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T
he rapid evolution of artificial intelligence (AI) and machine 
learning (ML) in biomedical data analysis has recently 
yielded encouraging results, showcasing AI systems able to 

assist clinicians in a variety of scenarios, such as the early detection 
of cancers in medical imaging1,2. Such systems are maturing past 
the proof-of-concept stage and are expected to reach widespread 
application in the coming years as witnessed by rising numbers 
of patent applications3 and regulatory approvals4. The common 
denominator of high-performance AI systems is the requirement 
for large and diverse datasets for training the ML models, often 
achieved by voluntary data sharing on behalf of the data owners 
and multi-institutional or multi-national dataset accumulation. It’s 
common for patient data to be anonymized or pseudonymized at 
the originating institution, then transmitted to and stored at the 
site of analysis and model training (known as centralized data shar-
ing)5. However, anonymization has proven to provide insufficient 
protection against re-identification attacks6,7. Therefore, large-scale 
collection, aggregation and transmission of patient data is critical 
from a legal and an ethical viewpoint8. Furthermore, it is a funda-
mental patient right to be in control of the storage, transmission and 
usage of personal health data. Centralized data sharing practically 
eliminates this control, leading to a loss of sovereignty. Moreover, 
anonymized data, once transmitted, cannot easily be retrospectively 
corrected or augmented, for example by introducing additional 
clinical information that becomes available.

Despite these concerns, the increasing demand for data-driven 
solutions is likely to increase health-related data collection, not only 
from medical imaging datasets, clinical records and hospital patient 
data, but also for example via wearable health sensors and mobile 

devices9. Hence, innovative solutions are required reconcile data 
and protect privacy. Secure and privacy-preserving machine learn-
ing (PPML) aims to protect data security, privacy and confidential-
ity, while still permitting useful conclusions from the data or its use 
for model development. In practice, PPML enables state-of-the-art 
model development in low-trust environments despite limited local 
data availability. Such environments are common in medicine, 
where data owners cannot rely on other parties’ privacy and confi-
dentiality compliance. PPML can also provide guarantees to model 
owners that their model will not be modified, stolen or misused, 
for example by its encryption during use. This lays the groundwork 
for sustainable collaborative model development and commercial 
deployment by alleviating concerns of asset protection.

Evidence from prior work
Recent work has shown the utility of PPML in biomedical science 
and medical imaging in particular. For instance, federated learning 
(FL) is a decentralized computation technique based on distribut-
ing machine learning models to the data owners (also referred to as 
computation nodes) for decentralized training instead of centrally 
aggregating datasets. It has been proposed as a method to facilitate 
multi-national collaboration while obviating data transfer. In the set-
ting of the COVID-19 pandemic10,11 FL was used to allow the reten-
tion of data sovereignty and the enforcement of local governance 
policies over data repositories. In medical imaging, recent studies5,12 
demonstrated that federated training of deep learning models on 
brain tumour segmentation or breast density classification performs 
on-par with local training and that it fosters the inclusion of data 
from more diverse sources, leading to improved generalization. 
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However, FL in itself is not a fully privacy-preserving technology. 
Previous studies13,14 demonstrate that inversion attacks can recon-
struct images from model weights or gradient updates with impres-
sive visual detail. Moreover, in the setting of inference-as-a-service15, 
exposure of the model to a non-trusted third party can enable 
model misuse or outright theft. Therefore, FL must be augmented 
by additional privacy-enhancing techniques to truly preserve pri-
vacy. For example, FL with secure aggregation (SecAgg) of weights 
or gradient updates or differential privacy (DP) can prevent data-
set reconstruction attacks, and the utilization of secure multi-party 
computation (SMPC) protocols during model inference can protect 
the models in use. We provide an overview of these techniques in 
our previous work16.

Aim and contributions
The clinical application of PPML in medical imaging requires the 
development of frameworks for security and privacy, and their vali-
dation on non-trivial clinical tasks. Here we present PriMIA, a free, 
open-source framework for end-to-end privacy-preserving decen-
tralized deep learning on medical images. Our framework incorpo-
rates differentially private federated model training with encrypted 
aggregation of model updates as well as encrypted remote inference. 
Our contribution provides the following innovations:

•	 We demonstrate the training of a deep convolutional neural 
network (CNN) on the clinically challenging task of paediat-
ric chest radiography classi�cation using FL augmented with 
PriMIA’s privacy-enhancing techniques over the public Internet.

•	 Our framework is compatible with a wide range of medical 
imaging data formats, easily user-con�gurable and introduces 
functional improvements to FL training (weighted gradient 
descent/federated averaging, diverse data augmentation, local 
early stopping, federation-wide hyperparameter optimization, 
DP dataset statistics exchange), increasing �exibility, usability, 
security and performance.

•	 We examine the computational and classi�cation performance 
of models trained with and without privacy-enhancing tech-
niques against models trained centrally on the accumulated 
dataset, personalized models trained on subsets of the data and 
against expert radiologists on unseen real-life datasets to evalu-
ate various scenarios typical in medical imaging research.

•	 We assess the theoretical and empirical privacy and security 
guarantees of our framework and provide examples of applying 
a state-of-the-art gradient-based model inversion attack against 
the models under a number of training scenarios.

•	 Finally, we showcase the utilization of the trained model in a 
secure inference-as-a-service scenario without the disclosure of 
either the data or the model in plain text and demonstrate the 
improvements in inference latency of our SMPC protocol.

Library functionality
PriMIA was developed as an extension to the PySyft/PyGrid eco-
system of open-source PPML tools. PySyft (https://github.com/
OpenMined/PySyft) is a Python framework allowing the remote 
execution of machine learning tasks (for example, tensor manipula-
tion) and for encrypted deep learning by interfacing with common 
machine frameworks such as PyTorch. PyGrid provides server/cli-
ent functionality for the deployment of such workflows on servers 
and edge computing devices. A detailed description of the generic 
functionality provided by these frameworks can be found in our 
previous work17. PriMIA builds upon this functionality towards 
medical-imaging-specific applications by being natively compat-
ible with medical imaging data formats such as DICOM and able to 
operate on medical datasets of arbitrary modality and dimension-
ality (for example, computed tomography, radiography, ultrasound 

and magnetic resonance imaging). Outside of the above-mentioned 
PPML techniques, it offers solutions to common challenges in 
medical imaging analysis workflows, such as dataset imbalance, 
advanced image augmentation, federation-wide hyperparameter 
tuning functionality. Furthermore, it provides an accessible user 
interface for applications ranging from local experimentation 
on the user’s machine to distributed training on remote compute 
nodes to facilitate the application of PPML best practices in medical 
consortia. The source code and documentation for the library and 
the publicly available data are provided at https://doi.org/10.5281/
zenodo.454559918.

