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Video-to-speech is the process of reconstructing the audio speech from a video of a spoken utterance. Previous approaches to this
task have relied on a two-step process where an intermediate representation is inferred from the video, and is then decoded into
waveform audio using a vocoder or a waveform reconstruction algorithm. In this work, we propose a new end-to-end video-to-speech
model based on Generative Adversarial Networks (GANs) which translates spoken video to waveform end-to-end without using
any intermediate representation or separate waveform synthesis algorithm. Our model consists of an encoder-decoder architecture
that receives raw video as input and generates speech, which is then fed to a waveform critic and a power critic. The use of an
adversarial loss based on these two critics enables the direct synthesis of raw audio waveform and ensures its realism. In addition,
the use of our three comparative losses helps establish direct correspondence between the generated audio and the input video. We
show that this model is able to reconstruct speech with remarkable realism for constrained datasets such as GRID, and that it
is the first end-to-end model to produce intelligible speech for LRW (Lip Reading in the Wild), featuring hundreds of speakers
recorded entirely ‘in the wild’. We evaluate the generated samples in two different scenarios – seen and unseen speakers – using
four objective metrics which measure the quality and intelligibility of artificial speech. We demonstrate that the proposed approach
outperforms all previous works in most metrics on GRID and LRW.

I. INTRODUCTION

AUTOMATIC speech recognition (ASR) is a well estab-
lished field with diverse applications including captioning

voiced speech and recognizing voice commands. Deep learning
has revolutionised this task in the past years, to the point where
state of the art models are able to achieve very low word error
rates (WER) [29]. Although these models are reliable for clean
audio, they struggle under noisy conditions [32, 49], and they
are not effective when gaps are found in the audio stream
[58]. The recurrence of these edge cases has driven researchers
towards Visual Speech Recognition (VSR), also known as
lipreading, which performs speech recognition based on video
only.

Although the translation from video-to-text can now be
achieved with remarkable consistency, there are various appli-
cations that would benefit from a video-to-audio model, such
as videoconferencing in noisy conditions; speech inpainting
[58], i. e., filling in audio gaps from video in an audiovisual
stream; or generating an artificial voice for people suffering
from aphonia (i. e., people who are unable to produce voiced
sound). One approach for this task would be to simply combine
a lipreading model (which outputs text) with a text-to-speech
(TTS) model (which outputs audio). This approach is especially
attractive since state-of-the-art TTS models can now produce
realistic speech with considerable efficacy [36, 46].
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Combining video-to-text and text-to-speech models to per-
form video-to-speech has, however, some disadvantages. Firstly,
these models require large transcribed datasets, since they are
trained with text supervision. This is a sizeable constraint given
that generating transcripts is a time consuming and expensive
process. Secondly, generation can only happen as each word
is recognized, which imposes a delay on the throughput of
the model, jeopardizing the viability of real-time synthesis.
Lastly, using text as an intermediate representation removes
any intonation and emotion from the spoken statement, which
are fundamental for natural sounding speech.

Given these constraints, some authors have developed end-
to-end video-to-speech models which circumvent these issues.
The first of these models [9] used visual features based on
discrete cosine transform (DCT) and active appearance models
(AAM) to predict linear predictive coding (LPC) coefficients
and mel-filterbank amplitudes. Following works have mostly
focused on predicting spectrograms [1, 13, 43], which is also
a common practice in text-to-speech works [46]. These models
achieve intelligible results, but are only applied to seen speakers,
i. e., there is exact correspondence between the speakers in
the training, validation and test sets, or choose to focus on
single speaker speech reconstruction [43]. Recently, [33] has
proposed an alternative approach based on predicting WORLD
vocoder parameters [34] which generates clear speech for
unseen speakers as well. However, the reconstructed speech is
still not realistic.

It is clear that previous works have avoided synthesising raw
audio, likely due to the lack of a suitable loss function, and
have focused on generating intermediate representations which
are then used for reconstructing speech. To the best of our
knowledge, the only work which directly synthesises the raw
audio waveform from video is [53]. This work introduces the
use of GANs [3, 15], and thanks to the adversarial loss, it is
able to directly reconstruct the audio waveform. This approach
also produces realistic utterances for seen speakers, and is the
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first to produce intelligible speech for unseen speakers.
Our work builds upon the model presented in [53] by

proposing architectural changes to the model, and to the training
procedure. Firstly, we replace the original encoder composed
of five stacked convolutional layers with a ResNet-18 [20]
composed of a front end 3D convolutional layer (followed by a
max pooling layer), four blocks containing four convolutional
layers each and an average pooling layer. Additionally, we
replace the GRU (Gated Recurrent Unit) layer following the
encoder with two bidirectional GRU layers, increasing the
capacity of our temporal model. The adversarial methodology
was a major factor towards generating intelligible waveform
audio in [53]. Hence, our approach is also based on the
Wasserstein GAN [3], but we propose a new critic adapted from
[25]. We also propose an additional critic which discriminates
real from synthesized spectrograms.

