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Abstract. Pervasive computing requires some level of trust to be estab-
lished between entities. In this paper we argue for an entity recognition
based approach to building this trust which differs from starting from
more traditional authentication methods. We also argue for the concept
of a “pluggable” recognition module which allows different recognition
schemes to be used in different circumstances. Finally, we propose that
the trust in the underlying infrastructure has to be taken into account
when considering end-to-end trust.

1 Introduction

Weiser’s vision of ubiquitous computing [33] will only become true when com-
puting capabilities are woven into the fabric of every day life, indistinguishable
from it. In ambient intelligence (AmI) environments [21], where ubiquitous com-
puting1, ubiquitous communication and intelligent user interfaces are combined,
it has been envisaged [6] that real people would have a digital-self acting on
their behalf. These digital entities are more likely to be artificial intelligence
agents following the real person they are representing — kind of ubiquitous
roaming entities. As in real life, these digital entities will encounter other previ-
ously unknown entities while roaming from place to place. Billions of entities —
potentially any device with a digital heartbeat — are expected to spread in the
surrounding environment. A fundamental question concerns the representation
of entities including their naming and subsequent identification as well as their
association with real-world principals. We believe that, in this context, it is more
beneficial to take an approach based on entity recognition [26], rather than solely
on traditional authentication schemes like PKI [9] or Kerberos [17].

Establishing the authenticated identity of the other party is not necessarily
enough in pervasive computing, because identity conveys no a priori information
about the likely behaviour of the other party. In many cases, it will be more useful
to determine whether the other party is someone with whom one has interacted
successfully in the past, whether the other party can provide a recommendation

1 The pervasive computing magazine [8] treats ubiquitous computing and pervasive
computing as synonyms; so do we.



from a trusted third party (e.g., from a personal friend) or whether the other
party has a generally good reputation.

In AmI environments, the question “When should a person cooperate, and
when should a person be selfish, in an ongoing interaction with another person?”
[2] will be extended to digital entities collaborating with other digital entities.
To tackle this question, the concept of trust in computer systems is attracting
increasing attention from the research community. Trust has been formalized as
a computational model [18, 32], but the term trust means different things in dif-
ferent research communities, for example it may relate to trust in the underlying
technology [3] or to trust between entities when they have to collaborate [11, 13].
We argue that end-to-end trust includes both types of trust — trust between
parties and trust in the underlying infrastructure.

Usually, authentication is the first step to ensure security in distributed com-
puting environments. In this paper, we concentrate on the authentication level,
which is one part of the technical trust in our end-to-end trust model. We start
by motivating the need for dynamic enrollment and defining the notion of en-
tity recognition, and then map this to authentication in traditional systems. We
then further develop the concept of end-to-end trust as required in pervasive
computing environments and describe an end-to-end trust model. Finally, this
model is applied for entity recognition.

2 The Need for Dynamic Enrollment in Pervasive

Computing

In this section, we motivate and describe our entity recognition process.

2.1 Benefit of Pervasive Computing Comes from Unforeseen
Interactions

The current IPv4 based Internet is likely to provide the foundation of any perva-
sive computing environment. However, mobile ad hoc networks (MANETs) are
increasingly common [35] and bring interesting properties such as spontaneity.
Mobile entities will have the chance to move and join networks in an ad hoc
manner. In fact, as in real life, opportunities will be offered to entities roaming
from place to place. These opportunities cannot be predicted because it is not
known in advance where these entities will roam. Many other aspects are still
unknown: even the scale of the networks of entities cannot really be evaluated;
it is known that ad hoc networks will be possible but due to their nature we
can not predict when they will be formed; nor can we predict which entities will
interact together; etc. We can say that no individual organization will manage
the whole; self-organization will have to emerge from these unmanaged networks
along with new, previously unknown, features. The benefit of self-organized sys-
tems is that they can create higher level features [12]. Thus, pervasive computing
will hopefully exhibit interesting properties to solve complex issues, where the
diversity of entities opens the door for new opportunities. In the Resurrecting



Duckling security policy model [29], ducklings have to take the risk to emerge
from their shell in order to find their mother, who will look after them. In per-
vasive computing, the scenario is extended to other potentially caring entities
such as friends but computational entities will not be able to identify friends
without taking the risk to make friends of unknown entities. In MANETs, a
node which is too far from an Internet gateway but has another node in wireless
range, which is itself in range of the gateway, can only reach the gateway by for-
warding packets to this node. Of course, the owner of this helping node can be
unknown. In computing terms, the first risk will be to enroll unknown entities.
A fundamental requirement for ubiquitous computing environments is therefore
to allow for potential interaction with unknown entities.

