITORED PARAMETERS

• Ttrans : This is the time that is used to transform the

video of the camera from proprietary format to a standard

format.

• Trcv : This is the time that a frame is transmitted from

a Raspberry Pi (Raspi) node to the VNF located in the

cloud/edge.

• Tp : This is the time that it takes for face recognition VNF

to detect and recognize faces in a frame.

• Treq : This is the time need to live stream the video or

the response to the User Equipment (UE) after the face

processing at the VNF has ended.

The performance metrics of SCS indicate the efficiency of

the system to deliver the service through above processes.

Therefore, generic metrics described above have been deter-

mined to facilitate the calculations and the Ttot is computed

by formula (7).

Ttot = Ttrans + Trcv + Tp + Treq. (7)

B. Adapted Q-Learning

AREL3P is based on adaptive Q-learning to predict T
tot

for assessing the expected VNF performance of an end-to-end

service. The T
tot

reflects the efficiency of the transmission

between nodes and the processing power of the VNF. The

data time series

D = {d1, d2, . . . , dn} (8)

used for training AREL3P come from monitoring the service

during execution time by agent m, where each monitoring sam-

ple di refers to the executed total response recorded at time i.

Therefore, and according to the definition provided in (6), each

di is a tuple of the three time samples: {(T i
rcv ,T

i
p ,T

i
req))}.

As we discussed in Section II-B, Q-learning has three key

elements reflected in the Q value update formula (5), namely:

State, Action and Reward.

1) State: The State space (S) comprises all the possible

performance prediction states of Ttot . The current state of

performance s ∈ S provides the basis of information (real

current value of Ttot) for each possible next performance state.

The possible next states s′ for predicting of the prediction are:

• Less than: is a state where the Predicted Value (PV) is

less than the Real Value (RV).

• Equal: is a state where the PV is equal to the RV.

• More than: is a state where the PV is more than the RV.

2) Action: The actions set A(s) in AREL3P contains actions

a with the increment or the decrement of the prediction of

BUNYAKITANON et al.: END-TO-END PERFORMANCE-BASED AUTONOMOUS VNF PLACEMENT WITH ADOPTED REINFORCEMENT LEARNING 539

Ttot by a step of 0.01. According to the SCS use case, the

minimum-maximum value we can predict for Ttot is 0-2 s.6

3) Reward: Rewards Ra(s , s
′) are immediately obtained

after executing an action that changes the state from s to

s′, reflecting the quality of the prediction in the new state.

AREL3P gives immediate rewards in the range of [0, 1]. For

that, we define an acceptable error margin, hence AREL3P

adapts the epsilon intensive band (ǫ). This ǫ serves as a toler-

ance margin7 constructed by boundary lines at distance ǫ from

a hyperplane that separates rewards in two regions. First, a

region of values in (0, 1], which is given when the prediction

error falls within a distance ǫ from the RV. Note that the max-

imum reward, i.e., 1, value is given when the PV is equal to

the RV. Second, a zero reward “region” for all the remaining

prediction states. What follows is that the less the predicted

error is, the closer the reward approaches to 1. Having that

said, we define the reward function as shown in formula (9).

4) Action Selection, Q-Table Update and State Transition:

There are two strategies for the selection of actions, namely,

exploration and exploitation. Exploration is the strategy used

to collect more information of the environment, while exploita-

tion is applied to make the best decision based on the available

information. Exploration usually selects an action in random,

whereas the exploitation applies a greedy policy towards an

optimal choice. Even though the random policy is evidently

suboptimal, still it enables to update the learning experience

and adjust the Q-value to any changes in the environment.

In order to achieve a desired trade-off between the two

strategies, we implement an ǫ-greedy policy and take each

consequent action based on formula (10). The formula implies

the generation of a pseudo-random number 0 ≤ n ≤ 1 that

is compared to the ǫ-greedy value. The latter is originally set

to 0.5 and it gets decreased with a decay factor of 0.9 for

each consequent action. This way, AREL3P starts with apply-

ing either of the two strategies with an equal probability, but

then gradually increases (resp., decreases) the chances of tak-

ing experienced-based (resp., random-based) actions due to the

ǫ-greedy policy.

The reward function (9) is used to yield an immediate

reward and the Q-table gets updated according to formula (5).

Finally, the state st changes to a new state st+1 with the new

coming data dn+1.

Ra

(

s , s ′
)

=

{

1− |PV−RV
0.1·RV |, if |PV − RV | ≤ 0.1 · RV ;

0, otherwise.

(9)

a =

{

rand A(s), if n < ǫ− greedy;
arg max

a
Q(st , a), otherwise. (10)

5) Prediction Algorithm: AREL3P’s prediction algorithm

(see Algorithm (1)) starts by creating a new Q-table and

an initial state. Then, it takes the input data D (see for-

mula (8)) along with the initial system parameters, and

6Note that this is four times higher than the average recorded T
tot

(0.5
second) in all of the scenarios we run in our testbed.

7The notion of ǫ is used in several SL regressors such as Support Vector
Regression (SVR) to predict continuous variables. The default value for these
regressors is equal to 10% [11].

Algorithm 1 Prediction Algorithm of AREL3P

1: if Initialization then

2: if not exist Q-table Q(s, a) then

3: Create Q-table Q(s, a)

4: Initialize state to s0
5: Initialize parameters ǫ, α, γ and decay

6: while True do

7: //Training or predicting process

8: if dt is not null or VNF request then

9: Take dt
10: //Choose an action using ǫ−greedy

11: if rand(0, 1) < ǫ−greedy then

12: at = rand A(s)
13: else

14: at = arg max
a

Q(st , a)

15: //Calculate the reward from the action applying

16: ǫ intensive band

17: if |PV − RV | ≤ 0.1 · RV then

18: Ra(s , s
′) = 1− |PV−RV

0.1·RV |
19: else

20: Ra(s , s
′) = 0

21: //Update Q-table

22: Q(st , at) = Q(st , at)+
23: α[rt+1 + γmax

a
Q(st+1, at+1)−Q(st , at)]

24: //Use the value of the selected action

25: Tpredicted = at

26: end while

performs predictions based on the ǫ-greedy policy. In order to

maintain the prediction accuracy in the dynamic environment,

Q-learning keeps updating its knowledge from the previous

experience in the changing states, actions and rewards.