Case study, system design and threat model
We present a case study for the application of PriMIA on clinical 
data by training an 11.1 million parameter ResNet18 CNN19 on 
the paediatric pneumonia dataset originally proposed by Kermany 
et al.20 on cloud compute nodes over the public Internet with the 
aim of classifying paediatric chest radiographs into one of three cat-
egories: normal (no signs of infection), viral pneumonia or bacterial 
pneumonia. Pneumonia is a leading cause of paediatric mortality21. 
Chest radiography is routinely performed for differential diagnosis 
and therapy selection, but classifying paediatric chest radiographs 
is challenging. The case study is set up according to the following 
real-life scenario:

FL training phase. A confederation of three hospitals wishes to 
train a deep learning model for chest radiography classification. As 
they neither possess enough data on their own nor the expertise 
to train the model on this data, they enlist the support of a model 
developer to orchestrate the training on a central server. In the 
training phase, we refer to the hospitals holding patient data as the 
data owners. We utilize the term ‘model’ throughout the manuscript 
to refer to the structure and parameters of a deep neural network. 
We assumed an honest-but-curious threat model as defined previ-
ously22 for the training phase. Here, participants trust each other to 
not actively undermine the learning protocol with utility degrada-
tion in mind, for example by actively supplying adversarial inputs 
or low-quality data (honest). However, individual participants and 
colluding groups of participants are assumed to actively attempt to 
extract private information from other participants’ data (curious). 
Our framework’s privacy-enhancing techniques are designed to 
protect from this behaviour, which we describe in detail in later sec-
tions. In brief, DP gradient descent23 extends the guaranteed prop-
erties of DP to deep neural network training. Specifically, it bounds 
the worst-case privacy loss of individual patients in the datasets and 
provides privacy guarantees against model inversion/reconstruc-
tion attacks carried out against federation participants or against 
model owners at inference time. PriMIA implements DP for each 
FL node (local DP) to provide patient-level guarantees. Per-node 
privacy budgeting is performed using the Rényi Differential Privacy 
Accountant24. SMPC allows parties to jointly compute a function 
over a set of inputs without disclosing their individual contribu-
tions. During training, it is utilized to securely average the network 
weight updates (SecAgg). Additive secret sharing based on the 
SPDZ protocol25 is used for SecAgg. The training phase is shown in 
Fig. 1. It concludes with all participants holding a copy of the fully 
trained final model.

Remote inference phase. Once fully trained, the model can be used 
for remote inference. In our case study, we assume that a different 
data owner, in this case a physician at a remote location holds some 
patient data and wants to receive an inference result for diagnostic 
assistance from the model. The inference service is provided over 
the internet by the model owner. The data and model owners do not 
trust each other and wish their data and model to remain private. 
PriMIA’s SMPC protocol guarantees the cryptographic security of 
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both the model and the data in the inference phase. The AriaNN 
framework described in our previous work26 is used, which we have 
adapted to end-to-end encrypted inference.

A common SMPC technique25 is the utilization of cryptographi-
cally secure random numbers (cryptographic primitives) generated 
ahead of time (so-called offline phase) to accelerate certain compu-
tations. The trusted system (for example, a hardware device) provid-
ing these primitives is referred to as a cryptographic provider and is 
not involved in the actual inference procedure (online phase), nor 
does it ever come in contact with any party’s data. In fact, a ‘stockpile’ 
of cryptographic primitives can be provided to the protocol partici-
pants ahead of time to be used up over multiple inference proce-
dures. The encrypted inference process is summarized in Fig. 2.

Classification performance
We trained FL models without SecAgg or DP (DP-/SecAgg-), with 
SecAgg only (DP-/SecAgg+) and with both techniques (DP+/
SecAgg+). Furthermore, we trained a model on the entire dataset 
pooled on a single machine (centrally trained) and separate mod-
els on the individual data owners’ subsets of the dataset (personal-
ized). The centrally trained model represents the centralized data 
sharing scenario described in the introduction. The personalized 
models each represent a single institution training exclusively on 
their own data, a typical case in current medical imaging research 
workflows. FL aims to enable the training of models that are better 
than personalized training and—ideally—as good as the centrally 
trained model.

We tested the classification performance of the models on the val-
idation set and against the classification performance of two expert 
radiologists on test set 1 (145 images) and against clinical ground truth 
data on test set 2 (345 images). We used accuracy, sensitivity/specific-
ity (recall), receiver-operator-characteristic-area-under-the-curve 
(ROC-AUC) and the Matthews correlation coefficient (MCC)27 for 

assessment. Details can be found in the Methods section. Model 
and expert classification performance on the datasets can be found 
in Table 1.

The FL model trained with neither SecAgg nor DP performed 
best with no statistically significant difference to the centrally 
trained model. The addition of SecAgg to the model slightly, but 
non-significantly reduced performance. Both FL models and the 
centrally trained model significantly outperformed the human 
observers. The DP training procedure (ϵ = 6.0, δ = 1.9 × 10−4 at an 
α-value (divergence order) of 4.4) significantly reduced model per-
formance, however the model still performed statistically on par 
with human observers and retained stable performance on the 
out-of-sample data of test sets 1 and 2. We note that the ϵ-value 
represents the total privacy budget spent at the end of training. The 
personalized models trained only on the data owners’ individual 
data subsets performed approximately on par only on the valida-
tion data, but significantly worse on the out-of-sample data of test 
sets 1 and 2, indicating poor generalization. The statistical evalu-
ation of these results alongside inter-rater/model agreement met-
rics can be found in Supplementary Section 2 and Supplementary 
Tables 1 and 2.

