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Abstract

We propose an end-to-end approach for syn-
thetic QA data generation. Our model com-
prises a single transformer-based encoder-
decoder network that is trained end-to-end to
generate both answers and questions. In a nut-
shell, we feed a passage to the encoder and ask
the decoder to generate a question and an an-
swer token-by-token. The likelihood produced
in the generation process is used as a filtering
score, which avoids the need for a separate fil-
tering model. Our generator is trained by fine-
tuning a pretrained LM using maximum likeli-
hood estimation. The experimental results in-
dicate significant improvements in the domain
adaptation of QA models outperforming cur-
rent state-of-the-art methods.

1 Introduction

Improving question answering (QA) systems
through automatically generated synthetic data is a
long standing research goal (Mitkov and Ha, 2003;
Rus et al., 2010). Although many past works have
proposed different strategies for question genera-
tion, they have limited or no success in improving
the downstream QA task (Du et al., 2017; Sun et al.,
2018; Song et al., 2018; Klein and Nabi, 2019;
Wang et al., 2020; Ma et al., 2020; Chen et al.,
2020; Tuan et al., 2019).

Some recent approaches for synthetic QA data
generation based on large pretrained language mod-
els (LM) have started to demonstrate success in
improving the downstream Reading Comprehen-
sion (RC) task with automatically generated data
(Alberti et al., 2019; Puri et al., 2020). However,
these approaches typically consist of multi-stage
systems that use three modules: span/answer de-
tector, question generator and question filtering.
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Given an input passage, the span detector is respon-
sible for extracting spans that will serve as answers
for which questions will be generated. This mod-
ule normally combines a pretrained QA model with
handcrafted heuristics. The question generator is
a large LM fine-tuned for the task of conditional
generation of questions given passage and answer.
The question filtering comprises another RC model
that is used to score and filter the generated QA
pairs. Each module of this synthetic data genera-
tion pipeline is trained/tuned separately and errors
from one stage can propagate to the next stages.
Additionally, each module is expensive to be com-
puted because all use large transformer networks
(Vaswani et al., 2017).

In this work, we propose an end-to-end approach
for synthetic QA data generation. Our model com-
prises a single transformer-based encoder-decoder
network that is trained end-to-end to generate both
the answer and the question. In a nutshell, we
feed a passage to the encoder and ask the decoder
to generate the question and the answer token-by-
token. The likelihood produced in the generation
process is used as a filtering score, which avoids
the need of a separate filtering model. Our genera-
tor is trained by fine-tuning a pretrained LM using
maximum likelihood estimation (MLE). We use
BART (Lewis et al., 2019) as the pretrained LM in
our experiments.

We perform experiments with three different
variations of our synthetic QA data generator: (1)
AQGen, which generates first the answer then the
question; (2) QAGen, which generates first the
question then the answer; (3) QAGen Two-step (2S),
which generates first the question, concatenates it
to the passage, then generates the answer in a sec-
ond pass through the same encoder-decoder.

We focus our empirical evaluation on the task
of data augmentation for domain adaptation of
reading comprehension (RC) models trained on



SQuAD 1.1 dataset. We assess the effectiveness of
our QA data generators for domain adaptation of
four different target domain datasets: Natural Ques-
tions (NQ), BioASQ, NewsQA and DuoRC. We
compare our results with recent work on domain
adaptation for QA as well as with a three-stage
synthetic data generator. QAGen performs bet-
ter than AQGen and the baselines for all datasets,
while QAGen2S provides the best results overall
because it allows bidirectional attention between
passage and question. For NQ dataset, QAGen2S
improves the SQuAD baseline by more than 8
points in EM and more than 7 points in F1. For
NewsQA and BioASQ the gains in EM are also
above 4 points. Additionally, we also demonstrate
that synthetically generated data by QAGen2S can
improve the in-domain performance of both small
and large RC models, leading to F1/EM improve-
ments of 1/0.5 and 3.1/2.2 on RoBERTa-large
and bert-base-uncased trained RC models
on SQuAD dev.

The main contributions of this work can be sum-
marized as follows: (1) we propose the first effec-
tive end-to-end approach for synthetic QA data gen-
eration; (2) our approach solves an important issue
in previous methods for QA data generation: the
detection of good spans. We show that span detec-
tion can be effectively solved as a generation task,
just like question generation; (3) as it uses a single
end-to-end model, our data generation pipeline is
simpler, faster and more efficient; (4) we perform
comprehensive experiments that demonstrate the
effectiveness of our proposed approach for domain
adaptation of QA systems.

2 End-to-End Model for Question and
Answer Generation and Filtering

We model the problem of synthetic QA data genera-
tion as a conditional language modeling task. More
specifically, we use an encoder-decoder (enc-dec)
conditional LM as described in what follows.

2.1 Enc-Dec Conditional Language Models

Language modeling consists of learning the proba-
bility distribution p(x) over variable-length token
sequences x = (x1, x2, ..., x|x|), where the tokens
come from a fixed size vocabulary V . The training
of LMs typically involves solving the task of pre-
dicting the next token based on past tokens. The
distribution p(x) can be represented by the condi-
tional probability of the next token given the previ-

ous ones (Bengio et al., 2003):

p(x) =

|x|∏
i=1

p(xi|x<i) (1)

In the case of conditional LMs, the generation is
conditioned on an additional context c:

p(x|c) =
|x|∏
i=1

p(xi|x<i, c) (2)

Transformer-based encoder-decoder conditional
LMs (Lewis et al., 2019; Raffel et al., 2019) use
bidirectional self-attention in the encoding step to
create vector representations of the tokens in the
context c. The decoding step generates the tokens
of the sequence x in an auto-regressive manner,
while performing self-attention on previously gen-
erated tokens of x and all the representations output
by the encoder for c.

2.2 Question-Answer Generation
In the case of end-to-end synthetic data generation
for QA, we need to model the joint conditional
distribution p(a, q|c), where the input context c
is a passage, q is a question and a is the correct
answer, which is a span in c. Our approach to
model p(a, q|c) involves fine-tuning a pretrained
Enc-Dec conditional LM using a training set
D = {(c1, q1, a1), (c2, q2, a2), ..., (c|D|, q|D|, a|D|)}.
We train the Enc-Dec with parameters θ through
maximum likelihood estimation (MLE) by
minimizing the negative log-likelihood over D:

L(D) = −
|D|∑
i=1

log pθ(a
i, qi|ci) (3)

We can have different variations of the generator
depending on how we place the items in the out-
put sequence: answer-question or question-answer.
This difference in the ordering is crucial because
it defines which part is conditioned on the other.
Based on this observation, we propose three varia-
tions of our generative model:

AQGen: this model generates answer and ques-
tion jointly given the input context: (q, a) ∼
p(a, q|c). During sampling, the answer tokens are
generated, which are followed by question tokens.
This makes the generation of the question condi-
tioned on both input context (through attention on
the encoder) and answer (through self-attention in
the decoder). Fig. 1 depicts this model.



Figure 1: AQGen Model: given an input passage the model
generates an answer followed by a question.

QAGen: this model generates question and an-
swer jointly given the input passage: (q, a) ∼
p(a, q|c). During sampling, the question tokens are
generated, which are followed by answer tokens.
This makes the generation of the answer condi-
tioned on both input context (through attention on
the encoder) and question (through self-attention
in the decoder). Fig. 2 depicts this model.