IV. SYSTEM EVALUATION AND VALIDATION

A. Testbed Architecture

Our testbed, illustrated in Figure 4, is deployed at the

University of Bristol UK site of the 5GinFIRE8 infrastructure.

It is a multi-site 5G VNF ecosystem located at the UK, Spain,

Portugal, Poland and Greece. The NFVI is composed of one

controller/Compute Node (CN) and three CNs connected via

Ethernet, following the equipment specifications summarized

below:

• Sensor: 360◦camera model Ricoh Theta V.

• Source Node: Raspi model 3B running Raspbian Jessi.

• Compute/Controller Node 1: CORSAIR ONE PRO,

INTEL I7-7700K, 8-core processor, 16 GB RAM, 800 GB

HD, running Ubuntu 16.04, KVM, Openstack Queen

(Controller and Compute), OSM MANO release 4.

• CN 2: Same as Node 1, except from: 80 GB HD,

Openstack Queen (Compute).

• CN 3 & CN 4: IBM x3455, AMD Opteron, 4-core pro-

cessor, 8 GB RAM, 70 GB HD, running Ubuntu 16.04,

KVM, Openstack Queen (Compute).

8https://5ginfire.eu/university-of-bristol-5g-testbed/

540 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 2, JUNE 2020

TABLE II
OPENSTACK NOVA [12]: DEFAULT FILTER SCHEDULER

TABLE III
DATASET FOR BENCHMARK SCHEMES

Fig. 4. Testbed of the experiment.

• End-user Node: Laptop model Acer Aspire VX15, run-

ning Ubuntu 16.04.

• VNF video transcoder: Virtual Display Unit (VDU) of a

2-core processor, 3 GB RAM, 4 GB HD, running Ubuntu

16.04.

B. Models for VNF Placement

Regarding our scheme, OSM MANO uses selects the host

with the minimum predicted Ttot value by AREL3P. In addi-

tion, AREL3P applies a “no overload” mechanism that prevent

a CN from overloading after placing the VNF. Using for-

mula (11) below, it calculates the future load of the candidate

CN after placing the VNF and rejects the node in case that its

future load is above a threshold:

Loadpredict =
(LoadVNF + Loadnode)

Corenum
× 100, (11)

where Loadpredict is the predicted load percentage of a node

after placing the VNF, LoadVNF is the current load of the

VNF, Loadnode is the current load of the node, and Corenum
is the number of the CPU cores of the node.

In what follows, we explain in detail the benchmark models

we used for our evaluation purposes.

1) Non ML-Based Benchmarks: We use two different

non ML-based benchmark orchestration schemes, namely (i)

“Traditional” and (ii) “Random”, against OSM MANO pow-

ered by AREL3P. While Random simply selects one of the

three CNs at random, Traditional is more complex by adapt-

ing the existing VNF placement approach of the NOVA filter

scheduler [12]. The filter scheduler uses two strategies: “fil-

tering” and “weighting”, respectively. Filters are essentially

sets of rules, as briefly described in Table II, which define the

resources and capabilities of a CN for hosting a VNF. The

weighting strategy, on the other hand, applies weight to all

filters to define their degree of influence to the final placement

decision.

2) ML-Based Benchmark Models: We developed and

trained five SL model algorithms. The purpose of these

models is dual: first, to study their ability to generalize,

as discussed in Section II. The five SL model algorithms

are: Decision Tree (DT) [13], Random Forest (RF) [14],

Linear Regression (LR) [15], SVR [16], K-Nearest Neighbors

Regression (KNNR) [17].

To predict Ttot, the SL models take eight input param-

eters (namely, IDs 1-8 in Table III) and predict the time

spent in each process separately. Predictions are computed

using the general equations for SL algorithms shown in

formulas (12) to (15):

Ttrans = f

{

(Lo,Mm)Rp, (Bw ,Nt ,Lt ,Ls, Jt)Rp−PN,LoPN

}

(12)

Trcv = f

{

(Lo,Mm,Vcpu)PN, (Bw ,Nt ,Lt ,Ls, Jt)Rp−PN

}

(13)

Tp = f
{

(Lo,Mm,Vcpu)PN, (Bw ,Nt ,Lt ,Ls, Jt)EN−PN

}

(14)

Treq = f
{

(Lo,Mm)EN, (Bw ,Nt ,Lt ,Ls, Jt)EN−PN,LoPN

}

(15)

where: f {x1, . . . , xn} is the function of corresponding SL

model with the input parameters x1 to xn .

Then, the best SL model for VNF placement is used as

benchmarks against AREL3P

BUNYAKITANON et al.: END-TO-END PERFORMANCE-BASED AUTONOMOUS VNF PLACEMENT WITH ADOPTED REINFORCEMENT LEARNING 541

3) Training and Testing Setup: For the sake of a proper

validation of our solution, we evaluate and compare AREL3P

against the five SL benchmarks introduced in Section IV-B2

based on (i) the accuracy of Ttot predictions and (ii) the

respective efficiency of OSM MANO placement decisions

under dynamic network conditions in two corresponding sce-

narios listed below. Note, that we adapt a high node churn

scenario where nodes can arbitrarily join and depart at any

time. This means that newly-joined CNs are deployed with

(i) an RL model that is not yet trained or (ii) an SL model

trained for another previously existing CN.

a) Scenario 1 (accuracy): The objective of this scenario

is to evaluate the accuracy of predictions for Ttot by AREL3P

against those by the SL models running at the nodes they

were trained for as well as the newly-joined nodes that they

were not trained for. We use the same dataset for training both

AREL3P and the five benchmarks, which comprises of over

300K instances collected from low, medium and high Key

Performance Indicators (KPIs) (load, latency, packet loss and

bandwidth) at all servers. Regarding the SL banchmarks, in

particular, we use grid search for selecting the set of optimal

hyperparameters.

