
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 1105–1116,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

End-to-End Relation Extraction using LSTMs

on Sequences and Tree Structures

Makoto Miwa

Toyota Technological Institute

Nagoya, 468-8511, Japan

makoto-miwa@toyota-ti.ac.jp

Mohit Bansal

Toyota Technological Institute at Chicago

Chicago, IL, 60637, USA

mbansal@ttic.edu

Abstract

We present a novel end-to-end neural

model to extract entities and relations be-

tween them. Our recurrent neural net-

work based model captures both word se-

quence and dependency tree substructure

information by stacking bidirectional tree-

structured LSTM-RNNs on bidirectional

sequential LSTM-RNNs. This allows our

model to jointly represent both entities and

relations with shared parameters in a sin-

gle model. We further encourage detec-

tion of entities during training and use of

entity information in relation extraction

via entity pretraining and scheduled sam-

pling. Our model improves over the state-

of-the-art feature-based model on end-to-

end relation extraction, achieving 12.1%

and 5.7% relative error reductions in F1-

score on ACE2005 and ACE2004, respec-

tively. We also show that our LSTM-

RNN based model compares favorably to

the state-of-the-art CNN based model (in

F1-score) on nominal relation classifica-

tion (SemEval-2010 Task 8). Finally, we

present an extensive ablation analysis of

several model components.

1 Introduction

Extracting semantic relations between entities in

text is an important and well-studied task in in-

formation extraction and natural language pro-

cessing (NLP). Traditional systems treat this task

as a pipeline of two separated tasks, i.e., named

entity recognition (NER) (Nadeau and Sekine,

2007; Ratinov and Roth, 2009) and relation

extraction (Zelenko et al., 2003; Zhou et al.,

2005), but recent studies show that end-to-end

(joint) modeling of entity and relation is impor-

tant for high performance (Li and Ji, 2014; Miwa

and Sasaki, 2014) since relations interact closely

with entity information. For instance, to learn

that Toefting and Bolton have an Organization-

Affiliation (ORG-AFF) relation in the sentence

Toefting transferred to Bolton, the entity informa-

tion that Toefting and Bolton are Person and Orga-

nization entities is important. Extraction of these

entities is in turn encouraged by the presence of

the context words transferred to, which indicate an

employment relation. Previous joint models have

employed feature-based structured learning. An

alternative approach to this end-to-end relation ex-

traction task is to employ automatic feature learn-

ing via neural network (NN) based models.

There are two ways to represent relations be-

tween entities using neural networks: recur-

rent/recursive neural networks (RNNs) and convo-

lutional neural networks (CNNs). Among these,

RNNs can directly represent essential linguis-

tic structures, i.e., word sequences (Hammerton,

2001) and constituent/dependency trees (Tai et

al., 2015). Despite this representation ability,

for relation classification tasks, the previously re-

ported performance using long short-term memory

(LSTM) based RNNs (Xu et al., 2015b; Li et al.,

2015) is worse than one using CNNs (dos Santos

et al., 2015). These previous LSTM-based sys-

tems mostly include limited linguistic structures

and neural architectures, and do not model entities

and relations jointly. We are able to achieve im-

provements over state-of-the-art models via end-

to-end modeling of entities and relations based on

richer LSTM-RNN architectures that incorporate

complementary linguistic structures.

Word sequence and tree structure are known to

be complementary information for extracting rela-

tions. For instance, dependencies between words

1105

are not enough to predict that source and U.S.

have an ORG-AFF relation in the sentence “This

is ...”, one U.S. source said, and the context word

said is required for this prediction. Many tradi-

tional, feature-based relation classification mod-

els extract features from both sequences and parse

trees (Zhou et al., 2005). However, previous RNN-

based models focus on only one of these linguistic

structures (Socher et al., 2012).

We present a novel end-to-end model to extract

relations between entities on both word sequence

and dependency tree structures. Our model allows

joint modeling of entities and relations in a sin-

gle model by using both bidirectional sequential

(left-to-right and right-to-left) and bidirectional

tree-structured (bottom-up and top-down) LSTM-

RNNs. Our model first detects entities and then

extracts relations between the detected entities us-

ing a single incrementally-decoded NN structure,

and the NN parameters are jointly updated using

both entity and relation labels. Unlike traditional

incremental end-to-end relation extraction models,

our model further incorporates two enhancements

into training: entity pretraining, which pretrains

the entity model, and scheduled sampling (Ben-

gio et al., 2015), which replaces (unreliable) pre-

dicted labels with gold labels in a certain probabil-

ity. These enhancements alleviate the problem of

low-performance entity detection in early stages

of training, as well as allow entity information to

further help downstream relation classification.

On end-to-end relation extraction, we improve

over the state-of-the-art feature-based model, with

12.1% (ACE2005) and 5.7% (ACE2004) relative

error reductions in F1-score. On nominal relation

classification (SemEval-2010 Task 8), our model

compares favorably to the state-of-the-art CNN-

based model in F1-score. Finally, we also ab-

late and compare our various model components,

which leads to some key findings (both positive

and negative) about the contribution and effec-

tiveness of different RNN structures, input depen-

dency relation structures, different parsing mod-

els, external resources, and joint learning settings.

2 Related Work

LSTM-RNNs have been widely used for sequen-

tial labeling, such as clause identification (Ham-

merton, 2001), phonetic labeling (Graves and

Schmidhuber, 2005), and NER (Hammerton,

2003). Recently, Huang et al. (2015) showed that

building a conditional random field (CRF) layer on

top of bidirectional LSTM-RNNs performs com-

parably to the state-of-the-art methods in the part-

of-speech (POS) tagging, chunking, and NER.