Furthermore, we revise the loss configuration presented in
[53]. Firstly, we decide to forego the use of the total variation
loss and the L1 loss, as their benefit was minimal. Secondly,
we use the recently proposed PASE (Problem Agnostic Speech
Encoder) [38] as a perceptual feature extractor. Finally, we
propose two additional losses, the power loss and the MFCC
loss. The power loss is an L1 loss between the (log-scaled)
spectrograms of the real and generated waveforms. The MFCC
loss is an L1 Loss between the MFCCs (Mel Frequency
Cepstral Coefficients) of the real and generated waveforms.

Our contributions for this work are described as follows:
1) We propose a new approach for reconstructing waveform
speech directly from video based on GANs without using any
intermediate representations. We use two separate critics to
discriminate real from synthesized waveforms and spectrograms
respectively, and apply three comparative losses to improve
the quality of outputs. 2) We include a detailed ablation study
where we measure the effect of each component on the final
model. We also investigate how the type of visual input, size
of training set and range of vocabulary affect the performance.
3) We show results on two different datasets (GRID [8] and
TCD-TIMIT [19]) for seen speakers. We find that our model
substantially outperforms the state-of-the-art for GRID and
adapts well to a larger pool of speakers. 4) We also include
results for unseen speakers on two datasets (GRID and LRW
[6]). We show that our model achieves intelligible results,
even when applied to utterances recorded ‘in the wild’, and
outperforms the state-of-the-art for the corpora we present. 5)
Finally, we study our model’s ability to generalize for videos
of silent speakers, and discuss our findings.

II. RELATED WORK

Video-driven speech reconstruction is effectively the combi-
nation of two tasks: lipreading and speech synthesis. As such,
we begin by briefly describing the main works in each field, and
then go on to describe existing approaches for video-to-speech.

A. Lipreading

Traditional lipreading approaches relied on HMMs (Hidden
Markov Models) [17] or SVMs (Support Vector Machines) [57]
to transcribe videos from manually extracted features such as

DCT [17] or mouth geometry [24]. Recently, end-to-end models
have attracted attention due to their superior performance over
traditional approaches. One of the first end-to-end architectures
for lipreading was [4]. This model featured a convolutional
encoder as the visual feature extractor and a two-layer BGRU-
RNN (Bidirectional GRU recurrent neural network) followed
by a linear layer as the classifier, and it achieved state of the
art performance for the GRID corpus. This work was followed
by [7], whose model relied entirely on CNNs (Convolutional
Neural Networks) and RNNs, and was successfully applied to
spoken utterances recorded in the wild.

Various works have followed which apply end-to-end deep
learning models to achieve competitive lipreading performance.
[39, 42] propose an encoder composed of fully connected layers
and performs classification using LSTMs (Long-short Term
Memory RNNs). Other works choose to use convolutional
encoders [47], often featuring residual connections [48], and
then apply RNNs to perform classification. Furthermore, these
end-to-end architectures have been extended for multi-view
lipreading [41] and audiovisual [40] speech recognition.

B. Speech Synthesis

One of the most popular speech synthesis models in recent
years has been WaveNet [35], which proposed dilated causal
convolutions to compose waveform audio sample by sample,
taking advantage of the large receptive field achieved by
stacking these layers. This model achieved far more realistic
results than any artificial synthesizer proposed before then.
Another work [55] introduced a vastly different sequence-to-
sequence model that predicted linear-scale spectrograms from
text, which were then converted into waveform using the Griffin-
Lim Algorithm (GLA) [60]. This process produced very clear
and intelligible audio. In the following years, [46] combined
these two methodologies to push the state-of-the-art once more,
and [36] accelerated and improved the original WaveNet.

The first model to apply GANs for end-to-end speech
synthesis was [11], which used simple convolutional networks
with large kernels as the generator and discriminator and applied
the improved Wasserstein loss [16]. In a later work [56], the
original WaveNet vocoder [35] has been combined with the
adversarial methodology introduced in [11]. This results in
a network which has far less parameters than the original
WaveNet, but remains on par with the latest WaveNet-based
models. Recently, the first end-to-end adversarial Text-To-
Speech model [12] was also proposed, whose performance
is comparable to the state-of-the-art.

C. Reconstructing audio from visual speech

To the best of the authors’ knowledge, the first work to
attempt the task of video-to-speech synthesis directly was [9].
The proposed model aims to predict the spectral envelope (LPC
or mel-filterbanks) from manually extracted visual features
(DCT or AAM) using Gaussian Mixture Models (GMMs) or
deep neural networks. These acoustic parameters are then fed
into an HMM-based vocoder, together with an estimate of
the voicing parameters. Through multiple user studies, the
speech reconstructed by this model is shown to have fairly low
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intelligibility (WER ≈ 50%), but shows that this task is indeed
achievable. This work was extended in [10], which introduced
additional temporal information in the visual features and in
the model itself. These improvements yielded an impressive
15 % WER for GRID (single speaker), based on user studies.