2.2 Dynamic Enrollment

Generally, authentication schemes start with enrollment of entities. This task is
often time consuming and requires explicit human intervention, e.g. from a sys-
tem administrator. For example, integrating new users may involve considerable
work and resources: a random initial secret may be sealed in an envelope and
sent to the new user; it can be even worse for smart tokens, which can involve
two separate activities — token programming and user management [27].

Usually, entities which have not been enrolled cannot interact. Collaboration
is seen as a privilege that only specific entities can obtain, with the implicit
assumption that it is known a priori which entities can obtain this privilege. The
principle of least privilege is applied for interaction: some entities can interact;
others cannot. In pervasive computing environments, collaboration should be
possible between all entities; the most likely situation is that one of them has
not previously enrolled. There is an inherent conflict between how enrollment is
done in current computing systems and what is required for pervasive computing.
This introduces the requirement for smooth dynamic enrollment, i.e. the door
should not be closed to strangers, but instead any stranger showing up at the
door might become an acquaintance. Since it is not known in advance which
entities should get the privilege to collaborate, we argue that the principle of
least privilege should not be applied for collaboration. We further argue that it
is not possible to give pervasive entities exactly the privileges they really need.
Instead, a practical approach, as in the real world, would be as follows: a small
initial measure of trust is given to any entity so that it can be enrolled and
begin collaborating, even though technically this gives permission to do things
it should not be doing.

To allow for dynamic enrollment of strangers and unknown entities, we pro-
pose an entity recognition process. Table 1 compares the current authentication
process (AP) with our entity recognition (ER) process.

There is no initial enrollment step at the beginning of the entity recognition
process but this does not mean that enrollment cannot be done. Actually, in
step E.3, if the entity to be recognized has never been met before, what will be
retained is going to be reused the next time this entity is going to be recognized.
Depending on the recognition scheme, it should be more or less transparent, i.e.



Table 1. Authentication and entity recognition side-by-side

Authentication Process (AP) Entity Recognition (ER)

A.1. Enrollment: generally involves an
administrator or human intervention

A.2. Triggering: e.g. someone clicks on
a Web link to a resource that requires
authentication to be downloaded

E.1. Triggering (passive and active
sense): mainly triggering (as in A.2),
with the idea that the recognizing en-
tity can trigger itself

A.3. Detective work: the main task is to
verify that the principal’s claimed iden-
tity is the peer’s

E.2. Detective work: to recognize the
entity to be recognized using the
negotiated and available recognition
scheme(s)

E.3. Retention (optional): “preserva-
tion of the after effects of experience
and learning that makes recall or recog-
nition possible” [30]

A.4. Action: the identification is sub-
sequently used in some ways. Actually,
the claim of the identity may be done
in steps 2 or 3 depending on the au-
thentication solution (loop to A.2)

E.4. Action (optional): the outcome of
the recognition is subsequently used in
some way (loop to E.1)

more or less like the enrollment step in A.1. Thus, by moving down the enrollment
step in the process, we emphasize that the door is still open for interacting with
strangers and unknown entities. We can show that any authentication process
can be integrated into an ER scheme (by doing enrollment at step E.3) and
can also show that some ER schemes are not authentication schemes and thus
that the class of authentication schemes is a proper subset of the class of entity
recognition schemes. Further in this paper, we detail a “pure” recognition scheme
— “A Peer Entity Recognition” scheme (APER).

A number of different sensing, recognition and retention strategies can be
envisaged for entity recognition schemes. However, specifying retention strate-
gies is the subject of ongoing work and beyond the scope of this paper. The
detective work depends on which recognition scheme is used, for example, in the
APER recognition scheme described in section 4.2, it may consist of sending a
challenge/response.