Figure 2: QAGen Model: given an input passage the model
generates a question followed by an answer.

QAGen Two-Step (2S): this model performs
question generation and answer generation in two
separate passes over the Enc-Dec LM. First, the
question is generated given the input context q ∼
p(q|c), (Step 1). Next, the question is concatenated
with the input context and the resulting sequence
is given as input to the Enc-Dec, which finally gen-
erates the answer a ∼ p(a|q, c), (Step 2). QAGen
2S sampling approach is illustrates in Fig. 3. This
model uses a single Enc-Dec LM that is trained
with samples of both p(q|c) and p(a|q, c). We use
control codes<q> and<a> to inform the decoder
whether to generate a question or an answer, re-
spectively.

2.3 Decoding
A natural choice for decoding with conditional neu-
ral LMs is beam search. However, our preliminary
experiments with beam search showed a lack of di-
versity and a high repetition of generated question-
answer pairs. Generating diverse question-answer
pairs is crucial to the performance of downstream
RC models. Particularly, diversity of answer spans
ensures that various parts of the passage are used,
and different question types are generated. We
use a variant of nucleus sampling (Holtzman et al.,
2019), where we pick top k tokens, and within top

Figure 3: QAGen Two-Step: given an input passage the
model first generates a question (Step 1). Next, the question
is concatenated with the passage and both are given to the
encoder-decoder that generates the answer (Step 2).

k, we pick tokens that comprise top 95% proba-
bility mass. We set k to 20 in our experiments.
We refer to this setting as Topk+Nucleus. This de-
coding was used in QAGen, AQGen, and question
sampling step in QAGen2S. The answer generation
of QAGen2S was performed by greedy decoding.
We discard generated (q, a) pairs whose answers
do not occur in the input passage, as non-extractive
QA is outside the scope of this work. We observed
between 10% to 15% of samples being dropped
because of this issue.

2.4 Filtering

Recent work have used the round-trip filtering
method (Alberti et al., 2019; Puri et al., 2020) to
prune the synthetic QA set and improve data qual-
ity. This method consists of two steps: (1) using
an RC model to provide answers to the generated
questions; (2) dropping the QA pairs for which
the answer of the RC model does not match the
span detected answer. While round-trip filtering
has shown to be effective, it is not the most effi-
cient approach because it involves the application
of an RC system over the whole set of generated
data. Additionally, there might exist cases that are
difficult for the filtering model, but in fact are of
high quality.

We propose using the likelihood of the generated
question-answers as a measure to perform filtering
and address the efficiency issue, as it avoids the
use of an RC model for filtering. We argue that
such a likelihood score, albeit noisy, is an indica-
tor of whether a generated question-answer is high
quality for training a downstream RC model. We
refer to this approach as LM filtering. Essentially,
given an input passage, we sample n different QA
pairs, rank them according to decreasing order of



PubMed
Lymph node status has major prognostic importance in colorectal cancer and greater precision in the diagnosis of lymph node metastases should provide
better prognostic and therapeutic guidance. Keratin 20 (K20) gene expression has been used as a marker of lymph node metastases, but the evidence for
this remains circumstantial. This study has therefore sought to determine K20 specificity and to correlate K20 expression with mutant K-RAS expression,
in order to provide direct evidence that K20 expression in lymph nodes of colorectal cancer patients genuinely reflects metastatic disease. Specificity of
K20 expression was established against a range of tissue types and 289 lymph nodes from 41 non-cancer control patients. K20 expression was restricted
to gastrointestinal epithelia and was only present in one of the 289 control lymph nodes, giving a calculated specificity of 97.6 % (95% confidence
limits: 87.1-99.9%)...

Q: What is K20 expression found to be restricted to? A: gastrointestinal epithelia
Q: What was the 95% confidence range of the mutation analysis? A: 87.1-99.9%
Q: What is the name of the gene that can be used as a marker of metastatic disease? A: Keratin 20

CNNDM
By. Emily Allen. PUBLISHED:. 06:27 EST, 12 June 2012. |. UPDATED:. 09:35 EST, 12 June 2012. Teachers have apologised to parents after a group
of primary school children were forced to stay in the canteen until they had finished all the food on their plates. Parents of children attending Kaizen
Primary School in Plaistow, East London, were left fuming after a group of pupils, some as young as five, were told they had to clear their plates before
being allowed out into the playground. Even though years ago parents would not have batted an eyelid and would have welcomed schools encouraging
their children to eat, dozens of parents complained, saying that children should ’not be forced to eat’ by teachers. Upset: Parents of children at Kaizen
Primary School in Plaistow, East London, said pupils were told they had to clear their plates (file picture) Candeece Kenlock said her five-year-old son
Kehyan was ’so scared’ of being forced to eat everything on his plate he didn’t want to go to school anymore....

Q: what is the name of a five year old boy whose parents said A: Kehyan
he was ’so scared’ he didn’t want to go to school?
Q: What type of school were children forced to stay A: primary school
in the canteen to finish their meals?
Q: How old were the children who were forced to stay in A: five
the canteen until they had finished their food?

IMDB
Clark Russell, a prominent writer, concludes that he will visit the south in the capacity of a farm hand and thus secure atmosphere for a new story. He
learns that laborers are needed on a certain farm and as he journeys into the country he rescues a young woman whose horse is running away. When
Clark applies for work he is treated lightly by Bud, the foreman, until the owner of the farm arrives with his daughter, Anna, who recognizes her hero of
the afternoon. A few days later at the dinner table Clark defends Polly, a maid, when she is annoyed by Bud and after the hands departed for the fields
the two men settle their score in a fight, the bully receiving a severe lesson. Polly overhears Bud declaring that he will be revenged but she is unable to
warn Clark. Later in the day the bully tries to force Clark into the hopper of the threshing machine but Anna sees the struggle from a distance and stops
the engine...

Q: What is the name of the foreman at the farm? A: Bud
Q: Who saves Anna? A: Clark Russell
Q: Who tries to force Clark into a hopper of the threshing machine? A: the bully

Natural Questions
<Table> <Tr> <Th colspan="2"> Tampa Bay Lightning </Th> </Tr> <Tr> <Td colspan="2"> 2018 – 19 Tampa Bay Lightning season </Td> </Tr>
<Tr> <Td colspan="2"> </Td> </Tr> <Tr> <Th> Conference </Th> <Td> Eastern </Td> </Tr> <Tr> <Th> Division </Th> <Td> Atlantic </Td> </Tr>
<Tr> <Th> Founded </Th> <Td> 1992 </Td> </Tr> <Tr> <Th> History </Th> <Td> Tampa Bay Lightning 1992 – present </Td> </Tr> <Tr> <Th>
Home arena </Th> <Td> Amalie Arena </Td> </Tr> <Tr> <Th> City </Th> <Td> Tampa , Florida </Td> </Tr> <Tr> <Td colspan="2"> </Td> </Tr>
<Tr> <Th> Colors </Th> <Td> Tampa Bay blue , white </Td> </Tr> <Tr> <Th> Media </Th> <Td> Fox Sports Sun 970 AM </Td> </Tr> <Tr> <Th>
Owner ( s ) </Th> <Td> Tampa Bay Sports and Entertainment ( Jeffrey Vinik , chairman ) </Td> </Tr> <Tr> <Th> General manager </Th> <Td> Steve
Yzerman </Td> </Tr> <Tr> <Th> Head coach </Th> <Td> Jon Cooper </Td> </Tr> <Tr> <Th> Captain </Th> <Td> Steven Stamkos </Td> </Tr>
<Tr> <Th> Minor league affiliates </Th> <Td> Syracuse Crunch ( AHL ) Orlando Solar Bears ( ECHL ) </Td> </Tr> <Tr> <Th> Stanley Cups </Th>
<Td> 1 ( 2003 – 04 ) </Td> </Tr> <Tr> <Th> Conference championships </Th> <Td> 2 ( 2003 – 04 , 2014 – 15 ) </Td> </Tr> <Tr> <Th> Presidents ’
Trophy </Th> <Td> 0 </Td> </Tr> <Tr> <Th> Division championships </Th> <Td> 3 ( 2002 – 03 , 2003 – 04 , 2017 – 18 ) </Td> </Tr> <Tr> <Th>
Official website </Th> <Td> www.nhl.com/lightning </Td> </Tr> </Table>