The next development in this field comes with [14], which
uses a deep CNN architecture to predict acoustic features – LPC
analysis followed by LSP (Line Spectral Pairs) decomposition,
frame by frame – from gray-scale video frames. These are
combined with white noise (excitation signal) and fed into
a source-filter speech synthesizer which produces unvoiced
speech. This model produces intelligible results (WER < 20%)
when trained and tested on a single speaker from GRID, and
constitutes a step forward given that it no longer relies on
handcrafted visual features as input. An improved version of
this model was presented in [13], which predicts spectrograms
that are then translated into waveform using the Griffin-
Lim algorithm. This extension also proposes a new encoder
composed of two ResNet-18s followed by a post-processing
network which increases temporal resolution. This work is the
first to experiment with multiple speakers and achieves much
more realistic speech than any previous work for this task.

Lip2Audspec [1] proposes a similar CNN+RNN encoder to
predict spectrograms directly from the gray-scale frames of the
video. As in [13], the spectrograms are converted to waveform
using a phase estimation method. The resulting spectrograms
are very close to the original samples, but the reconstructed
waveforms sound noticeably robotic. Another recent work [33]
uses CNNs+RNNs to predict vocoder parameters (aperiodicity
and spectral envelope), rather than spectrograms. Additionally,
the model is trained to predict the transcription of the speech, in
other words performing speech reconstruction and recognition
simultaneously in a multi-task fashion. This approach achieves
results which are very impressive when measured with objective
speech quality metrics (PESQ, STOI), but yields samples which
still sound noticeably robotic.

Finally, a recent work [43] proposes an approach based
on the Tacotron 2 architecture [46], predicting mel-frequency
spectrograms from video rather than text. To perform this task,
it applies a stack of residual 3D convolutional layers as a
spatio-temporal encoder for the video, and combines it with an
attention-based decoder adapted from [46], which generates the
spectrograms. Unlike Tacotron, these spectrograms are decoded
into waveform audio using the Griffin-Lim algorithm [60] rather
than WaveNet, as the authors claim the generated spectrograms
are not as accurate as modern TTS works, and therefore do
not perform well with neural vocoders. This work is able to
generate remarkably intelligible audio from visual speech and
achieves state-of-the-art performance in all presented metrics.
However, it focuses on speaker specific speech reconstruction,

i. e., it is trained and tested on the same speaker.
An aspect which is worth highlighting is that none of these

models attempt to generate the waveform end-to-end from
video, instead predicting spectrograms or other features which
can be translated into waveform. This is likely due to the
notoriously arduous task of generating realistic waveforms,
which can be attributed to the lack of suitable loss functions.
The only model to perform video-to-waveform speech recon-

struction without the use of intermediate representations is [53].
This work proposes a generative adversarial network based
on a convolutional encoder-decoder model (combined with a
GRU) which encodes video into visual features and decodes
them directly into waveform audio. The generator is trained
with an adversarial loss based on a convolutional waveform
critic, as well as three other comparative losses. This procedure
achieves competitive results for speech reconstruction on both
seen and unseen speaker datasets (GRID).

D. Reconstructing audio from multi-view visual speech

The majority of works in video-driven speech reconstruction
use frontal views of the face. In this section, we briefly describe
a set of works which use multiple-views in order to improve
the quality of reconstructed speech.

The first work to use multi-view video for this task was [26].
This model is very similar to [14] in the sense that it applies
a CNN to extract visual features directly from video, which
then predict vocoder parameters (LPC followed by LSP). This
work, however, uses video taken from two different angles for
every speaker (Oulu VS2 dataset [2]). The results presented in
this paper show that the use of multiple views can substantially
improve speech reconstruction performance.

This model has been improved in [28] by replacing the
LSTM with a BGRU and using more than two views as input.
It is shown that the use of three views can yield improvements
of 20 % in the quality of reconstructed outputs (measured with
PESQ). This has been extended in [27] by including a view
classifier to attribute view labels to the input videos and by also
generating text transcriptions. The latest work in this field [52]
follows the trend seen in single-view speech reconstruction
research [13, 14] and speech synthesis in general [51, 55]
by switching from LPC coefficients to spectrograms as the
predicted audio representation.

E. Audio reconstruction from video in other applications

Finally, a set of past works has approached the application
of Video-to-Audio models to domains outside speech [5, 37,
59]. Namely, these papers have focused on a diverse range
of datasets which feature a set of generic sounds such as
fireworks and drums [59]; different instruments being played
[5]; or even objects composed of different materials being hit
with a drumstick [37]. The methodology applied to reconstruct
audio from video is similar to what is seen for video-to-
speech systems. CNNs are applied to encode the video frames,
followed by RNNs or fully connected layers to produce acoustic
features which are decoded into audio using vocoders. While
some of these works struggle to reproduce the corresponding
audio, [59] is able to produce remarkably realistic audio (as
proven by its user studies) by combining the extraction of
optical flow with a neural network-based vocoder.

III. VIDEO-DRIVEN SPEECH RECONSTRUCTION

Our model is composed of a video encoder based on a
ResNet-18 combined with a Bidirectional GRU, as well as a
convolutional decoder which transforms the visual features into
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Encoder
(3D Conv. + ResNet 18)

Cropped mouth Video

Bidirectional GRU
(x2)

Decoder
(6x Trans. Conv.)