For relation classification, in addition to tra-

ditional feature/kernel-based approaches (Zelenko

et al., 2003; Bunescu and Mooney, 2005), sev-

eral neural models have been proposed in the

SemEval-2010 Task 8 (Hendrickx et al., 2010),

including embedding-based models (Hashimoto

et al., 2015), CNN-based models (dos Santos et

al., 2015), and RNN-based models (Socher et al.,

2012). Recently, Xu et al. (2015a) and Xu et

al. (2015b) showed that the shortest dependency

paths between relation arguments, which were

used in feature/kernel-based systems (Bunescu

and Mooney, 2005), are also useful in NN-based

models. Xu et al. (2015b) also showed that LSTM-

RNNs are useful for relation classification, but the

performance was worse than CNN-based models.

Li et al. (2015) compared separate sequence-based

and tree-structured LSTM-RNNs on relation clas-

sification, using basic RNN model structures.

Research on tree-structured LSTM-RNNs (Tai

et al., 2015) fixes the direction of information

propagation from bottom to top, and also cannot

handle an arbitrary number of typed children as in

a typed dependency tree. Furthermore, no RNN-

based relation classification model simultaneously

uses word sequence and dependency tree informa-

tion. We propose several such novel model struc-

tures and training settings, investigating the simul-

taneous use of bidirectional sequential and bidi-

rectional tree-structured LSTM-RNNs to jointly

capture linear and dependency context for end-to-

end extraction of relations between entities.

As for end-to-end (joint) extraction of relations

between entities, all existing models are feature-

based systems (and no NN-based model has been

proposed). Such models include structured pre-

diction (Li and Ji, 2014; Miwa and Sasaki,

2014), integer linear programming (Roth and Yih,

2007; Yang and Cardie, 2013), card-pyramid pars-

ing (Kate and Mooney, 2010), and global prob-

abilistic graphical models (Yu and Lam, 2010;

Singh et al., 2013). Among these, structured pre-

diction methods are state-of-the-art on several cor-

pora. We present an improved, NN-based alterna-

tive for the end-to-end relation extraction.

1106

In 1909 , Sidney Yates was born in Chicago .

B-PER L-PER

word/POS
embeddings

Bi-LSTM

hidden

softmax

nsubjpass prep pobj

Yates

born

in

Chicago

PHYS

Bi-TreeLSTM

hidden

softmax

Sequence (Entity)

Dependency (Relation)

LSTM unit
dropout

tanh

tanh

dependency embeddings

tanh

label embeddings

embeddings

neural net / softmax

・・・・・・

Fig. 1: Our incrementally-decoded end-to-end relation extraction model, with bidirectional sequential

and bidirectional tree-structured LSTM-RNNs.

3 Model

We design our model with LSTM-RNNs that rep-

resent both word sequences and dependency tree

structures, and perform end-to-end extraction of

relations between entities on top of these RNNs.

Fig. 1 illustrates the overview of the model. The

model mainly consists of three representation lay-

ers: a word embeddings layer (embedding layer),

a word sequence based LSTM-RNN layer (se-

quence layer), and finally a dependency subtree

based LSTM-RNN layer (dependency layer). Dur-

ing decoding, we build greedy, left-to-right entity

detection on the sequence layer and realize rela-

tion classification on the dependency layers, where

each subtree based LSTM-RNN corresponds to

a relation candidate between two detected enti-

ties. After decoding the entire model structure, we

update the parameters simultaneously via back-

propagation through time (BPTT) (Werbos, 1990).

The dependency layers are stacked on the se-

quence layer, so the embedding and sequence lay-

ers are shared by both entity detection and rela-

tion classification, and the shared parameters are

affected by both entity and relation labels.

3.1 Embedding Layer

The embedding layer handles embedding repre-

sentations. nw, np, nd and ne-dimensional vectors

v(w), v(p), v(d) and v(e) are embedded to words,

part-of-speech (POS) tags, dependency types, and

entity labels, respectively.

3.2 Sequence Layer

The sequence layer represents words in a linear se-

quence using the representations from the embed-

ding layer. This layer represents sentential con-

text information and maintains entities, as shown

in bottom-left part of Fig. 1.

We represent the word sequence in a sentence

with bidirectional LSTM-RNNs (Graves et al.,

2013). The LSTM unit at t-th word consists of

a collection of nls-dimensional vectors: an input

gate it, a forget gate ft, an output gate ot, a mem-

ory cell ct, and a hidden state ht. The unit re-

ceives an n-dimensional input vector xt, the previ-

ous hidden state ht−1, and the memory cell ct−1,

and calculates the new vectors using the following

equations:

it = σ
(

W (i)xt + U (i)ht−1 + b(i)
)

, (1)

ft = σ
(

W (f)xt + U (f)ht−1 + b(f)
)

,

ot = σ
(

W (o)xt + U (o)ht−1 + b(o)
)

,

ut = tanh
(

W (u)xt + U (u)ht−1 + b(u)
)

,

ct = it⊙ut + ft⊙ct−1,

ht = ot⊙ tanh(ct),

where σ denotes the logistic function, ⊙ denotes

element-wise multiplication, W and U are weight

matrices, and b are bias vectors. The LSTM unit

at t-th word receives the concatenation of word

and POS embeddings as its input vector: xt =
[

v
(w)
t ; v

(p)
t

]

. We also concatenate the hidden state

vectors of the two directions’ LSTM units corre-

sponding to each word (denoted as
−→
ht and

←−
ht) as

1107

its output vector, st =
[−→
ht ;
←−
ht

]

, and pass it to the

subsequent layers.

3.3 Entity Detection

We treat entity detection as a sequence labeling

task. We assign an entity tag to each word us-

ing a commonly used encoding scheme BILOU

(Begin, Inside, Last, Outside, Unit) (Ratinov and

Roth, 2009), where each entity tag represents the

entity type and the position of a word in the entity.

For example, in Fig. 1, we assign B-PER and L-

PER (which denote the beginning and last words

of a person entity type, respectively) to each word

in Sidney Yates to represent this phrase as a PER

(person) entity type.

We perform entity detection on top of the se-

quence layer. We employ a two-layered NN with

an nhe
-dimensional hidden layer h(e) and a soft-

max output layer for entity detection.

h
(e)
t = tanh

(

W (eh)[st; v
(e)
t−1] + b(eh)

)

(2)

yt = softmax
(

W (ey)h
(e)
t + b(ey)

)

(3)

Here, W are weight matrices and b are bias vec-

tors.

