
End-to-End Video Compressive Sensing Using
Anderson-Accelerated Unrolled Networks

Item Type Conference Paper

Authors Li, Yuqi; Qi, Miao; Gulve, Rahul; Wei, Mian; Genov, Roman;
Kutulakos, Kiriakos N.; Heidrich, Wolfgang

Citation Li, Y., Qi, M., Gulve, R., Wei, M., Genov, R., Kutulakos, K. N., &
Heidrich, W. (2020). End-to-End Video Compressive Sensing
Using Anderson-Accelerated Unrolled Networks. 2020 IEEE
International Conference on Computational Photography (ICCP).
doi:10.1109/iccp48838.2020.9105237

Eprint version Post-print

DOI 10.1109/ICCP48838.2020.9105237

Publisher Institute of Electrical and Electronics Engineers (IEEE)

Rights Archived with thanks to IEEE

Download date 05/08/2022 07:13:27

Link to Item http://hdl.handle.net/10754/663826

http://dx.doi.org/10.1109/ICCP48838.2020.9105237
http://hdl.handle.net/10754/663826


ANONYMOUS ICCP 2020 SUBMISSION ID 69 1

End-to-End Video Compressive Sensing
Using Anderson-Accelerated Unrolled Networks

Paper ID 69

Abstract—Compressive imaging systems with spatial-temporal encoding can be used to capture and reconstruct fast-moving objects.

The imaging quality highly depends on the choice of encoding masks and reconstruction methods. In this paper, we present a new

network architecture to jointly design the encoding masks and the reconstruction method for compressive high-frame-rate imaging.

Unlike previous works, the proposed method takes full advantage of a denoising prior to provide a promising frame reconstruction. The

network is also flexible enough to optimize full-resolution masks and efficient at reconstructing frames. To this end, we develop a new

dense network architecture that embeds Anderson acceleration, known from numerical optimization, directly into the neural network

architecture.

Our experiments show the optimized masks and the dense accelerated network respectively achieve 1.5 dB and 1 dB improvements

in PSNR without adding training parameters. The proposed method outperforms other state-of-the-art methods both in simulations and

on real hardware. In addition, we set up a coded two-bucket camera for compressive high-frame-rate imaging, which is robust to imaging

noise and provides promising results when recovering nearly 1,000 frames per second.

Index Terms—high-frame-rate imaging, deep neural network, computational camera

✦

1 INTRODUCTION

1 As a well-developed technique, compressive sensing2

(CS) is widely applied in reconstructing images with low3

sampling rates [1], [2]. In particular, a variety of mask-based4

CS cameras have been demonstrated for capturing high-5

dimensional image data (e.g., spectra, video, etc.) using a6

two-dimensional camera with encoding capacity. Compared7

to conventional cameras employing brute-force sampling8

strategies, such CS cameras have significant advantages in9

acquisition efficiency, storage consumption, and potentially10

cost [3], [4].11

High-frame-rate imaging is concerned with recording12

videos at rates in excess of hundreds of frames per sec-13

ond. However, with bandwidth being a limiting factor,14

conventional cameras record either a very low spatial res-15

olution with a relatively high frame rate, or at relatively16

high spatial resolution with a low frame rate. Using mask-17

based compressive sensing, it becomes feasible to capture18

high-frame-rate and high-spatial-resolution videos with an19

efficient spatio-temporal encoding. This approach is a good20

fit for recently developed image sensors with high-speed21

per-pixel programmable exposure control [5]. The exposure22

control can be viewed as an encoding of the captured frames23

with a set of binary temporal masks. With such cameras, it is24

possible to encode multiple subframes into a captured image25

and decode them later using frame reconstruction methods26

(Fig. 1).27

Much research has focused on the improvement28

of the reconstruction techniques, usually by employing29

optimization-based approaches (see Section 2 for more de-30

tail). Less work has concentrated on the derivation of good31

encoding masks: it can be shown that optimal mask se-32

lection in CS is NP-complete, but random (Bernoulli or33

• This paper is under review for ICCP 2020 and the PAMI special issue on
computational photography. Do not distribute.

Fig. 1. Illustration of the encoding and reconstruction within the com-
pressive high-frame-rate imaging system. In the system, T subframes
with resolution M × N are encoded with masks φ. The reconstruction
network reconstructs the frames from the measurement Y and the
known mask φ.

