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Abstract

Systematically discovering protein-ligand interactions across the entire human and patho-

gen genomes is critical in chemical genomics, protein function prediction, drug discovery,

and many other areas. However, more than 90% of gene families remain “dark”—i.e., their

small-molecule ligands are undiscovered due to experimental limitations or human/historical

biases. Existing computational approaches typically fail when the dark protein differs from

those with known ligands. To address this challenge, we have developed a deep learning

framework, called PortalCG, which consists of four novel components: (i) a 3-dimensional

ligand binding site enhanced sequence pre-training strategy to encode the evolutionary

links between ligand-binding sites across gene families; (ii) an end-to-end pretraining-fine-

tuning strategy to reduce the impact of inaccuracy of predicted structures on function predic-

tions by recognizing the sequence-structure-function paradigm; (iii) a new out-of-cluster

meta-learning algorithm that extracts and accumulates information learned from predicting

ligands of distinct gene families (meta-data) and applies the meta-data to a dark gene family;

and (iv) a stress model selection step, using different gene families in the test data from

those in the training and development data sets to facilitate model deployment in a real-

world scenario. In extensive and rigorous benchmark experiments, PortalCG considerably

outperformed state-of-the-art techniques of machine learning and protein-ligand docking

when applied to dark gene families, and demonstrated its generalization power for target

identifications and compound screenings under out-of-distribution (OOD) scenarios. Fur-

thermore, in an external validation for the multi-target compound screening, the perfor-

mance of PortalCG surpassed the rational design from medicinal chemists. Our results also
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suggest that a differentiable sequence-structure-function deep learning framework, where

protein structural information serves as an intermediate layer, could be superior to conven-

tional methodology where predicted protein structures were used for the compound screen-

ing. We applied PortalCG to two case studies to exemplify its potential in drug discovery:

designing selective dual-antagonists of dopamine receptors for the treatment of opioid use

disorder (OUD), and illuminating the understudied human genome for target diseases that

do not yet have effective and safe therapeutics. Our results suggested that PortalCG is a

viable solution to the OOD problem in exploring understudied regions of protein functional

space.

Author summary

Many complex diseases, such as Alzheimer’s disease, mental disorders, and substance use

disorders, do not have safe and effective therapeutics because of the polygenic nature of

the diseases and a lack of thoroughly validated drug targets (and their corresponding

ligands). Identifying small-molecule ligands for all proteins encoded in the human

genome would provide powerful new opportunities for drug discovery of currently

untreatable diseases. However, the small-molecule ligand of more than 90% of gene fami-

lies is completely unknown. Existing protein-ligand docking and machine learning meth-

ods often fail when the protein of interest is dissimilar to those with known functions or

structures. We have developed a new deep learning framework, PortalCG, for efficiently

and accurately predicting ligands of understudied proteins which are out of reach of exist-

ing methods. Our method achieves unprecedented accuracy versus state-of-the-art

approaches, and it achieves this by incorporating ligand binding site information and the

sequence-to-structure-to-function paradigm into a novel deep meta-learning algorithm.

In a case study, the performance of PortalCG surpassed the rational design from medici-

nal chemists. The proposed computational framework can shed new light on how chemi-

cals modulate biological systems, which is indispensable in drug repurposing and rational

design of polypharmacology. This approach could offer a new way to develop safe and

effective therapeutics for currently incurable diseases. PortalCG can be extended to other

types of tasks, such as predicting protein-protein interactions and protein-nucleic acid

recognition.

Introduction

Scientific inquiry always aims to deduce new concepts from existing knowledge or to general-

ize observations, and numerous such challenges and opportunities exist in the biological sci-

ences. The rise of deep learning has sparked a surge of interest in using machine learning to

explore previously uncharted molecular and functional spaces in biology and medicine, rang-

ing from “deorphanizing” G-protein coupled receptors [1] and translating cell-line screens to

patient drug responses [2, 3], to predicting novel protein structures [4–6], to identifying new

cell types from single-cell omics data [7]. Illuminating the understudied space of human

knowledge is a fundamental problem that one can attempt to address via deep learning—that

is, to generalize a “well-trained” model to unseen data that lies Out-of-Distribution (OOD) of

the training data, in order to successfully predict outcomes under conditions that the model

has never encountered before. While deep learning is capable, in theory, of simulating any
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function mapping, its generalization power is notoriously limited in the case of distribution

shifts [8].

The training of a deep learning model starts with a domain-specific model architecture.

The final model instance that is selected for deployment, and its performance, are deter-

mined by a series of data-dependent design choices, including model initialization, how

data are split and used for training/validation/testing sets, optimization of loss function, and

evaluation metrics. Each of these design choices impacts the generalization power of a

trained model. The development of several recent deep learning-based approaches—notably

transfer learning [9], self-supervised representation learning [10], and meta-learning [11,

12]—has been motivated by the OOD challenge. However, each of these approaches focuses

on only one aspect in the training pipeline of a deep neural network model. Causal learning

and mechanism-based modeling (e.g., based on physical first principles) could be an effec-

tive way to circumvent the OOD problem [8], but at present these approaches can be applied

only on modest scales because of data scarcity, computational complexity, or limited

domain knowledge. Solving large-scale OOD problems in biomedicine via machine learning

would benefit from a systematic framework for integrative, end-to-end model development

and deployment, as well as the incorporation of domain knowledge into the training

process.

OOD challenges are commonplace in drug discovery and development because of the vast-

ness of chemical genomics space: small molecules act as endogenous or exogenous ligands of

numerous proteins, assisting in maintaining homeostasis of a biological system or serving as

therapeutics agents to alter pathological processes. Despite tremendous progress in high-

throughput screening, the majority of protein space remains unexplored [13] due to high

costs, inherent limitations in experimental approaches, and human biases [14, 15]. Even in

well-studied gene families, such as G-protein coupled receptors (GPCRs), protein kinases, ion

channels, and estrogen receptors, a large portion of proteins remain dark [13], i.e., their

ligands remain unknown. Elucidating the ligand-binding properties of dark proteins and gene

families can shed light on many essential but poorly understood biological processes, such as

microbiome-host interactions mediated by metabolite-protein interactions. Such efforts could

also be instrumental for drug discovery. Firstly, although the conventional one-drug-one-gene

drug discovery process focuses on screening drugs against a single target, unrecognized off-

target effects are a common occurrence [16]. The off-target effects can either be the cause of

undesirable side effects or present a unique potential opportunity for drug repurposing. Sec-

ondly, polypharmacology—i.e., designing drugs that can target multiple proteins—is needed

to achieve desired therapeutic efficacy and combat drug resistance for multi-genic diseases

[16]. Finally, identifying new druggable targets and discovering their ligands may provide

effective therapeutic strategies for currently incurable diseases; for instance, in Alzheimer’s dis-

ease (AD), many disease-associated genes have been identified through multiple omics studies,

but are presently considered as dark proteins [17].