We assign entity labels to words in a greedy,

left-to-right manner.1 During this decoding, we

use the predicted label of a word to predict the

label of the next word so as to take label depen-

dencies into account. The NN above receives the

concatenation of its corresponding outputs in the

sequence layer and the label embedding for its pre-

vious word (Fig. 1).

3.4 Dependency Layer

The dependency layer represents a relation be-

tween a pair of two target words (corresponding

to a relation candidate in relation classification) in

the dependency tree, and is in charge of relation-

specific representations, as is shown in top-right

part of Fig. 1. This layer mainly focuses on the

shortest path between a pair of target words in the

dependency tree (i.e., the path between the least

common node and the two target words) since

these paths are shown to be effective in relation

classification (Xu et al., 2015a). For example, we

show the shortest path between Yates and Chicago

in the bottom of Fig. 1, and this path well captures

the key phrase of their relation, i.e., born in.

1We also tried beam search but this did not show improve-

ments in initial experiments.

We employ bidirectional tree-structured LSTM-

RNNs (i.e., bottom-up and top-down) to represent

a relation candidate by capturing the dependency

structure around the target word pair. This bidirec-

tional structure propagates to each node not only

the information from the leaves but also informa-

tion from the root. This is especially important

for relation classification, which makes use of ar-

gument nodes near the bottom of the tree, and our

top-down LSTM-RNN sends information from the

top of the tree to such near-leaf nodes (unlike in

standard bottom-up LSTM-RNNs).2 Note that the

two variants of tree-structured LSTM-RNNs by

Tai et al. (2015) are not able to represent our tar-

get structures which have a variable number of

typed children: the Child-Sum Tree-LSTM does

not deal with types and the N -ary Tree assumes

a fixed number of children. We thus propose a

new variant of tree-structured LSTM-RNN that

shares weight matrices Us for same-type children

and also allows variable number of children. For

this variant, we calculate nlt-dimensional vectors

in the LSTM unit at t-th node with C(t) children

using following equations:

it = σ



W (i)xt +
∑

l∈C(t)

U
(i)
m(l)htl + b(i)



 , (4)

ftk = σ



W (f)xt +
∑

l∈C(t)

U
(f)
m(k)m(l)htl + b(f)



 ,

ot = σ



W (o)xt +
∑

l∈C(t)

U
(o)
m(l)htl + b(o)



 ,

ut = tanh



W (u)xt +
∑

l∈C(t)

U
(u)
m(l)htl + b(u)



 ,

ct = it⊙ut +
∑

l∈C(t)

ftl⊙ctl,

ht = ot⊙ tanh(ct),

where m(·) is a type mapping function.

To investigate appropriate structures to repre-

sent relations between two target word pairs, we

experiment with three structure options. We pri-

marily employ the shortest path structure (SP-

Tree), which captures the core dependency path

between a target word pair and is widely used in

relation classification models, e.g., (Bunescu and

2We also tried to use one LSTM-RNN by connecting the

root (Paulus et al., 2014), but preparing two LSTM-RNNs

showed slightly better performance in our initial experiments.

1108

Mooney, 2005; Xu et al., 2015a). We also try two

other dependency structures: SubTree and Full-

Tree. SubTree is the subtree under the lowest

common ancestor of the target word pair. This pro-

vides additional modifier information to the path

and the word pair in SPTree. FullTree is the full

dependency tree. This captures context from the

entire sentence. While we use one node type for

SPTree, we define two node types for SubTree and

FullTree, i.e., one for nodes on shortest paths and

one for all other nodes. We use the type mapping

function m(·) to distinguish these two nodes types.

3.5 Stacking Sequence and Dependency

Layers

We stack the dependency layers (corresponding to

relation candidates) on top of the sequence layer to

incorporate both word sequence and dependency

tree structure information into the output. The

dependency-layer LSTM unit at the t-th word re-

ceives as input xt =
[

st; v
(d)
t ; v

(e)
t

]

, i.e., the con-

catenation of its corresponding hidden state vec-

tors st in the sequence layer, dependency type

embedding v
(d)
t (denotes the type of dependency

to the parent3), and label embedding v
(e)
t (corre-

sponds to the predicted entity label).

3.6 Relation Classification

We incrementally build relation candidates using

all possible combinations of the last words of de-

tected entities, i.e., words with L or U labels in

the BILOU scheme, during decoding. For in-

stance, in Fig. 1, we build a relation candidate us-

ing Yates with an L-PER label and Chicago with

an U-LOC label. For each relation candidate, we

realize the dependency layer dp (described above)

corresponding to the path between the word pair

p in the relation candidate, and the NN receives a

relation candidate vector constructed from the out-

put of the dependency tree layer, and predicts its

relation label. We treat a pair as a negative relation

when the detected entities are wrong or when the

pair has no relation. We represent relation labels

by type and direction, except for negative relations

that have no direction.

The relation candidate vector is constructed as

the concatenation dp = [↑hpA
; ↓hp1

; ↓hp2
], where

↑hpA
is the hidden state vector of the top LSTM

3We use the dependency to the parent since the number of

children varies. Dependency types can also be incorporated

into m(·), but this did not help in initial experiments.

unit in the bottom-up LSTM-RNN (representing

the lowest common ancestor of the target word

pair p), and ↓hp1
, ↓hp2

are the hidden state vec-

tors of the two LSTM units representing the first

and second target words in the top-down LSTM-

RNN.4 All the corresponding arrows are shown in

Fig. 1.