Q: What year was the Tampa Bay Lightning established?? A: 1992
Q: Who is the head coach of the Tampa Bay Lightning? A: Jon Cooper
Q: Who is the Tampa Bay Lightning general manager? A: Steve Yzerman

Table 1: Samples of generated question-answer pairs using QAGen2S model for four target domains. The generated answers
are shown in bold. The paragraphs are truncated from their original sizes due to space limitations.

LM score and pick the top m samples. This is sim-
ilar to the sample-and-rerank approach suggested
by Holtzman et al. (2019) and Adiwardana et al.
(2020). Formally, for QAGen and QAGen2S, we
use the score:

LM score =

Na∑
i=1

log p(ai|c, q)

And for AQGen :

LM score =

Na∑
i=1

log p(ai|c) +
Nq∑
i=1

log p(qi|c, a)

Where Nq and Na indicate the lengths of gener-
ated question and answer, respectively. We use
answer-only scores for QAGen and QAGen2S be-
cause question quality would have a dominant

effect on LM scores since questions are usually
longer than answers. Additionally, using answer-
only scores when conditioned on the generated
question is more suitable for the RC tasks because it
better mimics the score of a downstream RC model,
which is answer centric. With AQGen, we use both
answer and question LM scores, as answer gener-
ation is not conditioned on the question. We use
likelihood summation instead of averaging because
experiments showed that the former works slightly
better. Further details included in Appendix B.3.
We speculate this is due to average pooling encour-
aging longer question-answers, which could be of
lower quality than shorter question-answer pairs.



3 Related Work

Question generation (QG) has been extensively
studied from the early heuristic-based methods
(Mitkov and Ha, 2003; Rus et al., 2010) to the
recent neural-base approaches. However, most
work (Du et al., 2017; Sun et al., 2018; Zhao et al.,
2018; Kumar et al., 2019; Wang et al., 2020; Ma
et al., 2020; Tuan et al., 2019; Chen et al., 2020)
only takes QG as a stand-alone task, and evaluates
the quality of generated questions with either auto-
matic metrics such as BLEU, or human evaluation.
Tang et al. (2017), Duan et al. (2017) and Sachan
and Xing (2018) verified that generated questions
can improve the downstream answer sentence se-
lection tasks. Song et al. (2018) and Klein and Nabi
(2019) leveraged QG to augment the training set for
machine reading comprehend tasks. However, they
only got improvement when only a small amount
of human labeled data is available. Recently, with
the help of large pre-trained language models, Al-
berti et al. (2019) and Puri et al. (2020) have been
able to improve the performance of RC models
using generated questions. However, they need
two extra BERT models to identify high-quality
answer spans, and filter out low-quality question-
answer pairs. Lee et al. (2020) follow a similar
approach while using InfoMax Hierarchical Con-
ditional VAEs. Nishida et al. (2019) showed im-
provements by fine-tuning the language model on
the target domains.

4 Experimental Setup and Results

4.1 Datasets

We used SQuAD 1.1 dataset (Rajpurkar et al.,
2016) to train the generative models as well as
in-domain supervised data for the downstream RC
task in this work. We used the default train and
dev splits, which contain 87,599 and 10,570 (q, a)
pairs, respectively.

Similar to (Nishida et al., 2019), we selected the
following four datasets as target domains:
Natural Questions (Kwiatkowski et al., 2019),
which consist of Google search questions and
the annotated answers from Wikipedia. We used
MRQA Shared Task (Fisch et al., 2019) prepro-
cessed training and dev sets, which consist of
104,071 and 12,836 (q, a) pairs, respectively. The
training set passages were used as the unlabeled
target domain corpus, while the evaluations were
performed on the dev set.

NewsQA (Hermann et al., 2015), which consists
of question and answer pairs from CNN news arti-
cles. We used the dev set from the MRQA Shared
Task, which removes unanswerable questions and
those without annotator agreement. We prefer this
version as we focus only on the generation of an-
swerable questions. The dev set consists of 4,212
(q, a) pairs. Passages from CNN/Daily Mail cor-
pus of Hermann et al. (2015) are used as unlabeled
target domain corpus.
BioASQ (Tsatsaronis et al., 2015): we employed
MRQA shared task version of BioASQ, which con-
sists of a dev set with 1,504 samples. We collected
PubMed abstracts to use as target domain unlabeled
passages.
DuoRC (Saha et al., 2018) contains question-
answer pairs from movie plots which are extracted
from both Wikipedia and IMDB. ParaphraseRC
task of DuoRC dataset was used in our evaluations,
consisting of 13,111 pairs. We crawled IMDB
movie plots to use as the unlabeled target domain
corpus.

4.2 Experimental Setup

We used Pytorch (Paszke et al., 2019) and Trans-
formers (Wolf et al., 2019) to develop the models
and perform experiments. Generative models are
trained on SQuAD 1.1 for 5 epochs, and the best
model is selected based on the cross entropy loss on
the SQuAD dev set. AdamW (Loshchilov and Hut-
ter, 2017) optimizer with learning rate of 3× 10−5

is employed.
For RC model training, we use

bert-base-uncased model (Devlin et al.,
2018). AdamW optimizer is used with learning
rate of 3 × 10−5 and batch size 24 for 2 epochs
without linear warmup. We set maximum sequence
length 384 with document stride 128. SQuAD
1.1 dev set is used to select the best model during
training. As a baseline for QA data generation,
we implemented a three-stage pipeline similar to
the state-of-the-art approach of Puri et al. (2020).
We call this baseline QGen, which generates
a question given a passage and extracted span,
q ∼ p(q|a, c). The span detection module consists
of bert-base-uncased fine-tuned on SQuAD
1.1 passage and spans, where the start and end
classification heads are trained to perform span
detection. For QGen, we experimented with
sampling top 5 spans and generating two questions
per each, as suggested by (Puri et al., 2020), as



well as sampling top 10 spans and generating one
question per each. Our results showed the latter
outperforming the former. Henceforth, we used
this configuration in our evaluations.

We trained QGen models on both BART-Large
and GPT2-Medium (Radford et al., 2019), which
have an equivalent number of parameters, 406M
(BART) vs 350M (GPT2), and evaluated BLEU
score of the generated question w.r.t. the ground
truth question on the SQuAD dev set. BART and
GPT2 achieved 21.29 and 18.31 BLEU, respec-
tively. We believe the bi-directional encoding in
BART is superior to uni-directional encoding in
GPT2. Hence, we used BART for the rest of the
experiments.