We deploy different AREL3P instances in each node irre-

spective of their specifications presented in Section IV-A. The

model goes through an exhaustive training phase that involves

a 100 iterations with the initial Q-learning parameters set to:

< ǫ = 0.1;α = 0.1; γ = 0.9; ǫ−greedy = 0.5; decay = 0.9 >.

Note that we repeat the training and evaluation of our model

x30 in order to increase confidence to our recorded results.

Finally, to train, test and validate the benchmark models we

use 10-fold cross-validation.

b) Scenario 2 (VNF placement efficiency): This scenario

is designed to assess the quality of VNF placements after

Ttot predictions, thus providing a more holistic approach to

validating AREL3P than simply focusing on the (raw) accu-

racy of Ttot predictions. We set CN 4 as “overloaded” and

have it to trigger a VNF request message upon its CPU load

reaching to 80% of its maximum capacity. We choose this

threshold value after [18], which shows that response times

of running processes start to increase exponentially when the

load exceeds 70% and become critical when the load reaches

to 80%. The rest of the CNs are considered as candidates

for placing the VNFs irrespective of their different specifica-

tions and current statuses. Furthermore, we engage into 27

different scenario repeats (see Table IV) with varying load

profiles in candidate nodes. We define as “Low” load that

status of using 0-30% of the node’s maximum CPU capac-

ity, a “Medium” load for using 30-70% and a “High” load

for exceeding 70% of the node’s capacity. To demonstrate

the adaptability of AREL3P, each instance in each scenario

updates its model from the first test by using 10%9 of total

samples (30000:300000). Then the VNF placement test is per-

formed using these different approaches: a Traditional and a

Random one, as well as AREL3P in the dynamic environment.

9SQL Server updates a large database using sample sizes between 10-
30% [19]. As fast deployment is preferable in a dynamic network, we select
the minimum possible value (10%) for model training, which accounts for 8
hours extracted out of our data collection.

TABLE IV
TESTING SCENARIOS

Finally, the results from all approaches are compared with one

another and Benchmark.10

C. Evaluation Results

The evaluation results refer to accuracy scores with val-

ues denoting the average score out of all iterations. These

scores show the percentage of the prediction data that match

the real data. Regarding the adaptability and native run sce-

nario of Section IV-C1, in particular, the results are compared

with R-squared (R2) scores. R2 is a statistical tool that mea-

sures “Goodness-of-Fit”, the efficiency of the prediction of a

regression model to the real data points. The R2 formula is

defined as:

1−
SSreg

SStot
, (16)

where SSreg is the regression sum of squares and SStot is

the total sum of squares. R2 values range between 0 and 1,

with 1 denoting the best score. It can become negative if the

regression model does not fit the data at all. Note that we

convert R2 scores to percent to simplify the analysis.

1) Scenario 1 (Accuracy): The SL models were trained and

evaluated based on real 60-hour data collected from our testbed

over a period of one week and in two scenarios; namely,

“Native run” and “Adaptability”. Note that the data came from

a variety of processing and network statuses, as shown in

Table III. For the case of the “Native run” scenario, all the

models were deployed to the nodes that they where trained

for, while for the “Adaptability” scenario the trained models

were deployed to nodes with different specifications.

Figure 5 portrays our relevant evaluation results, show-

ing that SL models can be highly accurate for “Native run”.

10The optimal placement results from Supervised Learning model in static
environment.

542 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 2, JUNE 2020

Fig. 5. Accuracy scores for Ttot and its details components Ttrans, Trcv , Tp, Treq for AREL3P and all SL models in both the “Native run” and
“Adaptability” scenarios.

But on the very contrary, the same models exhibit a com-

plete lack of adaptability. This is a major drawback caused

by the fact that the SL models are tailored to specific nodes

with given specifications (e.g., CPU capacity, demand pat-

tern or network delay). The overall resilience superiority of

AREL3P is verified by the accuracy score for Ttot during the

“Adaptability” scenario, which is approximately equal to 45%

contrary to the zero accuracy of the SL models. AREL3P can

dynamically adopt to network conditions irrespective of node

specifications due to the continuous online training nature of

RL even after deployment. This is not the case for the offline

trained SL models, which remain static after deployment and

lack resilience to “dataset shifting” [20]. For completeness,

the graph also shows the accuracy scores of AREL3P in the

“Adaptability” scenario per individual components of Ttot ,

namely: 78% regarding Ttrans; 75% regarding Trcv; 82%

regarding Tp; and 58% regarding Treq. As it can be easily

observed, the corresponding “Native run” accuracy scores for

AREL3P Ttot and its components exhibit little differences

compared to their “Adaptability” scenario counterparts. This

reveals a solid performance behaviour.

In further, the graphs of Figure 6 portray the prediction

accuracy scores achieved by AREL3P for each task during an

exhaustive test of over 100 iterations. Notice that all minimum

values that we refer to next, correspond to accuracy scores per

task after iteration 1 (resp., maximum after approximately 30

iterations). Specifically, Graph 6(a) shows that the minimum

prediction accuracy score for Ttrans is 10% (resp., maximum is

approximately 85%). Regarding Trcv in Graph 6(b), the mini-

mum value is 7% (resp., maximum is 82%). Graph 6(c) denotes

that the minimum prediction accuracy for Tp is 10% (resp.,

maximum is 90%). Last, the minimum prediction accuracy for

Treq in Graph 6(d) is 7% (resp., maximum is 65%).

Commenting more on these results, we see that AREL3P’s

accuracy performance under dynamic conditions is quite sim-

ilar in all graphs during iterations 1 to 20, where we observe

a large increase in accuracy scores for all tasks. During

iterations 20 to 30, AREL3P’s accuracy performance continues

to increase in all graphs, albeit at a slower rate, and remains

at a maximum score between approximately iterations 30-40

(30-33 only for Treq in Graph 6(d)). This means that the model

stabilizes during these iterations due to the suitable ǫ-greedy

values. Finally, for the rest of the iterations after iteration 40,

we observe a high performance fluctuation and gradual decline

in all graphs, as well as an increase of confidence intervals.

This implies that AREL3P’s accuracy declines after approx-

imately iterations 30 to 40. We elaborate on the underlying

reasons for that decline when analyzing the results of Figure 7

next.