By self-triggering (step E.1) we mean that the entity takes the initiative to
start the recognition process in order to recognize potential surrounding entities,
for example it may be starting the recognition scheme that involves the recogniser
monitoring the network and selectively carrying out detective work on (some of)
the identities that are observed. Step E.4 is optional since it is not required if
the only objective is to gather recognition information. Step E.3 is also optional



but the reason is different: recognition information need not be retained — say
if the entity has been seen before.

To cope with scalability, we propose to forget about entities, that we have
not collaborated with, after a certain time. Actually, the tremendous number
of entities expected in a pervasive computing environment raises the question
of how to scale entity recognition (or authentication) to billions of entities with
potentially different distinguishing characteristics. In the next subsection, we
describe how entities can be recognized by different means and represent different
principals.

2.3 Virtual Anonymity

Our expectation is that entities are in general virtually anonymous to the extent
that identity conveys little information about likely behaviour. What is impor-
tant as a prerequisite is not really “Who exactly does this entity represent?”
but “Do I recognize this entity as a trustworthy collaborator?” As there is no a
priori information concerning likely behaviour; identity therefore does not imply
privilege. We assume virtual anonymity and therefore we do not require (but do
allow) the ability to establish the identity of a given entity in absolute terms,
e.g. through globally unique and meaningful X.500 “distinguished names” [10].
The nature of MANETs makes it inherently difficult to rely on centralized or
online servers. As an example, consider authentication based on Kerberos, which
is based on the idea of having a global hierarchy of trust, where leaf and interior
nodes trust their superior. This model does not work when the superior is not
reachable, e.g. in MANETs where network partitions may be common. For a
web of trust like PGP [36], there is still the question of whether trust [1, 5, 13]
and recommendations [4, 14] are transitive. In fact, the entity itself is responsi-
ble for its final trust decision. In the end, the control should be in the owner’s
hands. Rather than relying on recommendation or reputation, entities can rely
on their own previous interactions and past history with another entity as soon
as the recognition is possible. This is why we simply require the ability to recog-
nize other entities, e.g. through their name, location, digital signatures or other
means. Collaboration amongst virtually anonymous entities is an approach to
security in the global computing infrastructure. The Resurrecting Duckling se-
curity policy model [29] is an example of entity recognition; “ducklings” know
their mother is the entity who sent the imprinting key when they were “born”,
i.e. they must be able to recognize the entity which sent the imprinting key, no
more. Stajano speaks of anonymous authentication [28], which is also seen in
other authentication work [4, 7].

To us, entities are virtually anonymous: any identifier can work as long as it
allows for referencing the entity involved over the required lifespan. This means
that the “real” identity in absolute terms is not needed. Through collaboration,
trust will be associated with these identifiers. How does this trust information
relate to the inherent trust of the identifier? Khare claims that there is trust in
a name [16]. The next section explains what kind of inherent trust we expect in
identifiers and what we mean by end-to-end trust.



3 End-to-end Trust Implications and Model

The first part of this section makes it clear that there is a layering of trust.
Then, we explain how trust in the underlying technical infrastructure is linked
with trust between entities to form end-to-end trust.

3.1 Acknowledging the Presence of Layers of Trust

Differences in the strength of authentication and recognition schemes obviously
raise the question of trust in the underlying infrastructure. However, recognition
is not the only technical piece of the infrastructure on which a trust assess-
ment would be useful. In fact, trust at the entity level regarding interactions is
meaningless if the low level information about the collaboration is invalid. There
are therefore multiple layers of trust described below, which affect end-to-end
trust. The overall trust level should be chosen at the application level. We first
describe trust in technologies and follow this by describing a “higher” layer of
trust, which is trust between entities.

Trust in the Technical Infrastructure The trusted computing platform
alliance (TCPA) [31] makes it clear that we can speak of trust in technical com-
ponents. TCPA focuses on platform identity and integrity metrics to establish
trust, which is defined as follows: “an entity can be trusted if it always behaves
in the expected manner for the intended purpose” [30]. It is envisaged that the
levels of integrity will be set either from experience or recommendation from
experts and based upon either direct or indirect assessment of a platform.