Accurate and robust prediction of chemical-protein interactions (CPIs) across the

genome is a challenging OOD problem [1]. If one considers only the reported area under the

receiver operating characteristic curve (AUROC), which has achieved values as high as 0.9 in

many state-of-the-art methods [18, 19], it may seem that the problem has been solved. How-

ever, existing methods have rarely been applied to dark gene families. The performance of

existing methods has been assessed primarily in scenarios where the data distribution in the

test set does not differ significantly from that in the training set, in terms of similarities

between proteins or between chemicals; that is, the development of current methods

involved sampling quite limited regions of protein space. Few sequence-based methods have

been developed and evaluated for an out–of–gene-family scenario, where proteins in the test
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set belong to different (non-homologous) gene families from those in the training set; this

sampling bias is even more severe in considering cases where the new gene family does not

have any reliable three-dimensional (3D) structural information. Therefore, one can fairly

claim that all existing machine learning work has been confined to just narrow regions of

chemical genomics space for an imputation task, without validated generalizability into the

dark proteins for novel discoveries. With the advent of high-accuracy protein structural

models, predicted by AlphaFold2 [5], it now becomes possible to use reversed protein-ligand

docking (PLD) [20] to predict ligand-binding sites and poses on dark proteins on a genome-

wide scale. However, AlphaFold2 can only provide structural models for around half of dark

human proteins [21]. Furthermore, it is well known that PLD suffers from a high false-posi-

tive rate due to poor modeling of protein conformational dynamics, solvation effects, crystal-

lized waters, and other challenges [22]; for example, small-molecule ligands will often be

found to indiscriminately “stick” to concave, pocket-like patches on protein surfaces. For

these reasons, the relatively low reliability of PLD still poses a significant limitation [23].

Thus, the direct application of PLD remains a challenge and a limited scope for predicting

ligand binding to dark proteins.

In this paper, we propose a new deep learning framework, “Portal Learning”, and its appli-

cation to chemical genomics (“PortalCG”), for predicting small-molecule binding to “dark”

proteins (whose ligands are unknown) and to dark gene families (wherein all protein members

do not have known ligands). Here, we use the word “Portal” to represent multiple training

components in an end-to-end deep learning framework, structured so as to be able to system-

atically address OOD challenges. We show that PortalCG significantly outperforms the leading

machine learning and protein-ligand docking methods that are available for predicting ligand

binding to dark proteins. Thus, PortalCG may shed new light on unknown functions for dark

proteins, and empower drug discovery using Artificial Intelligence (AI). To demonstrate the

potential of PortalCG, this work applies it to two case studies: (i) designing selective dual-

antagonists of Dopamine receptors for Opioid Use Disorder (OUD) with experimental valida-

tions, and (ii) illuminating the understudied druggable genome for targeting diseases that lack

effective and safe therapeutics. The novel genes and their lead compounds identified from Por-

talCG provide new opportunities for drug discovery to treat currently incurable diseases, such

as OUDs and AD. We believe that these predictions warrant further experimental validation

and exploration.

In summary, the contributions of this work are two-fold:

1. We develop and test a new algorithm, PortalCG, to improve the generalization power of

machine learning on OOD problems. Comprehensive benchmark studies demonstrate the

promise of PortalCG when applied to exploring dark gene families (i.e., those consisting of

proteins with no known small-molecule ligands)

2. Using PortalCG, we shed new light on unknown protein functions in dark proteins (viz.

small molecule-binding properties), and open new avenues in polypharmacology and drug

repurposing; the latter is demonstrated by our identification of novel drug targets and lead

compounds for OUDs and AD

Results and discusssion

PortalCG includes four key, biology-inspired components, as schematized in Fig 1: 3-dimen-

sional (3D) binding site-enhanced sequence pre-training, end-to-end sequence-structure-

function step-wise transfer learning (STL), out-of-cluster meta-learning (OOC-ML), and stress

model selection. We now describe these model components in turn.
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3D binding site-enhanced sequence pre-training

Pre-training strategy is a proven powerful approach to boost the generalizability of deep

learning models [24]. Pre-trained natural language models have revolutionized Natural

Language Processing (NLP) [24]. Significant improvements are also observed when applying

the same pre-training strategy to protein sequences for structure [5, 25], function [26, 27], and

CPI predictions [1]. We begin by performing self-supervised training to map tens of millions

of sequences into a universal embedding space, using a state-of-the-art distilled sequence

Fig 1. (A) Design Scheme of PortalCG: PortalCG enables the prediction of chemical-protein interactions (CPIs) for dark proteins, across gene families,

via four key components: (i) ligand-binding site enhanced sequence pretraining, (ii) end-to-end transfer learning, in accord with the sequence-

structure-function paradigm, (iii) out-of-cluster meta-learning (OOC-ML), and (iv) stress model selection. (B) How OOC-ML compares to classic

stacking ensemble learning: OOC-ML is similar in spirit to stacking ensemble learning, but differs in data split strategies, model architecture, and

optimization schema, as further detailed in the text.

https://doi.org/10.1371/journal.pcbi.1010851.g001
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alignment embedding (DISAE) algorithm [1]. In brief, DISAE first distills the original sequence

into an ordered list of amino acid triplets by extracting evolutionarily important positions

from a multiple sequence alignment. Then, long-range residue-residue interactions can be

learned via the Transformer module in ALBERT [10]. A self-supervised masked language

modeling (MLM) approach is used to train the model, where 15% triplets are randomly

masked and assumed as unknown. The remaining triplets are used to predict what the masked

triplets are. In this way, DISAE can learn protein sequence representations that capture func-

tional information without explicit knowledge of (exposure to) either structural or functional

data.

3D structural information about ligand-binding sites was used to fine-tune the sequence

embedding because such information (i) is sensitive to evolutionarily relationships across fold

space and (ii) is more informative than the sequence alone for ligand-binding [28]. In addition

to the self-supervised MLM task, amino acid residue-ligand atom distance matrices that were

generated from protein-ligand complex structures were predicted from the distilled amino

acid triplets. As a result, the original DISAE embedding could be refined with this 3D ligand-

binding site information. This structure-regularized protein embedding was used as a hidden

layer for supervised learning of cross–gene-family CPIs, following an end-to-end sequence-

structure-function training process described below.

End-to-end, sequence-structure-function–based step-wise transfer learning

(STL)

The function of a protein (e.g., serving as a target receptor for ligand binding) stems from its

3D shape and conformational dynamics which, in turn, is ultimately encoded in its primary

amino acid sequence. In general, information about a protein’s structure is more powerful

than purely sequence-based information for predicting its molecular function because

sequences drift/diverge far more rapidly than do 3D structures on evolutionary timescales.

Furthermore, proteins from different gene families may have similar functional sites through

the convergent evolution, thus perform similar functions [28]. Although the number of experi-

mentally-determined structures continues to exponentially increase—and now AlphaFold2

can reliably predict the 3D structure of a generic single-domain protein—it nevertheless

remains quite challenging to directly use protein structures as input for predicting ligand-bind-

ing properties of dark proteins. This motivates us to directly use protein sequences to predict

ligands of dark proteins in PortalCG. Protein structure information is used as an intermediate

layer, as trained by the structure-enhanced pre-training, to connect a protein sequence and a

corresponding protein function (Fig 1A), as inspired by the concept of “differentiable biology”

[29]. By encapsulating the role of structure in this way, inaccuracies and uncertainties in struc-

ture prediction are “insulated” and will not propagate to the function prediction. Details of

neural network architecture and training methods can be found in section Algorithm.

