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Abstract—The segmentation and characterization of the lung
lobes are important tasks for Computer Aided Diagnosis (CAD)
systems related to pulmonary disease. The detection of the
fissures that divide the lung lobes is non-trivial when using
classical methods that rely on anatomical information like the
localization of the airways and vessels. This work presents a
fully automatic and supervised approach to the problem of the
segmentation of the five pulmonary lobes from a chest Computer
Tomography (CT) scan using a Fully Regularized V-Net (FRV-
Net), a 3D Fully Convolutional Neural Network trained end-to-
end. Our network was trained and tested in a custom dataset that
we make publicly available. It can correctly separate the lobes
even in cases when the fissure is not well delineated, achieving
0.93 in per-lobe Dice Coefficient and 0.85 in the inter-lobar Dice
Coefficient in the test set. Both quantitative and qualitative results
show that the proposed method can learn to produce correct lobe
segmentations even when trained on a reduced dataset.

Index Terms—Lung Segmentation, Lobe Segmentation, 3D
Segmentation, Deep Learning

I. INTRODUCTION

Segmentation of the lung anatomical structures is an im-
portant task of Computer Assisted Diagnosis (CAD) systems
based on Chest Computer Tomography (CT) scans. Informa-
tion about localization, volume or shape of these structures is
necessary to complete other diagnostic tasks, provide a precise
quantification of the extent and heterogeneity of pulmonary
diseases and for treatment planning.

The lungs are composed of five lobes (two in the left lung
and three in the right lung) separated by the lobar fissures,
represented in Fig. 1. Lobe segmentation can be a trivial task
when fissures are clearly delineated in the CT scan. However,
this is often not the case due to fissure incompleteness, the
presence of other structures and lung parenchymal abnormal-
ities surrounding them.

Since fissures appear at the boundary between two adjacent
lobes, most methods for lobe segmentation have, as the initial
step, a fissure detection procedure. Searching for this type of
structure can result in many false positives due to the presence
of structures with strong resemblance inside the lungs. As
such, many methods rely on anatomical information, such as
airway or vessel segmentation, bronchial tree or even pre-
existing atlases [5].

Following this kind of approach, Bargman et al. [2] applied
a probabilistic method based on the model of the fissures. Us-
ing a two-class Gaussian Mixture Model with prior anatomical
information, a non-parametric surface fitting was performed

Fig. 1: Representation of the lungs with the respective lobes
and fissures.

to obtain a final segmentation. The algorithm achieved a
relatively high performance in terms of DICE and F1 scores,
but the dependence on a correct modelization of fissures adds
a substantial complexity to the method.

Over the past years, supervised deep learning methods and,
more precisely Convolutional Neural Networks (CNNs), have
become the methodology of choice in the medical image
domain, being applied to a wide range of CAD-related tasks,
e.g detection, classification and segmentation of structures and
organs [15]. For both 2D and 3D scenarios, CNNs present
state-of-the-art results in challenging segmentation tasks. Ron-
neberger et al.[17], proposed a method for segmentation of
microscopy images using a fully-convolutional neural network
(F-CNN) called U-Net, which has become the most popular
CNN architecture for segmentation of 2D medical images.
For 3D medical images, 2D CNN based methods are usually
applied slice-per-slice to the volumetric data. For example,
Zhou et al. [24] used a 2D F-CNN trained on the slices
of an abdominal CT scan to perform 3D segmentation of
the pancreas. 3D CNN based methods have been recently
proposed to exploit the 3D spatial information and integrate
context for a better volume segmentation. For instance, Yu et
al. [4] proposed a Volumetric ConvNet with mixed residual
connections for prostate segmentation from 3D MR images.
Some 3D architectures have also been developed based on the
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U-Net. An example that is particularly relevant for the method
proposed in this paper is V-Net, first proposed by Milletari et
al. [16] to segment images of the pancreas. Qi Dou et al.
[6], developed a 3D Deeply Supervised Network (3D DSN)
for segmentation of the liver from 3D CT scans and heart
and large vessels from 3D MR images, achieving competitive
state-of-the-art results with a substantially improved speed.

For the segmentation of lungs in CT Scans, Harrison et
al. [10], developed a 2D method using a 2D Progressive
Holistically-Nested Network (P-HNN) slice-per-slice. For the
segmentation of the lobes of the lungs, based on the previous
approach, George et al. [7] employed the same P-HNN algo-
rithm to identify potential lobar boundaries. After the identifi-
cation, a Random Walker algorithm, seeded and weighted by
the P-HNN output, generates the final segmentation.