Synthesized Waveform Real Waveform

Power Critic
(2D Conv. + Resnet 18)

Waveform Critic
(7x Conv. + Pooling)

Power Loss MFCC Loss Perceptual Loss 
(PASE Encoder)

Adversarial Loss
(WGAN-GP)

Fig. 1: Architecture of the generator (encoder, bidirectional
GRU, decoder) and critics (waveform critic, power critic) used
in this work, as well as the losses that are used for training.

waveform audio. This generator is trained using two separate
critics, to ensure the realism of the outputs, as well as three L1
losses to minimize the difference between real and synthesized
audio for each video.

A. Generator

Given that we aim to synthesize speech directly from
video, our generator accomplishes two sequential tasks: encode
temporal visual features and decode them into an audio
waveform. Firstly, we encode the frames of the video using
a Resnet-18 preceded by a spatio-temporal 3D convolutional
layer (combined with a max pooling layer). This initial layer
has a receptive field of 5 frames centered on the frame it will
encode meaning that the encoding for each frame will depend
on the previous two frames and on the following two frames.
We experimented with different numbers of frames as input to
this layer (3 and 7), but found that this did not considerably
affect results. The ResNet-18 is composed of 4 blocks of 4
convolutional layers, each followed by batch normalization
and ReLU (Rectified Linear Unit) activation, and an adaptive
average pooling layer. The features extracted from the ResNet
encoder are then fed into a 2-layer bidirectional GRU which
temporally correlates the features produced from each set of
frames. This architecture is described in detail in Figure 2.

After this, the decoder upsamples the features from each
video frame into a waveform segment of N audio samples.
The length of each segment is given by:

N =
audio sampling rate

video frame rate
. (1)

Since we use a sampling rate of 16 kHz and a frame rate of 25
frames per second, N is equal to 640 (corresponding to 40 ms
of audio). The decoder is composed of six stacked transposed

convolutional layers, each followed by batch normalization
and ReLU activation except for the last layer which uses a
hyperbolic tangent activation function. In an attempt to alleviate
the issue of abrupt frame transitions, we use an overlap of
50 % between the generated waveform frames, as proposed in
[14]. The overlapped segments are linearly averaged sample
by sample in order to maintain the original waveform scale.
The detailed architecture of the decoder is shown in Figure 3.

B. Critics

As demonstrated in recent works [11, 25, 56], the use
of a waveform critic can dramatically increase the realism
and clarity of synthesized speech. To discriminate the real
from the synthesized waveforms, we adapt the critic from
[25]. After experimenting extensively with and without weight
normalization for this module, as well as for the generator,
we find that weight normalization increases the stability of
adversarial training but overall leads to worse results. Therefore,
we remove weight normalization from this critic but otherwise
keep the original architecture: 7 convolutional layers, each
followed by Leaky ReLU activation, as shown in Figure 4.

We did not attempt batch normalization, which worked well
for the generator, since this interferes with the gradient penalty
for our adversarial loss [16]. We compared this architecture
to other convolutional critics similar to the one proposed in
[11] as well as a one-dimensional ResNet 18, and found that
this critic produced the best results. Remarkably, this critic
has a far smaller receptive field than any of the critics we
experimented with. This may indicate that waveform critics
work best when focusing on the small scale.

Inspired by the SpecGAN model [11], we propose to combine
the waveform critic, which judges the audio in the temporal
domain, with a power critic, which judges the audio in the
spectral domain. This module discriminates the spectrograms
computed from real and generated audio. We first compute the
spectrogram from both the real and generated samples using
the short-time Fourier transform (STFT) with a window size
of 25 ms, a hop size of 10 ms and frequency bins of size 512.
We then compute the natural logarithm of the spectrogram
magnitudes, normalize these values to mean 0 and variance 1,
clip values outside [-3,3] and normalize them to [-1,1], similarly
to [11]. In this case, we use a ResNet18 identical to the one
presented in our generator, except with a two-dimensional front
end convolutional layer in the beginning, since our input is
a single image. As with the waveform critic, we cannot use
batch normalization in this module due to the gradient penalty,
and found that weight normalization did not improve results.
The architecture for the power critic is shown in Figure 5.

C. Losses

To train our network, we apply the Wasserstein GAN loss
[3], which aims to minimize the Wasserstein Distance between
the distributions of real and synthesized data. We also add the
gradient penalty [16] in order to satisfy the Lipschitz constraint
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in the Wasserstein GAN objective. The losses for the generator
and respective critic(s) are defined as:

LG = − E
x̃∼PG

[D(x̃)] + λ E
x̂∼Px̂

[(‖∇x̂D(x̂)‖ − 1)2] (2)

LD = E
x̃∼PG

[D(x̃)]− E
x∼PR

[D(x)], (3)

where G is the generator, D is the critic, x ∼ PR are samples
from the real distribution, x̃ ∼ PG are samples from the
estimated distribution (produced by the generator) and x̂ ∼ Px̂

are sampled uniformly between two points from PG and PR

respectively. In this work, we apply two critics: the waveform
critic and the power critic. Each critic is trained with their own
losses LDwave

and LDpower
, whereas the generator combines

the losses from the two critics such that:

LGadv
= LGwave

+ LGpower
, (4)

where LGwave
and LGpower

are calculated as mentioned in Eq.
2. The coefficient for the gradient penalty λ is kept at the value
of 10 for both critics, as proposed in [16].