Similarly to the entity detection, we employ a

two-layered NN with an nhr
-dimensional hidden

layer h(r) and a softmax output layer (with weight

matrices W , bias vectors b).

h(r)
p = tanh

(

W (rh)dp + b(rh)
)

(5)

yp = softmax
(

W (ry)h
(r)
t + b(ry)

)

(6)

We construct the input dp for relation classifi-

cation from tree-structured LSTM-RNNs stacked

on sequential LSTM-RNNs, so the contribution

of sequence layer to the input is indirect. Fur-

thermore, our model uses words for represent-

ing entities, so it cannot fully use the entity in-

formation. To alleviate these problems, we di-

rectly concatenate the average of hidden state vec-

tors for each entity from the sequence layer to

the input dp to relation classification, i.e., d′p =
[

dp;
1

|Ip1
|

∑

i∈Ip1

si;
1

|Ip2
|

∑

i∈Ip2

si

]

(Pair), where

Ip1
and Ip2

represent sets of word indices in the

first and second entities.5

Also, we assign two labels to each word pair in

prediction since we consider both left-to-right and

right-to-left directions. When the predicted labels

are inconsistent, we select the positive and more

confident label, similar to Xu et al. (2015a).

3.7 Training

We update the model parameters including

weights, biases, and embeddings by BPTT and

Adam (Kingma and Ba, 2015) with gradient clip-

ping, parameter averaging, and L2-regularization

(we regularize weights W and U , not the bias

terms b). We also apply dropout (Srivastava et al.,

2014) to the embedding layer and to the final hid-

den layers for entity detection and relation classi-

fication.

We employ two enhancements, scheduled sam-

pling (Bengio et al., 2015) and entity pretrain-

ing, to alleviate the problem of unreliable pre-

diction of entities in the early stage of training,

4Note that the order of the target words corresponds to the

direction of the relation, not the positions in the sentence.
5Note that we do not show this Pair in Fig.1 for simplic-

ity.

1109

and to encourage building positive relation in-

stances from the detected entities. In scheduled

sampling, we use gold labels as prediction in the

probability of ǫi that depends on the number of

epochs i during training if the gold labels are le-

gal. As for ǫi, we choose the inverse sigmoid de-

cay ǫi = k/(k + exp(i/k)), where k(≥ 1) is a

hyper-parameter that adjusts how often we use the

gold labels as prediction. Entity pretraining is in-

spired by (Pentina et al., 2015), and we pretrain

the entity detection model using the training data

before training the entire model parameters.

4 Results and Discussion

4.1 Data and Task Settings

We evaluate on three datasets: ACE05 and ACE04

for end-to-end relation extraction, and SemEval-

2010 Task 8 for relation classification. We use the

first two datasets as our primary target, and use

the last one to thoroughly analyze and ablate the

relation classification part of our model.

ACE05 defines 7 coarse-grained entity types

and 6 coarse-grained relation types between enti-

ties. We use the same data splits, preprocessing,

and task settings as Li and Ji (2014). We report

the primary micro F1-scores as well as micro pre-

cision and recall on both entity and relation extrac-

tion to better explain model performance. We treat

an entity as correct when its type and the region of

its head are correct. We treat a relation as correct

when its type and argument entities are correct; we

thus treat all non-negative relations on wrong en-

tities as false positives.

ACE04 defines the same 7 coarse-grained en-

tity types as ACE05 (Doddington et al., 2004), but

defines 7 coarse-grained relation types. We fol-

low the cross-validation setting of Chan and Roth

(2011) and Li and Ji (2014), and the preprocessing

and evaluation metrics of ACE05.

SemEval-2010 Task 8 defines 9 relation types

between nominals and a tenth type Other when

two nouns have none of these relations (Hendrickx

et al., 2010). We treat this Other type as a nega-

tive relation type, and no direction is considered.

The dataset consists of 8,000 training and 2,717

test sentences, and each sentence is annotated with

a relation between two given nominals. We ran-

domly selected 800 sentences from the training set

as our development set. We followed the official

task setting, and report the official macro-averaged

F1-score (Macro-F1) on the 9 relation types.

For more details of the data and task settings,

please refer to the supplementary material.

4.2 Experimental Settings

We implemented our model using the cnn library.6

We parsed the texts using the Stanford neural de-

pendency parser7 (Chen and Manning, 2014) with

the original Stanford Dependencies. Based on pre-

liminary tuning, we fixed embedding dimensions

nw to 200, np, nd, ne to 25, and dimensions of

intermediate layers (nls , nlt of LSTM-RNNs and

nhe
, nhr

of hidden layers) to 100. We initialized

word vectors via word2vec (Mikolov et al., 2013)

trained on Wikipedia8 and randomly initialized all

other parameters. We tuned hyper-parameters us-

ing development sets for ACE05 and SemEval-

2010 Task 8 to achieve high primary (Micro- and

Macro-) F1-scores.9 For ACE04, we directly em-

ployed the best parameters for ACE05. The hyper-

parameter settings are shown in the supplementary

material. For SemEval-2010 Task 8, we also omit-

ted the entity detection and label embeddings since

only target nominals are annotated and the task de-

fines no entity types. Our statistical significance

results are based on the Approximate Randomiza-

tion (AR) test (Noreen, 1989).

4.3 End-to-end Relation Extraction Results

Table 1 compares our model with the state-of-the-

art feature-based model of Li and Ji (2014)10 on

final test sets, and shows that our model performs

better than the state-of-the-art model.

To analyze the contributions and effects of the

various components of our end-to-end relation ex-

traction model, we perform ablation tests on the

ACE05 development set (Table 2). The perfor-

mance slightly degraded without scheduled sam-

pling, and the performance significantly degraded

when we removed entity pretraining or removed

both (p<0.05). This is reasonable because the

model can only create relation instances when

both of the entities are found and, without these

enhancements, it may get too late to find some re-

lations. Removing label embeddings did not affect

6
https://github.com/clab/cnn

7
http://nlp.stanford.edu/software/

stanford-corenlp-full-2015-04-20.zip
8
https://dumps.wikimedia.org/enwiki/

20150901/
9We did not tune the precision-recall trade-offs, but doing

so can specifically improve precision further.
10Other work on ACE is not comparable or performs worse

than the model by Li and Ji (2014).