4.3 Synthetic Data Generation
For each of the unlabeled target domain corpora,
we randomly selected 100,000 passages to perform
synthetic data generation. Passages shorter than
100 tokens were discarded. Selected ones were
truncated to maximum length of 550 tokens. We
removed the passages that existed in the dev sets.

Question-answer generation with AQGen,
QAGen, and QAGen2S is performed using
Topk+Nucleus, as discussed in Sec. 2.3. For
each passage, 10 samples are generated. Unless
otherwise mentioned, LM filtering is applied by
sorting the 10 samples of each passage according
to LM scores as detailed in Sec. 2.4, and the top 5
samples are selected. The number of synthetically
generated pairs is between 860k to 890k without
filtering and 480k to 500k after LM filtering. Tab.
1 shows generated question-answer pairs from four
target domain (see Appendix for more examples).
We can observe that the generative model is able
to generate question answer pairs even from raw
HTML input that corresponds to a table. The
rendered table can be seen in Tab. 12 (Appendix
C.3). Considering the fact that the training data of
the generative model does not include any HTML
input, this further demonstrates the robustness and
efficacy of our proposed approach.

4.4 Domain Adaptation Results
Tab. 2 shows the results of domain adaptation ex-
periments. Each experiment was performed by
training the RC model on the synthetic data gen-
erated on the target domain corpus. We refer to
the dataset to which the downstream model is be-
ing adapted as the target domain. Source domain
indicates the supervised training dataset (SQuAD).

We also performed experiments by using both
Synthetic + SQuAD1.1 data. Our QAGen and QA-
Gen2S models outperform by wide margins the
baseline models trained on SQuAD 1.1 only, as
well as unsupersived domain adaptation approaches
(UDA) suggested by Nishida et al. (2019) and Lee
et al. (2020). Additionally, QAGen and QAGen2S
significantly outperforms QGen, our implementa-
tion of the three-stage pipeline of Puri et al. (2020).

Even though our SQuAD 1.1 baselines are gen-
erally higher than both Nishida et al. (2019) and
Lee et al. (2020), our best model achieves more
point-wise improvements in all of the target do-
main datasets, except with BioASQ, where Nishida
et al. (2019) observe 4.3 points in EM versus 4
points with ours, and 4.2 points in F1 versus 2.2
with ours.

Comparing LM and round-trip filtering when ap-
plied to the best performing model, QAGen2S, we
can observe that the LM filtering approach (Sec.
2.4) is more effective than round-trip filtering in
BioASQ and DuoRC target domains. It barely un-
derperforms (∼ 1 point) in F1 and EM in the other
two domains. This demonstrates the efficacy of the
suggested filtering approach, which also simplifies
the question-answer generation pipeline.

The highest (EM/F1) domain adaptation gains
seen with BioASQ (4/2.2) and DuoRC (1.2/1.1) are
smaller than those with Natural Questions (8.5/7.5)
and NewsQA (5.5/4.5). We postulate this is due
to two reasons: Firstly, both BioASQ and DuoRC
domains are more dissimilar to the source domain,
SQuAD, compared to NewsQA and Natural Ques-
tions; Secondly, BioASQ and DuoRC are more
difficult datasets. Comparing our results with super-
vised target domain training of DuoRC, we observe
that with using only synthetic data outperforms the
DuoRC training set, which consists of 39144 pairs.
While our domain adaptation methods show sub-
stantial gains with NewsQA and Natural Questions
domain, there is still room for improvements to
match the performance of supervised target domain
training (last row in Tab. 2).

While results in Tab. 2 suggest that generating
synthetic QA data from target domain text leads
to significant gains on the target domain dev set,
one can argue whether it is essential to generate
synthetic data from the corpus matching the tar-
get dev set’s domain to achieve good performance.
Hence, we performed cross-domain experiments to
check this argument. Tab. 3 shows the performance



Model fine-tune NQ NewsQA BioASQ DuoRC
Data EM F1 EM F1 EM F1 EM F1

SQuAD 1.1 Nishida et al. (2019) SQuAD 44.4 57.5 35.2 50.7 41.1 53.6 24.5 33.0
UDA Nishida et al. (2019) SQuAD 43.8 56.7 35.9 51.4 45.4 57.8 25.5 34.1
SQuAD 1.1 Lee et al. (2020) SQuAD 42.77 57.29 – – – – – –
UDA Lee et al. (2020) SQuAD+Synthetic 48.44 62.69 – – – – – –
Our SQuAD 1.1 SQuAD 44.66 58.94 39.51 56.36 44.35 56.06 28.85 34.92

QGen + round-trip filtering Synthetic 48.04 61.28 39.03 54.37 35.31 46.80 28.74 34.10
+ SQuAD 49.02 62.61 40.79 56.79 39.43 50.42 29.39 34.80

AQGen (ours) + LM filtering Synthetic 47.80 61.29 38.55 55.42 39.49 52.11 27.09 33.47
+ SQuAD 49.04 62.56 39.62 56.88 42.89 54.90 27.88 34.40

QAGen (ours) + LM filtering Synthetic 49.81 63.36 43.09 57.9 42.49 51.95 29.46 35.25
+ SQuAD 50.01 63.10 44.06 59.20 45.74 55.06 29.91 35.82

QAGen2S (ours) + LM filtering Synthetic 52.64 65.56 43.99 59.95 46.74 57.76 29.91 35.81
+ SQuAD 52.03 65.70 43.57 59.8 48.40 58.33 30.06 36.05

QAGen2S (ours) + round-trip Synthetic 53.11 66.45 45.04 60.79 45.01 57.01 29.47 35.32
+ SQuAD 51.91 65.62 44.78 60.92 46.14 57.96 30.01 35.83

Supervised target domain Target 66.50 78.55 51.09 66.67 – – 27.35 33.28

Table 2: Domain adaptation results for different methods. Bold cells indicate the best performing model on each of the target
domain dev sets, excluding supervised target domain training results.

Target Domain Corpus fine-tune NQ NewsQA BioASQ DuoRC SQuAD
Data EM F1 EM F1 EM F1 EM F1 EM F1

SQuAD 1.1 SQuAD 44.66 58.94 39.51 56.36 44.35 56.06 28.85 34.92 80.78 88.20

Natural Questions Synthetic 52.64 65.56 40.48 55.40 42.69 52.56 27.88 33.39 79.95 86.89
+ SQuAD 52.03 65.70 40.55 56.37 44.15 55.87 30.04 36.14 83.05 89.91

CNN/DM Synthetic 47.05 60.27 43.99 59.95 45.28 55.25 27.02 33.22 76.81 84.62
+ SQuAD 45.92 60.24 43.56 59.8 44.88 57.06 27.62 34 82.29 89.32

PubMed Synthetic 44.48 57.98 39.27 54.88 46.74 57.76 26.21 32.03 78.65 85.82
+ SQuAD 48.08 61.73 41.74 58.30 48.40 58.33 30.23 36.13 82.95 89.74

IMDB Synthetic 48.82 61.77 43.09 58.90 45.28 55.59 29.91 35.81 79.86 86.79
+ SQuAD 49.56 63.10 43.40 59.37 46.68 57.27 30.06 36.05 83.33 89.92

All 4 data sources Synthetic 53.28 66.32 43.64 60.43 47.41 57.88 29.91 36.37 82.71 89.06
+ SQuAD 53.30 66.73 44.23 60.79 47.01 58.35 30.36 36.50 84.57 90.90

Table 3: Cross domain experiments using QAGen2S as the generative model. Underlined cells indicate best EM/F1 value for
each of the target domain dev sets (column-wise) and individual target domain corpus.

on every target domain dev set of RC models fine-
tuned on synthetic data of different target domain
corpora. We can see that diagonal elements, which
have same domain of dev set and target corpus,
show either the best performance (underlined re-
sults) or are within a narrow margin of top EM/F1
scores. Therefore, the most effective strategy is
achieved when the passages used in the generation
of synthetic samples are from the same domain as
the target, which is expected in a domain adapta-
tion method. Additionally, we trained an RC model
with the synthetic data from all the four domains
(last two rows in Tab. 3). This produced our best
F1 results for all datasets, indicating that mixing
synthetic data from different domains is beneficial
for the QA task. Tab. 3 also shows EM/F1 scores
of the cross-domain RC models on SQuAD 1.1
dev set. We can see that using synthetic data from
any of the four domains significantly improved the
performance for SQuAD. In particular, when train-
ing the RC model with data from all domains +
SQuAD training data (last row), there is a large
gain in both EM (3.8) and F1 (2.7).