In addition to this adversarial loss, we also apply three other
losses to train the generator. The first is a perceptual loss:

LPASE = ‖δ(x)− δ(x̃)‖, (5)

where x is the real waveform, x̃ is the synthesized waveform
from the same video and δ is our perceptual feature extractor.
In this work, we use the pre-trained PASE model [38] to
extract perceptual features δ(x). PASE has been trained
in a self-supervised manner to produce meaningful speech
representations. We have also tried using PASE+ [44], which is

an improved version of PASE, however, no improvement in the
speech reconstruction quality was observed. Furthermore, we
experimented with multiple ASR models as feature extractors,
but we found that they also did not improve results.

The second loss we apply is the Power Loss. This function
aims to improve the accuracy of the reconstructed audio by
attempting to match it with the real audio in the frequency
domain. For this purpose, we use the L1 loss between the
STFT magnitudes of the real and synthesized audio as follows:

Lpower = ‖log‖STFT (x)‖2 − log‖STFT (x̃)‖2‖, (6)

where x is the real waveform, x̃ is the synthesized waveform
from the same video and STFT is the Short Time Fourier
Transform with a window size of 25 ms, a hop size of 10 ms
and frequency bins of size 512 (same parameters used for
the power critic). We found that scaling the magnitudes using
the natural logarithm and using an L1 Loss rather than the
L2 Loss chosen in [36] greatly improve training stability and
performance.

The third loss we apply is the MFCC Loss:

LMFCC = ‖MFCC(x)−MFCC(x̃)‖, (7)

where x is the real waveform, x̃ is the synthesized waveform
from the same video and MFCC is the MFCC function
which extracts 25 mel-frequency cepstral coefficients from
the corresponding waveform. The objective of this loss lies in
increasing the accuracy and intelligibility of the synthesized
speech, given that MFCCs are known to be effective in ASR
[18] and emotion recognition [22].

We adapt the function provided on an open-source reposi-
tory1.

Finally, the loss for the generator is described based on the
losses mentioned above as:

LG = α1LGadv
+ α2LPASE + α3Lpower + α4LMFCC . (8)

We tune the coefficients α1,2,3,4 by sequentially training
multiple models on GRID (4 speakers, seen speaker split)
and incrementally finding the coefficients that yield the best
WER on the validation set. Through our search, we find that
α1 = 1, α2 = 140, α3 = 50, α4 = 0.4 yield the best results.

1https://github.com/skaws2003/pytorch-mfcc
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D. Training details

We use the Adam optimizer with a learning rate of 0.0001
and β1 = 0.5, β2 = 0.99 to train our generator and critics end-
to-end. Given that the critics should be trained to completion
before every generator training step, we perform 6 training
steps on the critics before every training step of the generator.
It should also be noted that we feed a one second clip randomly
sampled from the real and synthesized audio to each of the
critics, rather than the entire utterance. The other losses are
computed using the entire real and synthesized utterances.

Additionally, we employ two data augmentation methods
during training. Firstly, we apply random cropping on the input
frame, producing a frame with roughly 90 % of the original
size. Furthermore, we apply horizontal flipping to each frame
with a probability of 50 %. These procedures help make our
model more robust and provide regularization. During test time,
the same cropping is performed on the center of the frame and
no horizontal flipping is performed.

Training our model for each of the experiments generally
takes aprroximately one week on an Nvidia RTX 2080 Ti GPU.
Synthesizing a 3 second audio clip sampled at 16 kHz from
75 frames of video takes approximately 32 ms on the same
high-end GPU, excluding pre-processing.

IV. DATASETS

For the purpose of this work, we use three separate
audiovisual datasets to train and evaluate our model: GRID,

Corpus Training set
(clips / hours)

Validation set
(clips / hours)

Test set
(clips / hours)

GRID (4 speakers,
seen speakers) 3576 / 2.98 210 / 0.18 210 / 0.18

GRID (33 speakers,
seen speakers) 29584 / 24.65 1642 / 1.37 1641 / 1.37

GRID (33 speakers,
unseen speakers) 15888 / 13.24 7000 / 5.83 9982 / 8.32

TCD-TIMIT
(3 lipspeakers) 1014 / 1.64 57 / 0.09 60 / 0.09

LRW (full) 488763 / 157.49 25000 / 8.06 25000 / 8.06

FLRW 500 Words 112811 / 36.35 5878 / 1.89 5987 / 1.93

FLRW 100 Words 22055 / 7.11 1151 / 0.37 1144 / 0.37

FLRW 20 Words 4347 / 1.40 266 / 0.09 248 / 0.08

TABLE I: Number of speech clips and total number of hours
of speech for each dataset used in our study.

TCD-TIMIT and LRW. GRID contains 33 speakers, each
uttering 1000 short sentences composed of 6 simple words
from a constrained vocabulary of 51 words. It is the most
commonly used dataset for video-driven speech reconstruction
[1, 14, 33, 43] due to the clean recording conditions and the
limited vocabulary.