1110

Corpus Settings Entity Relation

P R F1 P R F1

ACE05 Our Model (SPTree) 0.829 0.839 0.834 0.572 0.540 0.556

Li and Ji (2014) 0.852 0.769 0.808 0.654 0.398 0.495

ACE04 Our Model (SPTree) 0.808 0.829 0.818 0.487 0.481 0.484

Li and Ji (2014) 0.835 0.762 0.797 0.608 0.361 0.453

Table 1: Comparison with the state-of-the-art on the ACE05 test set and ACE04 dataset.

Settings Entity Relation

P R F1 P R F1

Our Model (SPTree) 0.815 0.821 0.818 0.506 0.529 0.518

−Entity pretraining (EP) 0.793 0.798 0.796 0.494 0.491 0.492*

−Scheduled sampling (SS) 0.812 0.818 0.815 0.522 0.490 0.505

−Label embeddings (LE) 0.811 0.821 0.816 0.512 0.499 0.505

−Shared parameters (Shared) 0.796 0.820 0.808 0.541 0.482 0.510

−EP, SS 0.781 0.804 0.792 0.509 0.479 0.494*

−EP, SS, LE, Shared 0.800 0.815 0.807 0.520 0.452 0.484**

Table 2: Ablation tests on the ACE05 development dataset. * denotes significance at p<0.05, ** denotes

p<0.01.

Settings Entity Relation

P R F1 P R F1

SPTree 0.815 0.821 0.818 0.506 0.529 0.518

SubTree 0.812 0.818 0.815 0.525 0.506 0.515

FullTree 0.806 0.816 0.811 0.536 0.507 0.521

SubTree (-SP) 0.803 0.816 0.810 0.533 0.495 0.514

FullTree (-SP) 0.804 0.817 0.811 0.517 0.470 0.492*

Child-Sum 0.806 0.819 0.8122 0.514 0.499 0.506

SPSeq 0.801 0.813 0.807 0.500 0.523 0.511

SPXu 0.809 0.818 0.813 0.494 0.522 0.508

Table 3: Comparison of LSTM-RNN structures on the ACE05 development dataset.

the entity detection performance, but this degraded

the recall in relation classification. This indicates

that entity label information is helpful in detecting

relations.

We also show the performance without shar-

ing parameters, i.e., embedding and sequence lay-

ers, for detecting entities and relations (−Shared

parameters); we first train the entity detection

model, detect entities with the model, and build

a separate relation extraction model using the

detected entities, i.e., without entity detection.

This setting can be regarded as a pipeline model

since two separate models are trained sequentially.

Without the shared parameters, both the perfor-

mance in entity detection and relation classifica-

tion drops slightly, although the differences are

not significant. When we removed all the en-

hancements, i.e., scheduled sampling, entity pre-

training, label embedding, and shared parameters,

the performance is significantly worse than SP-

Tree (p<0.01), showing that these enhancements

provide complementary benefits to end-to-end re-

lation extraction.

Next, we show the performance with differ-

ent LSTM-RNN structures in Table 3. We first

compare the three input dependency structures

(SPTree, SubTree, FullTree) for tree-structured

LSTM-RNNs. Performances on these three struc-

tures are almost same when we distinguish the

nodes in the shortest paths from other nodes,

but when we do not distinguish them (-SP), the

information outside of the shortest path, i.e.,

1111

FullTree (-SP), significantly hurts performance

(p<0.05). We then compare our tree-structured

LSTM-RNN (SPTree) with the Child-Sum tree-

structured LSTM-RNN on the shortest path of Tai

et al. (2015). Child-Sum performs worse than our

SPTree model, but not with as big of a decrease

as above. This may be because the difference in

the models appears only on nodes that have multi-

ple children and all the nodes except for the least

common node have one child.

We finally show results with two counterparts

of sequence-based LSTM-RNNs using the short-

est path (last two rows in Table 3). SPSeq is a bidi-

rectional LSTM-RNN on the shortest path. The

LSTM unit receives input from the sequence layer

concatenated with embeddings for the surround-

ing dependency types and directions. We concate-

nate the outputs of the two RNNs for the relation

candidate. SPXu is our adaptation of the shortest

path LSTM-RNN proposed by Xu et al. (2015b)

to match our sequence-layer based model.11 This

has two LSTM-RNNs for the left and right sub-

paths of the shortest path. We first calculate the

max pooling of the LSTM units for each of these

two RNNs, and then concatenate the outputs of the

pooling for the relation candidate. The compar-

ison with these sequence-based LSTM-RNNs in-

dicates that a tree-structured LSTM-RNN is com-

parable to sequence-based ones in representing

shortest paths.

Overall, the performance comparison of the

LSTM-RNN structures in Table 3 show that for

end-to-end relation extraction, selecting the ap-

propriate tree structure representation of the input

(i.e., the shortest path) is more important than the

choice of the LSTM-RNN structure on that input

(i.e., sequential versus tree-based).

4.4 Relation Classification Analysis Results

To thoroughly analyze the relation classification

part alone, e.g., comparing different LSTM struc-

tures, architecture components such as hidden lay-

ers and input information, and classification task

settings, we use the SemEval-2010 Task 8. This

dataset, often used to evaluate NN models for rela-

tion classification, annotates only relation-related

nominals (unlike ACE datasets), so we can focus

cleanly on the relation classification part.

11This is different from the original one in that we use the

sequence layer and we concatenate the embeddings for the in-

put, while the original one prepared individual LSTM-RNNs

for different inputs and concatenated their outputs.

Settings Macro-F1

No External Knowledge Resources

Our Model (SPTree) 0.844

dos Santos et al. (2015) 0.841

Xu et al. (2015a) 0.840

+WordNet

Our Model (SPTree + WordNet) 0.855

Xu et al. (2015a) 0.856

Xu et al. (2015b) 0.837

Table 4: Comparison with state-of-the-art models

on SemEval-2010 Task 8 test-set.