Out-of-cluster meta-learning (OOC-ML)

We designed a new OOC-ML approach to explore dark gene families. Here, predicting ligands

of dark gene families can be formulated as the following problem: how can we quickly learn

the ligand-binding pattern of a new gene family, lacking any labeled data, from the informa-

tion obtained from other, well-characterized gene families (that themselves enjoy a relatively

large amount of labeled data)? Meta-learning is a general learning strategy that learns a new

task without any (or with very few) labeled data from outputs (meta-data) generated by multi-

ple other tasks with labeled data; thus, this approach naturally fits our purpose. The principle

of OOC-ML is first to independently learn the pattern of ligand bindings from each gene
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family that has labeled data, and then to extract the common intrinsic pattern shared by these

gene families and apply the learned essential knowledge to dark ones. OOC-ML is similar to

stacking ensemble learning that uses a machine learning model at a high level (the second

level) to learn how to best combine the predictions from other machine learning models at a

low level (the first level), as shown in Fig 1B. Nevertheless, there are three key differences

between our proposed OOC-ML approach and classic ensemble learning. First, all low-level

models in ensemble learning use the same training data, and the training data used in the

high-level has the same distribution as that used in the low-level. In the OOC-ML, the training

data for each low-level model has a different distribution. Specifically, they come from differ-

ent Pfam families. The training data in the high-level also uses Pfam families that are different

from all others used in the low-level. Second, instead of using different machine learning algo-

rithms in the low-level ensemble model, the model architecture for all models in the OOC

meta-learning is the same, as inspired by an approach called Model Agnostic Meta-Learning

(MAML) [11]. The difference between models lies in their different parameters (mapping

functions) due to the different input data. Finally, ensemble learning uses the predictions from

the low-level models as meta-data for the input of the high-level model. OOC meta-learning

instead uses gradients of mapping functions of the low-level models as meta-data, which repre-

sent how the model learns, and retrains the gradients of the low-level models by the high-level

model.

Stress model selection

Finally, training should be stopped at a suitable point in order to avoid overfitting. This was

achieved by stress model selection. Stress model selection is designed to basically recapitulate

an OOD scenario by splitting the data into OOD train, OOD development, and OOD test sets

as listed in Table 1; in this procedure, the data distribution for the development set differs from

that of the training data, and the distribution of the test data set differs from both the training

and development data. Section Algorithm provides further methodological details, covering

data pre-processing, the core algorithm, model configuration, and implementation details.

There are significantly unexplored dark gene families for small molecule

binding

We inspected the known CPIs between (i) molecules in the manually-curated ChEMBL data-

base, which consists of only a small portion of the possible chemical space, and (ii) proteins

annotated in Pfam-A [30], which represents only a narrow slice of the whole protein sequence

space. The ChEMBL26 [31] database supplies 1, 950, 765 chemicals paired to 13, 377 protein

targets, constituting 15, 996, 368 known interaction pairs. Even for just this small portion of

chemical genomics space, the fraction of unexplored gene families is enormous, as can be seen

in the dark region in Fig 2. Approximately 90% of Pfam-A families do not have any known

Table 1. Data split scheme for stress model instance selection.

Data split Common practice Classic scheme applied in OOD PortalCG Specification

train IID train IID train / each batch includes data from the same gene family

/ / OOD train data from different gene families are used among batches

dev IID-dev IID-dev / from the same gene family as that in the train set

/ / OOD-dev from a different gene family from the training set

test IID-test / / from the same gene family as that in the training set

/ OOD-test OOD-test from a different gene family from both OOD-dev and training set

https://doi.org/10.1371/journal.pcbi.1010851.t001
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small-molecule binder. Even in Pfam families with annotated CPIs (e.g., GPCRs), there exists a

significant number of “orphan” receptors with unknown cognate ligands (Fig 2). Because pro-

tein sequences in the dark gene families could be significantly different (beyond the point of

homology) from those for the known CPIs, predicting CPIs for dark proteins is an archetypal,

unaddressed OOD problem.

PortalCG significantly outperforms state-of-the-art approaches to

predicting CPIs of dark gene families

Over the years, two major types of methodological approaches have developed for CPI pre-

dictions: those based on machine learning and on protein-ligand docking (PLD). A recent

approach known as DISAE (distilled sequence alignment embedding) has been shown to

outperform other leading deep learning methods for predicting CPIs of orphan receptors

and is interpretable [1]. Because the neural network architecture of PortalCG is similar to

that of DISAE, we used DISAE as the baseline against which to evaluate the performance

Fig 2. Dark protein space in terms of statistics. The fraction of proteins that have at least one known ligand in each Pfam family is graphically

represented here. Each color bubble indicates a Pfam family, and the size of the bubble is proportional to the total number of proteins in that family.

1, 734 Pfam families have at least one known small molecule ligand. One can see that most Pfam families have less than 1% proteins with known

ligands. Furthermore, around 90.2% of the total 17, 772 Pfam families remain completely dark, without any known ligand-binding information. These

“dark regions” represent a vast untapped resource in drug discovery.

https://doi.org/10.1371/journal.pcbi.1010851.g002
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improvement of PortalCG over the state-of-the-art machine learning method. PortalCG

demonstrates superior performance in terms of both Receiver Operating Characteristic

(ROC) and Precision-Recall (PR) curves when compared with DISAE, as shown in Fig 3(A).

When the ratio of positive and negative cases is imbalanced, the PR curve is more informa-

tive than the ROC curve. The PR-AUC of PortalCG and DISAE is 0.714 and 0.603,

respectively. In this regard, the performance gain of PortalCG (18.4%) is significant

(p-value < 1e−40). Performance breakdowns for binding and non-binding classes can be

found in Supplemental Fig A in S1 Text. PortalCG exhibits much higher recall and precision

scores for positive cases (i.e., a chemical-protein pair that is predicted to bind) versus nega-

tive, as shown in Supplemental Fig A in S1 Text; this is a highly encouraging result, given

that there are many more negative (non-binding) than positive cases in reality. The deploy-

ment gap, shown in Fig 3(B), is steadily around zero for PortalCG; this promising finding

means that we can expect that, when applied to the dark proteins, the performance will be

similar to that measured using the development data set.

With the advent of high-accuracy protein structural models, predicted by AlphaFold2 [5], it

now becomes possible to use reversed protein-ligand docking (PLD) [20] to predict ligand-

binding sites and poses on dark proteins on a genome-wide scale. In order to compare our

method with the reversed protein-ligand docking approach, blind PLD to proteins in the

benchmark was performed via AutoDock Vina [32] followed by protein-ligand binding affin-

ity prediction using a leading graph neural network-based method called SIGN [33]; we denote

this approach “PLD+SIGN”. The binding affinities predicted by SIGN were more accurate

than the original scores from AutoDock Vina (Supplemental Fig B in S1 Text). The perfor-

mance of PLD+SIGN was compared with that of PortalGC and DISAE. As shown in Fig 3(A),

both ROC and PR for PLD+SIGN are significantly worse than for PortalGC and DISAE. Por-

talCG’s end-to-end sequence-structure-function learning could be a more effective strategy in

terms of both accuracy and efficacy, especially for remaining half of dark human proteins that

cannot be reliably predicted by AlphaFold2: protein structure information is not used as a

fixed input, but rather as an intermediate layer that can be tuned using various structural and

functional information. Furthermore, the inference time of PortalCG for predicting a CPI is

several orders of magnitude faster than that needed for PLD calculations. For example, it takes

approximately 1 millisecond for PortalCG to predict a ligand binding to DRD2, while Auto-

Dock Vina needs around 10 seconds to dock a ligand to DRD2, excluding the time for defining

the binding pocket.

