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ABSTRACT

We show that an end-to-end deep learning approach can be used to recognize ei-
ther English or Mandarin Chinese speech–two vastly different languages. Because
it replaces entire pipelines of hand-engineered components with neural networks,
end-to-end learning allows us to handle a diverse variety of speech including noisy
environments, accents and different languages. Key to our approach is our appli-
cation of HPC techniques, enabling experiments that previously took weeks to
now run in days. This allows us to iterate more quickly to identify superior archi-
tectures and algorithms. As a result, in several cases, our system is competitive
with the transcription of human workers when benchmarked on standard datasets.
Finally, using a technique called Batch Dispatch with GPUs in the data center, we
show that our system can be inexpensively deployed in an online setting, deliver-
ing low latency when serving users at scale.

1 INTRODUCTION

Decades worth of hand-engineered domain knowledge has gone into current state-of-the-art auto-
matic speech recognition (ASR) pipelines. A simple but powerful alternative solution is to train
such ASR models end-to-end, using deep learning to replace most modules with a single model as
in Hannun et al. (2014a) and Miao et al. (2015). On such a system, built on end-to-end deep learn-
ing, we can employ a range of deep learning techniques: capturing large training sets, training larger
models with high performance computing, and methodically exploring the space of neural network
architectures.

This paper details our contribution to the model architecture, large labeled training datasets, and
computational scale for speech recognition. This includes an extensive investigation of model ar-
chitectures, and our data capturing pipeline that has enabled us to create larger datasets than what is
typically used to train speech recognition systems.

We benchmark our system on several publicly available test sets with a goal of eventually attaining
human-level performance not only on specific benchmarks, where it is possible to improve through
dataset-specific tuning, but on a range of benchmarks that reflects a diverse set of scenarios where
humans excel. To that end, we have also measured the performance of crowd workers on each
benchmark for comparison. We find that our best Mandarin Chinese speech system transcribes short
voice-query like utterances better than a typical Mandarin Chinese speaker.

The remainder of the paper is as follows. We begin with a review of related work in deep learning,
end-to-end speech recognition, and scalability in Section 2. Section 3 describes the architectural and
algorithmic improvements to the model and Section 4 explains how to efficiently compute them.
We discuss the training data and steps taken to further augment the training set in Section 5. An
analysis of results for our system in English and Mandarin is presented in Section 6. We end with a
description of the steps needed to deploy our system to real users in Section 7.

∗Authorship order is alphabetical.
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2 RELATED WORK

This work is inspired by previous work in both deep learning and speech recognition. Feed-forward
neural network acoustic models were explored more than 20 years ago Bourlard & Morgan (1993);
Renals et al. (1994). Recurrent neural networks and networks with convolution were also used
in speech recognition around the same time Robinson et al. (1996); Waibel et al. (1989). More
recently DNNs have become a fixture in the ASR pipeline with almost all state of the art speech work
containing some form of deep neural network Mohamed et al. (2011); Hinton et al. (2012); Dahl et al.
(2011); N. Jaitly & Vanhoucke (2012); Seide et al. (2011). Convolutional networks have also been
found beneficial for acoustic models Abdel-Hamid et al. (2012); Sainath et al. (2013). Recurrent
neural networks are beginning to be deployed in state-of-the art recognizers Graves et al. (2013);
H. Sak et al. (2014) and work well with convolutional layers for the feature extraction Sainath et al.
(2015).

End-to-end speech recognition is an active area of research, showing compelling results when used to
re-score the outputs of a DNN-HMM Graves & Jaitly (2014) and standalone Hannun et al. (2014a).
The RNN encoder-decoder paradigm uses an encoder RNN to map the input to a fixed length vector
and a decoder network to expand the fixed length vector into a sequence of output predictions Cho
et al. (2014); Sutskever et al. (2014). The RNN encoder-decoder with attention performs well in pre-
dicting phonemes Chorowski et al. (2015) or graphemes Bahdanau et al. (2015); Chan et al. (2015).
The CTC loss function Graves et al. (2006) coupled with an RNN to model temporal information
also performs well in end-to-end speech recognition with character outputs Graves & Jaitly (2014);
Hannun et al. (2014b;a); Maas et al. (2015). The CTC-RNN model also works well in predicting
phonemes Miao et al. (2015); Sak et al. (2015), though a lexicon is still needed in this case.