Settings Macro-F1

SPTree 0.851
SubTree 0.839
FullTree 0.829∗
SubTree (-SP) 0.840
FullTree (-SP) 0.828∗

Child-Sum 0.838
SPSeq 0.844
SPXu 0.847

Table 5: Comparison of LSTM-RNN structures on

SemEval-2010 Task 8 development set.

We first report official test set results in Ta-

ble 4. Our novel LSTM-RNN model is compara-

ble to both the state-of-the-art CNN-based models

on this task with or without external sources, i.e.,

WordNet, unlike the previous best LSTM-RNN

model (Xu et al., 2015b).12

Next, we compare different LSTM-RNN struc-

tures in Table 5. As for the three input de-

pendency structures (SPTree, SubTree, FullTree),

FullTree performs significantly worse than other

structures regardless of whether or not we dis-

tinguish the nodes in the shortest paths from the

other nodes, which hints that the information out-

side of the shortest path significantly hurts the per-

formance (p<0.05). We also compare our tree-

structured LSTM-RNN (SPTree) with sequence-

based LSTM-RNNs (SPSeq and SPXu) and tree-

structured LSTM-RNNs (Child-Sum). All these

LSTM-RNNs perform slightly worse than our SP-

12When incorporating WordNet information into our

model, we prepared embeddings for WordNet hypernyms ex-

tracted by SuperSenseTagger (Ciaramita and Altun, 2006)

and concatenated the embeddings to the input vector (the con-

catenation of word and POS embeddings) of the sequence

LSTM. We tuned the dimension of the WordNet embeddings

and set it to 15 using the development dataset.

1112

Settings Macro-F1

SPTree 0.851

−Hidden layer 0.839

−Sequence layer 0.840
−Pair 0.844
−Pair, Sequence layer 0.827∗

Stanford PCFG 0.844

+WordNet 0.854

Left-to-right candidates 0.843
Neg. sampling (Xu et al., 2015a) 0.848

Table 6: Model setting ablations on SemEval-

2010 development set.

Tree model, but the differences are small.

Overall, for relation classification, although

the performance comparison of the LSTM-RNN

structures in Table 5 produces different results on

FullTree as compared to the results on ACE05 in

Table 3, the trend still holds that selecting the ap-

propriate tree structure representation of the input

is more important than the choice of the LSTM-

RNN structure on that input.

Finally, Table 6 summarizes the contribution

of several model components and training set-

tings on SemEval relation classification. We first

remove the hidden layer by directly connecting

the LSTM-RNN layers to the softmax layers, and

found that this slightly degraded performance, but

the difference was small. We then skip the se-

quence layer and directly use the word and POS

embeddings for the dependency layer. Removing

the sequence layer13 or entity-related information

from the sequence layer (−Pair) slightly degraded

performance, and, on removing both, the perfor-

mance dropped significantly (p<0.05). This indi-

cates that the sequence layer is necessary but the

last words of nominals are almost enough for ex-

pressing the relations in this task.

When we replace the Stanford neural depen-

dency parser with the Stanford lexicalized PCFG

parser (Stanford PCFG), the performance slightly

dropped, but the difference was small. This in-

dicates that the selection of parsing models is

not critical. We also included WordNet, and this

slightly improved the performance (+WordNet),

but the difference was small. Lastly, for the gener-

ation of relation candidates, generating only left-

to-right candidates slightly degraded the perfor-

13Note that this setting still uses some sequence layer in-

formation since it uses the entity-related information (Pair).

mance, but the difference was small and hence the

creation of right-to-left candidates was not critical.

Treating the inverse relation candidate as a nega-

tive instance (Negative sampling) also performed

comparably to other generation methods in our

model (unlike Xu et al. (2015a), which showed

a significance improvement over generating only

left-to-right candidates).

5 Conclusion

We presented a novel end-to-end relation extrac-

tion model that represents both word sequence

and dependency tree structures by using bidirec-

tional sequential and bidirectional tree-structured

LSTM-RNNs. This allowed us to represent both

entities and relations in a single model, achiev-

ing gains over the state-of-the-art, feature-based

system on end-to-end relation extraction (ACE04

and ACE05), and showing favorably compara-

ble performance to recent state-of-the-art CNN-

based models on nominal relation classification

(SemEval-2010 Task 8).

Our evaluation and ablation led to three key

findings. First, the use of both word sequence

and dependency tree structures is effective. Sec-

ond, training with the shared parameters improves

relation extraction accuracy, especially when em-

ployed with entity pretraining, scheduled sam-

pling, and label embeddings. Finally, the shortest

path, which has been widely used in relation clas-

sification, is also appropriate for representing tree

structures in neural LSTM models.

Acknowledgments

We thank Qi Li, Kevin Gimpel, and the anony-

mous reviewers for dataset details and helpful dis-

cussions.

References

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and

Noam Shazeer. 2015. Scheduled sampling for

sequence prediction with recurrent neural net-

works. arXiv preprint arXiv:1506.03099.

Razvan C Bunescu and Raymond Mooney. 2005.

A shortest path dependency kernel for relation

extraction. In Proceedings of the conference

on Human Language Technology and Empiri-

cal Methods in Natural Language Processing,

pages 724–731. ACL.

1113

Yee Seng Chan and Dan Roth. 2011. Exploit-

ing syntactico-semantic structures for relation

extraction. In Proceedings of the 49th An-

nual Meeting of the Association for Computa-

tional Linguistics: Human Language Technolo-

gies, pages 551–560, Portland, Oregon, USA,

June. ACL.

Danqi Chen and Christopher Manning. 2014. A

fast and accurate dependency parser using neu-

ral networks. In Proceedings of the 2014 Con-

ference on Empirical Methods in Natural Lan-

guage Processing (EMNLP), pages 740–750,

Doha, Qatar, October. ACL.

Massimiliano Ciaramita and Yasemin Altun.

2006. Broad-coverage sense disambiguation

and information extraction with a supersense

sequence tagger. In Proceedings of the 2006

Conference on Empirical Methods in Natural

Language Processing, pages 594–602, Sydney,

Australia, July. ACL.