The results of Graph 7(a) demonstrate the prediction accu-

racy of our model for Ttot after each iteration. The highest

accuracy score achieved by AREL3P is approximately 43%

after iteration 29. Note that this score is less compared to

the scores in the graphs of Figure 6, which is due to the

fact that Ttot corresponds to predictions made for all end-

to-end devices of our setup in the context of the SCS use

case by using formula (7) to estimate the corresponding Ttot

predictions. These added number of predictions causes to

accumulate prediction errors for Ttot .

Commenting more on the exhibited performance pattern,

we observe a significant accuracy decrease after iteration

29. This pattern can be better understood by the illustrated

exploration-exploitation Graph 7(b). The Y-axis values corre-

spond to the gradually changing probability ratio ((see details

in Section III-B4)) between using exploration or exploitation

(ǫ−greedy with decay factor) in our underlying Q-learning

model. Notice that the optimal scores concentrate around iter-

ations 15-30. During a first phase (iterations 1 to 20) where

accuracy scores raise rapidly in Graph 7(a), the probability of

the exploration strategy drops from 45% to 8% (resp., it grows

from 55% to 92% for the exploitation strategy). Evidently,

a higher exploration probability has a negative impact on

AREL3P’s prediction accuracy, as this strategy picks actions

randomly. On the contrary, a higher exploitation probability

improves accuracy since predictions are made after the trained

Q-learning model.

Nevertheless, if exploitation probability reaches too high

(i.e., 96% - 100%), this does not improve the AREL3P

BUNYAKITANON et al.: END-TO-END PERFORMANCE-BASED AUTONOMOUS VNF PLACEMENT WITH ADOPTED REINFORCEMENT LEARNING 543

Fig. 6. Accuracy scores against testing iterations for (a) Ttrans, (b) Trcv , (c) Tp and (d) Treq.

Fig. 7. (a) Accuracy scores of Ttot and (b) Exploration-Exploitation ratio.

prediction accuracy as demonstrated in a second phase of iter-

ations (iterations 20 to 40). Having a correspondingly very low

exploration ratio (i.e., 4% - 0%, particularly during iterations

35 to 40), leads to AREL3P being unable to adopt sufficiently

to new samples, hence impacting our model’s adaptability and

resilience to changes in the network environment. The lat-

ter provides also an explanation on why the accuracy scores

remain steady at the beginning of phase two and then decrease

gradually up until the end of this phase.

Finally, our model uses only the exploitation strategy during

a third and last phase (iterations 40 to 100). Without explo-

ration, all accuracy score results inevitably drop and exhibit a

decreased confidence due to a high statistical deviation. This

proves that the AREL3P prediction model needs to be updated

at a certain level to maintain its good prediction accuracy.

In conclusion, the optimal results w.r.t. Ttot accuracy are

observed during iterations 25 to 33, corresponding to a proba-

bility of 94-96% for using the exploitation strategy (i.e., 6-4%

for using exploration, respectively).

As an overall conclusion out of all the result in “Scenario 1

(Accuracy)”, AREL3P predictions of Ttot are resilient to

dynamic environment conditions, hence achieving accuracy

levels between 40-45%, unlike the zero accuracy and corre-

sponding lack of resilience of SL models. Also, we can con-

clude that AREL3P requires both exploitation and exploration,

with the optimum ratio between the two being approximately

94-96%:6-4%.

2) Scenario 2 (VNF Placement Efficiency): The results

presented below denote that AREL3P leads to good place-

ment decisions, nearly as good as the ones made by the best

benchmark predictions out of all SL model options (therefore,

notated as “Best Benchmark”). Placement decisions after input

from AREL3P may not always lead to an optimal VNF place-

ment, however the selected locations are shown to yield a VNF

performance that is very close to optimal.

Figure 8 depicts the performance of a new VNF after its

placement. Recall that lower Ttot values indicate a better

performance. As seen, AREL3P and benchmark results are

very similar. This figure also shows that the AREL3P outper-

forms both the Traditional method and the Random method for

placing VNFs in many scenarios on the X-axis. This is because

the two latter strategies do not consider the VNF performance.

544 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 2, JUNE 2020

Fig. 8. Ttot of the new VNF after instantiation.

Fig. 9. Node selection from Traditional, Random, Benchmark and AREL3P
approaches.

As for the Traditional placement method achieving optimal

results in some scenarios (25 - 27), the latter comes at the

(undesired) cost of overloading the placement node afterward

(see Figure 10).

Moving forward to the results of Figure 9, the graph demon-

strates the placement performance of all four VNF placement

algorithms in a total of 27 scenarios. Notice that the Traditional

approach always places a new VNF at the CN 1. This is

because its decisions are based on the filters scheduler, where

the resources such as memory (RamFilter) and disk space

(DiskFilter) pose the highest influence among filters. In this

testbed, CN 1 has always the most resources because we only

change the load during the test. Considering the RamFilter,

the memories of CN 1 and CN 2 are the same or greater size

than CN 3. Furthermore, regarding the DiskFilter, the CN 1

possesses the largest disk capacity, followed by CN 2 and CN 3

respectively.

The results from Best Benchmark and AREL3P are alike.

Both models mostly select CN 2 to place a new VNF, followed

by choosing CN 1 and CN 3, but none of them selects any CN

for a new VNF in the scenario 27. The placement decisions

of both models differ in the scenarios 1 - 6. The Benchmark

model selects CN 2 during scenarios 1-3 and CN 1 during

scenarios 4-6 because VNFs’ performances are best in those

nodes with their given loads. In contrast, AREL3P chooses

CN 2 in scenarios 1, 6 and CN 1 in scenarios 2-5. AREL3P’s

placement performance is poorer in these scenarios because

the AREL3P prediction model has around 50% accuracy (see

Figure 7) causing errors on AREL3P’s predictions and, eventu-

ally, leading to non-optimal VNF placements. However, these

errors are “acceptable” since the difference of Ttot between

Fig. 10. Load in the overloaded node and winner node after the instantiation.

CN 1 (running at a low load) and CN 2 (running at low/medium

load) are negligible, as illustrated in Figure 8.