We should also note that users ought not be bothered by a requirement that
they frequently change security settings, since this would run counter to the
requirement that ubiquitous computing should not monopolize the attention of
the user [34].

Jøsang [15] gives another approach for assessing trust in underlying tech-
nologies based on a belief model, where trust is considered to be a subjective
belief, a set of operators for combining beliefs and a combination of evidence
such as for example security evaluation, security incidents, security advisory re-
ports, system reputation, ISO 9000 certification or developer reputation. Again,
the user should deduce from this evidence the trustworthiness of the system,
which seems hard for security and technologically unaware users. Our specific
focus, authentication, has even more work trying to define metrics to assess its
trustworthiness [14, 22].

Trust between Entities TCPA helps to deduce the trustworthiness in the
underlying technology, partly thanks to collaboration between different on-line
parties, e.g. a so-called “privacy CA”. In return, as any collaboration implies,
these different parties have to put more or less trust in their partners to allow
for collaboration. Even if this trust assessment takes place at a higher level of
abstraction — trust between entities — this highlights the fact that effectively



a chain of trust is present in the background. Axelrod’s question on real world
cooperation [2] is transferred in pervasive computing as follows: when should an
entity cooperate, and when should an entity be selfish, in an ongoing interaction
with another entity? This time Marsh’s model of trust [18] is a more relevant
approach for this layer of trust. The SECURE project [24] aims at building se-
cure environments for collaboration among ubiquitous roaming entities thanks
to mechanisms based on the human notion of trust. A model for trust manage-
ment is expected from this project. One may also mention Jøsang’s work [13] or
the use of a virtual trust currency, such as the trusto [25].

As mentioned above, dynamic enrollment as required in pervasive comput-
ing environments leaves the door open for any encountered entities to become
an acquaintance. The question is now how to evaluate trust in such open and
dynamic environments?

3.2 End-to-end Trust Model

We have identified layers of trust which can be divided into two main categories:
trust in the underlying technology and trust between entities. The point is that
these layers form an end-to-end trust, a chain of layers of trust. The overall
trust is the result of how much trust is found at each level. Whether the final
level of trust is acceptable or not is a separate issue. Some benefits of pervasive
computing applications make it worth relying on not-so-trustworthy underlying
technologies; there is a trade-off between what can be obtained and what can
be lost. This trade-off has to be acknowledged and made clear. Our view is to
set up a threshold at the end of the trust chain, most likely the application
layer, which would indicate how much trust is required. This threshold may be
represented by a value in the range [0,1], 1 for full trust and 0 for no need of
trust. A similar approach has been proposed in different authentication metrics
[22]. In some way, it is equivalent to setting the trust level in an ASP.NET Web
applications [20], even though in that case the trust “granularity” is coarser
— consisting of only four levels: full, high, low, none. More complex metrics,
such as Jøsang’s subjective ones [14, 15], may be implemented at a later stage.
To reach this threshold, trust at each layer has to be taken into account. This
requires being able to evaluate the end-to-end trust, which is the result of trust
in technology and in other entities.

For trust in the underlying technology, we could use metrics, dynamically
calculated or statically defined by a group of experts, as detailed above in this
paper.

For trust in entities, trust would be calculated based on the human notion
of trust, probably thanks to direct observations, past history, and careful use of
recommendation and reputation.

Again, as a starting point, we think of converting these two trust values on a
scale between 0 and 1, where trust may be interpreted as the probability that an
entity behaves in the expected manner for the intended purpose. Since both of
these types of trust have no inheritance, we assume they are independent. This
suggests the use of the following formula.



End-to-end trust = f(Trust in infrastructure, Trust in entities)

which can be as simple as:

End-to-end trust = (Trust in infrastructure) * (Trust in entities)

This formula acknowledges the idea that in pervasive computing the security
properties of the underlying infrastructure are more or less strong, e.g. MANETs
may come easily but they can also go easily. Indeed, to get the full potential of
pervasive computing, the risks of using not-really-trustworthy environments have
to be considered explicitly. Nevertheless, the above model helps to keep in mind
that a risk has been taken. The next section shows how this can be applied for
authentication in pervasive computing.