Gaussian) patterns are satisfactory with high probability 34

[6]. However, the encoding and decoding components of 35

the imaging system are highly interdependent. Based on 36

this observation, we focus on the joint end-to-end design of 37

encoding masks and reconstruction methods for improving 38

both encoding efficiency and reconstruction accuracy. We 39

put forward a compact end-to-end neural network that can 40

handle the mask optimization for the whole image with 41

fewer training parameters. We also show that this network 42

design corresponds to Anderson acceleration, a well-known 43
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acceleration technique in numerical optimization [7].44

Both simulations and experiments on real hardware45

show that our network outperforms existing methods. In46

addition, we show that our masks can also improve the re-47

construction quality of existing methods. Our contributions48

can be summarized as follows:49

• We present the first work to jointly design full- reso-50

lution coding masks and reconstruction methods for51

compressive high-frame-rate imaging using an end-52

to-end network. Our approach outperforms state-of-53

art methods by 2.2dB in PSNR.54

• We show that the acceleration of the gradient de-55

scent algorithm is equivalent to adding dense skip56

connections to iterative optimization-unrolling neu-57

ral networks. This speeds up training convergence58

and helps to design a compact and efficient network59

architecture.60

• Experiments on both simulation and real hardware61

demonstrate the effectiveness of our reconstruction62

method and the designed masks. The two-bucket63

design of our camera shows improved noise sup-64

pression and can provide promising results in re-65

constructing video of frame rates up to almost 1,00066

frames per second.67

2 RELATED WORK68

Many approaches have been developed to solve the ill-69

conditioned inverse problem in CS. The existing methods70

can be divided into model-based optimization methods,71

deep discriminative learning methods, and unrolled itera-72

tive optimization methods.73

Model-based methods.74

Model-based methods utilize designed image priors for75

regularization, which can reduce the number of possible76

solutions and remove artifacts in frame reconstruction. For77

example, the Total Variation (TV) prior [4], [8] can simul-78

taneously preserve edges while smooth away noise in flat79

regions; optical flow [9] can estimate the motion of moving80

objects and helps to eliminate ghosting effects; Gaussian81

mixture models [10] and dictionary learning methods [11],82

[12] take into account image statistics and reconstruct83

frames using learned atoms; non-local low-rank priors [13]84

consider correlation between small patches in the frames for85

denoising. Such model-based methods are straightforward86

to adapt to different sensing matrices without retraining,87

and the sensing matrix can be optimized based on the88

analysis of mutual coherence in dictionary-learning based89

methods [14]. However, such model-based methods have90

their respective drawbacks, and none of them is suitable91

for all scenes. In addition, these methods can be computa-92

tionally expensive, especially compared to learning-based93

methods.94

Learning-based methods.95

In recent years, deep discriminative learning methods have96

shown drastic improvements in image reconstruction qual-97

ity. Some deep neural networks (DNNs) have been proposed98

for compressive imaging as well. Convolutional neural net-99

works [15], [16], [17] and fully-connected networks [18],100

[19] were developed to reconstruct small image patches. 101

However, none of the convolutiomal networks are capable 102

of simultaneously designing masks and optimizing param- 103

eters in the network. Compared to model-based methods, 104

these DNN-based methods are efficient but difficult to adapt 105

to different sensing matrices. These networks usually use 106

random code masks, such as Gaussian or Bernoulli random 107

masks [20], and thus cannot achieve optimal reconstruc- 108

tion quality. On the other hand, fully connected networks, 109

suffer form a large search space, and can in practice only 110

optimize a small repeated mask by preserving the essential 111

connections. While repeated masks significantly reduce the 112

scale of the optimization problem, they may also introduce 113

structured artifacts during reconstruction. 114

Unrolling iterative optimization methods. 115

More recently, a class of networks constructed by un- 116

rolling iterative optimization methods has started to be used 117

in image reconstruction (e.g. LISTA [21]ADMM-net [22], 118

LDAMP [23], IRCNN [24], ISTA-Net [25]). Such network 119

architectures combine the advantages of both model-based 120

methods and deep discriminative learning methods, and 121

provide an efficient and flexible plug-and-play framework 122

to solve inverse problems. Previous works have utilized 123

the multistage iterative network for image restoration [26] 124

and illumination optimization [27]. In this paper, we claim 125

that such networks are effective in jointly optimizing the 126