Both the STL and OOC-ML stages contribute to the improved performance

of PortalCG

To gauge the potential contribution of each component of PortalCG to the overall system

effectiveness in predicting CPIs for dark proteins, we undertook an ablation study wherein we

systematically compared the four models shown in Table 2. Details of the exact model configu-

rations for these experiments can be found in the Supplemental Table A in S1 Text. As shown

in Table 2, Variant 1, with a higher PR-AUC compared to the DISAE baseline, is the direct

gain from transfer learning through 3D binding site information, all else being equal; yet, with

transfer learning alone and without OOC-ML as an optimization algorithm in the protein

function CPI prediction (i.e., Variant 2 versus Variant 1), the PR-AUC gain is minor. Variant

2 yields a 15% improvement while Variant 1 achieves only a 4% improvement over DISAE.

PortalCG, in comparison, has the best PR-AUC score. With all other factors held constant, the

advantage of PortalCG appears to be the synergistic effect of both 3D binding site encoding

and OOC-ML. The performance gain measured by PR-AUC under a shifted evaluation setting
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Fig 3. Performance comparison of PortalCG with the state-of-the-art methods DISAE and PLD+SIGN as baselines, using an OOD

test with proteins in the test dataset coming from different Pfam families versus proteins in the training and validation datasets. (A)

Histograms of protein sequence and chemical structure similarities between OOD-train and OOD-test. The majority of protein sequences

in the training set do not have detectable similarity to proteins in the testing set. (B) Receiver Operating Characteristic (ROC) and

Precision-Recall (PR) curves for the “best” model instance selected by the stress test. Due to the class-imbalanced active/inactive data, the

PR curve is a more reliable measure than the ROC curve. (C) Deployment gaps of PoralCG and DISAE. The deployment gap of PortalCG is

steadily around zero as the number of training steps increases, while the deployment performance of DISAE deteriorates.

https://doi.org/10.1371/journal.pcbi.1010851.g003
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is significant (p-value < 1e−40), as shown in Supplemental Fig C in S1 Text. We find that

stress model selection is able to mitigate potential overfitting problems, as expected. Training

curves for the stress model selection are in Supplemental Fig D in S1 Text. As shown in Sup-

plemental Fig D in S1 Text, the baseline DISAE approach tends to over-fit with training, and

IID-dev performances are all higher than PortalCG but deteriorate in OOD-test performance.

Hence, the deployment gap for the baseline is -0.275 and -0.345 on ROC-AUC and PR-AUC,

respectively, while the respective PortalCG deployment gaps are approximately 0.01 and 0.005.

PortalCG is competitive in virtual screening for novel compounds

Given that the pretraining, OOC-ML, and stress tests were only applied to proteins, the cur-

rent PortalCG method primarily focuses on exploring the dark protein space instead of new

chemical space. Nevertheless, we examined whether PortalCG could improve the performance

of compound screening for novel chemicals. We employed a widely used DUD-E benchmark

that included eight protein targets along with their active compounds and decoys [34], and we

compared the performance of PortalCG with that of PLD. We used DUD-E chemicals as a test-

ing set. We trained PortalCG by excluding target proteins in the training/validation sets, with

all chemicals in the training/validation set being dissimilar to those in the testing set (Tani-

moto Coefficient (TC) less than 0.3 or 0.5). Under these chemical similarity thresholds, the

false positive rate in the training/validation set was higher than 95.0%, assuming a ratio of

actives to inactives of 1:50 (Supplemental Fig E in S1 Text).

As shown in Table 3, except for the targets kif11 and gcr, PortalCG could surprisingly

outperform AutoDock Vina on the other remaining six targets, in terms of enrichment factors

(EFs). Similarly, PortalCG exhibited higher EFs than PLD-SIGN on six proteins. For an EF of

1%, the compound screening performance of PortalCG on 87.5% and 100.0% of targets is

Table 2. Ablation study of the performance of PortalCG.

Models Configuration OOD-test set Deployment gap

ROC-AUC PR-AUC ROC-AUC PR-AUC

PortalCG PortalCG with all components 0.677±0.010 0.714±0.010 0.010±0.009 0.005±0.010

DISAE PortalCG w/o STL or OOC-ML 0.636±0.004 0.603±0.005 -0.275±0.016 -0.345±0.012

Variant 1 PortalCG w/o OOC-ML 0.661±0.004 0.629±0.005 / /

Variant 2 PortalCG w/o STL 0.654±0.062 0.698±0.015 / /

PLD+SIGN / 0.569 0.433 / /

https://doi.org/10.1371/journal.pcbi.1010851.t002

Table 3. Compound screening performances evaluated using the DUD-E benchmark. For “PortalCG-0.3”, the similarities between chemicals in the training/validation

set and those in the testing set are less than 0.3 of the Tanimoto Coefficient (TC). For ‘PortalCG-0.5’, the similarities between chemicals in the training/validation set and

those in the testing set are less than 0.5 of the TC. The best performance is accentuated in bold.

EF-1% EF-20%

AutoDock Vina PLD-SIGN PortalCG-0.3 PortalCG-0.5 AutoDock Vina PLD-SIGN PortalCG-0.3 PortalCG-0.5

akt1 0.00 14.42 1.36 11.24 1.52 3.12 2.61 3.88

ampc 0.00 0.00 2.04 4.08 1.25 0.39 0.31 2.14

cp3a4 0.60 3.03 2.50 10.00 1.65 2.07 0.63 1.38

cxcr4 0.00 1.64 5.00 10.00 0.87 1.89 2.13 2.25

gcr 10.43 2.49 4.65 9.69 1.98 2.03 2.50 1.96

hivpr 4.10 5.02 0.75 13.62 2.31 2.34 1.87 2.84

hivrt 4.77 0.47 1.18 8.28 2.20 1.21 0.15 2.59

kif11 23.15 13.71 1.72 3.45 3.66 3.60 1.60 1.08

https://doi.org/10.1371/journal.pcbi.1010851.t003
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better than random guesses (EF = 1.0) when the chemical similarity between the queries and

the training data is 0.3 and 0.5, respectively. In contrast, only 50.0% and 75.0% of targets are

better than a random guess for AutoDock Vina and PLD+SIGN, respectively. These results

imply that PortalCG has learned certain patterns of CPIs, even though the chemical OOD

issues were not explicitly modeled. Different from PLD, whose EFs varied greatly across tar-

gets, the variance of EFs was relatively small for PortalCG across the targets, suggesting that

the model is not biased towards certain types of proteins (akt1 is a kinase, cxcr4 is a che-

mokine receptor, and gcr is a nuclear receptor, etc.). Thus, PortalCG is complementary with

PLD, and has the potential to improve the capability of virtual compound screening—particu-

larly for dark proteins whose reliable structures are not available.

PortalCG is able to screen selective, multi-targeted compounds that bind

dark proteins and feature novel scaffolds

Opioid use disorder (OUD) is an overwhelming healthcare and economic burden. Although

several pharmaceutical treatments for OUD exist, they are either restricted in usage or limited

in effectiveness. Dopamine D1 and D3 receptors (DRD1 and DRD3) have been identified as

potential drug targets for OUD. DRD1 partial agonists and antagonists alter the rewarding

effects of drugs, while DRD3 antagonists reduce drug incentive and behavioral responses to

drug cues [35, 36]. Moreover, recent evidence suggests that simultaneous targeting of DRD1

and DRD3 may be an effective OUD therapeutic strategy as the combination of a DRD1 partial

agonist and a DRD3 antagonist reduced cue-induced relapse to heroin in rats [37]. By contrast,

dopamine D2 receptor (DRD2) antagonism is associated with cataleptic side effects which

limit the use of DRD2 antagonists as OUD therapeutics [38]. Thus, selective DRD1 and DRD3

dual-antagonists could be an effective strategy for OUD treatment [39]. Because there are mul-

tiple dopamine receptors (especially DRD2) that are similar to D1R and D3R, it is challenging

to develop a selective dual-antagonist for DRD1 and DRD3. PortalCG may provide new

opportunities for OUD polypharmacology.