George Doddington, Alexis Mitchell, Mark Przy-

bocki, Lance Ramshaw, Stephanie Strassel, and

Ralph Weischedel. 2004. The automatic con-

tent extraction (ace) program – tasks, data, and

evaluation. In Proceedings of the Fourth In-

ternational Conference on Language Resources

and Evaluation (LREC-2004), Lisbon, Portu-

gal, May. European Language Resources Asso-

ciation (ELRA).

Cicero dos Santos, Bing Xiang, and Bowen Zhou.

2015. Classifying relations by ranking with

convolutional neural networks. In Proceedings

of the 53rd Annual Meeting of the Association

for Computational Linguistics and the 7th In-

ternational Joint Conference on Natural Lan-

guage Processing (Volume 1: Long Papers),

pages 626–634, Beijing, China, July. ACL.

Alex Graves and Jürgen Schmidhuber. 2005.

Framewise phoneme classification with bidirec-

tional lstm and other neural network architec-

tures. Neural Networks, 18(5):602–610.

Alan Graves, Abdel-rahman Mohamed, and Ge-

offrey Hinton. 2013. Speech recognition with

deep recurrent neural networks. In Acoustics,

Speech and Signal Processing (ICASSP), 2013

IEEE International Conference on, pages 6645–

6649. IEEE.

James Hammerton. 2001. Clause identification

with long short-term memory. In Proceedings

of the 2001 workshop on Computational Nat-

ural Language Learning-Volume 7, page 22.

ACL.

James Hammerton. 2003. Named entity recog-

nition with long short-term memory. In Wal-

ter Daelemans and Miles Osborne, editors, Pro-

ceedings of the Seventh Conference on Natu-

ral Language Learning at HLT-NAACL 2003,

pages 172–175. ACL.

Kazuma Hashimoto, Pontus Stenetorp, Makoto

Miwa, and Yoshimasa Tsuruoka. 2015. Task-

oriented learning of word embeddings for se-

mantic relation classification. In Proceedings

of the Nineteenth Conference on Computational

Natural Language Learning, pages 268–278,

Beijing, China, July. ACL.

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva,

Preslav Nakov, Diarmuid Ó Séaghdha, Sebas-

tian Padó, Marco Pennacchiotti, Lorenza Ro-

mano, and Stan Szpakowicz. 2010. Semeval-

2010 task 8: Multi-way classification of se-

mantic relations between pairs of nominals. In

Proceedings of the 5th International Workshop

on Semantic Evaluation, pages 33–38, Uppsala,

Sweden, July. ACL.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-

rectional lstm-crf models for sequence tagging.

arXiv preprint arXiv:1508.01991.

Rohit J. Kate and Raymond Mooney. 2010.

Joint entity and relation extraction using card-

pyramid parsing. In Proceedings of the Four-

teenth Conference on Computational Natural

Language Learning, pages 203–212, Uppsala,

Sweden, July. ACL.

Diederik Kingma and Jimmy Ba. 2015. Adam:

A method for stochastic optimization. In ICLR

2015, San Diego, CA, May.

Qi Li and Heng Ji. 2014. Incremental joint ex-

traction of entity mentions and relations. In

Proceedings of the 52nd Annual Meeting of the

Association for Computational Linguistics (Vol-

ume 1: Long Papers), pages 402–412, Balti-

more, Maryland, June. ACL.

1114

Jiwei Li, Thang Luong, Dan Jurafsky, and Eduard

Hovy. 2015. When are tree structures neces-

sary for deep learning of representations? In

Proceedings of the 2015 Conference on Empir-

ical Methods in Natural Language Processing,

pages 2304–2314, Lisbon, Portugal, September.

ACL.

Wei Lu and Dan Roth. 2015. Joint mention

extraction and classification with mention hy-

pergraphs. In Proceedings of the 2015 Con-

ference on Empirical Methods in Natural Lan-

guage Processing, pages 857–867, Lisbon, Por-

tugal, September. ACL.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S

Corrado, and Jeff Dean. 2013. Distributed

representations of words and phrases and their

compositionality. In Advances in neural infor-

mation processing systems, pages 3111–3119.

Makoto Miwa and Yutaka Sasaki. 2014. Model-

ing joint entity and relation extraction with ta-

ble representation. In Proceedings of the 2014

Conference on Empirical Methods in Natural

Language Processing (EMNLP), pages 1858–

1869, Doha, Qatar, October. ACL.

David Nadeau and Satoshi Sekine. 2007. A sur-

vey of named entity recognition and classifica-

tion. Lingvisticae Investigationes, 30(1):3–26.

Eric W. Noreen. 1989. Computer-Intensive Meth-

ods for Testing Hypotheses : An Introduction.

Wiley-Interscience, April.

Romain Paulus, Richard Socher, and Christo-

pher D Manning. 2014. Global belief re-

cursive neural networks. In Z. Ghahramani,

M. Welling, C. Cortes, N.D. Lawrence, and

K.Q. Weinberger, editors, Advances in Neu-

ral Information Processing Systems 27, pages

2888–2896. Curran Associates, Inc.

Anastasia Pentina, Viktoriia Sharmanska, and

Christoph H. Lampert. 2015. Curriculum

learning of multiple tasks. In IEEE Confer-

ence on Computer Vision and Pattern Recog-

nition CVPR, pages 5492–5500, Boston, MA,

USA, June.

Lev Ratinov and Dan Roth. 2009. Design

challenges and misconceptions in named en-

tity recognition. In Proceedings of the Thir-

teenth Conference on Computational Natural

Language Learning (CoNLL-2009), pages 147–

155, Boulder, Colorado, June. ACL.

Dan Roth and Wen-Tau Yih, 2007. Global Infer-

ence for Entity and Relation Identification via a

Linear Programming Formulation. MIT Press.

Sameer Singh, Sebastian Riedel, Brian Martin, Ji-

aping Zheng, and Andrew McCallum. 2013.