The lack of annotated data is a common burden in med-
ical images. To overcome this difficulty and also to avoid
overfitting the training data, regularization techniques can be
used. Regularization techniques have been described as mod-
ifications made to learning algorithms in order to reduce their
generalization error but not their training error [9]. Multi-Task
Learning [3], Deep Supervision [14], Batch Normalization
[12] and Dropout [21] are some examples of these techniques.

The main contribution presented in this work consists of
a novel approach for the segmentation of lungs and their
lobes from CT scans. In contrast with previous approaches,
which typically process 2D slices sequentially, our technique
can directly receive and process three-dimensional data. Our
proposed method is a 3D Fully Convolutional Neural Network,
based on the V-Net architecture, with the addition of carefully
selected advanced regularization techniques. The resulting
model, named Fully Regularized V-Net (FRV-NET), is shown
to be effective for producing highly accurate three-dimensional
segmentations of the lobes, without relying on heavy pre-
processing and post-processing schemes, and without needing
large quantities of data to be trained. The performance of
the method is thoroughly analyzed on two different datasets,
evaluating the resulting segmentations by means of a new
inter-lobar overlap-based measuring metric. We also provide
a rigorous ablation study, where we individually disable each
regularization technique one at a time, to analyze their influ-
ence on the overall performance of the model.

II. METHOD

In this section we present the architecture of our system. The
regularizing techniques applied are described as well as the
loss function of the model and its implementation. The code
and data to replicate the experiments are publicly available. 1

A. Model Architecture

The architecture explored in this study is based on the V-
Net [16], a 3D extension of the U-net [17], which is widely
used in biomedical image because of its capability to solve
segmentation problems relying on small sets of training data.

1https://github.com/filipetrocadoferreira/end2endlobesegmentation

Using a similar architecture as V-Net, our model (Fig. 2)
receives as input images with size 128 × 128 × 64 and has
as main output a voxel-wise prediction for the six target
classes, the five lobes plus the background. The architecture is
constituted by an encoding path followed by a decoding path.
The encoding part follows a typical CNN architecture where
convolutional layers iteratively decrease the feature resolution
while the number of channels is increased in the same order.
To achieve per-voxel prediction in the same resolution as
the input image, it is necessary to sequentially upsample
the feature maps. This takes place in the decoding path.
Skip (or residual) connections are then employed between
encoding and decoding paths, concatenating features of the
same resolution. This way small details in the image, lost
during downsampling, are recovered.

We employ only 3×3×3 convolutions in the whole model
instead of bigger kernels due to its efficiency. It is possible
to achieve bigger receptive fields using these filters sequen-
tially with a reduction of the computing time. The activation
function is the Parametric Rectified Linear Unit (PReLU) [11].
We choose this function to alleviate the problem of vanishing
gradient [8] during the training of the network. PReLUs allow
a learned parametric gradient even when its input is negative
in opposition to traditional Rectified Linear Unit (ReLU).
To reduce the feature maps in the downsampling path, in
opposition to usual Pooling layers, we perform strided 2×2×2
convolutions, which are known to lead to a greater accuracy
[20]. In the upsample path we use 3D upsample layers with
dimension 2× 2× 2 to increase the size of the feature space.

The last layer is a 1 × 1 × 1 convolution followed by a
soft-max activation function that produces the probability of
each voxel to be classified as one each of the six classes of
interest.

B. Regularization techniques

Deep neural networks can easily overfit in small training
sets, resulting in poor generalization. In order to avoid the
problem of overfitting we extend the original V-Net architec-
ture with additional regularizing techniques described in the
following paragraphs.

1) Batch Normalization: Batch Normalization [12] deals
with the change of the feature space distribution along the
model during the training, also known as the internal covariate

shift. It addresses the problem, by normalizing layer’s input
and keeping its mean close to 0 and standard deviation
approximately equal to 1.

This step can act as a regularizer, but also speeds up training,
allows higher learning rates and reduces the dependence on
weights initialization.