Training and inference performance benchmarking
To assess the performance ramifications of PriMIA’s 
privacy-enhancing techniques, we benchmarked the training and 
inference performance in a variety of scenarios, shown in Fig. 3. 
Training timings were measured as average time per batch at a con-
stant batch size to decouple them from dataset size. Compared to 
training locally, FL incurs a performance penalty due to network 
communications, which is further increased by the addition of 
SecAgg and DP, yielding a threefold increase in training time when 
both SecAgg and DP are used. Large neural network architectures 
require proportionally longer to train due to network transfer 
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Fig. 1 | Overview of the FL training phase in the PriMIA case study. Three data owners (hospitals) wish to cooperate to train a model; a central server 

orchestrates the training. a, At the beginning of training, the central server sends the untrained model (red) to the computation nodes (hospitals/data 

owners) for training. b, Until convergence is achieved, the models are trained locally at each hospital. Intermittently, the models (coloured) are securely 

averaged (SecAgg). The SecAgg procedure occurs only between the three data owners. The SMPC protocol guarantees that the individual models cannot 

be exposed by other participants. After SecAgg, the updated model (green) is redistributed for another round of training. c, After the final iteration, the 

central model is updated with the (now fully trained) securely aggregated model (green) and can be used for inference.
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requirements, providing justification for the use of the ResNet18 
architecture in our study compared with larger ResNets. The addi-
tion of more worker nodes led to a linear increase in times when uti-
lizing SecAgg due to the communication overhead of the protocol. 
However, due to the small number of operations per round, the pro-
tocol scales well to multiple parties: linear regression analysis of the 
scaling yielded t(w) = 0.57w + 2.61 with t expressing time in seconds 
and w the number of workers (R2 = 0.98, p < 0.001, N = 100 samples 
per number of workers tested). Training time was nearly constant 
without SecAgg. Training times per batch were constant for larger 
dataset sizes, signifying that training duration is dependent only on 
dataset size all other things being equal. Lastly, we benchmarked 
our encrypted inference implementation26 based on the function 
secret sharing (FSS) protocol28, which offers increased efficiency in 
the evaluation of comparison operations, max-pooling and batch 
normalization layers compared to the widely used SecureNN29. The 
utilization of FSS for encrypted inference significantly reduced infer-
ence times. In particular, in the high-latency setting, FSS yielded 
a proportionally better performance in comparison to SecureNN. 
Implementation details can be found in the Methods section and 
the statistical evaluation can be found in Supplementary Section 3.

Model inversion attack
Prior work13,30 has demonstrated that model inversion attacks are 
able to reconstruct features or entire dataset records (in our case, 
chest radiographs), rendering them a threat to patient privacy in FL 
settings. To exemplify the susceptibility of models trained with and 
without the privacy-enhancing techniques offered by PriMIA, we 
utilized the improved deep leakage from gradients attack31,32 with 
small modifications detailed in the Methods section. We chose this 
method because it was the first technique shown to be highly effec-
tive against the ResNet18 architecture used in our case study. Figure 
4 shows exemplary results from the chest radiography case study. 

We utilized the pixelwise mean squared error (MSE), signal-to-noise 
ratio (SNR) and Fréchet inception distance (FID) metrics for quan-
tifying attack success. Empirical evaluation yielded that the attack’s 
success depends highly on the L2-norm of the gradient updates and 
the batch size used. To thus generate a best-case baseline of a highly 
successful attack, we attacked the centrally trained model with a 
batch size of one at the start of training, when the loss magnitude 
(and thus gradient norm) is highest. The attacks on the FL model 
with SecAgg used for our case study were not successful, most likely 
due to the high effective batch size of 600. Consistent with DP’s 
privacy guarantees, the attacks were ineffective when DP training 
was used. Results showing that DP negates the attack even when the 
model is attacked locally or when SecAgg is not used are shown in 
Supplementary Section 5 and Supplementary Fig. 2.

To further underline the high risk of privacy-centred attacks 
in the healthcare imaging setting and thus the importance of 
privacy-enhancing techniques for collaborative model training, 
we performed additional experiments on the publicly available 
MedNIST dataset and were able to recover images disclosing sensi-
tive patient attributes when DP was not utilized. No images could 
be recovered with DP in place (Fig. 5). Further details on the attack 
and the statistical evaluation can be found in the Methods and 
Supplementary Sections 4 and 6.

Discussion
We’ve presented PriMIA, an open-source framework for 
privacy-preserving FL and encrypted inference on medical images. 
We’ve demonstrated the decentralized collaborative training of an 
expert-level deep convolutional neural network in the challenging 
clinical task of paediatric chest radiography classification. Further, 
we’ve showcased end-to-end encrypted inference, which can be 
leveraged for secure diagnostic services without the disclosure 
of confidential data or exposure of the model. Our work serves 
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Fig. 2 | Overview of the encrypted inference process. The data owner (in this case, a physician located at a remote location) requests an inference 

result from the model over the Internet but wants the confidential patient data they hold to remain secret. Similarly, the model owner provides inference 

as a service but wants to keep their model confidential. The use of SMPC enables the following scenario. a, Initially the data owner and model owner 

respectively encrypt the data and model using secret sharing. This process relies on splitting the data/model into shares, which in themselves do not 

contain any usable information and can therefore be exchanged (shared) with the other party. b, Inference is then carried out by jointly computing a 

function (in this case the neural network inference procedure) using SMPC. c, The data owner receives an encrypted result, which only they can decrypt.
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as the first step towards the implementation of next-generation 
privacy-preserving methods in medical imaging workflows. It 
applies to both multi-institutional research and to enterprise model 
development settings, allowing the preservation of data governance 
and sovereignty over confidential patient health data. Our frame-
work can be used in inference-as-a-service scenarios in which 
diagnosrsquo support can be provided remotely with theoretical 
and empirical guarantees of privacy, confidentiality and asset pro-
tection. PriMIA represents a targeted evolution of our previous 
work17 towards healthcare-sector-focused deployment. Although 
we focused on a classification task for the presented case study, 
PriMIA is highly adaptable to a variety of medical imaging analy-
sis workflows employing different network architectures, datasets 
and more. We present an additional case study focused on semantic 
segmentation in computed tomography scans of the abdomen in 
Supplementary Section 7 and Supplementary Fig. 3, to demonstrate 
this flexibility.