In scenarios 7-9, the load for CN 2 is high, whereas the load

remains low for CN 1. Consequently, the Ttot predictions for

CN 2 are greater than those for CN 1. Both models select CN

1 for a new VNF.

In scenarios 10-15, the load of CN 1 is medium, while the

load for CN 2 is either low or medium. As a result, predictions

for CN 2 are lower than those for CN 1. Both models choose

CN 2 to place the new VNF.

In the scenarios 16-18, the load of CN 2 raises to high,

while for CN 1 it remains at a medium level. As a result,

predictions for CN 1 are lower than those from for CN 2,

causing to instantiate the new VNFs at CN 1 by both models.

In further, the load of CN 1 rises to high for scenarios 19-27.

CN 2 gets selected by both the Best Benchmark and AREL3P

for placing a new VNF during scenarios 19-24 because the

predicted values are the lowest. However, in scenarios 25 and

26, both models lead to selecting CN 3 for placing the VNFs.

This is due to the fact that CN 1 and CN 2 get rejected due to

the “no overload” check mechanism (see Section IV-B).

Last, the loads in all nodes are high for scenario 27. In this

case, no node passes the “no overload” check and the VNF

placement does not occur at all.

Analyzing the impact of load further, Figure 10 portrays the

loads in the overloaded node and the winner node that gets the

placement decision. In the overloaded node, its load after the

placement decreases to below the threshold (80%) in all sce-

narios. However, the load of the winner nodes’ remain under

the threshold for Best Benchmark and AREL3P, whereas when

these winner nodes apply Traditional or Random they become

overloaded in many scenarios. The latter indicates that Best

Benchmark and AREL3P can better handle the impact on

(over)load at nodes after placement decisions.

Finally, we compare the Quality of Decision (QoD) of all

four methods. QoD ranges from 0 to 3 based on two cri-

teria: “Best Ttot (Bt)” and “Not overloaded (No)”. For the

first assessment, the Bt will give one point to any placements

at the node with the least Ttot . For the second assessment,

as overloading a node is undesirable, No gives a reward of

two points when the winner nodes do not become overloaded

after the placement. The other results of the decision are not

be rewarded. Figure 11 depicts QoD of Traditional, Random,

Benchmark and AREL3P approaches. The Benchmark model

receives the best QoD scores in 26 out of 27 scenarios. The last

BUNYAKITANON et al.: END-TO-END PERFORMANCE-BASED AUTONOMOUS VNF PLACEMENT WITH ADOPTED REINFORCEMENT LEARNING 545

Fig. 11. QoD scores of Traditional, Random, Benchmark and AREL3P
approaches.

scenario is not evaluated because no placement occurs. The

AREL3P approach is a runner-up with the best QoD scores

in 23 of 27 scenarios. Finally, the Random method and the

Traditional method prove to be the worst strategies with the

best QoD scores in 10 and 9 out of 27 scenarios, respectively.

From the results above, it is proved that the AREL3P can

achieve a performance that is near to the one by the Best

Benchmark. Therefore, AREL3P performs well w.r.t. VNF

placements for latency-sensitive and/or e2e applications.

V. STATE OF THE ART

A. Non ML-Based Approaches

In the context of Linear Programming (LP),

Cohen et al. [21] use LP-relaxation for VNF chain placement

in inter-Data Center Network (DSN) environments with bicri-

teria approximation factors. This solution, however, violates

size constraints by a constant factor. Bhamare et al. [22]

propose an Integer Linear Programming (ILP) model that

minimizes both traffic and total response time between in

multi-cloud environment. Their model also considers other

constrains such as total deployment costs and Service Level

Agreements (SLAs). Using ILP again, Bari et al. [23] apply

a model that minimizes the operational costs and increases

utilization by determining the number of necessary VNFs and

their locations.

Focusing on Mixed Integer Linear Programming (MILP),

Rocha and Verdi [24] present a traffic-aware model for VM

placement in DSNs, which places VMs w.r.t. traffic patterns.

Unlike that, Zhao et al. [25] combine a MILP model to

an efficient heuristic that is based on Lagrange’s relaxation

decomposition to optimize VMs placement and the overall

topology considering the dynamic traffic conditions of DSNs.

Taking a different approach, Mehraghdam et al. [26] propose

a context-free language for specifying VNF chains and then

provide a Mixed Integer Quadratically Constrained Program

(MIQCP) formulation for VNF chain placement.

There is, also, substantial work in the literature outside the

context of LP based on a variety of different algorithmic and

heuristic approaches. Even et al. [27] propose a randomized

approximation algorithm for path computation and function

placement. Their solution uses two optimization problems: (i)

“path computation”, which focuses on packet forwarding; and

(ii) “function mapping”, which focuses on load balancing.

The work of Xu et al. [28] proposes an algorithm for the

VNF placement that leverages the trade-off between energy

consumption and the probability of SLA violation.

Tajiki et al. [29] apply a mathematical approach to predict

traffic and, correspondingly, reallocate resources in SDN

networks in an effort to reduce the total packet loss while

increasing network throughput. The works of [30], [31] use

dynamic congestion pricing models for distributed resource

allocation. Both dynamic prices and dynamic user mobil-

ity prediction information per node are used to trade the

cost of a local resource for reduced e2e data transfer delay.

Lange et al. [32] apply Pareto-based heuristic approaches to

optimize VNF placement according to various metrics includ-

ing the latency of all devices, their resilience against both node

and link failures, and load balancing.

Regarding edge computing solutions, Aral and

Ovatman [33] design and present a replica placement

algorithm that targets latency improvement and cost reduction

w.r.t. the geographical locality of data during the dissemi-

nation process. Unlike that, the work of Yang et al. [34]

proposes a dynamic resource allocation framework based

on a fast incremental allocation heuristic that dynamically

performs resource allocation and a periodic re-optimization

algorithm that adjusts resources to maintain a near-optimal

edge operational cost.