2) Dropout: One of the simplest yet most effective regu-
larization method for deep neural networks is Dropout [21]. It
consists of the random disabling of neurons during training
with probability p. Ignoring temporarily some activations
forces the other neurons to learn a more robust representation
of the input data while training and leads to a reduction of the
sensitivity of specific neurons. At test time, dropout is disabled

2018 International Joint Conference on Neural Networks (IJCNN)



Fig. 2: Schematic of the proposed model based on the V-Net[16]. Like the V-Net the model is formed by an encoding path
followed by a decoding path receiving input images with size 128 x 128 x 64. It contains regularization techniques such as
Batch Normalization, Deep Supervision, Multi-task learning and Dropout represented in the figure. Please note that all the
calculation are performed in 3 dimensions; 2D icons are just used for schematics. Best seen in an electronic version

and the weights are scaled by a factor of p to compensate for
the increased number of active neurons [21].

We apply Dropout after the activation layer in every down-
sampling and upsampling phases, both in the encoder-decoder
networks.

3) Deep Supervision: Normally, the supervision of the
network is performed in the output of the model with the
labels of the dataset. In deep networks and networks with
small training datasets, due to the loss in the representation
capability in the first layers of the model, the norm of the
gradients can fast decrease to zero during training. This low
norm of the gradient affects the back-propagation turning the
training phase slower and leading to the vanishing gradients
problem, which compromises convergence. Deep supervision
pays attention to the hidden layers of the network adding cost
functions on those layers. It is considered as a regularization

technique suitable to overcome the vanishing gradient phe-
nomenon [14].

In our model, we adopt Deep supervision on the latest two
scales of the upsampling path, where the ouput is upsampled
by nearest neighbor interpolation to the ouput size of the
main model. At test time the part of the model used in deep
supervision is simply ignored.

4) Multi-Task Learning: Multi-Task Learning is a method
consisting of using the same network core to solve multiple
tasks simultaneously. Training a model in different but related
tasks has shown to lead to better performance than training
a model for each task separately [3]. Moreover, Multi-Task
Learning allows better generalization on the main task using
the shared representation of auxiliary tasks, acting this way
as regularization in the training procedure [18]. As aforemen-
tioned, our main goal is to predict the correct probability of
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each voxel of belonging to each one of the lobes. However, this
task is harder in volume regions surrounded by elements of
other classes, in our case, near to other lobes and background.
In lobar segmentation these areas usually correspond to the
fissures and lung walls. Therefore we introduce an auxiliary
loss function, which will be described in the next section in
order to penalize wrong segmentations of lobe borders. This
supplementary objective is used to focus the attention [18] of
the model in the most difficult scenarios, such as lungs not
well formed or with pathologies, improving its representation
power and the ability to separate the lobes.

C. Loss

Inspired on the evaluation method of the LObe and Lung
Analysis 2011 (LOLA11) challenge [23] we apply the Dice
coefficient to each Lobe (per-lobe) to train the network. In
the challenge, the loss employed was the mean per-lobe Dice
coefficient. However, due to difference of lobe sizes and
consequently of class frequency we exploit a weighted average
per-lobe Dice for the loss function of the main-task, also
proposed in [22].

Let L(P,G) be the loss function based on the weighted
average of the per-lobe Dice coefficient. G represents the
ground-truth segmentation distributed in N voxels rnc

. The
class of each voxel is represented through one-hot encoded,
where each voxel is represented by a binary vector with size
of the number of the classes C.

We define P as the output of the softmax layer composed
by a vector with the probability of each voxel pnc

to belong to
each one of the C target classes. Accordingly, we can represent
the loss as:

L(P,G) = −2 ·

∑
c wc

∑
n pnc

rnc
+ δ

∑
c wc

∑
n(pnc

+ rnc
) + δ

(1)

being wc the inverse frequency of each target class in the
training batch, c ∈ {1, . . . , C}, and wc =

∑
n

1
rnc

+ δ
with δ

being a small number to avoid the zero-division.
For the auxiliary task mentioned in subsection II-B4 we

use the Dice coefficient in the loss function Laux between
the prediction Paux and the ground-truth of the lobe borders
Gaux:

Laux(Paux, Gaux) = −2 ·

∑
n pna

rna
+ δ

∑
n(pna

+ rna
) + δ

(2)

In order to perform deep supervision, the loss function uti-
lized in the E early predictions of the network Pe is the same
as in the main task, see equation (1) with e ∈ {1, 2, . . . , E}.
So we write the total loss of the deep supervision path as:

LE(PE , G) =

∑
E −2 ·

∑
c
wc

∑
n
penc

rnc
+δ

∑
c
wc

∑
n
(penc

+rnc
)+δ

E
(3)

It must be noted that the loss of each one of the E deeply
supervised paths will just optimize the part of the network

upstream. Here we refer to the sum of each component due
to ease of notation.