4 End-to-end Trust Model Applied at the Source — the

Authentication Level

One of the foundations of security is authentication. Stajano [28] emphasized
that without being sure with whom an entity interacts, the three fundamentals
properties - confidentiality, integrity and availability - can be trivially violated.
As explained at the beginning of this paper, in some cases, absolute security
will not matter and weak recognition schemes may be used in order to still
be able to collaborate, this is a choice to be made at the application level.
This section explains how this will be applied for recognition by following the
model described at the end of the previous section. Recognition is only one
piece of the underlying technical infrastructure. However, other mechanisms have
to be trusted after recognition, e.g. secure communication over networks after
authentication. We consider the problem of implementing our approach for other
parts of the underlying infrastructure as beyond the scope of this paper and we
only explain how trust in the recognition scheme is reported into the end-to-end
trust. We therefore assume secure communication channels for any collaboration
that follows recognition.

First, we give an overview of the difference in trust for entity recognition
schemes in pervasive computing. Then, we present a “pure” entity recognition
scheme (APER). Finally, we give a coarse-grained description of our design and
expected implementation.

4.1 Recognition Schemes with Different Technical Trust

Since any authentication scheme can follow the entity recognition process ex-
plained above, we already support a considerable set of “legacy” entity recog-
nition schemes: symmetric and asymmetric keys, biometrics. . . Moreover, the
openness required for enrollment suggests many more schemes to come, e.g. the
APER scheme described in the next subsection.

On the other hand, each recognition solution will have to be assessed concern-
ing its trustworthiness. Actually, we think of setting up a static value between



0 and 1 for each recognition scheme implemented. This value would be the con-
sensus between different security experts concerning individual technologies, but
other means may be used such as integrity metrics. The short list below gives
an example of which value may be used for different recognition schemes based
on the average attack space (AAS) [27]. These values are neither definitive nor
reviewed but they are helpful to demonstrate the idea.

In 1999, the company RSA Security recommended to use public keys (PK)
of at least 768 bits, which has an AAS of 76 bits but that can be attacked off-
line. Well-designed biometrics, those that can only be attacked interactively, are
considered strong when the false acceptance rate (FAR) is around 1 in 1000000
[27]. So, we consider that schemes respecting at least the latter criterion would
get near to 1. Biometrics with higher FAR would get a value in proportion
with the criteria for strong biometrics (e.g. a FAR of 1/100000 would get 0.1).
With higher FAR, enrollment can be achieved more dynamically because learning
phase is simpler. Imprinting with strong key (e.g. 128-bit AES, which gives an
AAS of 127 bits [27]) in the Resurrecting Duckling scheme [29] would get near
to 1 because it respects our criteria when off-line attacks are possible.

4.2 A Peer Entity Recognition Scheme (APER)

The APER scheme (pronounced “ape-er”, based on the word “aping”, meaning
imitating) is designed to be usable to recognise peers on a network. It is explicitly
not designed to associate an identity with the recognised peer, other than in
terms of the cryptographic artefacts involved in the protocol. However, it does
not prevent higher-layer code from associating an identity with the recognised
peer (which is where identity can more usefully be handled).

APER assumes that the network supports some form of “broadcast” or “mul-
ticast” messaging, for example using IP broadcast or multicast addresses, or
adopting an application layer broadcast approach.

APER has not (yet) undergone peer review for its security properties, there-
fore we only indicate the properties we assume it to have, which is fine for
current purposes since the scheme is really a proof-of-concept for the “recogni-
tion is enough” argument. It is certainly clear that other schemes with similar
properties can be developed.

There are two roles distinguished in APER, the recogniser and claimant
(though any party can take on any role). The basic approach is for the claimant
to occasionally (according to its own schedule) broadcast a digitally signed packet
(a “claim”) and for the recogniser to be able to challenge the claimant as desired.
However, in contrast to most such schemes, it is also considered useful and,
though weaker, often sufficient for the recogniser not to issue challenges, but
simply to recognise the peer on the basis of correctly signed (and, perhaps, co-
dependent) claims.