We synthesized 65 compounds based on the scaffold shown in Fig 4A, which combines

structural features of the DRD1 antagonist (-)-stepholidine with a DRD3 antagonist pharma-

cophore, and we then determined their binding affinities to DRD1, DRD2, and DRD3, respec-

tively (Supplemental Table B in S1 Text). Tens of thousands of possible chemical structures

could be derived from different combinations of R1, R2, R3, R4, and linker functional groups,

as marked in Fig 4A. We have little a priori knowledge of what is an optimal combination of

functional groups for a dual-DRD1/DRD3 antagonist. If we define an acceptable dual-DRD1/

DRD3 antagonist as a compound whose binding affinities are less than 100 nM of Ki to both

DRD1 and DRD3, but higher than 100 nM of the Ki to DRD2, then only 10 compounds were

found to satisfy this condition (successful rate of 15.4%) among the 65 synthesized com-

pounds. For the DRD1 antagonists with the Ki lower than 100 nM, only 46.4% of them had Ki

lower than 100 nM for DRD3. These observations suggested that our current knowledge is

limited for effectively designing selective dual-DRD1/3 antagonists using existing scaffolds,

let alone under a novel scaffold. The question is if we can use computational methods, espe-

cially PortalCG, to identify selective dual-DRD1/3 antagonists with a novel scaffold. We per-

formed a rigorous blind test to validate the performance of PortalCG for this purpose. In the

evaluation of PortalCG and DISAE, all of the chemicals in the training data had different scaf-

folds from 65 test compounds, i.e., an OOD scenario on the chemical side [40]. Three models

were trained with the sequence similarity between DRD1/2/3 and proteins in the training/vali-

dation data ranging from 20% to 60%. The performance was measured by the accuracy of a

three-label classifier. When the sequence identifies between DRD1/2/3 and the proteins in the
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training/validation set were less than 40%, PortalCG achieved 20.0% and 50.7% success rates

for the cases where all DRDs and any two of them were predicted correctly using aforemen-

tioned criteria, respectively, for the top 30 ranked compounds (Fig 4B). The success rate of

PortalCG that was trained with OOD data was higher than that based on the random selection

out of 65 compounds. Decreasing the sequence identifies between the proteins in the training/

validation set and DRD1/2/3 from 40% to 20% only slightly lower the accuracy of PortalCG, as

shown in Fig 4C. The performance drops were not statistically significant (p-value > 0.05).

Increasing the sequence identities from 40% to 60% also did not significantly change the accu-

racy. Thus, PortalCG by design was robust to OOD data.

We compared PortalCG with three baselines—DISAE, PLD+SIGN, and AutoDock Vina

[32]. The crystal structures of DRD1 (PDB id: 7JOZ), DRD2 (PDB id: 6CM4), and DRD3

Fig 4. Performance comparison of PortalCG with the state-of-the-art methods for designing selective dual-DRD

antagonists. (A) The chemical scaffold on which 65 compounds were synthesized as potential selective dual-DRD1/

DRD3 antagonists. Tens of thousands of chemicals can be generated from the different combination of four functional

groups R1, R2, R3, and R4 and a linker group. (B) The prediction accuracy of DRD binding profile classification. Note

that a significant difference between PortalCG’s performance relative to the next-best method (DISAE) emerges in a

task involving correct prediction of all three DRDs (right-hand side), versus just two of the three (DRD1, DRD2, and

DRD3). (C) The performance of PortalCG when sequence similarities between the proteins in the training/validation

set and DRD1/DRD2/DRD3 were less than 20%, 40%, and 60%, respectively. The performance was measured by the

accuracy of a three-label classifier. “Two out of three” and “all DRDs” represented the accuracy when two labels and all

three labels were predicted correctly.

https://doi.org/10.1371/journal.pcbi.1010851.g004
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(PDB id: 3PBL), which were co-crystallized with ligands, were used in the docking calcula-

tions. The 65 compounds were docked to the pre-defined binding pocket based on the co-crys-

tallized ligand. The order of accuracy follows PortalCG > DISAE> PLD-SIGN > AutoDock

Vina, as shown in Fig 4B. This observation is consistent with our benchmark studies. Note

that the protein-ligand complex structure was used only for the baseline PLD models and this

information was not used for PortalCG and DISAE.

Illuminating the undruggable human genome for drug repurposing

To further gauge the potential applications of PortalCG, we explored potential drug lead com-

pounds for undrugged disease genes in the dark human genome, and prioritized undrugged

genes that can be efficaciously targeted by existing drugs. It is well known that only a small

subset of the human genome is considered druggable [41]. Many proteins are deemed

“undruggable” because there is no information on their ligand-binding properties or other

interactions with small-molecule compounds (be they endogenous or exogenous ligands).

Here, we built an undruggable human disease protein database by removing the druggable

proteins in Pharos [42] and Casas’s druggable proteins [43] from human disease associated

genes [17]. A total of 12,475 proteins were included in our disease-associated undruggable

human protein list. We applied PortalCG to predict probabilities for these putatively undrug-

gable proteins to actually be able to bind to drug-like molecules. Around 6,000 drugs from the

Drug Repurposing Hub [44] were used in this screening. The proteins that could bind to a

small-molecule drug were ranked according to their prediction scores, and 267 of them have a

false positive rate lower than 2.18e-05, as listed in Supplemental Table C in S1 Text. Table 4

shows the statistically significantly enriched functions of these top-ranked proteins, using the

Database for Annotation, Visualization and Integrated Discovery (DAVID) utility [45]. The

most enriched proteins are involved in alternative splicing of mRNA transcripts. Malfunctions

in alternative splicing are linked to many diseases, including several cancers [46, 47], Alzhei-

mer’s disease [48], and insulin resistance and type-2 diabetes [49]. However, pharmaceutical

intervention and modulation of alternative splicing is a challenging task, given the intricacy of

these pathways. Identifying new drug targets and their lead compounds for targeting alterna-

tive splicing pathways may open new doors to developing novel therapeutics for complex dis-

eases with few treatment options. In addition, we identified several transcription factors and

proteins otherwise related to cellular transcription activities; these are listed in Supplemental

Table D in S1 Text, along with their predicted ligands.

Diseases associated with these 267 human proteins are also listed in Table 5. Since one pro-

tein is always related to multiple diseases, these diseases are ranked by the number of their

associated proteins. The most highly-ranked diseases tend to be related to cancer development.

We find that 21 drugs that are approved or in clinical development are predicted to interact

Table 4. Functional annotation enrichment for undruggable human disease associated proteins selected by PortalCG.