sensing matrix and reconstruction method if the elements 127

of the sensing matrix are treated as trainable parameters 128

in the network. Crucially, we also show how to improve 129

the design of such unrolled networks to embed Anderson 130

acceleration directly into the network architecture. This 131

improvement will be applicable and useful far beyond our 132

specific application scenario. 133

Computational video cameras. 134

Many different prototype designs for computational video 135

cameras have been proposed. Raskar et al. modified a 136

conventional DSLR camera and added a control unit for 137

high-speed control of the exposure pattern over the full 138

frame. The camera can then be used for deblurring [28] 139

and video compressive sensing [29]. Liu et al. used an 140

LCoS to implement a single exposure mask and applied 141

dictionary learning to reconstruct the scene [30]. To achieve 142

a high-speed encoding, Bub et al. used a DMD for high- 143

frame-rate imaging [31]. Llull et al. changed from active to 144

passive codes to reduce the power consumption [4]. In their 145

design, the static mask is spatially shifted over time, which 146

provides a very limited design space for the spatio-temporal 147

encoding. 148

Recently, several image sensor designs have been pro- 149

posed that can implement the CS mask directly on the 150

sensor. Luo et al. [32] invented a CMOS sensor that allows 151

for active control of the exposure pattern in each pixel, and 152

applied this design for image deblurring. Zhang et al. [33] 153

a CMOS sensor for both high-speed and high-dynamic- 154

range imaging [34]. However, since there is no charge bucket 155

connect with PD, every pixel can only expose once during 156

a frame. Sonoda et al. [35] built a sensor with quasi pixel- 157

wise programmable control, but pixels on the sensor can 158

only be controlled in blocks. Therefore, their camera cannot 159
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generate arbitrary mask patterns [36]. Sarhangnejad et al.160

[37] implemented a coded-exposure-pixel camera with two-161

bucket pixels that has 180 subframes per second. In this162

camera every pixel is programmable and can exposed many163

times during a single frame. Wei et al. use this system164

for a one-shot photometric stereo and develop an image165

formation model for computational video cameras [5].166

3 METHOD167

Our goal is to jointly learn both the full-resolution masks168

for encoding and the reconstruction method for decoding169

that together minimize subframe reconstruction error. We170

achieve this by training an end-to-end network that consist171

of K stages with dense skip connections and a mask layer,172

as shown in Fig. 4. Given a video sequence, the mask173

layer modulates each subframe using the learned mask and174

integrates all subframes into a single captured image; the K175

stages constructed via unrolling the optimization iterations176

for reconstruction can decode the captured images into177

multiple subframes.178

In the following, we first present the encoding and179

decoding parts of our neural network architecture along180

with training details. Then we describe a set of simulations181

for comparing the proposed method with other existing182

methods. Lastly, we implement our approach on a real183

camera and evaluate the effectiveness of our network.184

Image formation.185

The image formation model for our compressive video186

capture system is shown in Fig.1, and can be formulated187

as:188

Y =
T
∑

i=1

φ(i) ⊙X(i) +N, (1)

where φ(i) ∈ R
M×N denotes the i-th binary encoding mask,189

X(i) ∈ R
M×N represents the i-th subframe we need to re-190

construct, ⊙ denotes the element-wise product, N ∈ R
M×N

191

denotes the imaging noise, and Y is the M × N captured192

image. The system has a compression ratio of 1/T , i.e. T193

successive subframes are encoded into a single captured194

image.195

Eq. 1 can be transformed into the following equation:196

y = Φx+ n, (2)

where Φ ∈ R
MN×TMN is the sensing matrix with diagonal197

blocks consisting of the masks φ:198

Φ = [diag(V ec(φ(1))), · · · , diag(V ec(φ(T )))], (3)

x represents the TMN × 1 vectorized subframes of X, y is199

the MN ×1 vectorized captured image of Y, and n denotes200

the vectorized noise of N.201

3.1 Mask generation202

A layer containing only bias values is constructed to gen-203

erate the encoding masks φ. Since different pixels in the204

subframes are encoded independently, the operation Φx205

can be realized by an element-wise multiplication of φ206

and X and a summation of the multiplication results; the207

operation ΦTy can be realized by a repeat copy operation208

of Y and an element-wise multiplication, as shown in Fig.3. 209

The two operations are beneficial for efficient calculation, as 210

well as reduced storage requirements. Since the masks used 211

in high-frame-rate imaging are binary, we need to add a 212

constraint that the outputs of the mask layer must be either 213

0 or 1 during propagation. Inspired by the Binaryconnect 214

method [38], this can be achieved by a simple but efficient 215

deterministic binarization operation: 216

b̂ =

{

1, when b > 0,
0, else.