4.5 Comparison of AQGen, QAGen and
QAGen2S models

Comparing our proposed LM filtering-based mod-
els in Tab. 2, we propose the following explana-
tions: (1) QAGen2S and QAGen outperform AQ-
Gen because generating answers conditioned on
the question results in better spans, which is crucial
in the training of the downstream RC task. Gen-
erated answer spans not conditioned on questions
could include spurious tokens, or be a partial span.
(2) QAGen2S outperforms QAGen because includ-
ing the generated question in the bidirectional en-
coder allows cross attention between the passage
and generated question, which results in even more
accurate answer generation. Comparing the perfor-
mance when only synthetic question-answer pairs
are employed versus adding SQuAD training pairs,
we can observe that the addition of labeled data
results in marginal gains. This becomes even more
evident for the best performing data generators. In
fact, in some cases, adding SQuAD data degrades
EM, such as QAGen2S + LM filtering with Natural



Model
Beam Search Topk+Nucleus Topk+Nucleus Topk+Nucleus

N=5 N=5 N=10 N=20
EM F1 EM F1 EM F1 EM F1

Synthetic 49.73 63.19 52.20 66.19 52.64 65.56 51.08 63.50
Synthetic + SQuAD 49.95 64.08 49.68 64.47 52.03 65.70 51.87 64.82

Table 4: Beam search vs. Topk+Nucleus sampling with various sample sizes per passage. NQ is used as target domain and
QAGen2S with LM filtering is used as generator. For N > 5, top 5 samples per passage were selected according to LM scores.

Questions and NewsQA.

4.6 Ablation Studies

Sampling Design Choices
Tab. 4 shows a comparison between beam search
and Topk+Nucleus sampling with different number
of samples (5, 10, and 20). The results indicate that
beam search underperforms Topk+Nucleus. We
attribute this to the lack of diversity in the gener-
ated samples using beam search. We observed that
beam search tends to select fewer distinct spans,
compared to Topk+Nucleus, and generates minor
variations of the same question. Appendix C.1 ex-
amines this issue.

When training the RC model we only used the
top 5 samples based on LM score per each pas-
sage. We can observe that sampling 10 pairs per
document leads to the best EM/F1 on the target
domain. By sampling many QA pairs per passage,
we increase the chance of generating good samples.
However, if we sample too many qa pairs the top
ranked ones might be too similar. Therefore, we
used sample size of 10 in this work since a higher
sample size incurs higher computation cost while
not showing improvements.

LM Filtering
We argue that using LM filtering, as discussed in
section 2.4, results in improvements in the target
domain downstream RC models by enhancing the
quality of the generated (q, a) pairs. Results in Tab.
8 indicate that in the majority of the experiments
using LM filtering leads to improved F1/EM met-
rics. AQGen benefits the most from LM filtering as
it generates data with lower quality than the other
two models. Tables 10 and 12 in the Appendix
show examples of QA pairs and their LM scores.

Fig. 4 shows experimental results when varying
the number of (q, a) pairs selected from the 10
pairs sampled per each passage. We chose the
value of 5 as this configuration outperforms other
values overall. A high value is more likely to allow
undesired pairs, while a low value might discard
plenty of high quality samples.
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Figure 4: Effect of number of QAs selected per passage in
LM filtering. QAGen2S model is used for generation. The
likelihood score of the generated answer is used to sort the
generated question answer pairs decreasingly.

Model FT NQ BioASQ
Data EM F1 EM F1

AQGen w/o filter. Synth. 46.93 60.71 41.49 53.59
+ SQ 46.84 61.00 41.36 53.84

AQGen + LM filter. Synth. 47.80 61.29 39.49 52.11
+ SQ 49.04 62.56 42.89 54.90

QAGen w/o filter. Synth. 50.67 64.04 43.15 53.20
+ SQ 51.35 64.99 45.21 54.94

QAGen + LM filter. Synth. 49.81 63.36 42.49 51.95
+ SQ 50.01 63.10 45.74 55.06

QAGen2S w/o filter. Synth. 47.12 62.61 46.88 58.92
+ SQ 46.73 62.63 47.41 59.33

QAGen2S + LM filter. Synth. 52.64 65.56 48.40 58.33
+ SQ 52.03 65.70 46.74 57.76

Table 5: Comparison of using LM filtering versus no filtering.
Bold values indicate best performance on each target domain
for each model (per rows separated by sold lines).

Correlation between LM and F1 Scores

In this work, we proposed using the LM score of
the generated samples as a surrogate to round-trip
filtering. We postulate that the LM score correlates
with the F1 score used in round-trip filtering. To
more thoroughly examine this, we devised an ex-
periment where we sorted the generated samples by
their answer LM scores, divided them into contigu-
ous buckets each with 200 samples, and calculated
the average F1 score of the samples in each bucket.
Fig. 5 shows the results of this experiment. As we
can see, there exists a strong correlation between
the two scores.



While the correlation looks promising, a chal-
lenge with using the LM score is that it is relatively
noisy. For example, to use the LM score to get
only samples whose F1 scores are 1, a very high
threshold needs to be set, forcing the vast majority
of samples to be dropped. Future work can explore
how to reduce this noise.
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Figure 5: Average F1 score of sorted items based on LM
scores. Samples were generated using QAGen2S on Natural
Questions passages.

Impact of Synthetic Dataset Size

In Fig. 6, we present plots that correlate synthetic
dataset size (in # of passages) and RC model per-
formance (EM/F1). We can see that with increas-
ing the number of generated (q, a) pairs (5 pairs
per passage), RC model performance improves.
Such correlation is more evident when not using
the SQuAD training data. This is expected as with
added supervised training samples, there would be
less need for a large number of synthetic samples.
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Figure 6: The effect of number of target domain passages on
the RC task with synthetically generated QA pairs. QAGen2S
is employed to generate questions on NQ and PubMed.