Model classification performance. Recent work has evaluated the 
ramifications of data quality (overly homogeneous/independent 
and identically distributed data versus overly heterogeneous data) 
and distributed system topology on federated model performance, 

for example generalization to out-of-sample data. In our case study, 
models trained with FL performed on par with the centrally trained 
model similar to ref. 5 and outperformed human observers. Models 
trained only on subsets of the data (personalized models) showed 
drastically diminished performance on out-of-sample data. Since 
personalized model training is the standard in most mono-centric 
medical imaging studies, this finding serves as a reminder that 
the inclusion of larger quantities of more diverse data from mul-
tiple sources enabled through FL can allow the training of models 
with better generalization performance, as is demanded by current 
best practices33. DP model training is able to offer objective privacy 
guarantees and resilience against model inversion attacks30,32. The 
utilization of DP diminished model performance, which was, how-
ever, still on par with human observers. At the same time, the DP 
guarantees achieved (ϵ = 6) by the selected model are only moder-
ate. This phenomenon (privacy–utility trade-off) is a well-known 
observation in the still nascent area of deep learning with DP. For 
instance, previous work23 reached an ϵ-value of approximately 8 
on the CIFAR-10 dataset and another study reported34 ϵ-values 
between 6.9 and 8.48. Both studies also report a diminished per-
formance by the final model. We regard methods to improve the 
training of DP models as a promising direction for future research.

Table 1 | Classification performance comparison of models on the validation set and test sets 1 and 2

Accuracy Sensitivity/specificity ROC-AUC MCC

Val Test 1 Test 2 Val Test 1 Test 2 Val Test 1 Test 2 Val Test 1 Test 2

Federated DP–/SecAgg– 0.89 0.89 0.90 0.95 0.88 0.90 0.92 0.92 0.93 0.84 0.84 0.85

0.86 0.88 0.88

0.86 0.94 0.93

Federated DP–/SecAgg+ 0.88 0.88 0.89 0.98 0.88 0.89 0.90 0.92 0.92 0.83 0.83 0.83

0.86 0.88 0.88

0.78 0.91 0.91

Federated DP+/SecAgg+ 0.85 0.85 0.84 0.97 0.87 0.86 0.89 0.88 0.87 0.78 0.76 0.77

0.76 0.81 0.83

0.82 0.85 0.86

Centrally trained 0.92 0.90 0.91 0.96 0.90 0.93 0.93 0.93 0.94 0.87 0.85 0.87

0.90 0.88 0.89

0.87 0.94 0.92

Personalized 1 0.89 0.67 0.63 0.90 0.96 1.00 0.92 0.72 0.71 0.83 0.48 0.47

0.88 0.19 0.25

0.88 0.71 0.65

Personalized 2 0.87 0.69 0.58 0.88 0.85 0.91 0.90 0.74 0.67 0.80 0.51 0.37

0.85 0.65 0.29

0.87 0.41 0.50

Personalized 3 0.87 0.68 0.66 0.86 0.68 1.00 0.90 0.75 0.79 0.80 0.50 0.48

0.90 0.79 0.72

0.84 0.53 0.00

Expert 1 - 0.79 - - 0.96 - - - - - 0.70 -

0.47

0.88

Expert 2 - 0.79 - - 0.96 - - - - - 0.68 -

0.84

0.41

Federated, model trained with federated learning; DP+/–, model trained with (+) or without (–) DP gradient descent; SecAgg+/–, model trained with (+) or without (–) SecAgg; Centrally trained, model 

trained on the entire dataset on a single machine. Personalized 1–3, models trained only on the data owner’s local data set. Expert 1/2, human experts. Sensitivity/specificity metrics refer to normal/

bacterial/viral, respectively.
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Functional improvements to FL. To increase framework usabil-
ity and flexibility as well as FL model performance, our frame-
work includes the following functional improvements. (1) Besides 
incorporating adaptive client optimization in the form of the 
Adam optimizer recently shown to yield improved convergence 
results35, we include a wide range of advanced image augmentation 

techniques including MixUp, which has been shown to encom-
pass privacy-enhancing attributes36. (2) We implement techniques 
to address imbalances in data volume between nodes (local early 
stopping), as well as between dataset classes (class-weighted gra-
dient descent and federated averaging37). (3) We include facilities 
to carry out centrally coordinated hyperparameter optimization 
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Fig. 3 | Results of training and inference benchmarks. a–d, Timing benchmarks in the training phase. All times shown in white are relative to the baseline 

for a batch size of 8 at a constant synchronization rate of 1 averaged over 100 runs. For DP, a microbatch size of 1 was used. The baseline is provided in 

parentheses. Bars denote standard deviation. Centrally trained: local training. DP+/– and SecAgg+/–: with/without DP gradient descent/SecAgg. a, 

Training latency for local training in various scenarios. b, The influence of neural network model parameters. Models shown: CNN architecture included 

with PriMIA (2.0 million parameters), ResNet18 (11.1 million parameters), VGG16 (15.2 million parameters), ResNet50 (21.2 million parameters) and 

ResNet151 (42.5 million parameters). c, The influence of the number of workers (data owners) in the federation. d, The influence of the dataset size per 

worker between one (1×) and three (3×) times the amount of data. As times shown are per batch, timings are independent of dataset size. e, Timing 

benchmark in the inference phase. FSS, function secret sharing-based inference (ours). SNN, SecureNN protocol29. 100 repetitions each. Latency, average 

10-round-trip ping latency.
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Fig. 4 | Overview of the gradient-based privacy attacks against PriMIA using the paediatric pneumonia dataset. a, Left to right: the target image 

(original); best-case reconstruction derived from attacking the centrally trained model early during training with a batch size of 1; typical case of an 

attack against the FL model trained with SecAgg (effective batch size 600, epoch 5 of 20); worst-case attack performed against a model trained with 