, (4)

where b̂ is the binarized value of the mask layer, and b 217

is the real value. The sign function binarizes the values 218

straightforwardly, however it is only activated during the 219

forward and backward propagations but not during the 220

parameter update since it is necessary to maintain good 221

precision weights during the updates. 222

3.2 Subframe reconstruction 223

Unrolled network reconstruction. 224

To present the subframe reconstruction method, we first 225

mathematically formulate the reconstruction procedure as 226

an unconstrained problem, and then loop-unroll the opti- 227

mization to construct our multi-stage network. Subframe 228

reconstruction is an optimization problem 229

argmin
x

1

2
||y −Φx||2 + λJ(x), (5)

where J(x) is the denoising prior for regularization 230

weighted by parameter λ. The first data fidelity term 231

guarantees a minimal re-sensing error while the regular- 232

ization term ¡¡¡¡¡¡¡ HEAD ensures that the reconstructed 233

frames satisfy the desired prior model. Different from de- 234

signed priors in model-based method, denoising prior de- 235

picts intrinsic statics of images and results in better im- 236

age reconstruction. ======= ensures that the reconstructed 237

subframes satisfy the desired prior model. Different from 238

the hand-designed priors of model-based methods, the 239

deep image prior captures the intrinsic statistics of im- 240

ages and results in better image reconstructions. ¿¿¿¿¿¿¿ 241

a71d6251c8ad5f37b400c1e81a871974a6b63fec 242

By introducing an auxiliary variable v, Eq. 5 can be 243

reformulated as a constrained optimization problem: 244

(x,v) = argmin
x,v

1

2
||y −Φx||2 + λJ(v), st. x = v. (6)

Inspired by previous image restoration works [24], we 245

adopt the half-quadratic splitting method to convert the 246

constrained optimization problem into an unconstrained 247

one: 248

(x,v) = argmin
x,v

1

2
||y −Φx||2 +

τ

2
||x− v||2 + λJ(v), (7)

where τ is a weight term. Then, Eq. 7 can be solved by 249

alternatively optimizing the two sub-problems with respect 250

to z and x, respectively: 251











xi+1 = argminx
1

2
||y −Φx||2 +

τ

2
||x− vi||2

vi+1 = argminv
τ

2
||xi+1 − v||2 + λJ(v)

(8)
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Fig. 2. Our deep network architecture. The overall network consists of a mask layer for generating masks and K stages for reconstruction. Note that
the skip connections of residuals among stages make the network denser and more compact. (Here show is the case where the number of skip
connections of each stage is m = 1.)

Fig. 3. Two matrix-vector multiplication operations: (a) Φx and (b) ΦTy.

By analyzing Eq. 8, it is evident that the optimization of x in252

the first line is a quadratic problem, while optimization of v253

in the second line is actually a denoising problem. To solve254

the first problem, we can calculate the closed-form solution255

xi+1 = (ΦTΦ+ τI)−1(ΦTy + τvi). (9)

However, the matrix inversion is time consuming. More256

importantly, such inverse models consisting of the trainable257

sensing matrix Φ are harder to train, compared to a forward258

model of Φ. Previous work [26] suggests that using gradient259

descent algorithms to obtain an inexact solution in each step260

can also effectively and efficiently optimize the problem. In261

the general gradient descent method, the update step of x262

can be performed as:263

xi+1 = xi − αig(xi)

= xi − αi(ΦTΦxi −ΦTy + τ(xi − vi))
(10)

where g(.) is the gradient function of x, and αi is the length264

of the gradient descent step.265

Anderson acceleration266

Many efforts have been devoted to developing acceleration267

methods for the gradient descent algorithm [39]. For exam-268

ple, the wildly used Momentum acceleration method takes269

into account the previous gradients in the update step at270

each iteration [40]; Anderson acceleration uses the residuals271

of previous m iterations to adjust the current iteration272

point [7]. We claim that acceleration methods not only speed273

up convergence but can also inform the network’s architecture. 274

Specifically, we use the general acceleration form: 275

xi+1 = xi −
m′

∑

j=1

wi
jd

i−j − αig(x
i −

m′

∑

j=1

wi
jd

i−j), (11)

where di−j is the descent direction in the j-th iteration prior 276

to iteration i, and wi
j is the weight of the descent direction in 277

iteration i. We choose m′ = min(m, i) to ensure that i−m′
278

is a non-negative integer in the early layers. 279

Note that the form of Eq. 11 is exactly that of Anderson 280

acceleration [7], [41], except that the parameters of Anderson 281

acceleration are manually estimated while ours are learned 282

from the network. Specifically, when m = 1, our acceleration 283

becomes Nesterov’s accelerated gradient method [42]. 284

Since the norm of the residual in each iteration can be 285

absorbed by its weights wi
j , without loss of generality, we 286

directly let 287

di = xi − xi−1. (12)