Exploiting scale in deep learning has been central to the success of the field thus far Krizhevsky
et al. (2012); Le et al. (2012). Training on a single GPU resulted in substantial performance
gains Raina et al. (2009), which were subsequently scaled linearly to two Krizhevsky et al. (2012)
or more GPUs Coates et al. (2013). We take advantage of work in increasing individual GPU ef-
ficiency for low-level deep learning primitives Chetlur et al.. We built on the past work in using
model-parallelism Coates et al. (2013), data-parallelism Dean et al. (2012) or a combination of the
two Szegedy et al. (2014); Hannun et al. (2014a) to create a fast and highly scalable system for
training deep RNNs in speech recognition.

Data has also been central to the success of end-to-end speech recognition, with over 7000 hours
of labeled speech used in Hannun et al. (2014a). Data augmentation has been highly effective in
improving the performance of deep learning in computer vision LeCun et al. (2004); Sapp et al.
(2008); Coates et al. (2011) and speech recognition Gales et al. (2009); Hannun et al. (2014a).
Existing speech systems can also be used to bootstrap new data collection. For example, an existing
speech engine can be used to align and filter thousands of hours of audiobooks Panayotov et al.
(2015). We draw inspiration from these past approaches in bootstrapping larger datasets and data
augmentation to increase the effective amount of labeled data for our system.

3 MODEL ARCHITECTURE

Figure 1 shows the wireframe of our architecture, and lays out the swappable components which we
explore in detail in this paper. Our system (similar at its core to the one in Hannun et al. (2014a)), is a
recurrent neural network (RNN) with one or more convolutional input layers, followed by multiple
recurrent (uni or bidirectional) layers and one fully connected layer before a softmax layer. The
network is trained end-to-end using the CTC loss function Graves et al. (2006), which allows us to
directly predict the sequences of characters from input audio. 1

The inputs to the network are a sequence of log-spectrograms of power normalized audio clips,
calculated on 20ms windows. The outputs are the alphabet of each language. At each output time-
step t, the RNN makes a prediction, p(`t|x), where `t is either a character in the alphabet or the
blank symbol. In English we have `t ∈ {a, b, c, . . . , z, space, apostrophe, blank}, where we have
added the space symbol to denote word boundaries. For the Mandarin system the network outputs
simplified Chinese characters.

1Most of our experiments use bidirectional recurrent layers with clipped rectified-linear units (ReLU)
σ(x) = min{max{x, 0}, 20} as the activation function.
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Figure 1: Architecture of the deep RNN used in both English and Mandarin speech.

Architecture Baseline BatchNorm GRU

5-layer, 1 RNN 13.55 14.40 10.53
5-layer, 3 RNN 11.61 10.56 8.00
7-layer, 5 RNN 10.77 9.78 7.79
9-layer, 7 RNN 10.83 9.52 8.19

9-layer, 7 RNN
no SortaGrad 11.96 9.78

Table 1: Comparison of WER on a development set as we vary depth of RNN, application of Batch-
Norm and SortaGrad, and type of recurrent hidden unit. All networks have 38M parameters—as
depth increases, the number of hidden units per layer decreases. The last two columns compare the
performance of the model on the dev set as we change the type of the recurrent hidden unit.

At inference time, CTC models are paired a with language model trained on a bigger corpus of text.
We use a specialized beam search Hannun et al. (2014b) to find the transcription y that maximizes

Q(y) = log(pRNN(y|x)) + α log(pLM(y)) + βwc(y) (1)

where wc(y) is the number of words (English) or characters (Chinese) in the transcription y. The
weight α controls the relative contributions of the language model and the CTC network. The weight
β encourages more words in the transcription. These parameters are tuned on a held out development
set.