4.7 Experiments with Large QA Models
The downstream RC models presented in previous
sections were based on fine-tuning BERT-base
model, which has 110 million parameters. In this
section, we assess the efficacy of our proposed
domain adaptation approach on a higher capacity
transformer as the RC model. For these exper-
iments, we chose pretrained RoBERTa-large
(Liu et al., 2019) model from transformers library
(Wolf et al., 2019), which has 355 million parame-
ters. Tab. 6 displays the domain adaptation results
on the NQ domain using QAGen2S generated sam-
ples. It also includes performance on the source
domain dev set. Although the SQuAD 1.1 baselines
(first row), is significantly higher than those with
BERT-base in Tab. 2, EM/F1 gains of 5.8/3.4
are achieved on the target domain. 1/0.5 gains in
EM/F1 are observed in SQuAD 1.1 dev set. These
results demonstrate that our proposed end-to-end
synthetic data generation approach is capable of
achieving substantial gains even on state-of-the-art
RC baselines such as RoBERTa-large.

Model FT SQuAD 1.1 NQ
Data EM F1 EM F1

SQuAD1.1 (SQ) SQ 86.43 93.18 50.57 67.09

QAGen2S w/o filter. Synth. 85.39 92.15 51.20 67.25
+ SQ 86.23 93.19 50.73 67.07

QAGen2S + LM filter. Synth. 85.77 92.07 55.06 68.83
+ SQ 86.75 93.50 55.73 70.04

QAGen2S + RT filter. Synth. 85.80 92.15 56.46 70.39
+ SQ 87.46 93.67 56.35 70.47

Table 6: Source and target domain performance with
RoBERTa-large as downstream RC model.

5 Conclusions

We presented a novel end-to-end approach to
generate question-answer pairs by using a sin-
gle transformer-based model. Our experiments
showed that by proper decoding, significant im-
provements in domain adaptation of RC models can
be achieved. We concluded that using LM filtering
improves the quality of synthetic question-answer
pairs; however, there is still a gap with round-trip
filtering with some of the target domains. Improv-
ing LM-score-based filtering is a future direction
of our work.

While we were able to generate diverse, high
quality and challenging synthetic samples on the
target domains, the types of the questions produced
still were limited to those of SQuAD, since the gen-
erative models were trained on SQuAD. It would be
interesting to explore how one can adapt the genera-
tive models to the type of target domain questions.
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A Additional Details Regarding the
Datasets Used

SQuAD 1.1 dataset is used to train the generative
models as well as in-domain supervised data for the
downstream RC task. We use the default train and
dev splits, which contain 87,599 and 10,570 (q, a)
pairs, respectively. SQuAD 1.1 questions exhibit
high lexical overlap with answers, since annota-
tors were presented with passages and extracted
answers when creating questions.
Natural Questions dataset consists of Google
search questions, the Wikipedia pages from top
5 search results, and the corresponding annotated
answers. This dataset and SQuAD are both derived
from Wikipedia pages, however, questions from
Natural Questions have considerably less ngram
overlap with annotated answers compared to those
from SQuAD. Also different from SQuAD, Natural
Questions dataset contains passages with HTML
tables and tags. We use MRQA Shared Task pre-
processed training and dev sets, which consist of
104,071 and 12,836 (q, a) pairs, respectively. We
utilize training set passages as the target domain
(unlabeled) corpus, while preforming evaluations
on the dev set.
NewsQA consists of question and answer pairs
from CNN news articles. We use the dev set from
the MRQA Shared Task, which removes unanswer-
able questions and those without annotator agree-
ment. We believe this version better suits our work,
as we focus only on generation of answerable ques-
tions. The train and dev sets consists of 74,160
and 4,212 samples, respectively. Passages from
CNN/Daily Mail corpus are used as target domain
passages.
BioASQ challenge is a competition on semantic
indexing and question answering tasks based on
annotated PubMed documents. As with the previ-
ous dataset, we employ MRQA shared task version
of BioASQ, which consists of a dev set with 1,504
pairs. We collected PubMed abstracts to use as
target domain passages. Being from Biomedical
domain, BioASQ makes a clear domain shift from
other datasets.
DuoRC contains question answer pairs from movie
plots which are extracted from both Wikipedia and
IMDB. This dataset has been developed to have
question and answer pairs with minimal lexical
overlap, which makes it more challenging. Para-
phraseRC task of DuoRC dataset is used in our
evaluations. Training and dev sets include 39,144

and 13,111 pairs, respectively. We crawled IMDB
movie plots to use as the target domain unlabeled
corpus. The dataset has been developed by select-
ing the same movie plot from both sources, and
generating question from one source and selecting
the answer from the other. This approach has re-
sulted in question and answer pairs with minimal
lexical overlap.

All of the validation sets of the aforementioned
out-of-domain tasks are identical to those used
by Nishida et al., except DuoRC, where we use
MRQA shared task formatted DuoRC dev set.

B Additional Ablation Studies

B.1 Performance on SQuAD 1.1 with
Different Filtering Approaches

While the performance of the RC models on the
target domains is important, weak performance
on the source domain could inhibit the use of
our proposed methods in applications that require
strong performance in both source and target do-
mains. Tab. 7 shows EM/F1 scores of the
bert-base-uncased RC models trained with
synthetic data generated from the IMDB corpus on
SQuAD 1.1 dev set. We can observe that adding
synthetic samples to the SQuAD training set always
improves the performance on the dev set compared
to using the SQuAD training set only. In fact, with
QAGen2S, impressive 3.1(EM)/2.2(F1) gains are
achieved. Synthetic only samples from the same
model outperform the SQuAD baseline. Similar
to previous domain adaptation results, we observe
that QAGen2S outperforms QAGen, and QAGen
exceeds AQGen.

B.2 Comparison of Using Filtering vs. No
Filtering

Tab. 8 presents comprehensive results of using LM
filtering over all the of the target domains. We can
observe that the arguments made in Sec. 4.7 hold
for NewsQA and DuoRC as well.

B.3 Impact of Language Model Score Pooling

To aggregate the LM scores of a given question-
answer pair, one can use either sum or average of
the token scores, as defined in Sec. 2.4. We ex-
perimented with both options and summarized the
results in Tab. 9 for QAGen and AQGen models.
We can observe that using summation generally
outperforms averaging. We speculate this is be-
cause average pooling encourages longer question-



Model fine-tune None LM Rountrip
Data EM F1 EM F1 EM F1

QGen Synthetic 70.31 80.34 – – 77.11 84.81
+ SQuAD 81.50 89.01 – – 82.94 89.68

AQGen Synthetic 74.58 84.14 74.34 83.55 78.51 86.21
+ SQuAD 82.10 89.47 82.15 89.31 82.88 89.78

QAGen Synthetic 79.65 87.14 78.40 85.98 78.51 86.21
+ SQuAD 83.07 90.00 82.53 89.51 83.03 89.74

QAGen2S Synthetic 81.25 88.20 79.86 86.79 80.61 87.36
+ SQuAD 83.87 90.40 83.33 89.92 83.29 89.84

Table 7: Performance on SQuAD 1.1 development set when training with LM-filtered synthetically generated question-answer
pairs on IMDB corpus. Bold values indicate best performance per each model (row-wise). Our baseline EM and F1 numbers (on
SQuAD 1.1 training set) are 80.78 and 88.20, respectively.