Combining Eq. 11 and the definition of g(.) in Eq. 10, the 288

update step of x can be rewritten as: 289

xi+1 = [(1−βi)I−αiΦTΦ](xi−
m′

∑

j=1

wi
jd

i−j)+αiΦTy+βivi,

(13)
where αiτ is denoted as βi. We show the detailed operations 290

and connections in and between stages in Fig.4 (a). Com- 291

pared to general unrolling networks, the skip connections 292

between stages in our model make the network denser and 293

more compact, and transform it from a Resnet to a Densenet. 294

The denoising network we used to solve the second sub- 295

problem in Eq 8 consists of two cascaded residual blocks. 296

The architecture of the denoising network is as shown in 297

Fig. 4 (b). The number of used residual blocks is chosen 298

empirically. Previous work [43] gave some convergence 299

analysis and also showed that two residual blocks provide 300

the best results for learning the proximal operator. Note that 301

we can also apply non-local attention [44] and a multi-scale 302

architecture [45], [46]. But to ensure the decoding network 303

has a limited parameter count to prevent overfitting, each 304

residual block in the denoising network contains only five 305

convolutional layers, and all layers generate feature maps 306

with 3× 3 kernels. 307
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(a) (b)

Fig. 4. (a)Illustration of two stages in our network.(here we show the case m = 1) (b) The architecture of our denoising network.

Algorithm 1 Accelerated subframe reconstruction

Input: Sensing matrix Φ, captured image y, number m
Output: Reconstructed subframes x

1: Initialize x0 = ΦTy, x−1 = x0 (i = 1, ...,m), d0 = 0
2: for i = 1, 2, . . . ,K do
3: vi−1 = D(xi−1)
4: m′ = min(m, i)

5: zi = xi−1 −
∑m′

j=1 w
i
jd

i−j

6: xi = [(1− βi)I− αiΦTΦ]zi + αiΦTy + βivi−1

7: di = xi − xi−1

8: end for

3.3 Training308

We constructed an end-end network by unrolling the algo-309

rithm shown in Algorithm 1. The proposed model mainly310

consists of a mask layer and a K-stage reconstruction net-311

work using convolutional layers. The input subframes x are312

encoded using a trainable mask layer φ. We multiply the313

transpose of the mask ΦT and the captured images y to314

generate an initial guess x0 = ΦTy. We then feed the initial315

image into the reconstruction. All layers use ReLU as their316

activation function, except the output layer, which uses a317

sigmoid. We choose the mean square error (MSE) as our318

loss function, expressed as319

L(φ, w;α;β; θ) =
1

k

k
∑

i=1

||f(x;φ;w;α;β; θ)− x||2, (14)

where k is the number of the training samples, θ are the320

denoising network weights, φ are the mask layer weights,321

and (w;α;β) are the optimization parameters. We trained322

the proposed network to learn these parameters simultane-323

ously. The parameters of each stage are set to be different,324

and the α are set to be channel-wise.325

The model was trained on an Intel Xeon E5 workstation326

with an NVIDIA GeForce RTX 2080 Ti GPU and 512 GB327

main memory. Our network is implemented using Keras328

2.2.5 and trained using the Adam optimizer [47]. The initial329

learning rate is set to 10−4 and decayed by a factor of 10 at330

the 20th iteration. We train the model for 80 iterations with331

a batch size of 1, which takes about two days to complete.332

4 SIMULATIONS 333

In this section, we conduct numerical simulations to show 334

the effectiveness of our proposed network and compare our 335

method with other state-of-the-art compressive reconstruc- 336

tion methods. 337

Datasets and Training. The data we used for the sim- 338

ulations are two popular databases: the SumMe database 339

from https://gyglim.github.io/me/vsum/index.html [48] 340

and the ”Sports Videos in the Wild” database from http: 341

//cvlab.cse.msu.edu/project-svw.html [49]. We randomly 342

cropped and selected 3,000 video sequences of size 256 × 343

256 × 32 to train our network, and selected 800 video 344

sequences of the same size for testing. 345

TABLE 1
Ablation Studies.