DP. b, Normalized metrics of attack success. Lower values for pixel-wise MSE and FID (mirroring human perception of similarity) and higher values for 

signal-to-noise ratio indicate increased success, respectively. c, Attack success, measured as relative signal-to-noise ratio dependent on the model’s global 

L2-norm. As training progresses, loss decreases and thus the gradient norm diminishes, reducing attack success. d, The influence of effective batch size on 

attack success measured as relative signal-to-noise ratio. High batch sizes substantially impede attack success. Chest radiographs from Mendeley Data67.
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over the entire confederation using the Tree-Structured Parzen 
Estimator algorithm38. Experimental data showcasing the utiliza-
tion of our hyperparameter selection framework to search for the 
optimal FL model can be found in Supplementary Section 1 and 
Supplementary Fig. 1. All above-mentioned training optimiza-
tions are implemented locally on the nodes and do not negatively 
impact privacy guarantees. Hyperparameter tuning, however, 
must be considered when DP is utilized, as it relies on multiple 
training repetitions.

Discussion on privacy-enhancing techniques. The inclusion of 
methods offering provable privacy and security guarantees in the 
FL process is a crucial step towards the widespread implementation 
of privacy-preserving AI technologies8. The successful reconstruc-
tion of images from unprotected models in our attack experiments 
underline the risks of such attacks to patient privacy, which has also 
been discussed in previous work6,39. DP training provides objective 
privacy guarantees in case of attacks against the model both by con-
federation members and during inference and is not limited to the 
gradient-based inversion attack we use in our example. SecAgg uti-
lizing SMPC only discloses the aggregate model update to the par-
ties, even in case up to n − 1 out of n parties collude to reveal data. 
The DP secure aggregation of dataset statistics (means and standard 
deviations) we propose can protect FL participants from data leak-
age, especially when non-imaging data is included in model build-
ing (for example clinical records, in which the means of features 
such as age represent sensitive information). Finally, encrypted 
inference reveals no information about the data or the model to 
either party.

Compared with fully homomorphic encryption protocols40 rely-
ing on key-based cryptography, whose implementation for neural 
network training and inference is impeded by the computational 
complexity of the encryption process and the performance decrease 
due to function approximation for for example activation func-
tions, communication overhead has traditionally been the limit-
ing factor for SMPC. In our recent work, we introduced AriaNN26, 
an SMPC protocol leveraging function secret sharing (FSS)28 and 
building upon SPDZ25. It represents an alternative to protocols like 
SecureNN29 or Falcon41, and computes private comparisons with 
a single round of communication. This renders FSS substantially 
more communication-efficient than other SMPC protocols, espe-
cially when parties are geographically distant and communicate 
with high latency, for example when performing inference over the 
public web as showcased in our study. Through the present use-case, 
we confirm the results obtained in our previous work on other data-
sets: secure inference gains proportionally greater benefits from the 
FSS protocol in the high-latency setting. Thus, we propose its utili-
zation over SecureNN in cases a reduction in latency is desired in an 
honest-but-curious setting.

Comparison to prior work. Several current works aim to intro-
duce PPML techniques to biomedical imaging: Silva et al.42 pres-
ent a front-end FL framework for biomedicine, but do not consider 
DP, SecAgg or encrypted inference. Xu and colleagues (https://
bit.ly/3pl5dD1) provide a framework for FL using homomorphic 
encryption for SecAgg, but do not utilize DP or provide encrypted 
inference capabilities. Sheller et al.43 showcase an FL use-case based 
on segmentation. They do not assess either DP, SecAgg or the 
option for encrypted inference. Li et al.44 also demonstrate an FL 
segmentation task. Their DP implementation relies on an alterna-
tive technique (sparse vector) and the framework does not provide 
secure aggregation or encrypted inference. The work by Lu and 
colleagues45 demonstrates FL with DP, however their use-case is 
focused around pathology slides and does not employ SecAgg or 
provide encrypted inference capabilities. Li et al.46 utilize DP, how-
ever assume a fixed sensitivity and do not conduct privacy analysis. 
Their framework does not offer SecAgg or encrypted inference.

Limitations. We consider the following limitations of our work. 
The computational requirements for deploying our system are sub-
stantial, and the latency resulting from encrypted inference is still 
very high compared to unencrypted inference, despite the proposed 
protocol improvements. The underlying remote execution environ-
ment currently offers experimental graphics processing unit (GPU) 
support, with full support planned for an upcoming version. The 
success of FL models is largely dependent on high data quality on 

Original DP–/SecAgg– DP+/SecAgg+a

b

c

d

Fig. 5 | Overview of the gradient-based privacy attacks against PriMIA 

using the MedNIST dataset in a variety of scenarios. The original image is 

shown (original) alongside the reconstruction results from a model trained 

without secure aggregation or DP (DP–/SecAgg–) as well as a model 

trained with DP and SecAgg (DP+/SecAgg+). In every case, the attack 

reveals confidential information about the patient when the model is trained 

without privacy-enhancing techniques. a, Breast MRI revealing absence 

of the right breast, likely due to operative removal due to breast cancer. b, 

Breast MRI revealing breast implants. Both a and b also allow assumptions 

about the patient’s sex. c, Cranial computed tomography image at the level 

of the nose. Facial contours reconstructed from such images can lead to 

personal identification39. d, Abdominal CT at the level of the liver, allowing 

visualization of a hypodense lesion in the left liver lobe in the reconstructed 

image. In every case, using DP thwarts the attack, disallowing any usable 

image features from being visualized. CT images licensed under the 

Creative Commons CC BY-SA 4.0.
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the nodes. The auditing and curation of the data and its quality, 
methods to quantify the contribution of individual datasets to the 
model or to detect local overfitting are still under investigation47. 
Our library is designed to be used in an honest-but-curious regime, 
which we believe to represent the standard in healthcare consortia. 
Thus, although we provide comprehensive privacy protection mea-
sures, we included no specific countermeasures against malicious 
contributions of low-quality or adversarial data to the FL process 
or to verify/guarantee to the data owner that the model used in the 
inference setting is the one promised. Furthermore, we point out 
that discussions of the theoretical threat model are a level of abstrac-
tion that cannot fully represent the complexity of real-life situations. 
For instance, threat modelling is typically undertaken on the level 
of FL participants representing entire hospitals, however this can-
not take every individual person working for these hospitals and 
their specific motivations into account. Similarly, questions about 
participant reimbursement or model ownership in FL were out-
side the scope of our current investigation. Further studies in this 
developing field are required to fully illuminate such details. Lastly, 
as mentioned above, the utilization of DP causes a direct trade-off 
between model privacy and utility. Future work will need to address 
this trade-off through improved privacy analysis and training tech-
niques, as the privacy guarantees of current studies, including the 
ϵ-value of around 6.0 seen in our study, are not yet sufficiently rigor-
ous to be considered generally applicable.