DAVID Functional annotation enrichment analysis

Enriched terms in UniProtKB keywords Number of proteins involved Percentage of proteins involved P-value Modified Benjamini p-value

Alternative splicing 171 66.5 7.70E-07 2.00E-04

Phosphoprotein 140 54.5 2.60E-06 3.40E-04

Cytoplasm 91 35.4 1.30E-05 1.10E-03

Nucleus 93 36.2 1.20E-04 8.10E-03

Metal-binding 68 26.5 4.20E-04 2.20E-02

Zinc 48 18.7 6.60E-04 2.90E-02

https://doi.org/10.1371/journal.pcbi.1010851.t004
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with these proteins (Supplemental Table E in S1 Text). Several of these drug compounds are

highly promiscuous. For example, AI-10–49, a molecule that disrupts protein-protein interac-

tion between CBFβ-SMMHC and the tumor suppressor RUNX1 [50], may bind to more than

60 other proteins. The off-target binding profile of these proteins may provide invaluable

information on potential side-effects and opportunities for drug repurposing and polypharma-

cology. A drug-target interaction network, built for predicted positive proteins associated with

Alzheimer’s disease, is shown in Fig 5. The target proteins in this network were selected based

on a threshold of 0.67. The length of the edges in this network was decided by the prediction

scores for these drug-target pairs. The longer the edge is, the lower confidence of the predic-

tion is. Thus if a higher threshold was applied, fewer drug-target pairs will appear in this net-

work. In order to validate the binding activity between the drugs and targets in this network,

PLD was performed between the three most promiscuous drugs—AI-10–49, fenebrutinib, and

PF-05190457—and their predicted targets. Only those targets with known PDB structures or

reliable AlphaFold structural models were used in the docking. Docking scores for the 21

drug-target pairs are listed in Supplemental Table F in S1 Text. For each of the three drugs, the

target with the lowest docking score (the highest binding affinity) was selected as a representa-

tive. Docking conformations and interactions between the drugs and their representative tar-

gets are shown in Fig 5. Functional enrichment, disease associations, and top-ranked drugs for

the undruggable proteins with well-studied biology (classified as Tbio in Pharos), as well as

those excluding Tbio, are given in Supplemental Tables G-K in S1 Text.

Conclusion

This work has confronted the challenge of exploring dark proteins by recognizing it, funda-

mentally, as an OOD generalization problem in machine learning, and by developing a new

deep learning framework to treat this type of problem. Though the applications given in this

paper are all biological systems, we propose that PortalCG is a general framework that enables

systematic control of the generalization risk inherent to OOD model training and prediction.

Systematic examination of the PortalCG method revealed its superior performance compared

to (i) a state-of-the-art deep learning model (DISAE), and (ii) an AlphaFold2-enabled, GNN-

scored, structure-based reverse docking approach, using classical protein-ligand docking

methods. Compared to those methods, PortalCG showed significant improvements in terms

of both sensitivity and specificity, as well as close to zero deployment performance gap. The

neural network architecture of PortalCG is similar to DISAE, and its performance improve-

ment (over DISAE) mainly stems from 3D binding site-enhanced pre-training (step-wise

Table 5. These highly-ranked diseases are associated with undruggable human disease proteins, as selected by

PortalCG.

DiseaseName # of undruggable proteins associated with disease

Breast Carcinoma 90

Tumor Cell Invasion 86

Carcinogenesis 83

Neoplasm Metastasis 75

Colorectal Carcinoma 73

Liver Carcinoma 66

Malignant Neoplasm of Lung 56

Non-Small Cell Lung Carcinoma 56

Carcinoma of Lung 54

Alzheimer’s Disease 54

https://doi.org/10.1371/journal.pcbi.1010851.t005
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Fig 5. Drug-target interaction network for proteins associated with Alzheimer’s disease and docking poses for representative drug-target pairs

calculated by Autodock Vina. (a) Drug-target interaction network predicted by PortalCG. Yellow rectangles and green ovals represent drugs and

targets, respectively. (b) Docking pose and ligand binding interactions between protein TIR domain-containing adapter molecule 2 (Uniprot:

Q86XR7) and AI-10–49. (c) Docking pose and ligand binding interactions between protein Unconventional myosin-Vc (Uniprot: Q9NQX4) and

fenebrutinib. (d) Docking pose and ligand binding interactions between DNA replication ATP-dependent helicase/nuclease (Uniprot: P51530) and

PF-05190457.

https://doi.org/10.1371/journal.pcbi.1010851.g005
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transfer learning) and OOC-ML optimization. Both PortalCG and DISAE outperform PLD-

based methods by obviating the inherent limitations of PLD. Applications of PortalCG to

OUD polypharmacology and drug repurposing targeting of hitherto undruggable human pro-

teins afford novel directions in drug discovery. For example, there are numerous predictions

for potential drug leads (and pathways to target for intervention) that can now be experimen-

tally tested and pursued, based on the predicted dark protein targets of the top-three ligands

that we identified above via PortalCG.

PortalCG can be further improved along several directions. In terms of protein sequence

modeling, additional a prior knowledge of protein structure and function can be incorporated

into the pre-training or supervised multi-task learning. Also, the current architecture of Por-

talCG mainly focuses on addressing the OOD problem from the perspective of protein space

but not chemical space. New methods for modeling chemical structures alone, or the joint

space of chemicals and proteins, will no doubt improve CPI predictions for hitherto unseen,

novel chemicals. Future directions can include novel representation schemes for 3D chemical

structures [51] at the sub-molecular level of scaffold and chemical moieties, pre-training of the

chemical space [52], and few-shot learning [53], as well as explicitly modeling inter-atomic

interactions between target amino acid residues and chemical/drug moieties. Finally, also note

that the existing PortalCG framework treats CPI prediction as a binary classification problem,

but this can be better reformulated as a regression model for predicting binding affinities. By

defining domain-specific pre-training and down-stream supervised learning tasks, PortalCG

can be envisaged as a general framework to explore the functions of understudied proteins,

including their universe of protein-protein interactions and protein-nucleic acid recognition.

Methods

PortalCG, as a system-level framework, involves collaborative new design from data prepro-

cessing, data splitting to model initialization, and model optimization and evaluation. The

overall pipeline of the framework is schematized in Fig 1. The model architecture adopted in

PortalCG mostly follows DISAE, as shown in Fig 6.

Datasets

PortalCG was trained using four major databases, namely Pfam [30], the Protein Data Bank

(PDB) [55], BioLp [56] and ChEMBL [31]. The data were pre-processed as follows.

• Protein sequence data. All sequences from Pfam-A families are used to pretrain the protein

descriptor following the same setting as in DISAE [1], which distills the original sequence

into an ordered list of amino acid triplets by extracting evolutionarily important positions

from a multiple sequence alignment

• Protein structures. Our protein structure dataset contains 30,593 protein 3D structures,

13,104 ligands, and 91,780 ligand-binding sites. Binding sites were selected according to the

annotation from BioLip (updated to the end of 2020). Binding sites which contact either

DNA/RNA or metal ions were not included. If a protein has more than one ligand, multiple

binding pockets were defined for this protein. For each binding pocket, pairwise distances

between the Cα atoms of amino acid residues of the binding pocket were calculated. In order

to obtain the distances between the ligand and its surrounding binding site residues, the dis-

tances between atom i of the ligand and each atom j in the binding-pocket residue were cal-

culated and the smallest such distance was selected as “the” distance between atom i and

residue j. In order to obtain the sequence feature of the binding site residues, in the proper

DISAE protein sequence representation [1], binding site residues obtained from PDB
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structures (queries) were mapped onto the multiple sequence alignments of its correspond-

ing Pfam family. First, a profile HMM database was built for the whole Pfam family. The tool

hmmscan [57] was applied to search the query sequence against this profile database to

decide which Pfam family it belongs to. For those proteins with multiple domains, more

than one Pfam families were identified. Then the query sequence was aligned to the most

similar sequence in the corresponding Pfam family by using phmmer. Aligned residues on

the query sequence were mapped to the multiple sequence alignments of this family accord-

ing to the alignment between the query sequence and the most similar sequence

• Chemical genomics data. CPI classification prediction data is the whole ChEMBL26 [31]

database, where the same threshold for defining positive and negative labels was used as that

in creating DISAE [1]. Log-transformation was performed for activities reported in pKd, pKi

or pIC50. The activities on a log-scale were then binarized, with protein-ligand pairs consid-

ered “active” if pIC50 > 5.3, pKd> 7.3 or pKi> 7.3 [1]

All of the data described above were split into training, validation, and testing sets. Data-

split statistics are shown in Table 6, and other data statistics are provided in Fig 2.