When a challenge is issued, producing a correct response to the challenge
requires the claimant to possess the private key used to sign some previous
claims. The recogniser can then much more safely (re-)associate the public key
with the claimant’s network address or other context information. The claimant



may optionally include some context information (e.g. time, network-address,
application-layer naming) in claims.

There is one further “trick” used in order to increase the recogniser’s confi-
dence that the claimant was responsible for previous claims. In order to provide
evidence that the claim is “fresh”, and not, e.g. copied from some other broadcast
network, the claimant is required to (where possible) include within its claim the
hashes over the last “n” claims which were seen on the network (by the claimant).
If the recogniser has also seen one of these (the recogniser is assumed to record
its own set of recently received claim hashes) then the recogniser can treat the
claim as being “fresh”.

So, we end up with three levels of recognition, any of which can be sufficient,
depending on the end-to-end trust level set. Each level will have some associated
parameters (e.g. the number of claims seen), which may also impact on how the
recognition is treated. The levels are:

– Level 1: Claimants signature verified over a set of recently seen claims

– Level 2: Level 1 and claimants recent claims are “fresh”, based on the “last-
n-hashes” mechanism

– Level 3: Level 2 and the claimant successfully responded to a challenge

We describe the scheme in an algebraic notation in Table 2.

Table 2. APER scheme

Item Description

“{x}y” A digitally signed form of “x”, verifiable using (and containing)
public key “y”

“a,b” The comma is used for catenation. “a,b” is the catenation of a
and b

[x] An optional field is enclosed in square brackets

C Claimant

R Recogniser

n, n’,n” Nonces, i.e. a long (say 128 bits) random values

PuC A public key claimed by C

PrC A private key that ought to be C’s

Ctxt (optional) Context information, e.g. time, network address, ap-
plication scope

fresh A value which provides evidence that the claim is “fresh”, in
this case, this contains the last-n-hashes value (during a boot-
strapping sequence this may be empty)

this, that Identifiers for claims used when binding claims together

c A claim, c={n,[ctxt],fresh,[this,that]}PuC

chal A challenge to C chal=n’

Resp A response to chal. Resp={n”,hash(chal)}PuC



For key hygiene and other reasons a claimant may own as many key pairs
as it wishes. However, for application and storage limitation reasons it will be
beneficial for a claimant to reveal to a recogniser that it “owns” two keys. This
is done by creating a new pair of claims in which the “that” field of one contains
the value of the “this” field of the other and vice-versa. The recogniser can then
treat the pair of recognised entities as one. If the application context requires, the
recogniser can ask the claimant to do this by sending along a pair of “this” values
which it would like to see bound. Clearly, this key binding can be extended to
arbitrary sets of keys, and we term such sets key-chains. A useful way to ensure
this binding is for the “this” and “that” values to be hashes of the “pointed-at”
public keys or claims.

It may be argued that by associating context information (e.g. a network
address) with the public key, we are really authenticating that information and
that therefore the context information is taking the part of an identity. That,
however, is not the case, as can be seen if we consider a case where a network
address is included in a claim in the presence of a network address translation
(NAT) box, where the claimant and recogniser will “see” different network ad-
dresses. (Note: we are not recommending either inclusion of addresses, nor NAT,
but just using those to show that recognition can work where authentication is
problematic, at best!)

That brings us to considerations of the overall strength and security of APER.
As we said we are not providing proofs at this stage (since they are not needed
for the main argument of this paper), but we claim that APER:

1. Provides a strong recognition scheme when challenges are issued.
2. Requires an attacker to compromise a claimant’s private key to succeed in a

useful attack against a real claimant.
3. Provides a useful recognition scheme even for recognisers who do not issue

challenges. In particular, if a recogniser associates a quality of recognition
with each claimant for which claims have been seen (using an algorithm
which is yet to be developed, but probably based on the time-span over
which claims with this key-chain have been seen), then the scheme is such
that spoofing an application layer identity can be made arbitrarily hard by
the recogniser.