Model fine-tune NQ NewsQA BioASQ DuoRC Synthetic
Data EM F1 EM F1 EM F1 EM F1 #

AQGen w/o filtering Synthetic 46.93 60.71 36.21 53.83 41.49 53.59 26.94 33.46 860k+ SQuAD 46.84 61.00 36.99 54.47 41.36 53.84 26.87 33.43

AQGen + LM filtering Synthetic 47.80 61.29 38.56 55.42 39.49 52.11 27.09 33.47 490k+ SQuAD 49.04 62.56 39.62 56.89 42.89 54.90 27.88 34.40

QAGen w/o filtering Synthetic 50.67 64.04 43.07 59.53 43.15 53.20 29.68 35.78 890k+ SQuAD 51.35 64.99 42.64 59.4 45.21 54.94 29.87 35.87

QAGen + LM filtering Synthetic 49.81 63.36 43.1 57.94 42.49 51.95 29.46 35.25 500k+ SQuAD 50.01 63.10 44.06 59.20 45.74 55.06 29.91 35.82

QAGen2S w/o filtering Synthetic 47.12 62.61 43.38 60.1 46.88 58.92 30.04 36.58 890k+ SQuAD 46.73 62.63 43.87 60.51 47.41 59.33 30.00 36.49

QAGen2S + LM filtering Synthetic 52.64 65.56 43.99 59.94 48.40 58.33 29.91 35.81 480k+ SQuAD 52.03 65.70 43.57 59.8 46.74 57.76 30.06 36.05

Table 8: Comparison of using LM filtering versus no filtering. Bold values indicate best performance on each target domain for
each model (per rows separated by sold lines).

answer pairs, which are more likely to consist of
incorrect samples. By using summation, shorter
question-answer pairs would be more likely to be
selected during LM filtering.

C Examples of Generated Samples

C.1 Illustration of Answer LM Score

Tab. 10 presents unfiltered question-answer pairs
and associated answer LM scores generated from
a randomly selected Natural Questions corpus us-
ing the QAGen2S model. As can be seen from
Topk+Nucleus decoded samples, the last two gen-
erated samples are incorrect and would be filtered
out using the LM filtering approach that is used in
this work. The last sample, which consists of an
answer that is entirely irrelevant to its question, has
a considerably lower answer LM score than the rest
of the samples.

With beam search, due to the high number of
repetitions, the scores are close. While beam search
generates samples with high likelihood, due to the
lack of diversity, as evident here, the performance
of the trained RC models on such synthetic samples
underperforms those of Topk+Nucleus.

C.2 Comparison of Generated Samples by
AQGen, QAGen and QAGen2S

Tab. 11 presents unfiltered question-answers pairs
generated using each of our proposed models on a
randomly selected passage from CNN/Daily Mail
corpus. We can observe that generated samples
using AQGen have lower quality than the other
two models. Also, the selected spans are repetitive.
Only 3 out of the 6 properly generated samples
are correct question-answer pairs. Comparing QA-
Gen and QAGen2S samples, we can observe that
QAGen2S generates more diverse and longer an-
swer spans. In this example, we can see that more
repeated spans are generated by QAGen than QA-
Gen2S.

While the Topk+Nucleus sampling approach im-
proves the diversity of generated question-answer
pairs, we can still see repetitions and incorrect pairs.
We believe using the LM score filtering, the vast
majority of incorrect pairs are discarded. However,
this also means there is room for improving the
generative models.

C.3 Question Answers from Table

The Natural Questions dataset includes HTML for-
matted passages. We noticed that some of them



Model LM fine-tune NQ NewsQA BioASQ DuoRC
Pooling Data EM F1 EM F1 EM F1 EM F1

AQGen
Sum Synthetic 47.80 61.29 38.56 55.42 39.49 52.11 27.09 33.47

+ SQuAD 49.04 62.56 39.62 56.89 42.89 54.90 27.88 34.40

Avg Synthetic 47.73 61.98 34.19 52.05 39.03 51.52 26.31 32.84
+ SQuAD 45.03 59.87 35.21 53.08 40.82 53.74 26.7 33.26

QAGen
Sum Synthetic 49.81 63.36 43.1 57.94 42.49 51.95 29.46 35.25

+ SQuAD 50.01 63.10 44.06 59.20 45.74 55.06 29.91 35.82

Avg Synthetic 50.3 63.93 43.14 58.82 41.82 52.22 28.5 34.51
+ SQuAD 50.18 63.71 42.76 58.65 42.15 52.21 29.01 35.05

Table 9: Comparison of using average versus summation of LM scores when doing LM filtering. Bold values indicate the best
performance on each target domain for each model (per rows separated by solid lines).

Passage:
<P> The United States is estimated to have a population of 327,589,916 as of April 23 , 2018 , making it the third most populous country in the world
. It is very urbanized , with 81 % residing in cities and suburbs as of 2014 ( the worldwide urban rate is 54 % ) . California and Texas are the most
populous states , as the mean center of U.S. population has consistently shifted westward and southward . New York City is the most populous city in
the United States . </P>

Topk+Nucleus
Q: As of April 23, 2018, what is the estimated population of the US? A: 327,589,916 LM score: -0.00577
Q: How many people lived in the US in April of 2018? A: 327,589,916 LM score: -0.00707
Q: What is the population of the United States? A: 327,589,916 LM score: -0.01358
Q: What is the most populous city in the United States? A: New York City LM score: -0.04131
Q: Where do 81 percent of Americans live? A: cities and suburbs LM score: -0.05360
Q: Where does the United States rank among most populous countries on the planet? A: third LM score: -0.07449
Q: How much of the US’s population is concentrated in the metropolitan areas of the country? A: 81 % LM score: -0.09509
Q: How much of the US population is urbanized? A: 81 % LM score: -0.1375
Q: What two cities have the highest populations in America? A: California and Texas LM score: -0.18128
Q: What country is considered the most populous? A: third LM score: -1.85929
Beam Search
Q: What is the population of the United States as of April 23, 2018? A: 327,589,916 LM score: -0.00492
Q: As of April 23, 2018, what was the population of the United States? A: 327,589,916 LM score: -0.00529
Q: As of April 23, 2018, how many people live in the United States? A: 327,589,916 LM score: -0.00618
Q: How many people live in the United States? A: 327,589,916 LM score: -0.0132
Q: What is the population of the United States? A: 327,589,916 LM score: -0.0135

Table 10: Samples of generated question-answers pairs using QAGen2S model from Natural Questions passages with their
LM scores. Sum of answer likelihood scores is used to sort the pairs decreasingly. The generated answers are shown in bold.
Samples shown from Beam Search with beam size of 5, and Topk+Nucleus with sample size of 10.

are web tables. Tab. 12 illustrates one such ex-
ample. The content under Passage is the input
string, as seen by the generative models, and Ren-
dered Passage indicates how the table appears in
a browser. We experimented with using QGen
model on this passage, and noticed that the span de-
tection model was not capable of distinguishing be-
tween textual content and HTML tags properly, re-
sulting in selecting spans that included HTML tags.
However, the samples generated by the joint span
and question generation model, QAGen2S in this
example, show surprisingly high-quality spans and
questions. Only one sample is not correct (What
team is Tampa Bay’s home arena?). We believe this
is because when the span generation is conditioned
on the generated question, the likelihood of spans
that include spurious tokens, HMTL tags in this
example, diminishes sharply. This opens the door
to the possibility of using our proposed models in
structured corpora without any extra effort.

D Training and Platform Details

All of the experiments in this work were per-
formed on Amazon EC2 instances. We employed
p3.8xlarge, p3.16xlarge, and p3dn.24xlarge GPU
instances. In the training of the generative models,
warmup was set to 10% of total training steps. We
used a batch size of 24. Each epoch took 2 to 3
hours on 3 GPUs. We observed that usually, the
best model is achieved within the first two epochs.