Finally, we can state the loss function employed during the
training of the entire network as:

Ltotal = λ1·L(P,G)+λ2·Laux(Paux, Gaux)+λ3·LE(PE , G)
(4)

where the λ1,2,3 are the weights of each component in the
final loss.

D. Implementation

For the implementation and training of the model described
above, the following steps were performed:

1) Data Preparation: To fit the input size of the archi-
tecture, we would need to resize the 512 × 512 × 256 scan
dimension to 128× 128× 64. However, this drastic reduction
may result in loosing important details on lobe borders, that
are thin surface volumes. In order to avoid this, we opted
by resizing the scans to 256 × 256 × 128 and, from this
volume randomly sample in 128 × 128 × 64 patches. With
this approach we are able to decrease memory requirements
while effectively keeping the resolution needed to extract good
representations of the lung lobes. The values of the scans
were clipped between [−1000; 400] Hounsfield units since,
within this range, all the relevant information is preserved.
Additionally, the images are normalized to zero mean and unit
variance. To increase efficiently the training data, the original
dataset was augmented by means of linear transformations.
Small random rotations around the Z-axis, voxel translations
in the X and Y axis and zoomed in/out operations around
the Z-axis were applied. Note that in our implementation,
no mirroring was applied for data augmentation to keep the
relative position of the lobes static.

2) Post-Processing: The only post-processing operation is
applied at inference phase, to recover the original shape of the
scan after the downsampling and division in patches. During
inference, division of patches uses a predefined stride of 25%
of the patch dimension. The reconstruction of the entire scan
from a set of patches holding voxel-wise predictions is using
the mean of the overlapped patches. Finally, the prediction is
upsampled by a nearest neighbor interpolation to match the
shape of the original input scan.

3) Training: The model is trained with standard backprop-
agation and mini-batch gradient descent for 8000 epochs. The
employed optimizer is Adam [13]. On each epoch, the model
sees 200 random volumetric patches. On each batch, single
patches are due to memory constraints. The initial learning rate
is set to 10−4 up to the first 4000 epochs, and it is reduced
to 10−5 for the remaining epochs. Dropout is applied with
a probability of 50% and the weights for the losses in the
Equation 4 are λ1..3 = [0.375, 0.375, 0.25].

Each training experiment took approximately 50 hours in
the workstation described in the next paragraph. The inference
time was less than 45 seconds per scan taking in consideration
all the pre and post-processing.
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(a) Healthy lung

(b) Pathological lung

Fig. 3: Axial, Sagittal and Coronal CT scan views of an
Healthy and a Pathological Lung from the VESSEL12 dataset.

4) System Settings: The proposed method was implemented
in Python 2.7 using Keras (v.:2.0.4) framework with Tensor-
flow (v.:1.1.0) backend. The workstation has a CPU: Intel R©
CoreTM i7-6700K, 16 Gb of RAM and a GPU: NVIDIA 1080.

III. EXPERIMENTS AND RESULTS

A. Data

We evaluated our method with data from two different
public sources. From VESSEL12 Challenge [19] all the 20
scans were used, 14 for training and the remaining for testing.
This dataset contains 3D CT scans with a maximum slice
spacing of 1mm and size of 512× 512× 256 and it includes
both healthy and pathological lungs (Fig. 3).

The other source of data is the LIDC-IDRI [1] database,
from where we extracted randomly 5 scans for testing. This
dataset was built for nodule detection and for this reason it
is relatively easy in the task of lobe segmentation since the
lungs are structurally healthy.

Due to the lack of labeled lobe segmentations, for each
one of the 25 scans, ground-truth data was obtained by a
radiologist, who manually delineated the lung lobes using the
Chest Imaging Platform 2 in 3D Slicer environment3. The
annotation included a pre-segmentation of the lungs by 3D
Slicer and then the user was asked to mark fissure points
on each one of the three fissures. Those points were then
interpolated generating the labeled fissure surfaces, which split
the lungs in the corresponding five lobes (Fig. 4 (a) and (b)).