Fig 6. Illustration of PortalCG architecture in terms of its three stages of training. The architecture of protein sequence pre-training used

transformer-based and masked language modeling as detailed in [1]. The pre-trained protein descriptor was then used in binding site enhanced

sequence pre-training. In this stage, the task was to predict amino acid residue and ligand atom distance matrices. Finally, protein descriptors that were

pre-trained and regularized in the previous two stages were concatenated with chemical descriptors via an attention network to predict CPIs. Chemical

structures were represented by GIN [54], a graph neural network model (see text). The second and third stages had the same model architecture but the

model parameters were transferred from the second to the third stages. OOC-ML as an optimization algorithm was not a model architecture

component, and only used in the CPI prediction.

https://doi.org/10.1371/journal.pcbi.1010851.g006
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65 compounds were synthesized for testing DRD1/2/3 binding activities. The procedures

for the compound synthesis were detailed in Supplemental S1 Text Section 1.6, Scheme 1–5.

DRD binding assays and Ki determinations were performed by the Psychoactive Drug Screen-

ing Program (PDSP).

For illuminating undruggable human proteins, around 6,000 drugs are collected from

CLUE [44]. 12,475 undruggable proteins are collected by removing the druggable proteins in

Pharos [42] and Casas’s [43] druggable proteins sets from human disease associated genes [17].

Algorithm

Chemical representation. We represent a chemical compound as a graph, and its embed-

ding is learned using Graph Isomorphism Network (GIN) [54], which is designed to maximize

Table 6. Data statistics for each training stage.

dataset usage in PortalCG count sample size note

Pfam 33.1 STL, the first pretraining step to train DISAE # Pfam families 17,772 random split in training and testing

# sequences 54,409,760

PDB STL, the second pretraining step to learn

contact map between amino acid residues

and ligand atoms at binding sites

train # Pfam families 319 Pfam families in OOD-dev and OOD-test are held out

from PDB pre-training.# proteins 5,926

# binding sites

(protein-ligand pairs)

6,896

# chemical 3,168

test # Pfam families 733

# proteins 1,497

# binding sites

(protein-ligand pairs)

1,573

# chemical 670

ChEMBL

26

OOC-ML ODD-

train

# protein-ligand pairs 1,672,277 within each split (OOD-train/IID-dev/OOD-dev/OOD-

test), the data is random split into support and query sets in

a ratio of 5:1 for each Pfam family unless there are only one

class (binding or not) of data

# chemical 478,939

# Pfam families 333

IID-dev # protein-ligand pairs 6,536

# chemical 6,096

# Pfam families 333

# Pfam families

overlapping with

OOD-train

333

OOD-

dev

# protein-ligand pairs 165,655

# chemical 98,975

# Pfam families 701

# Pfam families

overlapping with

OOD-train

0

OOD-

test

# protein-ligand pairs 162,354

# chemical 104,299

# Pfam families 700

# Pfam families

overlapping with

OOD-train

0

# Pfam families

overlapping with

OOD-dev

0

https://doi.org/10.1371/journal.pcbi.1010851.t006
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the representational (or discriminative) power of a Graph Neural Network (GNN) based on

the Weisfeiler-Lehman (WL) graph isomorphism test. GIN is a common choice as a chemical

descriptor [40].

Protein sequence pre-training. PortalCG’s protein descriptor is pretrained from scratch,

following exactly the approach of DISAE [1] on whole Pfam families, making it a universal

protein language model. DISAE, which was inspired by recent success in self-supervised learn-

ing of unlabeled data in Nature Language Processing (NLP), features a novel method, termed

DIstilled Sequence Alignment Embedding (DISAE), for protein sequence representation.

DISAE can utilize all protein sequences to capture functional information without any knowl-

edge of their structure and function. By incorporating biological knowledge into the sequence

representation, DISAE can learn functionally important information about protein families

that span a wide range of protein sequence space. In contrast to existing sequence pre-training

strategies, which use original protein sequences as input [27], DISAE distills the original

sequence into an ordered list of triplets by extracting evolutionary important positions from a

multiple sequence alignment (including insertions and deletions). Next, long-range residue-

residue interactions can be learned via the Transformer module in ALBERT ([10]; itself

derived from the highly successful Bidirectional Encoder Representations from Transformers

[BERT] language model). A self-supervised masked language modeling (MLM) approach was

used at this stage. In the MLM, 15% triplets are randomly masked and assumed that they are

unknown; then, the remaining triplets are used to predict what the masked triplets are.

Protein structure regularization. With the protein descriptor pretrained using the

sequences from the whole of Pfam, chemical descriptors and a distance learner were plugged

in to fine-tune the protein representation. Specifically, the distance learner follows AlphaFold

[4], which formulates a multi-way classification on a distogram. Based on the histogram of dis-

tances between amino acids and ligand atoms, a histogram equalization (https://en.wikipedia.

org/wiki/Histogram_equalization) method was applied to formulate a 10-way classification on

our binding site structure data, as in Supplemental Fig F in S1 Text. Since protein and chemical

descriptors output position-specific embeddings of a distilled protein sequence, and all of the

atoms of a chemical compound, we used simple vector operations to create pair-wise interac-

tion feature descriptions of the binding sites. Specifically, a matrix multiplication was used to

select embedding vectors of each binding-site residue and atom (this step can be thought of as

applying a filter); then, multiplication and “broadcasting” the selected embedding vectors into

a symmetric tensor was performed as shown in the following, where H is an embedding matrix

of size (number_of_residues, embedding_dimension) [for the target binding-site residues] or

(number_of_atoms, embeddingdimension) [for the ligand compound], and A is the selector

matrix [58],

Hprotein
binding site ¼ Aprotein �Hprotein

full distilled

Hchemical
binding site ¼ Achemical �Hchemical

full chemical graph

Hinteraction
binding site ¼ ðH

protein
binding siteÞ

T
� Hchemical

binding site

The final pair-wise interaction feature tensor, Hinteraction
bindingsite

, was fed into an Attentive Pooling

[59] layer followed by a generic feed-forward layer for the final 10-way classification. Further

details about the model architecture and configuration can be found in Supplemental Table A

in S1 Text and Fig 6. The intuition for using a relatively simple form of the distance learner is

to place all the “stress” of learning on the shared protein and chemical descriptors, which at
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any rate will carry information across the end-to-end neural network. Again, with standard

Adam optimization, shifted evaluation was used to select the “best” instance. Two versions of

distance structure prediction were implemented, one formulated as a binary classification (i.e.

contact prediction), and the other formulated as a multi-way classification (i.e. distogram

prediction).