3.1 BATCH NORMALIZATION FOR DEEP RNNS

To efficiently absorb data as we scale the training set, we increase the depth of the networks by
adding more recurrent layers. However, it becomes more challenging to train networks using gra-
dient descent as the size and depth increases. We have experimented with the Batch Normalization
(BatchNorm) method to train deeper nets faster Ioffe & Szegedy (2015). Recent research has shown
that BatchNorm can speed convergence of RNNs training, though not always improving general-
ization error Laurent et al. (2015). In contrast, we find that when applied to very deep networks of
RNNs on large data sets, the variant of BatchNorm we use substantially improves final generaliza-
tion error in addition to accelerating training.

A recurrent layer is implemented as

hlt = f(W lhl−1t + U lhlt−1 + b). (2)

where the activations of layer l at time step t are computed by combining the activations from the
previous layer hl−1t at the same time step t and the activations from the current layer at the previous
time step hlt−1.
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Figure 2: Training curves of two models trained with and without BatchNorm (BN). We see a wider
gap in performance on the deeper 9-7 network (which has 9 layers in total, 7 of which are vanilla
bidirectional RNNs) than the shallower 5-1 network (in which only 1 of the 5 layers is a bidirectional
RNN). We start the plot after the first epoch of training as the curve is more difficult to interpret due
to the SortaGrad curriculum method mentioned in Section 3.2

As in Laurent et al. (2015), there are two ways of applying BatchNorm to the recurrent operation.
A natural extension is to insert a BatchNorm transformation, B(·), immediately before every non-
linearity as follows:

hlt = f(B(W lhl−1t + U lhlt−1)). (3)

In this case the mean and variance statistics are accumulated over a single time-step of the minibatch.
We did not find this to be effective.

An alternative (sequence-wise normalization) is to batch normalize only the vertical connections.
The recurrent computation is given by

hlt = f(B(W lhl−1t ) + U lhlt−1). (4)

For each hidden unit we compute the mean and variance statistics over all items in the minibatch over
the length of the sequence. Figure 2 shows that deep networks converge faster with sequence-wise
normalization. Table 1 shows that the performance improvement from sequence-wise normalization
increases with the depth of the network, with a 12% performance difference for the deepest network.
We store a running average of the mean and variance for the neuron collected during training, and
use these for evaluation Ioffe & Szegedy (2015).

3.2 SORTAGRAD

Even with Batch Normalization, we find training with CTC to be occasionally unstable, particularly
in the early stages. In order to make training more stable, we experiment with a training curricu-
lum Bengio et al. (2009); Zaremba & Sutskever (2014), which accelerates training and results in
better generalization as well.

Training very deep networks (or RNNs with many steps) from scratch can fail early in training since
outputs and gradients must be propagated through many poorly tuned layers of weights. In addition
to exploding gradients Pascanu et al. (2012), CTC often ends up assigning near-zero probability
to very long transcriptions making gradient descent quite volatile. This observation motivates a
curriculum learning strategy we title SortaGrad: we use the length of the utterance as a heuristic for
difficulty and train on the shorter (easier) utterances first.

Specifically, in the first training epoch we iterate through minibatches in the training set in increasing
order of the length of the longest utterance in the minibatch. After the first epoch training reverts
back to a random order over minibatches. Table 1 shows a comparison of training cost with and
without SortaGrad on the 9 layer model with 7 recurrent layers. SortaGrad improves the stability of
training, and this effect is particularly pronounced in networks without BatchNorm, since these are
even less numerically stable.

Both GRU and vanilla RNN architectures benefit from BatchNorm and show strong results with
deep networks. The last two columns in table 1 show that for a fixed number of parameters the GRU
architecture achieves better WER for all network depths.
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Architecture Channels Filter dimension Stride Regular Dev Noisy Dev

1-layer 1D 1280 11 2 9.52 19.36
2-layer 1D 640, 640 5, 5 1, 2 9.67 19.21
3-layer 1D 512, 512, 512 5, 5, 5 1, 1, 2 9.20 20.22
1-layer 2D 32 41x11 2x2 8.94 16.22
2-layer 2D 32, 32 41x11, 21x11 2x2, 2x1 9.06 15.71
3-layer 2D 32, 32, 96 41x11, 21x11, 21x11 2x2, 2x1, 2x1 8.61 14.74

Table 2: Comparison of WER for different configurations of convolutional layers. In all cases, the
convolutions are followed by 7 recurrent layers and 1 fully connected layer. For 2D convolutions
the first dimension is frequency and the second dimension is time. Each model is trained with
BatchNorm, SortaGrad, and has 35M parameters.