TCD-TIMIT is another audiovisual dataset composed of 62
speakers, three of which are trained lipspeakers. In order to
compare with previous works [43], we only use the audiovisual
data uttered by the three lipspeakers. Each lipspeaker utters 375
unique phonetically rich sentences, as well as two additional
sentences which are uttered by all three speakers. This results in
a total of 1 131 clips. The video/audio for this data is recorded
in studio conditions with exceptional clarity given the particular
speaking ability of the professional lipspeakers.

Finally, LRW contains roughly 500 000 speech samples (500
words, up to 1 000 clips per word) uttered by hundreds of
different speakers, taken from television broadcasts. Due to
the fact that these utterances are recorded ‘in the wild’ from a
large variety of speakers, LRW presents a far more substantial
challenge for speech reconstruction than the datasets mentioned
above. Additionally, we use a subset of this corpus which keeps
only the videos that are approximately frontal, i. e., videos with
yaw, pitch and roll below 10 degrees. This leads to a corpus
containing 124 676 samples in total and will be referred to as
F(rontal)LRW. We also randomly select 20/100 words from
this subset to experiment with different ranges of vocabulary
during training/testing. These smaller sets will be referred to
as FLRW20 and FLRW100, respectively. Further statistics for
each dataset are presented in Table I.

Rather than using the full face as input to our network, as is
standard in other speech reconstruction works [1, 13, 43], we
crop the mouth of the speaker, and use it as the input for every
frame. We do this by performing face detection and alignment
using dlib’s 68 landmark model [21], aligning each face to a
reference mean face shape and extracting a mouth ROI (Region
of Interest) from each frame. The mouth ROI is of size 128x74
for GRID and 96x96 for TCD-TIMIT and LRW.
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V. EVALUATION METRICS

Although many metrics have been proposed for evaluating
the quality of speech [30], it is widely acknowledged that
none of the existing metrics are highly correlated with human
perception. For this reason, we evaluate our speech reconstruc-
tion model using 4 objective metrics which capture different
properties of the audio: PESQ, STOI, MCD and WER.

PESQ (Perceptual Evaluation of Speech Quality) [45] is
an objective speech quality metric originally proposed for
telephony quality assessment. It consists of a complex series
of filters and transforms which result in a speech quality score.
For the purposes of our work, we use this metric to measure
how clean a speech signal is.

STOI (Short-Time Objective Intelligibility measure) [50]
aims to measure how intelligible a speech signal is through a
comparative DFT-based (Discrete Fourier Transform) approach.
It has been found that it achieves close correlation to human
intelligibility scores. In our experiments, we use this metric to
measure the intelligibility of the reconstructed samples.

MCD (Mel-Cepstral Distance) [23] is designed to evaluate
speech quality based on the cepstrum distance on the mel-
scale. In practice, this is calculated as the distance between the
MFCCs extracted from two signals. We find that it works quite
reliably in measuring perceptual quality in our synthesized
outputs, when compared to the original signal.

WER (Word Error Rate) measures the accuracy of a speech
recognition system. It is calculated as:

WER =
S +D + I

N
, (9)

where S is the number of substitutions, D is the number of
deletions, I is the number of insertions and N is the total
number of words in an utterance. For our work, we apply
pre-trained ASR models to measure WER, which serves as an
objective intelligibility metric for the reconstructed speech.

VI. RESULTS ON SEEN SPEAKERS

In this section, we present our experiments for seen speakers.
For direct comparison with other works we use the same 4
speakers from GRID (1, 2, 4 and 29) as in [1, 33, 43, 53]
and the 3 lipspeakers from TCD-TIMIT as in [43]. In order
to investigate the impact of the number of speakers and the
amount of training data, we also present results for all 33
speakers from the GRID dataset. We split the utterances in
each of these datasets using a 90-5-5 % ratio for training,
validation and testing respectively similarly to [1, 33, 43,
53], such that the speakers in the validation and test sets
are identical to the speakers seen in the training set (but the
utterances are different). To measure the Word Error Rate
(WER) for our GRID samples, we use a pre-trained ASR
model (based on [31]) which was trained and tested on the
full GRID dataset (using the split mentioned in Section VII),
achieving a baseline of 4.23 % WER on the test set. Audio
samples, as well as spectrogram and waveform figures are
presented on our website2 for the experiments presented in
sections VI, VII and VIII. Additionally, we present a publicly

2https://sites.google.com/view/video-to-speech/home

available repository3 which can be used to reproduce each
of the evaluation metrics presented in this work. We are also
available to provide generated test samples for researchers
hoping to reproduce or compare with our work.

A. Ablation Study

Results for the ablation study are shown in Table II. For this
study, we only consider the 4 subjects from GRID presented
above (1,2,4 and 29).

Firstly, we observe that each of the three comparative losses
LPASE , Lpower and LMFCC yield considerable improvements
in the verbal accuracy of samples (as shown by the WER),
even when only one is removed. We can also observe that
LMFCC and Lpower are particularly impactful on the MCD
of the reported samples, which is unsurprising since this is
an MFCC-based metric. On the other hand, it is clear that
LPASE is essential towards achieving high intelligibility, given
its particular impact on STOI. Finally, all three losses also seem
to positively impact the PESQ score, indicating an increase in
overall audio clarity.