Last, Clayman et al. [35] introduce three simple placement

algorithms based on different criteria, namely, (i) “Least Used

Host”, (ii) “N at a Time in a Host”, and (iii) “Least Busy

Host”. The first algorithm selects the host that has the least

number of virtual routers. The second algorithm allocates N

routers to a single host at once. Last, the third algorithm

chooses the host with the least virtual network traffic.

As an overall remark, the majority of non ML-based

approaches in the literature do not considered e2e delay.

Instead, they focus on resource allocation and/or VNF place-

ment after local-host system measurements. Therefore, they

can not address requests sensitive to e2e delay.

B. ML-Based Approaches

MLN has been studied in various aspects such as prediction,

classification or policy selection. However, none of them

consider the e2e delay.

The work of [36] by Jmila et al. adapts SVR to estimate

VNF resource requirements by predicting the CPU demand of

incoming traffic. The authors compare their results against those

of an Artificial Neural Network (ANN) and shown that SVR

outperformes ANN in terms of both accuracy and stability.

Shi et al. [37] proposed a MDP method to dynamically allo-

cate cloud resources for VNFs, followed by applying Bayesian

learning to predict the probability of resource reliability.

Rankothge et al. [6] propose a genetic algorithm for VNF

chain placement comprising of two modules: New function

provisioning and Scaling out/in. The earlier is responsible for

the resource allocation while the latter assigns a new set of

NFs and paths to satisfy the current networking demand.

The work of [38] studies a proactive ML-based approach

for VNF auto-scaling in response to dynamic traffic changes.

The authors evaluate seven different SL models for classifying

546 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 2, JUNE 2020

“Positive” and “Negative” samples of traffic-load measurement

data, showing that ML improves QoS while saving significant

cost for both network owners and leasers over a time-series

moving average prediction approach. Also, Xu et al. [7]

implement a combination of MDP and learning algorithms to

optimize the policy of dynamic workload offloading in both

cloud and edge servers.

Finally, there are only a few pieces of (recent) work [2],

[3], [5] in the literature that use RL. Unlike these works, ours

uses specifically Q-Learning with certain advantages discussed

in Section II-A, focusing on end-to-end application level

performance predictions that are passed to well-established

orchestrators for taking efficient VNF placement decisions.

Tang et al. [2] tackle the auto-scaling problem by combining

MDP and RL. They apply MDP to find a tradeoff between

the achieved level of QoS and the VNF resource consump-

tion. Then, they use RL to define a threshold based policy.

Their results illustrate that this approach outperforms both a

static threshold and a voting policy methods. Chen et al. [3]

optimize two Deep RL Agents (RLAs), namely, a Short flow

RLA (sRLA) and a Long flow RLA (lRLA). The sRLA

optimizes the threshold for Multi-Level Feedback Queueing

(MLFQ) by applying Deep Deterministic Policy Gradient

(DDPG), while the lRLA determines the rates, the routes

and the priorities for long flows by implementing a flow

scheduler. Mijumbi et al. [4] propose a multi-agent learning

algorithm for virtual network resource management. These

agents learn an optimal policy from online feedback and

dynamically allocate network resources to virtual nodes and

links. Xiao et al. [5] propose NFVdeep to automatically deploy

Service Function Chaining (SFC)s for requests with different

QoS requirements. This work applies an adaptive, online, deep

reinforcement learning approach along with a serialization-

and-backtracking method and a policy gradient based method

to handle SFCs deployment in the real-time network with

variations and various service requests.

VI. CONCLUSION AND FUTURE WORK

This article presents an Adapted REinforcement Learning

VNF Performance Prediction module for Autonomous

VNF Placement (AREL3P) to enhance MANagement and

Orchestration (MANO) systems. Taking a different approach

from other solutions in the literature based on Supervised

Learning (SL), AREL3P adapts a particular type of RL,

namely Q-learning. To the best of our knowledge, our effort

is the first one in the literature to leverage RL predictions

for the purposes of ZSM. As validated by our meticulous

performance evaluation over a realistic testbed environment

and use case setup, our adapted Q-learning scheme exhibits

a better tolerance to network dynamics than SL-based mod-

els. This is due to the fact that Q-learning is an online

learning technique that allows to update the learning model

in operation, thus overcoming most of the raised feasibil-

ity and adaptability concerns faced by SL-based models. In

general, our results show that AREL3P yields more accurate

VNF performance predictions using end-to-end service level

information. The latter constitutes another novelty compared to

most existing works in the literature on VNF placement includ-

ing non ML-based ones. Specifically, AREL3P can predict

end-to-end service level VNF performance with a 40-45%

higher accuracy compared to SL models. We also conclude

that the optimal exploration-exploitation ratio for training our

Q-learning model is approximately 6-4%:94-96%. In addition,

our VNF placement tests prove that AREL3P receives the best

Quality of-Decision scores in 23 of 26 investigated scenarios

w.r.t. to our adapted SCS use case.

For future work, we will focus on applying ML at the level

of management and orchestration such as for the purposes of

scheduling or profiling. We also plan to study and to inte-

grate multiple levels of ML models. We believe that this can

play a key role in improving the efficiency of VNF placement

decisions, especially for end-to-end or delay-sensitive VNFs.

REFERENCES

[1] M. Jie et al., “Zero-touch network and service manage-
ment,” Deutsche Telekom, Bonn, Germany, White Paper,
Dec. 2017. Accessed: Apr. 13, 2018. [Online]. Available:
https://portal.etsi.org/TBSiteMap/ZSM/OperatorWhitePaper

[2] P. Tang, F. Li, W. Zhou, W. Hu, and L. Yang, “Efficient auto-scaling
approach in the telco cloud using self-learning algorithm,” in Proc.

IEEE Global Commun. Conf. (GLOBECOM), San Diego, CA, USA,
Dec. 2015, pp. 1–6.

[3] L. Chen, J. Lingys, K. Chen, and F. Liu, “AuTo: Scaling
deep reinforcement learning for datacenter-scale automatic traffic
optimization,” in Proc. Conf. ACM Special Interest Group Data

Commun., New York, NY, USA, 2018, pp. 191–205. [Online]. Available:
http://doi.acm.org/10.1145/3230543.3230551

[4] R. Mijumbi, J. Gorricho, J. Serrat, M. Claeys, F. De Turck, and S. Latré,
“Design and evaluation of learning algorithms for dynamic resource
management in virtual networks,” in Proc. IEEE Netw. Oper. Manag.