The RC models with Synthetic+SQuAD sam-
ples were trained by combining synthetic samples
and SQuAD training set and randomly shuffling
them. Each epoch of training took 2 to 12 hours,
depending on the average length of target domain
passages on 1 GPU.

All of the hyperparameters of both generative
and RC downstream models were fixed. We only
performed hyperparameter tuning on those men-
tioned in the paper.



Passage: (CNN) – Fifteen people have now died after consuming cantaloupe contaminated with the listeria monocytogenes bacteria, the Centers for
Disease Control and Prevention said Friday. At least 84 people in 19 states have become ill with the bacteria, the agency said. And the number of
illnesses could still grow, added the CDC, citing reporting lags and how the disease can develop slowly in some people. On Tuesday, the CDC was
reporting 13 deaths and 72 illnesses in what was already then the deadliest food-borne illness outbreak in the United States since 1998. Five people
have died in New Mexico from eating the tainted cantaloupes, the CDC said. Three people died in Colorado, two in Texas and one each in Kansas,
Maryland, Missouri, Nebraska and Oklahoma. Illnesses have also been reported in Alabama, Arkansas, California, Illinois, Indiana, Montana, North
Dakota, Virginia, West Virginia, Wisconsin and Wyoming. What you need to know about Listeria. Most of those who fell ill are more than 60 years
old, the CDC said. Doctors also are closely monitoring the pregnancies of two women who ate contaminated cantaloupe, with the agency noting that
listeriosis can cause miscarriages and stillbirths. Older adults and people with compromised immune systems are also especially susceptible. Public
health investigators have traced the source of the bacteria to a farm in Granada, Colorado. Food Poisoning 101. The grower, Jensen Farms, issued a
recall for its Rocky Ford-brand cantaloupes on September 14. By now, the cantaloupes should all be off store shelves, the CDC said. The agency warned
that people should not eat Rocky Ford cantaloupes, even if they have eaten part of one and have not yet fallen ill. It also said that consumers should be
wary of eating any cantaloupes if they don’t know where they came from. How to keep your food safe.

AQGen :
Q: What can cause miscarriages? A: listeriosis
Q: Which state has had the most deaths? A: Colorado
Q: Where is the farm where the bacteria came from? A: Colorado
Q: How many people have died from eating listeria from cantaloupe? A: 14
Q: Where has the worst case happened? A: Colorado
Q: Where were the listeria monocytogenes bacteria come from? A: Granada
QAGen :
Q: What year was the deadliest food-borne illness outbreak in the United States since? A: 1998
Q: How old were most of the victims of the outbreak? A: more than 60 years old
Q: How old were most of the people who died from the listeria infection? A: more than 60 years old
Q: How many people in the US have become seriously ill with Listeria? A: 84
Q: How many people in Texas were killed by tainted cantaloupes? A: two
Q: How old were most of the people who died from the listeria infection? A: more than 60
Q: How many people were reported killed in Colorado? A: Three
Q: Where has the food poisoning been traced to? A: Granada, Colorado
Q: Who did the CDC have in custody over the tainted cantaloupes? A: Jensen Farms
Q: Who released the recall announcement? A: Jensen Farms
QAGen2S :
Q: What can cause miscarriages and stillbirths? A: listeriosis
Q: What type of food was it? A: cantaloupe
Q: What was the first year of death from this outbreak? A: 1998
Q: How does the food-borne illness outbreak effect those over 60? A: Most of those who fell ill are more than 60 years old
Q: When did the CDC start reporting the Listeria monocytogenes bacteria in cantaloupes? A: Friday
Q: How old are most of those in the recent outbreak? A: more than 60 years old
Q: How could the number of sickened listeria possibly grow? A: reporting lags and how the disease can develop slowly in some people
Q: When did the CDC start reporting the Listeria monocytogenes bacteria? A: Friday
Q: What could still grow? A: number of illnesses
Q: How can listeriosis be avoided? A: should be wary of eating any cantaloupes

if they don’t know where they came from

Table 11: Samples of generated question-answers pairs from randomly selected passage from CNN/Daily Mail corpus. Samples
are sorted according to LM scores.



Passage:
<Table> <Tr> <Th colspan="2"> Tampa Bay Lightning </Th> </Tr> <Tr> <Td colspan="2"> 2018 – 19 Tampa Bay Lightning season </Td> </Tr>
<Tr> <Td colspan="2"> </Td> </Tr> <Tr> <Th> Conference </Th> <Td> Eastern </Td> </Tr> <Tr> <Th> Division </Th> <Td> Atlantic </Td> </Tr>
<Tr> <Th> Founded </Th> <Td> 1992 </Td> </Tr> <Tr> <Th> History </Th> <Td> Tampa Bay Lightning 1992 – present </Td> </Tr> <Tr> <Th>
Home arena </Th> <Td> Amalie Arena </Td> </Tr> <Tr> <Th> City </Th> <Td> Tampa , Florida </Td> </Tr> <Tr> <Td colspan="2"> </Td> </Tr>
<Tr> <Th> Colors </Th> <Td> Tampa Bay blue , white </Td> </Tr> <Tr> <Th> Media </Th> <Td> Fox Sports Sun 970 AM </Td> </Tr> <Tr> <Th>
Owner ( s ) </Th> <Td> Tampa Bay Sports and Entertainment ( Jeffrey Vinik , chairman ) </Td> </Tr> <Tr> <Th> General manager </Th> <Td> Steve
Yzerman </Td> </Tr> <Tr> <Th> Head coach </Th> <Td> Jon Cooper </Td> </Tr> <Tr> <Th> Captain </Th> <Td> Steven Stamkos </Td> </Tr>
<Tr> <Th> Minor league affiliates </Th> <Td> Syracuse Crunch ( AHL ) Orlando Solar Bears ( ECHL ) </Td> </Tr> <Tr> <Th> Stanley Cups </Th>
<Td> 1 ( 2003 – 04 ) </Td> </Tr> <Tr> <Th> Conference championships </Th> <Td> 2 ( 2003 – 04 , 2014 – 15 ) </Td> </Tr> <Tr> <Th> Presidents ’
Trophy </Th> <Td> 0 </Td> </Tr> <Tr> <Th> Division championships </Th> <Td> 3 ( 2002 – 03 , 2003 – 04 , 2017 – 18 ) </Td> </Tr> <Tr> <Th>
Official website </Th> <Td> www.nhl.com/lightning </Td> </Tr> </Table>

Rendered Passage:

Q: What year was the Tampa Bay Lightning established?? A: 1992 LM score: -0.001539
Q: Who is the head coach of the Tampa Bay Lightning? A: Jon Cooper LM score: -0.0015659
Q: Who is the Tampa Bay Lightning general manager? A: Steve Yzerman LM score: -0.002090
Q: Who is the Head coach of the Tampa Bay Lightning? A: Jon Cooper LM score: -0.003044
Q: Who is the General Manager of the Tampa Bay Lightning? A: Steve Yzerman LM score: -0.003877
Q: What team is Tampa Bay’s home arena? A: Amalie Arena LM score: -0.00543
Q: For whom did Jeffrey Vinik serve as chairman? A: Tampa Bay Sports and Entertainment LM score: -0.0215854
Q: Tampa Bay Sports and Entertainment is owned by what? A: Jeffrey Vinik LM score: -0.087364

Table 12: Generated samples using QAGen2S model from a Natural Questions passage consisting of a table. Sum of answer
likelihood scores are chosen to sort the pairs decreasingly.