We can see that the simultaneous removal of LPASE and
Lpower greatly decreases PESQ and STOI, indicating that these
losses are particularly important towards the clarity of generated
samples. We also show that the absence of LMFCC and Lpower

sharply increases MCD, indicating that these two losses greatly
increase the similarity between real and synthesized audio.
On the other hand, this model maintains a WER below 10 %,
which means that LPASE alone (together with the adversarial
losses) can achieve intelligible audio. Finally, the removal of
all three L1 losses results in realistic yet unintelligible audio.
This is because the adversarial losses are the only objective
used for training, and therefore there is no incentive for the
network to learn the exact words corresponding to the input
video.

We observe that the use of the waveform critic yields
noticeable improvements through our metrics, particularly in
WER and STOI, suggesting that its inclusion substantially
increases intelligibility. Additionally, the power critic also
yields moderate improvements in PESQ, STOI and WER.
Finally, we observe that the removal of both critics results
in substantially lower MCD and WER, but mantains PESQ
and STOI at a similar value. This again indicates that our
model can generate intelligible and accurate words without the
adversarial losses. However, these synthesized samples lack
realism, which drastically improves when the critics are used.
To demonstrate this effect, readers are encouraged to listen to
examples on our website2.

We also experiment with using the full face as input, as this
is commonly used in previous studies. Through this ablation,
we show that using a cropped mouth region instead of the
full face improves our results substantially regarding WER,
effectively improving intelligibility. We also prove that the
use of overlap improves all metrics slightly, suggesting that
its purpose of minimizing the issue of frame transitions is
benefitial towards output quality.

3https://github.com/miraodasilva/evalaudio

https://sites.google.com/view/video-to-speech/home
https://github.com/miraodasilva/evalaudio
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Model PESQ STOI MCD WER

w/o LPASE 2.06 0.597 26.44 8.97 %

w/o Lpower 2.05 0.575 28.64 9.54 %

w/o LMFCC 2.08 0.591 28.09 9.09 %

w/o LPASE , w/o Lpower 1.86 0.545 27.47 13.44 %

w/o LPASE , w/o LMFCC 2.02 0.589 28.82 13.33 %

w/o LMFCC , w/o Lpower 2.00 0.569 31.43 9.71 %

w/o LPASE , w/o Lpower ,
w/o LMFCC

1.14 0.311 53.63 89.12 %

w/o waveform critic 2.07 0.583 26.66 8.47 %

w/o power critic 2.08 0.594 26.73 7.30 %

w/o waveform critic, w/o
power critic 2.07 0.584 27.45 9.01 %

w/o overlap 2.06 0.590 26.73 7.40 %

w/ full face 2.07 0.596 26.46 9.94 %

full model 2.10 0.595 26.78 7.03 %

TABLE II: Ablation study performed on GRID for seen speaker
speech reconstruction.

A qualitative comparison with other works can be seen in
Figure 6. Compared to the real audio, our spectrogram is similar
overall, but is slightly blurrier and fails to model some of the
fine details in the frequency bins, especially in the higher
frequencies. The model trained without adversarial critics
features a much blurrier spectrogram than the full model, failing
to reproduce even the lower frequency bands during voiced
speech, highlighting the importance of adversarial training.

B. Comparison with Other Works

We compare our proposed model with previous works on
the commonly used 4 GRID speakers as shown in Table III.
We note that the metrics reported on Lip2Wav [43] are taken
directly from their paper due to test samples not being publicly
available, and that their WER was calculated using the Google
Speech-to-Text (STT) API rather than our ASR model.

Regarding PESQ, it is clear that our model is superior to
the previous approaches by a sizeable margin. This suggests
that the quality of our synthesized speech is somewhat higher
than past models. Our model also outperforms previous works
on STOI, excluding Lip2Wav. This shows that our samples
are more intelligible than most other approaches, but are
outperformed by the robustness and consistency of the speech
produced by Lip2Wav. Furthermore, our generated samples
achieve a better MCD than previous works, indicating that our
reconstructed audio is more accurate than previous approaches
on the frequency domain. Finally, our work achieves the best
WER out of all methods, which shows that our model is more
accurate than any of the previous approaches by a large factor,
outperforming our previous model by more than 10 %.

A qualitative comparison is shown in Figure 7, which
displays waveforms, mel-frequency spectrogram, and mel-
frequency spectrogram differences, i. e., the element-wise abso-
lute difference between the real and synthesized spectrograms.

Method PESQ STOI MCD WER

Lip2Audspec [1] 1.81 0.425 63.88 46.36 %

GAN-based [53] 1.70 0.539 45.37 21.11 %

Vocoder-based [33] 1.90 0.553 46.64 22.14 %

Lip2Wav [43] 1.77 0.731 - 14.08a %

Ours 2.10 0.595 26.78 7.03 %

aReported using Google STT API.

TABLE III: Comparison between our model and previous
works, using the GRID subset (4 speakers) with a seen speaker
split.

Method PESQ STOI MCD

Lip2Wav [43] 1.35 0.558 -

Ours 1.61 0.295 32.12

TABLE IV: Comparison between our model and Lip2Wav,
using TCD-Timit (3 lipspeakers) with a seen speaker split.