Conclusion
We present a free, open-source software framework for 
privacy-preserving FL and end-to-end encrypted inference on 
medical imaging data, which we showcase in a clinically relevant 
real-life case study. Further research and development will enable 
the larger-scale deployment of our framework, the validation of our 
findings on diverse cross-institutional data, and further the wide-
spread utilization of PPML techniques in healthcare and beyond.

Methods
Dataset collection. For model training, we used the previously proposed 
paediatric pneumonia dataset20. �e dataset was reviewed by a specialist radiologist 
for image quality and representativeness and included 5,163 training images in the 
above-mentioned three categories, as well as a validation set of 624 images. For FL 
model development, the training set was randomly subsampled into three equally 
sized non-overlapping partitions. Class balance between nodes was not enforced.

For model testing on unseen data, we retrospectively collected 497 chest 
radiographs of the same classes of an age-matched cohort from two university 
hospitals (test set 1: 145 images (43 bacterial, 68 normal, 34 viral), test set 2: 
352 images (120 bacterial, 126 normal, 106 viral)). Ethics committee and data 
protection votes for data collection and exchange were granted by all institutions 
waiving the requirement for informed consent in this retrospective study (protocol 
number 111/20 S-KH). All procedures were carried out in accordance with 
clinical best practices, applicable laws and regulations as well as the Declaration of 
Helsinki. Ground-truth labels for the dataset were generated from clinical records 
based on validated laboratory results and clinical parameters (c-reactive protein 
(CRP), body temperature, antibiotic response for bacterial, sputum or sweat 
polymerase chain reaction (PCR) and/or absence of bacterial infection signs for 
viral) as well as clinical assessment of specialist paediatricians/neonatologists not 
involved in image evaluation.

Model training. Privacy-preserving processing of dataset statistics. For the training of 
neural networks, data is typically pre-processed by mean subtraction and division by 
the standard deviation. In federated learning, dataset statistics from the local nodes 
or aggregated statistics from all nodes can be used. Additionally, the provision of the 
�nal model in an inference setting requires these statistics for rescaling incoming 
images. However, dataset statistics can contain private information that should 
not be shared, especially in case non-imaging data is included (for example, age in 
the case of clinical record data). Hence, we propose and implement di�erentially 
private secure aggregation of dataset statistics. Here, sensitivity-calibrated Laplacian 
noise is added to the statistics to satisfy a user-de�ned ϵ DP value before SMPC is 
used to average them, and they are then stored on the central server for later use. 
Before inference starts, the data is rescaled with the (di�erentially private) securely 
aggregated mean and standard deviation of the training set. For training, the nodes 
use their local dataset statistics. �us, data leakage is prevented, especially in the 
case individual nodes contain few, or just one, dataset(s).

Model architecture, hyperparameters and augmentation. We used the ResNet18 
architecture19, pretrained on ImageNet48, with the final average pooling layer 
replaced by a single linear layer with 512 units and randomly initialized with the 
Kaiming Uniform initializer49. Images were cropped to squares such that the entire 
chest section of the radiograph is preserved and resized to 224×224 pixels.

The following standard augmentation techniques were employed: random 
horizontal flips, random affine transformations, Gaussian noise injection. 
In extension, we used the Albumentations library50 to apply the following 
transformations: random changes in the gamma value and brightness, blurring, 
optical distortions, grid shuffles/dropouts/distortions, elastic transforms, changes 
in hue-saturation-value (HSV) colour space, inverting images, cutouts of the 
image, artificial shadows, fog, solarizations and sun flares. We also provide 
the option for histogram equalization or contrast-limited adaptive histogram 
equalization (CLAHE), both as an augmentation and a standardization technique. 
The individual augmentations were introduced with a probability p1 and 
augmentation was activated overall with a probability p2. Furthermore, we applied 
a modified variant of MixUp augmentation51 by which the mixing parameter (λ) is 
randomly sampled from a uniform distribution similar to that in ref. 36.

Training was performed for 40 epochs using the Adam optimizer52 with a 
log-linearly decreasing learning rate initially set at 10−4. PriMIA caches models 
automatically after each round, and selects the model with the highest validation 
set Matthews correlation coefficient (MCC). The centralized model was trained by 
pooling all data on a single machine and training the model on the accumulated 
dataset. Personalized models were trained on the respective nodes using only the 
local dataset. PriMIA implements the ability to carry out centrally coordinated 
automated hyperparameter tuning on the entire federation or locally, which was 
used to determine the best model in every case according to highest validation set 
MCC. An example is provided in Supplementary Section 1 and Supplementary Fig. 
1. Model hyperparameters are centrally set for all nodes, but image augmentation, 
local early stopping and weighted gradient descent are performed locally and 
independently on the nodes. Federated training and inference experiments were 
conducted over the public Internet on cloud instances with 32 CPU cores at 3.1 
GHz and 64 GB of random access memory (RAM). Centralized model training was 
performed on a server with 36 CPU cores at 2.4 GHz and 512 GB of RAM.

Differentially private model training. DP model training entails several additional 
considerations. We describe these alongside PriMIAs DP implementation and the 
process of training the final DP model at length in Supplementary Section 8. In 
brief, PriMIA implements DP gradient descent23 based on clipping the gradient 
L2-norm of each individual sample, then adding calibrated Gaussian noise. This 
process occurs on each node independently with independent noise sources 
(local DP). We considered the paediatric pneumonia dataset private, therefore 
did not perform hyperparameter optimization based on multiple training runs. 
Furthermore, due to the relatively small size of the dataset, we determined it 
would not be possible to train the model with sufficient utility while maintaining 
acceptable privacy guarantees. Hence, we used the pre-training technique described 
previously23 and employed a publicly available dataset trained on a related task to 
determine the optimal parameters for the DP mechanism and pre-train the model. 
Details can be found in Supplementary Section 8.2.2 and Supplementary Fig. 4.