Methods
Noiseless Noisy (σ = 0.01)

PSNR SSIM PSNR SSIM

Unopt [26] 30.68 0.896 28.52 0.861

Opt 32.35 0.921 30.52 0.897

Opt + SC (m=1) 33.18 0.930 31.24 0.905

Opt + SC (m=2) 33.30 0.932 31.43 0.908

Opt + SC (m=3) 33.32 0.932 31.46 0.909

Ablation studies. To clearly understand the effect of 346

each component as well as choosing an appropriate m 347

in our end-to-end network, we carried out five ablation 348

simulations. We present our observations and quantitative 349

results in Table 1. For all the simulations in the ablation 350

study, we used the architecture shown in Fig. 4 with 39 351

stages for frame reconstruction, and calculated the average 352

PSNR and SSIM of the reconstructed results in the presence 353

and absence of noise. The baseline for comparison is model 354

Unopt, a multistage network without mask optimization 355

and dense skip connections, which is the same network 356

architecture as in previous work [26]. Compared to this 357

baseline, our method leads to a significant improvement 358

in reconstruction quality as well as to a reduction of the 359

number of training epochs needed for the same accuracy. 360

Optimized vs. fixed mask: For the Unopt model, we used 361

a randomly shifted Bernoulli binary masks as shown in 362

Fig. 5(a) while in other Opt models we used optimized 363
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Fig. 5. The comparison of the first binary pattern(upper) and their
spectrum distribution(bottom) of the three used masks sequences. (a)
Bernoulli pattern used in [50] and [8]. (b) Optimized repeated pattern of
[18]. (c) Our optimized pattern. Note that the patterns were cropped into
160× 160 for visulization.

masks as shown in Fig. 5(c). PSNRs can be improved by364

nearly 1dB when replacing the random masks by the op-365

timized masks. It is worth noting that the loss of Unopt366

is relatively low in the initial few epochs since random367

Bernoulli masks are suitable for compressive reconstruc-368

tion [51]. However, Opt models catch up with and surpass369

the Unopt model as the number of epochs increases, as370

shown in Fig. 7. The results indicate that our network has371

learned more efficient masks after several epochs of training.372

Skip connections (SC) vs. no skip-connections: We tested the373

effect of skip connections in our network. It is obvious that374

skip connections can enhance reconstruction quality and375

accelerate the convergence of training loss. The PSNRs are376

improved by nearly 1dB when three skip connections for377

a single stage (m = 3) are applied. However, denser skip378

connections require more memory, so we need to choose379

an appropriate m for the best trade-off between memory380

consumption and reconstruction accuracy. As shown in381

Table 1, the model with m = 3 outperforms the one with382

m = 2, but only by a small margin in both PSNR and SSIM.383

Therefore, we choose m = 2 as an empirical setting for our384

reconstruction network.385

Comparison methods. We compared the proposed386

method with two representative DNN-based methods:387

DeepMask [18] and Deep Tensor ADMM-Net (DTAN) [50];388

and two state-of-the-art traditional methods: GAP-TV [8]389

and GMM [10]. Following previous literature, we used390

masks to modulated every eighth consecutive frame. Thus391

we reconstructed 32 subframes from 4 measurements in the392

simulations. To be specific, DeepMask is the only existing393

method which can jointly optimize masks and reconstruc-394

tion method; it learns 4×4×8 repeated masks for encoding395

and reconstructs frames via a fully-connected network. The396

other three methods use a 256 × 256 × 8 shifting Bernoulli397

binary masks. The masks of different methods and their398

frequency spectra are shown in Fig.5. It can be observed399

that our masks perform as a ’high-pass filter’ that blocks400

low-frequency spatial content.401

Quantitative results. The PSNR and SSIM results of402

TABLE 2
The comparison of reconstruction quality of the five methods with T=8

subframes.

Methods
Noiseless Noisy(σ = 0.01)

PSNR SSIM PSNR SSIM

GAP-TV [8] + random 29.82 0.857 27.99 0.835

GAP-TV + optimized 30.72 0.884 29.04 0.843

GMM [10] + random 27.24 0.797 27.00 0.774

GMM + optimized 27.35 0.807 27.10 0.785

DTAN [50] + random 26.08 0.803 25.12 0.799

DTAN + optimized 27.28 0.816 26.45 0.813

DeepMask [18] 31.05 0.905 29.28 0.882

Ours 33.32 0.932 31.43 0.908

TABLE 3
The comparison of reconstruction quality of the four methods with

T=32 subframes.