5 Pluggable Recognition Module — High-Level Design

Ubiquitous computing environments mostly imply MANETs but also include all
other kinds of networks as well, most obviously the current IPv4 Internet for
which many authentication protocols have been developed to verify the identity
claimed by a principal. Most of these authentication schemes assume a managed
network. Open and dynamic environments with heterogeneous parties do not
have network managers in the sense assumed, or even proper infrastructure in
the case of MANETs. Adaptability to an entity’s capabilities but also to the
legacy authentication schemes is therefore required. For this reason, we are in-
vestigating an entity recognition module into which different recognition schemes



can be plugged. The design of that pluggable recognition module (PRM) will
be based on extending the Pluggable Authentication Module (PAM) [23]. PAM
allows for the use of different legacy authentication schemes: Kerberos, smart
cards, etc. In order to get dynamic enrollments, policies — regarding which au-
thentication scheme or combination of authentication schemes should be used
— cannot require an administrator to be effective. For pervasive computing, the
degree of auto-configuration has to be increased. To achieve this, the appropri-
ate recognition scheme must be negotiated either explicitly or implicitly (e.g.
perhaps selected by an application). This negotiation should make use of the
degree of trust needed which is set by the application. Choosing a weak recogni-
tion scheme, maybe one allowing for highly dynamic enrollment, will be possible
but this choice will impact the end-to-end trust; the highest level of trust pos-
sible will be as high as the level of trust in the underlying technology. In doing
so, privacy of the to-be-recognized entity can be taken into account during the
negotiation. Certainly, if an authentication mechanism is not trustworthy, data
exchanged cannot be really considered “private”. In addition, the security of the
recognizing entity is somehow protected because the end-to-end trust takes into
account the technical infrastructure. Our approach implicitly takes into account
that recognition impacts trust. Dynamic enrollment is possible because techni-
cal trust is taken into account. Therefore, as part of any recognition scheme,
meta-data should be included to achieve a sufficient level of confidence in the
recognition. We will have to create this feature in our PRM because PAM does
not provide it.

6 Conclusion

Pervasive computing needs smooth dynamic enrollment to get the full benefits
from spontaneous interactions with previously unknown entities. This uncon-
ditional enrollment creates a risk that should be made explicit, so that it can
be taken into account. Under certain circumstances, due to limited capabilities
of entities or the ad hoc nature of collaboration — the technical infrastructure
available may be limited as well, and especially, the security of the underlying
infrastructure can be very low. In fact, even seamlessly integrated in pervasive
computing environments, the intermediate technical infrastructure is still a con-
cern of trust. However this is only one layer of the end-to-end trust. Trust is
also envisaged to facilitate opportunistic collaboration among ubiquitous digital
roaming entities. Through continued collaboration, trust between such entities
would be built and evolve. This notion takes place at the level of entities where
technical components are abstracted. Trust in the underlying infrastructure and
trust between entities form the end-to-end trust. Each layer has to be taken into
account to assess the whole.

The foundation of computer security has been built upon authentication.
With this view, for initial collaboration to be possible, it is first necessary to
know with whom the interaction occurs. However, we argue that it is sometimes
sufficient to find out whether previous collaboration has ended successfully rather



than to get a precise identity without information about the likely behaviour of
the entity. Therefore, entity recognition provides a more general basis for deal-
ing with end-to-end trust. Pervasive computing requires a pluggable recognition
module into which more or less secure/dynamic schemes can be plugged. How-
ever, it is essential to acknowledge how far each scheme should be trusted by
reflecting their implicit impact on the end-to-end trust.

There are remaining issues in this approach such as the correlation of trust
associated with identifiers based on different recognition schemes but pointing
to one unique entity. Although combining a sequence of more or less trusted
recognition schemes can aid against spoofing, the ease of building Byzantine
attacks in such open environments is another problem. Weak recognition schemes
make it really hard to ensure accountability. Another open issue is the question
of how to trigger recognition, especially in case of self-triggering? This requires a
trade-off between computing power spent for recognition and for other relevant
processing.

This work is sponsored by the European Union which funds the IST-2001-
32486 SECURE project.
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