Training topology, gradient descent and secure aggregation. We selected the 
hub-and-spoke system topology due to its reported improved final model 
performance over techniques such as incremental or cyclical training5,43 and its 
higher flexibility with respect to node availability and asynchronous training53. 
In PriMIA training is carried out asynchronously in rounds. Initially, the model 
is sent from the central server to all computation nodes. During each round, 
nodes locally perform a variant of gradient descent in which gradient updates are 
weighted inversely by the frequency of the individual dataset classes present on 
the node (class weighted gradient descent). After a number of batches (denoted by 
σ) have been processed on every node, the updated models are securely averaged 
(SecAgg54) using the FSS SMPC protocol (see below), before being distributed back 
to the nodes. For model averaging, we utilize class-weighted federated averaging37 
whereby the central model updates are weighted by the class frequency on the 
nodes before a new training round begins.

Model synchronization and the σ parameter. Previous work has investigated the 
federated synchronization rate parameter (σ) as central in controlling network 
input/output and training duration55. We found the choice of this parameter to also 
affect model performance and training time, and it has recently been described 
as an important open research target in FL with respect to the optimal trade-off 
between model accuracy and training time47. We provide further details on these 
findings in Supplementary Section 10 and Supplementary Fig. 6.

Measures against FL training deterioration. Literature findings and our own 
evidence indicate that, in case one of the federation’s nodes contains less data 
than others, continuing training beyond convergence until other nodes have 
completed training can lead to overfitting or training collapse. Alternatively, not 
including the updates from this node can lead to catastrophic forgetting56 of the 
node’s data and reduced generalization performance. We empirically determined 
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that local early stopping, that is, terminating training on the local node once the 
node’s local dataset is exhausted, then using the state of the node’s local model for 
all future update steps until a full round of training is completed, led to improved 
training performance.

Secure multi-party computation protocols. Function secret sharing. FSS belongs 
to the family of SMPC protocols, in which several parties share a secret (for 
example, data or a model) to ensure privacy. A party alone holds a random share 
of the private value and cannot reconstruct the value on their own. A quorum of 
parties (sometimes all parties) need to collaborate to reconstruct the private data. 
�e terms encrypted and obfuscated are used interchangeably in this scenario to 
denote secret-shared data.

Unlike classical data secret sharing schemes like SecureNN29, where a 
shared input [[x]] is applied on a public function f, FSS applies a public input 
x on a private shared function [[f]]. Shares or keys ([[f]]

0

, [[f]]
1

) of a function 
f satisfy f(x) = [[f]]

0

(x) + [[f]]
1

(x). Both approaches output a secret shared 
result. In our case, assume two parties respectively own shares [[y]]

0

 and [[y]]
1

 
of a private input y, and they want to compute [[y ≥ 0]]. They receive some 
cryptographic primitives (see below), namely each get a share of a random 
value (or mask) [[α]] and a share of the shared function [[f

α

]] of fα: x → (x ≥ α). 
They first mask their shares of [[y]] using [[α]], by computing [[y]]

0

+ [[α]]
0

 and 
[[y]]

1

+ [[α]]
1

 and then revealing these values to reconstruct x = y + α. Next, they 
apply this public x on their function shares [[f

α

]]
j=0,1

, to obtain a shared output 
([[f

α

]]
0

(x), [[f
α

]]
1

(x)) = [[f
α

(y + α)]] = [[(y + α) ≥ α]] = [[y ≥ 0]]. Previous studies 
on FSS57,58 have shown the existence of such function shares for comparison which 
perfectly hide y and the result. For more details about the concrete implementation 
of FSS we refer to our previous work26. SMPC and the FSS protocol provide 
theoretical security guarantees in the honest-but-curious regime. FSS offers 
high communication efficiency and can be thus employed to reduce transaction 
latency. FSS is based in part on the SPDZ protocol25. To increase efficiency for 
specific mathematical operations (for example multiplication) by reducing the 
rounds of communication required to perform the operation, protocols such 
as SPDZ partition encrypted operations into an offline phase, during which no 
communications between parties take place, and an online phase, where parties 
communicate. During the offline phase, a trusted third party, referred to in 
PriMIA as a cryptographic provider (and in ref. 25 as a trusted dealer), provides 
cryptographic primitives. In practice, it is not a requirement for parties to use 
the PriMIA cryptographic provider, as the framework can be modified to use a 
trusted third party of their own choosing. These primitives can be computed in 
advance as they require no knowledge of the exact functions evaluated during the 
online phase, and the cryptographic provider does not participate in the online 
phase in which these computations take place. A schematic representation of the 
two phases and further terminology are provided in Supplementary Section 9 and 
Supplementary Fig. 5.

Secure aggregation. The SecAgg operation, consisting of a private addition and 
a public multiplication is performed using the additive secret sharing scheme 
of the underlying SPDZ25 protocol. The protocol is designed such that random 
shares are distributed between participants, which individually contain no usable 
information and only the sum of their contributions (that is, the aggregated model 
updates) are revealed. Collusion between up to n − 1 out of n participants (in the 
case study, two out of three) is insufficient to disclose the other participant’s private 
information. SecAgg is performed without a need for cryptographic primitives or 
the cryptographic provider.

Secure inference. Secure inference represents a transaction between two parties, by 
which the data owner wishes to receive the model’s prediction without disclosing 
their data, and the model owner wishes to keep their model hidden. We adapt our 
previous work on AriaNN26, based on FSS, for encrypted inference to leverage its 
high communication efficiency, which allows the evaluation of private comparisons 
with minimal communication overhead. Such comparison operations are 
important for example for the evaluation of maximum pooling layers or rectified 
linear units. The cryptographic primitives provider is again not required for the 
actual inference process (online phase), which occurs exclusively between the two 
parties. In our framework, the data owner initiates a request to the system, the data 
and model are obfuscated by secret sharing and inference takes place using SMPC. 
Secure inference scenario is thus—in the sense described above—an end-to-end 
encrypted transaction, whereby both the data and the model is obfuscated. This 
guarantees both parties single-use accountability, that is, the guarantee that the 
data and model can be used for no other purpose than the one explicitly designated 
by the involved parties.