3.3 FREQUENCY CONVOLUTIONS

Temporal convolution is commonly used in speech recognition to efficiently model temporal trans-
lation invariance for variable length utterances. Convolution in frequency attempts to model spectral
variance due to speaker variability more concisely than what is possible with large fully connected
networks.

We experiment with adding between one and three layers of convolution. These are both in the
time-and-frequency domain (2D) and in the time-only domain (1D). In all cases we use a “same”
convolution. In some cases we specify a stride (subsampling) across either dimension which reduces
the size of the output.

We report results on two datasets—a development set of 2048 utterances (“Regular Dev”) and a
much noisier dataset of 2048 utterances (“Noisy Dev”) randomly sampled from the CHiME 2015
development datasets Barker et al. (2015). We find that multiple layers of 1D convolution provides a
very small benefit. The 2D convolutions improve results substantially on noisy data, while providing
a small benefit on clean data. The change from one layer of 1D convolution to three layers of 2D
convolution improves WER by 23.9% on the noisy development set.

3.4 LOOKAHEAD CONVOLUTION AND UNIDIRECTIONAL MODELS

Bidirectional RNN models are challenging to deploy in an online, low-latency setting because they
cannot stream the transcription process as the utterance arrives from the user. However, models with
only forward recurrences routinely perform worse than similar bidirectional models, implying some
amount of future context is vital to good performance. One possible solution is to delay the system
from emitting a label until it has more context as in Sak et al. (2015), but we found it difficult to
induce this behavior in our models. In order to build a unidirectional model without any loss in
accuracy, we develop a special layer that we call lookahead convolution, shown in Figure 3. The
layer learns weights to linearly combine each neuron’s activations τ timesteps into the future, and
thus allows us to control the amount of future context needed. The lookahead layer is defined by a
parameter matrix W ∈ R(d,τ), where d matches the number of neurons in the previous layer. The
activations rt for the new layer at time-step t are

rt,i =

τ+1∑
j=1

Wi,jht+j−1,i, for 1 ≤ i ≤ d. (5)

We place the lookahead convolution above all recurrent layers. This allows us to stream all compu-
tation below the lookahead convolution on a finer granularity.

3.5 ADAPTATION TO MANDARIN

To port a traditional speech recognition pipeline to another language typically requires a significant
amount of new language-specific development. For example, one often needs to hand-engineer a
pronunciation model Shan et al. (2010). We may also need to explicitly model language-specific
pronunciation features, such as tones in Mandarin Shan et al. (2010); Niu et al. (2013). Since our
end-to-end system directly predicts characters, these time consuming efforts are no longer needed.
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Figure 3: Lookahead convolution architecture with future context size of 2.

This has enabled us to quickly create an end-to-end Mandarin speech recognition system (that out-
puts Chinese characters) using the approach described above with only a few changes.

The only architectural changes we make to our networks are due to the characteristics of the Chinese
character set. The network outputs probabilities for about 6000 characters, which includes the Ro-
man alphabet, since hybrid Chinese-English transcripts are common. We incur an out of vocabulary
error at evaluation time if a character is not contained in this set. This is not a major concern, as our
test set has only 0.74% out of vocab characters.

We use a character level language model in Mandarin as words are not usually segmented in text.
In Section 6.2 we show that our Mandarin speech models show roughly the same improvements
to architectural changes as our English speech models, suggesting that modeling knowledge from
development in one language transfers well to others.

4 SYSTEM OPTIMIZATIONS

Our networks have tens of millions of parameters, and a training experiment involves tens of single-
precision exaFLOPs. Since our ability to evaluate hypotheses about our data and models depends on
training speed, we created a highly optimized training system based on high performance comput-
ing (HPC) infrastructure.2 Although many frameworks exist for training deep networks on parallel
machines, we have found that our ability to scale well is often bottlenecked by unoptimized routines
that are taken for granted. Therefore, we focus on careful optimization of the most important rou-
tines used for training. Specifically, we created customized All-Reduce code for OpenMPI to sum
gradients across GPUs on multiple nodes, developed a fast implementation of CTC for GPUs, and
use custom memory allocators. Taken together, these techniques enable us to sustain overall 45% of
theoretical peak performance on each node.