Out-of-cluster Meta Learning (OOC-ML). With a fine-tuned protein descriptor for the

protein function space, a binary classifier is then utilized; this step takes the form of a ResNet

[60] built with two linear layers, as shown in Supplemental Table A in S1 Text and Fig 6. What

plays a major role in this phase is the optimization algorithm OOC-ML, shown in pseudocode

Algorithm 1 and Fig 1. The first level (low level) model training is captured in lines 4–9, and

line 10 shows ensemble training of the second level (higher-level) models. Note that other vari-

ants could be derived by changing the sampling rules (line 3 and 5) and/or the second-level

ensemble update rule (line 10).

Algorithm 1: Out-of-cluster (OOC) Meta-learning in PortalCG

input: p(D): CPI data distribution over the whole of Pfam, where each

Di 2D is a set of CPI pairs for a given family, pfami;

α, β: learning step-size hyperparameters;

L: number of optimization steps in each round of first-level training;

T: number of the second-level training steps;

K: number of points sampled from a local neighborhood

output: θ: set of trained weights for the whole model

1 Initialize whole-model weights, θ (with weights transferred from portal for protein and

chemical descriptors, and randomly initialized weights for binary classifier)

2 for t in T do

3 Sample a Di* p(D);

4 for l in L do

5 Sample a positive-negative balanced mini-batch of K pairs in Di;

6 for pointj in Di do

7 EvaluateryLpointj
ðfyÞ with respect to K examples;

8 Compute adapted parameters with gradient descent: y
0

i ¼ y � aryLpointj
ðfyÞ;

9 end

10 Update y y � bry

P
Di�pðDÞ

Lpointj
ðf 0
y
Þ;

11 end

12 end

Stress model instance selection. In classic training schemes, a common practice is that

there are 3-split data sets, namely “train set”, “development (dev) set” and “test set”. The train-

ing set, as the name suggests, is used to train an ML model. The test set, as commonly imple-

mented, is used to set an expectation of performance when applying the trained model to

unseen data. Finally, the development set is to select the preferred model instance. In an OOD

problem setting, data are split (see Table 1) such that development set is an OOD with respect

to the train set, and similarly the test set is an OOD from both the train and development sets.

The deployment gap is calculated by deducting OOD-dev performance from the OOD-test

performance.

Statistical model. The false positive rate (p-value) of predictions can be fitted into an

extreme value distribution of the prediction scores (R2 = 0.98, p-value = 2.1e-5):

p� value ¼ expð� expð21:7678x � 11:0939ÞÞ

where x is the raw prediction score of PortalCG.
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E-value was estimated by p-value × 2.0 × 1010 for the chemical genomics space that includes

the order of 106 chemicals and approximate 20 thousands of human proteins.

Baseline models

Machine learning methods for CPI predictions have been widely explored using many para-

digms and approaches. As summarized in the survey [61], in addition to deep learning meth-

ods, there are similarity/distance-based methods, matrix factorization, network-based, and

feature-based methods. For CPI predictions with the OOD generalization challenge, the simi-

larity/distance-based, matrix factorization, and network-based methods have major obstacles.

Similarity/distance-based methods rely on a drug-drug similarity matrix and a target-target

similarity matrix as input. Because the similarities between dark proteins and proteins with

known ligands are low, no reliable predictions can be made. Matrix Factorization is popular

for its high efficiency, but the cold-start nature of dark proteins makes these less amenable to

the matrix factorization paradigm. Network-based methods usually utilize protein-protein

interactions. Such methods have advantages such as predicting the functional associations of

ligand binding, but not the direct physical interactions. Furthermore, these methods are not

scalable to millions of proteins and millions of chemicals. Almost all studies based on these

approaches focus only on thousands of targets and thousands of drugs. PortalCG belongs to a

category of feature-based approaches. In recently published work [1], we showed that DISAE

outperforms other state-of-the-art feature-based methods; therefore,we primarily compared

PortalCG with DISAE in the present paper.

Besides machine learning methods, protein-ligand docking (PLD) is a widely used

approach to predict CPIs. We evaluated the performance of PLD, performed by (i) using Auto-

Dock Vina [32] with (ii) 3D structures that were either experimentally determined or, in some

cases, AlphaFold2-predicted [5], and (iii) followed by SIGN re-scoring ([33]; the Structure-

aware Interactive Graph Neural Networks (SIGN) [33] method is a graph neural network for

the prediction of protein-ligand binding affinity). SIGN builds directional graphs to model the

structures and interactions in protein-ligand complexes. Both distances and angles are inte-

grated in the aggregation processes. SIGN is trained on PDBbind [62], which is a well-known

public dataset containing 3D structures of protein-ligand complexes together with experimen-

tally determined binding affinities. Similar to what was done in SIGN [33], we used the

PDBbind v2016 dataset and the corresponding refined set, which contains 3767 complexes, to

perform training. We followed SIGN [33] for training and testing. For the directional graph

used in SIGN, we constructed them with cutoff-threshold θd = 5Å. The number of hidden

layers is set to 2. All of the other settings are kept the same as those used in the original paper

of SIGN. We randomly split the PDBbind refined set with a ratio of 9:1 for training and

validation.

Supporting information

S1 Text. Supportinng information of methods. More details on implementation, evaluation

metrics, docking methods, compound desgin and synthesis and additional results in teh dark

chemical genomics sequence exploration. Table A: Model architecture configuration.

Table B: 65 compounds tested for selective dual DRD1/3 antagonists. Table C: Undrug-

gable human disease-associated proteins selected by ProtalCG. Table D: Predicted ligands

for the transcription factors and transcription activity related proteins. Table E: Chemicals

interacted with undruggable human proteins. Table F: Targets predicted by PortalCG for

AI-10–49, fenebrutinib, PF-05190457 and their docking score from Autodock Vina.

Table G: Functional Annotation enrichment for human proteins in Tbio selected by
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PortalCG. Table H: Chemicals interacted with human proteins in Tbio. Table I: Functional

Annotation enrichment for undruggable human disease proteins without Tbio selected by

PortalCG. Table J: Top ranked diseases associated with undruggable human proteins

excluding Tbio selected by PortalCG. Table K: Chemicals interacted with undruggable

human proteins excluding Tbio. Fig A: Model performance breakdown to each class. In the

main text, overall evaluation across positive and negative classes are reported, such as F1,

ROC-AUC, PR-AUC. Here is a breakdown of performance in each class, where class0 is nega-

tive, i.e. not binding, class1 is positive, i.e. binding. against DISAE as baseline. Fig B: Perfor-

mance comparison of PLD+SIGN and Autodock Vina Performance comparison of PLD

+SIGN and Autodock Vina using the same OOD-test set as in main text: ROC-AUCs of Auto-

dock Vina and PLD+SIGN are 0.535 and 0.569, respectively. PR-AUCs of Autodock Vina and

PLD+SIGN 0.398 and 0.433, respectively. Fig C: t-test comparison. t-test comparison. The p-

values for both ROC-AUC and PR-AUC are close to 0 against DISAE as baseline. Fig D: Stress

model selection performance curves against DISAE as baselinE. Fig E: Ratio 1:50 for DUD.

E. The ratio of inactive CPIs vs active CPIs under different Tanimoto coefficients of chemical

similarities in the training data. The ratio of total inactive CPIs vs active CPIs is 1:1. Fig F: His-

togram equalization results The left panel shows the original distribution of distance real val-

ues; to formalize a multi-class classification where each class has equal probability, histogram

equalization transforms the distribution to the right panel of 10 bins, each as a class.

(PDF)
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