Joint inference of entities, relations, and coref-

erence. In Proceedings of the 2013 work-

shop on Automated knowledge base construc-

tion, pages 1–6. ACM.

Richard Socher, Brody Huval, Christopher D.

Manning, and Andrew Y. Ng. 2012. Seman-

tic compositionality through recursive matrix-

vector spaces. In Proceedings of the 2012 Joint

Conference on Empirical Methods in Natural

Language Processing and Computational Natu-

ral Language Learning, pages 1201–1211, Jeju

Island, Korea, July. ACL.

Nitish Srivastava, Geoffrey Hinton, Alex

Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. 2014. Dropout: A simple way

to prevent neural networks from overfitting.

The Journal of Machine Learning Research,

15(1):1929–1958.

Kai Sheng Tai, Richard Socher, and Christo-

pher D. Manning. 2015. Improved semantic

representations from tree-structured long short-

term memory networks. In Proceedings of the

53rd Annual Meeting of the Association for

Computational Linguistics and the 7th Interna-

tional Joint Conference on Natural Language

Processing (Volume 1: Long Papers), pages

1556–1566, Beijing, China, July. ACL.

Paul J Werbos. 1990. Backpropagation through

time: what it does and how to do it. Proceed-

ings of the IEEE, 78(10):1550–1560.

Kun Xu, Yansong Feng, Songfang Huang, and

Dongyan Zhao. 2015a. Semantic relation

classification via convolutional neural networks

with simple negative sampling. In Proceedings

of the 2015 Conference on Empirical Methods

in Natural Language Processing, pages 536–

540, Lisbon, Portugal, September. ACL.

Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao

Peng, and Zhi Jin. 2015b. Classifying re-

lations via long short term memory networks

1115

along shortest dependency paths. In Proceed-

ings of the 2015 Conference on Empirical Meth-

ods in Natural Language Processing, pages

1785–1794, Lisbon, Portugal, September. ACL.

Bishan Yang and Claire Cardie. 2013. Joint in-

ference for fine-grained opinion extraction. In

Proceedings of the 51st Annual Meeting of the

Association for Computational Linguistics (Vol-

ume 1: Long Papers), pages 1640–1649, Sofia,

Bulgaria, August. ACL.

Xiaofeng Yu and Wai Lam. 2010. Jointly iden-

tifying entities and extracting relations in ency-

clopedia text via a graphical model approach.

In Coling 2010: Posters, pages 1399–1407,

Beijing, China, August. Coling 2010 Organiz-

ing Committee.

Dmitry Zelenko, Chinatsu Aone, and Anthony

Richardella. 2003. Kernel methods for relation

extraction. The Journal of Machine Learning

Research, 3:1083–1106.

GuoDong Zhou, Jian Su, Jie Zhang, and Min

Zhang. 2005. Exploring various knowledge in

relation extraction. In Proceedings of the 43rd

Annual Meeting of the Association for Compu-

tational Linguistics (ACL’05), pages 427–434,

Ann Arbor, Michigan, June. ACL.

A Supplemental Material

A.1 Data and Task Settings

ACE05 defines 7 coarse-grained entity types:

Facility (FAC), Geo-Political Entities (GPE),

Location (LOC), Organization (ORG), Person

(PER), Vehicle (VEH) and Weapon (WEA), and

6 coarse-grained relation types between enti-

ties: Artifact (ART), Gen-Affiliation (GEN-AFF),

Org-Affiliation (ORG-AFF), Part-Whole (PART-

WHOLE), Person-Social (PER-SOC) and Physical

(PHYS). We removed the cts, un subsets, and used

a 351/80/80 train/dev/test split. We removed du-

plicated entities and relations, and resolved nested

entities. We used head spans for entities. We fol-

low the settings by (Li and Ji, 2014), and we did

not use the full mention boundary unlike Lu and

Roth (2015). We use entities and relations to refer

to entity mentions and relation mentions in ACE

for brevity.

ACE04 defines the same 7 coarse-grained entity

types as ACE05 (Doddington et al., 2004), but de-

fines 7 coarse-grained relation types: PYS, PER-

SOC, Employment / Membership / Subsidiary

(EMP-ORG), ART, PER/ORG affiliation (Other-

AFF), GPE affiliation (GPE-AFF), and Discourse

(DISC). We follow the cross-validation setting of

Chan and Roth (2011) and Li and Ji (2014). We

removed DISC and did 5-fold CV on bnews and

nwire subsets (348 documents). We use the same

preprocessing and evaluation metrics of ACE05.

SemEval-2010 Task 8 defines 9 relation types

between nominals (Cause-Effect, Instrument-

Agency, Product-Producer, Content-Container,

Entity-Origin, Entity-Destination, Component-

Whole, Member-Collection and Message-Topic),

and a tenth type Other when two nouns have none

of these relations (Hendrickx et al., 2010). We

treat this Other type as a negative relation type,

and no direction is considered. The dataset con-

sists of 8,000 training and 2,717 test sentences,

and each sentence is annotated with a relation be-

tween two given nominals. We randomly selected

800 sentences from the training set as our devel-

opment set. We followed the official task setting,

and report the official macro-averaged F1-score

(Macro-F1) on the 9 relation types.

A.2 Hyper-parameter Settings

Here we show the hyper-parameters and the range

tried for the hyper-parameters in parentheses.

Hyper-parameters include the initial learning rate

(5e-3, 2e-3, 1e-3, 5e-4, 2e-4, 1e-4), the regular-

ization parameter (1e-4, 1e-5, 1e-6, 1e-7), dropout

probabilities (0.0, 0.1, 0.2, 0.3, 0.4, 0.5), the size

of gradient clipping (1, 5, 10, 50, 100), scheduled

sampling parameter k (1, 5, 10, 50, 100), the num-

ber of epochs for training and entity pretraining (≤

100), and the embedding dimension of WordNet

hypernym (5, 10, 15, 20, 25, 30).

1116