Our training distributes work over multiple GPUs in a data-parallel fashion with synchronous SGD,
where each GPU uses a local copy of the model to work on a portion of the current minibatch and
then exchanges computed gradients with all other GPUs. We prefer synchronous SGD because it is
reproducible, which facilitates discovering and fixing regressions. In this setup, however, the GPUs
must communicate quickly (using an "All-Reduce" operation) at each iteration in order to avoid
wasting computational cycles. Prior work has used asynchronous updates to mitigate this issue Dean
et al. (2012); Recht et al. (2011). We instead focused on optimizing the All-Reduce operation itself,
achieving a 4x-21x speedup using techniques to reduce CPU-GPU communication for our specific
workloads. Similarly, to enhance overall computation, we have used highly-optimized kernels from
Nervana Systems and NVIDIA that are tuned for our deep learning applications. We similarly
discovered that custom memory allocation routines were crucial to maximizing performance as they
reduce the number of synchronizations between GPU and CPU.

We also found that the CTC cost computation accounted for a significant fraction of running time.
Since no public well-optimized code for CTC existed, we developed a fast GPU implementation that
reduced overall training time by 10-20%.3

2Our software runs on dense compute nodes with 8 NVIDIA Titan X GPUs per node with a theoretical peak
throughput of 48 single-precision TFLOP/s.

3Details of our CTC implementation will be made available along with open source code.
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Fraction of Data Hours Regular Dev Noisy Dev

1% 120 29.23 50.97
10% 1200 13.80 22.99
20% 2400 11.65 20.41
50% 6000 9.51 15.90

100% 12000 8.46 13.59

Table 3: Comparison of English WER for Regular and Noisy development sets on increasing training
dataset size. The model has 9-layers (2 layers of 2D convolution and 7 recurrent layers) with 68M
parameters.

5 TRAINING DATA

Large-scale deep learning systems require an abundance of labeled training data. For training our
English model, we use 11,940 hours of labeled speech containing 8 million utterances, and the
Mandarin system uses 9,400 hours of labeled speech containing 11 million utterances.

5.1 DATASET CONSTRUCTION

Parts of the English and Mandarin datasets were created from raw data captured as long audio clips
with noisy transcriptions. In order to segment the audio into several second long clips, we align
the speech with the transcript. For a given audio-transcript pair (x, y), the most likely alignment is
calculated as

`∗ = argmax
`∈Align(x,y)

T∏
t

pctc(`t|x; θ). (6)

This is essentially a Viterbi alignment found using a RNN model trained with CTC. Since the CTC
loss function integrates over all alignments, this is not guaranteed to produce an accurate alignment.
However, we found that this approach produces an accurate alignment when using a bidirectional
RNN.

In order to filter out clips with poor transcriptions, we build a simple classifier with the following
features: the raw CTC cost, the CTC cost normalized by the sequence length, the CTC cost normal-
ized by the transcript length, the ratio of the sequence length to the transcript length, the number of
words in the transcription and the number of characters in the transcription. We crowd source the
labels for building this dataset. For the English dataset, we find that the filtering pipeline reduces the
WER from 17% to 5% while retaining more than 50% of the examples.

Additionally, we dynamically augment the dataset by adding unique noise every epoch with an SNR
between 0dB and 30dB, just as in Hannun et al. (2014a); Sainath et al. (2015).

5.2 SCALING DATA

We show the effect of increasing the amount of labeled training data on WER in Table 3. This is
done by randomly sampling the full dataset before training. For each dataset, the model was trained
for up to 20 epochs with early-stopping based on the error on a held out development set to prevent
overfitting. The WER decreases by ∼40% relative for each factor of 10 increase in training set size.
We also observe a consistent gap in WER (∼60% relative) between the regular and noisy datasets,
implying that more data benefits both cases equally.