Symp. (NOMS), Krakow, Poland, 2014, pp. 1–9.

[5] Y. Xiao et al., “NFVdeep: Adaptive online service function chain
deployment with deep reinforcement learning,” in Proc. Int. Symp.

Qual. Serv., New York, NY, USA, 2019, pp. 1–10. [Online]. Available:
https://doi.org/10.1145/3326285.3329056

[6] W. Rankothge, J. Ma, F. Le, A. Russo, and J. Lobo, “Towards making
network function virtualization a cloud computing service,” in Proc.

IFIP/IEEE Int. Symp. Integr. Netw. Manag. (IM), Ottawa, ON, Canada,
May 2015, pp. 89–97.

[7] J. Xu, L. Chen, and S. Ren, “Online learning for offloading and autoscal-
ing in energy harvesting mobile edge computing,” IEEE Trans. Cogn.

Commun. Netw., vol. 3, no. 3, pp. 361–373, Sep. 2017.

[8] University of Bristol 5G Testbed 5GinFIRE. Accessed: Jan. 14, 2019.
[Online]. Available: https://5ginfire.eu/university-of-bristol-5g-testbed/

[9] Layered Realities—Smart City Safety Faculty of Engineering University

of Bristol, Uiniv. Bristol, Bristol, U.K. Accessed: May 4, 2018. [Online].
Available: http://www.bristol.ac.uk/engineering/research/smart/events/
layered-realities-weekend/layered-realities—smart-city-safety/

[10] G. Widmer and M. Kubat, “Learning in the presence of concept
drift and hidden contexts,” Mach. Learn., vol. 23, no. 1, pp. 69–101,
Apr. 1996. [Online]. Available: https://link.springer.com/article/10.1007/
BF00116900

[11] sklearn.svm.SVR Scikit-Learn 0.21.1 Documentation. Accessed on: May
20, 2019. [Online]. Available: https://scikit-learn.org/stable/modules/
generated/sklearn.svm.SVR.html

[12] OpenStack Docs: Compute Schedulers. Accessed: Dec. 20, 2018.
[Online]. Available: https://docs.openstack.org/ocata/config-reference/
compute/schedulers.html

[13] Decision Trees. Accessed: Oct. 18, 2018. [Online]. Available: http://
scikit-learn.org/stable/modules/tree.html

[14] A Complete Tutorial on Tree Based Modeling from Scratch (in R &

Python). Apr. 2016. Accessed: Feb. 11, 2019. [Online]. Available:
https://www.analyticsvidhya.com/blog/2016/04/complete-tutorial-tree-
based-modeling-scratch-in-python/

[15] Multiple Linear Regression. Accessed: Oct. 18, 2018. [Online].
Available: http://www.stat.yale.edu/Courses/1997-98/101/linmult.htm

BUNYAKITANON et al.: END-TO-END PERFORMANCE-BASED AUTONOMOUS VNF PLACEMENT WITH ADOPTED REINFORCEMENT LEARNING 547

[16] Understanding Support Vector Machine Regression. Accessed: Oct.
18, 2018. [Online]. Available: https://uk.mathworks.com/help/stats/
understanding-support-vector-machine-regression.html

[17] K. Yu, L. Ji, and X. Zhang, “Kernel nearest-neighbor algorithm,”
Neural Process. Lett., vol. 15, no. 2, pp. 147–156, Apr. 2002. [Online].
Available: https://doi.org/10.1023/A:1015244902967

[18] A. Svensson, “Dynamic alternation between load sharing algorithms,”
in Proc. 25th Hawaii Int. Conf. Syst. Sci., vol. 1. Kauai, HI, USA, Jan.
1992, pp. 193–201.

[19] SQL Server Statistics: Explained. Accessed: May 23, 2019. [Online].
Available: https://blogs.msdn.microsoft.com/srgolla/2012/09/04/sql-
server-statistics-explained/

[20] J. Quioñero-Candela, M. Sugiyama, A. Schwaighofer, and
N. D. Lawrence, Dataset Shift in Machine Learning. Cambridge,
MA, USA: MIT Press, 2009.

[21] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal
placement of virtual network functions,” in Proc. IEEE Conf.

Comput. Commun. (INFOCOM), Kowloon, Hong Kong, Apr. 2015,
pp. 1346–1354.

[22] D. Bhamare, M. Samaka, A. Erbad, R. Jain, L. Gupta, and
H. A. Chan, “Optimal virtual network function placement in
multi-cloud service function chaining architecture,” Comput.

Commun., vol. 102, pp. 1–16, Apr. 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0140366417301901

[23] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On orches-
trating virtual network functions,” in Proc. 11th Int. Conf. Netw. Serv.

Manag. (CNSM), Barcelona, Spain, Nov. 2015, pp. 50–56.

[24] L. A. Rocha and F. L. Verdi, “A network-aware optimization for
VM placement,” in Proc. IEEE 29th Int. Conf. Adv. Inf. Netw. Appl.,
Gwangiu, South Korea, Mar. 2015, pp. 619–625.

[25] Y. Zhao, Y. Huang, K. Chen, M. Yu, S. Wang, and D. Li, “Joint
VM placement and topology optimization for traffic scalability in
dynamic datacenter networks,” Comput. Netw., vol. 80, pp. 109–123,
Apr. 2015. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S138912861400468X

[26] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” in Proc. IEEE 3rd Int. Conf. Cloud Netw.

(CloudNet), Oct. 2014, pp. 7–13.

[27] G. Even, M. Rost, and S. Schmid, “An approximation algorithm for path
computation and function placement in SDNs,” in Structural Information

and Communication Complexity. Cham, Switzerland: Springer, 2016,
pp. 374–390.

[28] S. Xu, B. Fu, M. Chen, and L. Zhang, “An effective correlation-
aware VM placement scheme for SLA violation reduction in data
centers,” in Algorithms and Architectures for Parallel Processing. Cham,
Switzerland: Springer, 2015, pp. 617–626.