We note that while the data enjoys information-theoretic secrecy guarantees, 
the party requesting inference has access to the model’s predictions and can 
perform black-box membership inference59 or model inversion attacks60. PriMIA’s 
DP training procedure provides effective protection against such attacks30,32,59 to the 
individuals whose data was used to train the model used for inference.

Classification performance assessment. Classification performance was evaluated 
as follows. For expert readers, accuracy, sensitivity/specificity (recall) and MCC27 

were calculated on test set 1. The model’s performance was evaluated in terms of 
accuracy, sensitivity/specificity (recall), ROC-AUC MCC on the validation set 
and on both test sets. MCC was employed due to its invariance to class imbalance 
and its indication of prediction concordance alongside quality of classification, 
leading to recent recommendations for its use over the usually employed accuracy 
or F1-Score metrics61. McNemar’s test was used to test for statistical significance in 
classification performance. Cohen’s κ (kappa) was used to test inter-rater/-model 
agreement. Statistical significance is defined as p < 0.05.

Inference and training latency assessment. We compared the average ± standard 
deviation duration in seconds of 1 epoch of training over 100 epochs as well as 
the average ± standard deviation duration of one inference transaction over 100 
transactions in three settings: utilizing inter-process communication locally (using 
the PySyft VirtualWorker abstraction (no latency), utilizing the websocket/HTTP 
protocol on the local network (LAN) (low latency) and utilizing the public Internet 
(WAN) (high latency) with a 10-round-trip ping latency of 100 ms. Student’s t-test 
was used to assess statistical significance.

Model inversion utilizing gradient updates. To exemplify the susceptibility of 
models trained without privacy-enhancing techniques against adversarial agents 
that attempt to expose sensitive data, we employ the Improved Deep Leakage from 
Gradients, iDLG, method with modifications as proposed previously32, itself a 
variant of previously shownn techniques31,62. iDLG was found highly successful 
against the ResNet18 architecture used in our case study. We additionally modified 
the attack following newer evidence from63 by utilizing the AdamW optimizer 
and initializing images with uniform sampling to further improve its success. The 
overview of the attack is as follows:

 1. Adversary generates a randomized pair of a dummy model update and a cor-
responding label

 2. Adversary captures the gradient update submitted by an honest client
 3. Using a suitable cost function, the adversary attempts to minimize the di�er-

ence between the honest update and the dummy update
 4. �e algorithm is repeated until either the loss starts diverging or the �nal 

iteration is reached

In the original implementation of the protocol, the di�erence between gradients is 
calculated using

||ΔW

′

− ΔW||
2

= ||
δl(F(x′, W), y′)

δW

− ΔW||
2

where x′ and y′ are the data point and its label respectively, while W and W′ 
are the victim’s and attacker’s gradient respectively. Following Geiping et al.’s 
implementation, we used the cosine similarity metric and utilized images of 
size 224 × 224, as authors show that this is the upper bound for acceptable 
reconstruction quality32. The empirical evaluation of various batch sizes showed 
that larger batch sizes drastically reduce the success of the reconstruction. We 
indicate an averaged model update from n parties each trained with a batch size 
of k to have been trained with an effective batch size of n × k. Our observation 
matches ref. 32 which shows batch sizes above eight to substantially deteriorate 
the attack. We furthermore found the L2-norm of the gradient update to strongly 
influence attack success. Thus, attacks at the beginning of training, when the 
loss (and thus the gradient with respect to it) is largest, were most successful. A 
low MSE value did not always signify a successful attack, since a specific model 
update can be generated by more than one image, resulting in noise that is able to 
mimic the update, but not the corresponding data. To improve attack evaluation, 
we also supply signal-to-noise ratio and perceptual metrics which more robustly 
assess the reconstruction quality and human perception of image similarity as 
performed in32,64–66. As an active attack, iDLG can be executed by an adversarial 
client or central server. We note that in the case of an adversarial central server, 
the usage of SMPC prevents the disclosure of individual model updates, therefore 
only allowing the adversary to utilize averaged model updates instead. For the 
attacks on the FL system we assumed that one out of three data owners is an 
adversary. For the ‘baseline’ attack on the centralized model, we used a batch size 
of 1. Attacks were performed against 100 randomly selected images from the 
training set. For the gradient norm experiments, 100 gradient samples were taken 
at equispaced intervals during model training. Batch size experiments were carried 
out under identical circumstances only varying batch size. Model and dummy 
image initialization was deterministically set for all experiments. Each attack was 
performed in triplicate with at most 24,000 iterations per run and the instance with 
the highest cosine similarity was selected. One way analysis of variance (ANOVA) 
followed by the Student’s t-test were used to assess statistical significance between 
the MSE, SNR and FID scores. Details of the attack against the MedNIST dataset 
can be found in Supplementary Section 6.

Data availability
The paediatric pneumonia dataset is publicly available from Mendeley Data at 
https://doi.org/10.17632/rscbjbr9sj.3. The MedNIST dataset was assembled  
by B. J. Erickson (Department of Radiology, Mayo Clinic) and is available at  
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https://github.com/Project-MONAI/MONAI/. The MSD Liver Segmentation 
Dataset is available at http://medicaldecathlon.com. test sets 1 and 2 contain 
confidential patient information and cannot be shared publicly. Source data are 
provided with this paper.

Code availability
The current version of the PriMIA source code is publicly available at  
https://github.com/gkaissis/PriMIA and permanently archived at https://doi.
org/10.5281/zenodo.454559918. PriMIA includes source code from PySyft  
(https://github.com/OpenMined/PySyft), PyGrid (https://github.com/
OpenMined/PyGrid) and Opacus (https://github.com/pytorch/opacus) re-used 
under open-source licence terms.
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