Methods
Noiseless Noisy(σ = 0.01)

PSNR SSIM PSNR SSIM

GAP-TV [8] + random 23.44 0.725 23.15 0.700

GMM [10] + random 22.19 0.589 22.16 0.583

DeepMask [18] 27.58 0.814 25.46 0.792

Ours 28.01 0.840 26.15 0.810

different methods with different masks are shown in Ta- 403

ble 2. As an optimization method, GAP-TV is effective and 404

efficient in reconstructing subframes, but the reconstruction 405

quality is not competitive compared to ours due to the 406

used handcrafted priors. The GMM approach reconstructs 407

frames patch-by-patch, and also cannot produce competi- 408

tive results. To our surprise, DTAN performs worst among 409

these methods, although it works well on its ’NBA’ dataset. 410

This might be because the non-local low-rank prior fails 411

in reconstructing spatial high-frequency content. Due to 412

the joint design of masks and reconstruction, the average 413

PSNR and SSIM of DeepMask exceed 31dB and 0.9, re- 414

spectively. However, we finds serious structured artifacts in 415

the reconstructed images of DeepMask (see Fig.6) caused 416

by the use of repeated masks. Our method outperforms 417

state-of-art methods by more than 2.2dB in PSNR and more 418

than 0.03 in SSIM. This is further confirmed by visual 419

comparison of the reconstructed images in Fig. 6, where 420

we show ground truth and the reconstructed results of 421

four frames. Our method generates much more visually 422

pleasant images with more accurate detail information. We 423

also compared our method with GAP-TV, GMM, and Deep- 424

Mask with T=32 subframes. In this simulation, 64 frames 425

are reconstructed from two encoded images. The results are 426

shown in ¡¡¡¡¡¡¡ HEAD Table3. Compression ratios of 1:32 are 427

very ======= Table 3. Compression ratios of 1:32 are very 428

¿¿¿¿¿¿¿ a71d6251c8ad5f37b400c1e81a871974a6b63fec chal- 429

lenging for compressive sensing algorithms in general, so 430

the results are worse than for 8 subframes, however our 431
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Ground Truth GAP-TV
(Bernoulli random masks)

GMM
(Bernoulli random masks)

DTAN
(Bernoulli random masks)

DeepMask
(Optimized repeated masks)

Ours
(Our optimized masks)

p=18.40

s=0.530

p=19.93

s=0.489

p=17.28

s=0.435

p=23.22

s=0.675

p=24.57

s=0.726

p=20.20

s=0.639

p=20.53

s=0.625

p=16.54

s=0.528

p=24.09

s=0.692

p=26.14

s=0.742

p=19.53

s=0.428

p=22.01

s=0.558

p=19.97

s=0.376

p=26.39

s=0.635

p=28.99

s=0.705

p=21.70

s=0.591

p=23.19

s=0.601

p=19.99

s=0.407

p=27.66

s=0.660

p=29.02

s=0.693

Fig. 6. The comparison of reconstructed frames and the statistics on the PSNR and SSIM. From top to bottom: ground truth;reconstructed results
of GAP-TV, GMM, Deep Tensor Admm-net, DeepMask, and ours.
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Fig. 7. Training loss vs number of epochs on the neural network models
in ablation study.

approach still dominates the comparison methods.432

Mask evaluation. We also evaluated our optimized433

mask by comparing it with random masks using the same434

reconstruction method. Since GAP-TV is a model-based435

optimization method which does not memorize data, we re-436

constructed frames using GAP-TV with random masks and437

our proposed masks respectively to present the behavior438

of the two masks. Fig. 8 shows the reconstructed results.439

The frames reconstructed from the image encoded by our440

masks are significantly better than those by random masks,441

especially around the edges. We also observed the improve- 442

ment brought by the optimized masks using other existing 443

methods (e.g. [10] and [50]). Note that the improvement 444

for the GMM method is not significant since it reconstructs 445

frames patch-by-patch while our masks are optimized as a 446

whole. 447

5 REAL EXPERIMENTS 448

Previous work on mask-based video compressive sensing 449

uses either a static mask that is shifted over time, or a 450

setup with some form of spatial light modulator, such as a 451

DMD or LCOS, which can be controlled with high temporal 452

resolution. However, the drawback of these methods is that 453

they are difficult to align and rather bulky due to the need 454

for re-imaging optics [52]. 455

Fortunately, recent developments in image sensor tech- 456

nology allow us to directly implement the CS mask on the 457

sensor itself. Specifically, there are now several prototypes 458

of image sensors with per-pixel programmable exposure 459

control [5], [37]. In this paper, we use the Coded two- 460

Bucket (C2B) camera from Wei et al. [5]. In this camera, each 461

pixel has two charge-collection sites (i.e. two buckets). The 462

exposure control signal for each pixel can select which of the 463

two buckets integrates incident light at any given point in 464
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GAP-TV
(Our optimized masks)