6 RESULTS

To better assess the real-world applicability of our speech system, we evaluate on a wide range of
test sets. We use several publicly available benchmarks and several test sets collected internally.
All models are trained for 20 epochs on either the full English dataset, or the full Mandarin dataset
described in Section 5. We use stochastic gradient descent with Nesterov momentum Sutskever et al.
(2013) along with a minibatch of 512 utterances. If the norm of the gradient exceeds a threshold
of 400, it is rescaled to 400 Pascanu et al. (2012). The model which performs the best on a held-
out development set during training is chosen for evaluation. The learning rate is chosen from
[1× 10−4, 6× 10−4] to yield fastest convergence and annealed by a constant factor of 1.2 after each
epoch. We use a momentum of 0.99 for all models.
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Test set Ours Human

R
ea

d

WSJ eval’92 3.10 5.03
WSJ eval’93 4.42 8.08
LibriSpeech test-clean 5.15 5.83
LibriSpeech test-other 12.73 12.69

A
cc

en
te

d VoxForge American-Canadian 7.94 4.85
VoxForge Commonwealth 14.85 8.15
VoxForge European 18.44 12.76
VoxForge Indian 22.89 22.15

N
oi

sy CHiME eval real 21.59 11.84
CHiME eval sim 42.55 31.33

Table 4: Comparison of WER for our speech system and human level performance.

6.1 ENGLISH

The best English model has 2 layers of 2D convolution, followed by 3 layers of unidirectional
recurrent layers with 2560 GRU cells each, followed by a lookahead convolution layer with τ = 80,
trained with BatchNorm and SortaGrad. We do not adapt the model to any of the speech conditions
in the test sets. Language model decoding parameters are set once on a held-out development set.

We report results on several test sets for both our system and an estimate of human accuracy. We
obtain a measure of human level performance by asking workers from Amazon Mechanical Turk to
hand-transcribe all of our test sets. Two workers transcribe the same audio clip that is on average
about 5 seconds long. We then take the better of the two transcriptions for the final WER calculation.
Most workers are based in the United States and on average spend 27 seconds per transcription. The
hand-transcribed results are compared to the existing ground truth to produce a WER estimate.
While the existing ground truth transcriptions do have some label error, this is rarely more than
1%. This implies that disagreement between the ground truth transcripts and the crowd sourced
transcripts is a good proxy for actual accuracy of a typical human worker.

6.1.1 BENCHMARK RESULTS

Read speech with high signal-to-noise ratio is arguably the easiest task in large vocabulary contin-
uous speech recognition. We benchmark our system on two test sets from the Wall Street Journal
(WSJ) corpus of read news articles and the LibriSpeech corpus constructed from audio books Panay-
otov et al. (2015). Table 4 shows that our system outperforms humans on 3 out of 4 test sets.

We also tested our system for robustness to common accents using the VoxForge (http://www.
voxforge.org) dataset. The set contains speech read by speakers with many different accents.
We group these accents into four categories: American-Canadian, Indian, Commonwealth4 and
European5. We construct a test set from the VoxForge data with 1024 examples from each accent
group for a total of 4096 examples. Human level performance is still notably better than that of our
system for all but the Indian accent.

Finally, we tested our performance on noisy speech using the test sets from the recently completed
third CHiME challenge Barker et al. (2015). This dataset has utterances from the WSJ test set
collected in real noisy environments and with artificially added noise. Using all 6 channels of the
CHiME audio can provide substantial performance improvements Yoshioka et al. (2015). We use
a single channel for all our models, since access to multi-channel audio is not pervasive on most
devices. The gap between our system and human level performance is larger when the data comes
from a real noisy environment instead of synthetically adding noise to clean speech.

6.2 MANDARIN

In Table 5 we compare several architectures trained on Mandarin Chinese speech on a development
set of 2000 utterances as well as a test set of 1882 examples of noisy speech. This development set

4“Commonwealth” includes British, Irish, South African, Australian and New Zealand accents.
5“European” includes countries in Europe without English as a first language.
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was also used to tune the decoding parameters. We see that the deepest model with 2D convolution
and BatchNorm outperforms the shallow RNN by 48% relative.