The lung lobe borders and fissure maps used in the auxiliary
task of the network were automatically obtained from manual
lobe segmentations. The lobes were extracted after subtracting
a morphological erosion with a unitary square kernel to the
original lobe map. Finally, the border maps were calculated
applying a Gaussian filter on the resulting binary maps to
smooth the results (Fig. 4 (c)).

2https://chestimagingplatform.org/about
3https://www.slicer.org/

(a) (b)

(c) (d)

Fig. 4: Examples of the data employed in training: (a) original
CT scan; (b) ground-truth for lobe segmentation; (c) lobe
borders used as auxiliary task during training; (d): fissure maps
adopted in evaluation

B. Experiments

In order to evaluate prediction of the model, our evaluation
metrics were based on Dice coefficient overlap metric (equa-
tion 5), with P being the result of the segmentation and GT

the ground truth. We calculated the average of the per-lobe
Dice Coefficient (pl-DC), similarly to the LOLA11 challenge
[23]. However, since lobes are much larger than its borders,
the borders will not have a great impact in the dice coefficient,
and so dice coefficient will not be sufficient to assess the
capacity to separate the lobes. So we proposed inter-lobar Dice
Coefficient (il-DC) that is based on the overlap of the fissure
maps of the predicted and ground-truth lobe as shown in Fig.

4 (d).

DC(P,GT ) = 2 ·
P ·GT

P +GT
(5)

In order to assess the influence of each one of the proposed
regularization methods, we removed each regularization tech-
nique alternately and trained the model again with the same
hyper-parameters. We also compared the network output with-
out any of the proposed techniques to assess the performance
of the joint regularization scheme.

C. Results

In this section we provide both qualitative visual results of
the predictions produced by the proposed model and quanti-
tative assessment of its performance for the task of lobe and
fissure segmentation.

1) Qualitative Results: Our system receives a CT scan input
and yields a 3D segmentation of the lungs and its lobes. In the
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(a) (b)

Fig. 5: Example of a segmentation with the scan (a) as input
and the resultant 3D volume (b)

(a) (b)

(c)

Fig. 6: Comparison of the Ground-truth with the Prediction
of the proposed method: (a) Ground-truth; (b) Prediction; (c)
Representation of part of the predicted Segmentation with the
highlight of the true fissure map in green.

3D segmentation, an average pl-DC of 93.6% and an il-DC
Coefficient of 76.2% were achieved.

Examples of segmentations are shown in Fig. 6 and 7.
In Fig. 6, the predicted (a) and the ground-truth (b) lobe
segmentation of the lung are presented. Fig. 6(c) shows a
zoomed-in representation of Fig. 6(b) with the overlay of the
ground-truth fissure map in green. In Fig. 7, it is presented the
prediction of lobe segmentation with the ground-truth of the
fissure highlighted in black.

Fig. 8 presents a comparison between the predictions pro-
duced by our method and the three variations that produced

Fig. 7: Prediction of the lobe segmentation, highlight of the
true fissure map being the black line

the best results as seen in Table I. The results are presented
in a 2D sagittal view for ease of visualization.

It is possible to verify that even without the fissure well
delineated, the network is able to correctly separate the lobes.
However the model has some difficulty to segment the lung
in the presence of large vessels or airways leaving some
fragments classified as background. In the case of the model
trained without deep supervision, these fragments are bigger.
Deep supervision seems to improve contextual information
although the quantitative results are just marginally better.

The model trained without multi-task learning seemed to
have more difficulty to deal with the lung and lobe borders,
leaving some misclassified lobe parts outside the lung region.
This was probably caused by the sampling procedure, which
provided a weaker contextual representation of the lobes.

As previously stated, results yield without Dropout are very
similar, or in the case of the last slice, even better than the
proposed method.

In Fig. 6 and 7, it is possible to observe that the proposed
method learned roughly to separate the lobes. This can be
verified by producing the fissure maps for both ground-
truth and predicted segmentations. In the presented case, the
difference is minimal even with the fissures in the scan being
difficult to distinguish visually. We can deduce that the model
learns fissure segmentation but also infers it from the context
learned from the remaining lung structure.

2) Quantitative Performance Evaluation: Table I presents
the performance of the proposed method and the variations of
the method to show the influence of each one of the regular-
ization techniques applied to the model. As aforementioned
we used two different evaluation metrics, the per-lobe Dice
Coefficient (pl-DC) and the inter-lobar Dice Coefficient (il-
DC). For the first metric, we also show the Dice Coefficient
for each one of the lobes and then, finally, the corresponding
average and standard deviation.