[29] M. M. Tajiki, B. Akbari, and N. Mokari, “QRTP:QoS-aware resource
reallocation based on traffic prediction in software defined cloud
networks,” in Proc. 8th Int. Symp. Telecommun. (IST), Tehran, Iran, Sep.
2016, pp. 527–532.

[30] X. Vasilakos, V. A. Siris, G. C. Polyzos, and M. Pomonis,
“Proactive selective neighbor caching for enhancing mobility support in
information-centric networks,” in Proc. ACM 2nd Edition Inf. Centric

Netw. Workshop (ICN’12), Helsinki, Finland, Aug. 2012, pp. 61–66.
[Online]. Available: https://doi.org/10.1145/2342488.2342502

[31] X. Vasilakos, V. A. Siris, and G. C. Polyzos, “Addressing niche demand
based on joint mobility prediction and content popularity caching,”
Comput. Netw., vol. 110, pp. 306–323, Dec. 2016. [Online]. Available:
https://doi.org/10.1016/j.comnet.2016.10.001

[32] S. Lange et al., “Heuristic approaches to the controller placement
problem in large scale SDN networks,” IEEE Trans. Netw. Serv. Manag.,
vol. 12, no. 1, pp. 4–17, Mar. 2015.

[33] A. Aral and T. Ovatman, “A decentralized replica placement algorithm
for edge computing,” IEEE Trans. Netw. Serv. Manag., vol. 15, no. 2,
pp. 516–529, Jun. 2018.

[34] B. Yang, W. K. Chai, Z. Xu, K. V. Katsaros, and G. Pavlou, “Cost-
efficient NFV-enabled mobile edge-cloud for low latency mobile appli-
cations,” IEEE Trans. Netw. Serv. Manag., vol. 15, no. 1, pp. 475–488,
Mar. 2018. [Online]. Available: https://doi.org/10.1109/TNSM.2018.
2790081

[35] S. Clayman, E. Maini, A. Galis, A. Manzalini, and N. Mazzocca, “The
dynamic placement of virtual network functions,” in Proc. IEEE Netw.

Oper. Manag. Symp. (NOMS), Krakow, Poland, May 2014, pp. 1–9.

[36] H. Jmila, M. I. Khedher, and M. A. El Yacoubi, “Estimating
VNF resource requirements using machine learning techniques,” in
Neural Information Processing. Cham, Switzerland: Springer, 2017,
pp. 883–892.

[37] R. Shi et al., “MDP and machine learning-based cost-optimization of
dynamic resource allocation for network function virtualization,” in
Proc. IEEE Int. Conf. Serv. Comput., New York, NY, USA, Jun. 2015,
pp. 65–73.

[38] S. Rahman, T. Ahmed, M. Huynh, M. Tornatore, and B. Mukherjee,
“Auto-scaling VNFs using machine learning to improve QoS and reduce
cost,” in Proc. IEEE Int. Conf. Commun. (ICC), Kansas City, MO, USA,
May 2018, pp. 1–6.

Monchai Bunyakitanon received the B.S.E.E.
degree from the Escuela Naval Militar, Pontevedra,
Spain, in 2006, and the M.S.E.E. degree with
an emphasis in telecommunication systems from
the Blekinge Institute of Technology, Karlskrona,
Sweden, in 2014. He is currently pursuing the Ph.D.
degree in electrical engineering at the University of
Bristol, U.K. He is an Officer of the Royal Thai
Navy and a member of the Smart Internet Lab. His
research focus includes machine learning solutions
for multiaccess edge computing and networking,

network function virtualization, and software-defined networks.

Xenofon Vasilakos received the M.Sc. degree in
parallel and distributed computer systems from
Vrije Universiteit Amsterdam, and the Ph.D.
degree in informatics from the Athens University
of Economics and Business with a focus on
information-centric networking architectures, pro-
tocols, and distributed solutions. He is currently
a Research Fellow with the University of Bristol,
Bristol, U.K., where he is a member of the
Smart Internet Laboratory and the Technical Lead
Researcher of the Zero Downtime Edge Application

Mobility (MEC Mobility) project. He has participated in various EU and
national funded research projects, such as 5GPPP SliceNet and the FIA award-
winning FP7 project PURSUIT. His current research interests include 5G/B5G
technologies with a focus on multiaccess edge computing based on cogni-
tion approaches inspired by machine learning models toward self-managed
networks. He is also involved in the areas of Internet of Things, software-
defined networking, network function virtualization, and network slicing in
the context of 5G. He was a recipient of an Excellence Fellowship Grant
from the French Government (LABoratoires d’EXcellence), and has received
an accolade and awards for his academic performance from the Greek State
Scholarship Foundation.

Reza Nejabati (Senior Member, IEEE) has writ-
ten or coauthored over 200 peer reviewed papers
and several standardization documents. His current
area of research is in the field of disruptive new
Internet technologies with focus on application of
high-speed network technologies. He has a success-
ful track record in working at the interface between
optical networks and computer science, as well
as between academia and industry. Throughout his
research career, he has made important and pioneer-
ing contributions to the fields of optical networking,

grid networking, data center networks, software defined networking, network
virtualization, and network function virtualization.

Dimitra Simeonidou (Fellow, IEEE) is a Full
Professor at the University of Bristol, where she
is the Co-Director of the Bristol Digital Futures
Institute and the Director of the Smart Internet Lab.
She is increasingly working with Social Sciences on
topics of digital transformation for society and busi-
nesses. She has been the Technical Architect and
the CTO of the smart city project Bristol Is Open.
She is currently leading the Bristol City/Region 5G
urban pilots. She has been co-founder of two spin-
out companies, the latest being the University of

Bristol VC funded spin-out Zeetta Networks, http://www.zeetta.com, deliver-
ing SDN solutions for enterprise and emergency networks. She has authored
and coauthored over 500 publications, numerous patents and several major
contributions to standards. Her research is focusing in the fields of high
performance networks, programmable networks, wireless-optical convergence,
5G/B5G, and smart city infrastructures. She is a fellow of the Royal Academy
of Engineering and the Royal Society Wolfson Scholar.