GAP-TV
(Bernoulli random masks)

Fig. 8. The comparison of reconstructed results using GAP-TV method with different encoding masks.

time. The major advantage of this design is that it makes465

use of all incident photons and simultaneously encodes466

subframes with a pair of complementary masks. Using this467

camera, subframes are reconstructed from the pair of cap-468

tured complementary images. The spatial resolution of the469

camera is 312× 320, and the frame rate can reach 30 frames470

per second with over 100 different masks per frame. In our471

experiments we use only up to 32 masks per frame since a472

compression ration of 1:32 is already extremely challenging473

for all compressive sensing approaches.474

Fig. 9. The setup of our experiments.

We captured several dynamic scenes using the camera to475

compare the reconstruction quality of four different meth-476

ods: GAP-TV [8], GMM [10], DeepMask [18], and ours. The477

setup for our experiments is shown in Fig. 9. Unlike the478

simulation, here, the number of subframes we used is 32 to479

explore the limits of the four methods; thus, a high-frame-480

rate (32× 30 = 960) imaging can be achieved. In the exper-481

iment, the first two methods used 312 × 320 × 32 random482

masks, DeepMask used optimized repeated 4×4×32 masks,483

and our method used 312× 320× 32 optimized masks. We484

reconstructed 64 subframes from two successively captured485

images. Fig. 10 shows two examples of the reconstructed486

results. It can be seen that the GAP-TV method created487

watercolor-like artifacts due to the drawbacks of the hand-488

crafted prior; GMM and DeepMask introduced significant489

structured artifacts in the patch-by-patch reconstruction.490

The proposed methods, on the other hand, can produce491

better results with fewer artifacts, clearer contents, and492

higher contrast compared with the other three methods493

(please zoom in for details).494

We also investigated the improvement brought by the495

two bucket mechanism of the camera. With the two-bucket496

mechanism each subframe is encoded by a pair of com-497

plementary masks, so that the number of measurements 498

is doubled when compared to the one-bucket mechanism. 499

To demonstrate the improvements due to thex two-bucket 500

design, we captured a fan with varying rotation speeds and 501

reconstructed 64 subframes from two one-bucket images 502

and four two-bucket images respectively. The results are 503

shown in Fig.11. It can be seen that the reconstructed results 504

from two-bucket images are significantly better than those 505

from one-bucket images. We can also observe that the ad- 506

vantages of our method over the state of the art are even 507

more compelling in real experiments than in simulation. 508

That is because our method depends on a deep image prior 509

rather than handcrafted priors and thus can better handle 510

complicated video content found in real scenes. 511

6 CONCLUSION AND FUTURE WORKS 512

We have presented a new end-to-end learned method and 513

prototype system for video reconstruction from mask-based 514

compressive sensing cameras. Unlike existing approaches, 515

the proposed method is suited for optimizing full-resolution 516

masks, and can reconstruct subframes efficiently. The re- 517

construction quality of the proposed method significantly 518

outperforms that of previous methods due to the utilized 519

deep image prior. We implemented a two-bucket camera for 520

high-frame-rate imaging; the frame rate can reach close to 521

1,000 frames with superior image quality compared to other 522

CS video approaches. 523

In addition to providing a superior solution to the 524

compressive sensing video reconstruction problem, we also 525

make a fundamental improvement to loop-unrolled neural 526

network architectures for image reconstruction problems 527

in general: we demonstrate that dense skip connections 528

can implement Anderson acceleration directly in the neural 529

network to make it compact and efficient. The proposed 530

dense network is not limited to CS problems, but can be 531

applied to solve other inverse problems directly. 532

We believe that the frames in the near future can be 533

predicted from previously reconstructed frames. Therefore, 534

in future work, we plan to explore more efficient frame 535

reconstruction and adaptively optimize masks in real-time 536

for even better results. 537
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