It can be clearly appreciated that the regularization tech-
niques were fundamental in these experiments. The FRV-Net
achieved the best results. Furthermore, the ablation studies
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TABLE I: Performance evaluation on the test set for the proposed method and variations. pl-DC: per-lobe Dice Coefficient;
il-DC: inter-lobar Dice Coefficient; UR: Upper Right Lobe; MR: Medium Right Lobe; LR: Lower Right Lobe; UL: Upper
Left Lobe; LL: Lower Left Lobe. $ refers for the methods that were not able to converge and were trained reducing the
network size.

Methods
pl-DC il-DC

UR MR LR UL LL Avg std Avg std
FRV-Net 0.93 0.87 0.95 0.95 0.94 0.93 0.07 0.85 0.05
V-Net (w/o any regularization technique) $ 0.82 0.68 0.89 0.87 0.79 0.81 0.09 0.62 0.13
FRV-Net w/o Dropout 0.94 0.88 0.94 0.96 0.95 0.93 0.06 0.85 0.06
FRV-Net w/o Batch Normalization $ 0.84 0.75 0.89 0.86 0.87 0.84 0.12 0.66 0.11
FRV-Net w/o Deep Supervision 0.91 0.88 0.93 0.93 0.94 0.92 0.05 0.84 0.07
FRV-Net w/o Multi-Task Learning 0.92 0.86 0.91 0.77 0.91 0.88 0.08 0.80 0.06

(a) Original scan

(b) Ground-Truth

(c) FRV-Net

(d) FRV-Net w/o Dropout

(e) FRV-Net w/o Deep Supervision

(f) FRV-Net w/o Multi-Task Learning

Fig. 8: Qualitative comparison in a scan of the test set. (a)

Sagittal slices of the same scan; (b) Ground-truth; (c) FRV-
Net output; (d) FRV-Net without dropout; (e) FRV-Net without
deep supervision; (f) FRV-Net without multi-task learning.

(a) Original Scan

(b) ground-truth

(c) Prediction

Fig. 9: Example of some failures that usually happen with the
proposed method.

allow to understand how regularization techniques influence
the results. For instance, Dropout does not seem to improve
the accuracy, since the FRV-Nets with and without Dropout
have the same results. Without the Batch Normalization (V-
Net and FRV-Net w/o Batch Normalization) this network was
not able to converge, we decided to train an analogous model,
but decreasing its complexity by simply halving the number
of channels on each convolution. The Batch Normalization
became fundamental for training this deep network.

Multi-task learning is important for an efficient training
since it gives focus for the most difficult scenarios allowing
more representability to the network. Deep Supervision, in our
case, represents a marginal increase on the accuracy from 0.92
to 0.93 in the average pl-DC and 0.84 to 0.85 in the average
il-DC.

3) Failure Analysis: The proposed method is trained with
few examples and mostly because of that it still does not
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deal correctly with some situations. For instance, in absence
or large difference in the size of the lobar structure among
the training examples, the method usually predicts a wrong
separation of the lobes. An example of this behavior can
be seen in Fig. 9. Another mistake that we observed in our
model is the residual segmentation of lobar regions completely
outside the lung region. However, this drawback could be
easily addressed with some simple post-processing operations,
such as simply select the larger volumes of each lobe.

IV. CONCLUSION

In this paper, we have presented FRV-Net, the first super-
vised method for lobar segmentation in CT scans of the lung
that can process 3D information in an end-to-end fashion.
FRV-Net does not depend on heavy pre and post-processing
strategies, and it can bypass the lack of training data by
making use of carefully selected regularization techniques,
including Batch Normalization, Multi-Task Learning, Deep
Supervision, and Dropout. Our experiments show that, among
all these techniques, Batch Normalization is essential for an
effective training. In addition, Multi-Task Learning (with the
additional task of locating inter-lobar fissures) helped focusing
the attention of the network in the most difficult cases, whereas
Deep Supervision produced a more stable representation of
the lobar structures. Finally, Dropout seemed to add only
marginal improvements, with a less critical impact in the
overall performance of the model.

Numerical performance was assessed by means of a new
overlap metric, inter-lobar Dice coefficient, allowing a more
suitable verification of the capability of the model to correctly
separate the lobes. An interesting open goal for future research
will be to extend the method to segment simultaneously lung
lobes and other anatomical structures like airways and vessels.
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