Architecture Dev Test

5-layer, 1 RNN 7.13 15.41
5-layer, 3 RNN 6.49 11.85
5-layer, 3 RNN + BatchNorm 6.22 9.39
9-layer, 7 RNN + BatchNorm
+ frequency Convolution 5.81 7.93

Table 5: Comparison of the different RNN architectures. The development and test sets are internal
corpora. All the models in the table have about 80 million parameters each.

Test Human RNN

100 utterances / committee 4.0 3.7
250 utterances / individual 9.7 5.7

Table 6: We benchmark the best Mandarin system against humans on two randomly selected test
sets. The first set has 100 examples and is labelled by a committee of 5 Chinese speakers. The
second has 250 examples and is labelled by a single human transcriber.

Table 6 shows that our best Mandarin Chinese speech system transcribes short voice-query like
utterances better than a typical Mandarin Chinese speaker and a committee of 5 Chinese speakers
working together.

7 DEPLOYMENT

Bidirectional models are not well-designed for real time transcription: since the RNN has several
bidirectional layers, transcribing an utterance requires the entire utterance to be presented to the
RNN; and since we use a wide beam search for decoding, beam search can be expensive.

We modify our system to produce a model that is almost as accurate (there is only 5% relative
difference between the research and production systems) while having much lower latency. We focus
on our Mandarin system, but the same techniques could also be applied in English. We focus on
latency measured from when the end of an utterance is received until the transcription is computed,
because this latency is important to applications using speech recognition.

To increase deployment scalability, while still providing low latency transcription, we built a batch-
ing scheduler called Batch Dispatch that assembles streams of data from user requests into batches
before performing RNN forward propagation on these batches. With this scheduler, we can trade
increased batch size, and consequently improved efficiency, with increased latency.

We use an eager batching scheme that processes each batch as soon as the previous batch is com-
pleted, regardless of how much work is ready by that point. This scheduling algorithm balances
efficiency and latency, achieving relatively small dynamic batch sizes up to 10 samples per batch,
with median batch size proportional to server load.

Load Median 98%ile

10 streams 44 70
20 streams 48 86
30 streams 67 114

Table 7: Latency distribution (ms) versus load

We see in Table 7 that our system achieves a median latency of 44 ms, and a 98th percentile latency
of 70 ms when loaded with 10 concurrent streams. This server uses one NVIDIA Quadro K1200
GPU for RNN evaluation. As designed, Batch Dispatch shifts work to larger batches as server load
grows, keeping latency low.

9



Workshop track - ICLR 2016

Our deployment system evaluates RNNs in half-precision arithmetic, which has no measurable accu-
racy impact, but significantly improves efficiency. We wrote our own 16-bit matrix-matrix multiply
routines for this task, substantially improving throughput for our relatively small batches.

Performing the beam search involves repeated lookups in the n-gram language model, most of which
translate to uncached reads from memory. To reduce the cost of these lookups, we employ a heuris-
tic: only consider the fewest number of characters whose cumulative probability is at least p. In
practice, we have found that p = 0.99 works well, and additionally we limit the search to 40 charac-
ters. This speeds up the cumulative Mandarin language model lookup time by a factor of 150x, and
has a negligible effect on the CER (0.1-0.3% relative).

8 CONCLUSION

End-to-end deep learning presents the exciting opportunity to improve speech recognition systems
continually with increases in data and computation. Since the approach is highly generic, we have
shown that it can quickly be applied to new languages. Creating high-performing recognizers for
two very different languages, English and Mandarin, required essentially no expert knowledge of
the languages. Finally, we have also shown that this approach can be efficiently deployed by batch-
ing user requests together on a GPU server, paving the way to deliver end-to-end Deep Learning
technologies to users.

To achieve these results, we have explored various network architectures, finding several effective
techniques: enhancements to numerical optimization through SortaGrad and Batch Normalization,
and lookahead convolution for unidirectional models. This exploration was powered by a well opti-
mized, high performance computing inspired training system that allows us to train full-scale models
on our large datasets in just a few days.

Overall, we believe our results confirm and exemplify the value of end-to-end deep learning methods
for speech recognition in several settings. We believe these techniques will continue to scale.
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