This difference is calculated as:

‖MelSpec(x)−MelSpec(x̃)‖, (10)

where x is the real waveform and x̃ is the synthesized waveform.
Through the spectrograms, it is clear that Lip2Audspec is the
least accurate in the frequency domain, failing to model many
frequencies, particularly in the higher bands. The other three
approaches are clearly more accurate, but all feature some
inaccuracies during voiced speech and also noise in unvoiced
segments. While [53] and [33] feature an excessive amount of
low frequency noise, our model seems to accurately emulate
the low amount of noise in the real audio and therefore achieves
the least substantial spectrogram difference.

We also compare our model to Lip2Wav on TCD-TIMIT
(3 lipspeakers) in Table IV. Once more, it is clear that our
model outperforms Lip2Wav [43] on PESQ, but achieves lower
performance on STOI, which indicates that our model produces
clearer, yet somewhat less intelligible audio. Additionally, our
samples achieve a reasonably low MCD, indicating moderate
similarity in the frequency domain.

C. Performance as a Function of Training Set Size

For the purposes of this study, we use all 33 subjects from
GRID and we report results as we vary the size of the training
set from 20 % to 100 % in steps of 20 %. Results are shown
in Table V. When compared to the results reported for GRID
(4 speakers, seen split), we observe comparable performance
for 33 speakers when using the full training set. This shows
that our network adapts well to larger datasets and is able to
model a large amount of speakers with no substantial drop in
performance.

Regarding the models which are trained using a smaller
subset of the training set, it is clear that the performance
drops as the amount of training data is gradually reduced.
However, it is worth highlighting that the overall performance
remains moderately consistent, even when we use only 20 %
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Fig. 6: Mel-frequency spectrograms taken from the audio reconstructed with our seen speaker ablation models. The clip we
present is from GRID, speaker 1, utterance ’Bin blue at L 9 again’.
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Fig. 7: Mel-frequency spectrograms (left), Mel-frequency spectrogram differences (middle) and waveforms (right) taken from
the audio reconstructed with Lip2AudSpec [1] (a), our previous work [53] (b), a previous vocoder-based model [33] (c) and our
model (d), as well as the real audio (e) – GRID, Speaker 1, utterance ’Bin white at T 3 soon’. All models were trained on the
same split of GRID (4 speakers, seen speaker split), as presented in our comparison.

% of Training Set PESQ STOI MCD WER

20 % 1.96 0.583 29.22 11.78 %

40 % 2.00 0.594 28.49 10.10 %

60 % 2.02 0.595 27.94 9.06 %

80 % 2.02 0.596 27.68 8.36 %

100 % 2.02 0.601 27.78 8.03 %

TABLE V: Study on the performance of our speech recon-
struction model using varying training set sizes, using the full
GRID seen speaker split mentioned in Section IV.

of the training data. This shows that our model adapts well to
smaller datasets. We note that all 5 models were trained for
the same amount of total training steps to avoid any bias in
our comparative results.

VII. RESULTS ON UNSEEN SPEAKERS

In this section, we investigate the performance of the
proposed approach on unseen speakers. For the purposes of
this study, we use all speakers from the GRID dataset, using
a 50-20-30 % split ratio similarly to [33, 53], such that there
is no overlap between the speakers featured in the training,
validation and test sets. To measure WER, we use the GRID
pre-trained model mentioned in the previous section.

A. Ablation Study

In this study, we use all 33 GRID speakers. The results for
the ablation study are shown in Table VI.

For this, task, we find that Lpower provides the greatest
impact on the quality of results, providing a substantial
improvement in all metrics. On the other hand, LPASE

and LMFCC show noticeable improvements in PESQ and
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Model PESQ STOI MCD WER

w/o LPASE 1.44 0.520 38.19 22.66 %

w/o Lpower 1.37 0.503 39.59 24.32 %

w/o LMFCC 1.44 0.518 39.03 21.70 %

w/o Waveform Critic,
w/o Power Critic 1.43 0.516 38.48 22.82 %

Full Model 1.47 0.523 37.91 23.13 %

TABLE VI: Ablation study performed on GRID for unseen
speaker speech reconstruction.

Method PESQ STOI MCD WER

GAN-based [53] 1.24 0.470 51.28 37.10 %

Vocoder-based [33] 1.23 0.477 55.02 55.23 %

Ours 1.47 0.523 37.91 23.13 %

TABLE VII: Comparison between our current and previous
model, using full GRID (33 speakers) with an unseen speaker
split.

STOI, indicating that these losses contribute to the clarity and
intelligibility of the generated samples. Furthermore, we once
more find that LMFCC and Lpower are particularly important
towards achieving a low MCD, meaning that these losses are
essential towards achieving accurate MFCCs in our synthesized
samples.

Regarding the adversarial loss, we can see that, as reported
in the seen speaker ablation, PESQ, STOI and MCD improve
with the addition of the waveform and power critics. This
suggests that these critics have a positive effect on the clarity
and intelligiblity of samples, and that the accuracy on the
frequency domain is improved as well. However, we observe
that the WER remains at a similar value with the removal of
both critics, indicating that the network is generally capable of
reproducing the correct words from the corresponding video
samples while relying only on the three proposed L1 losses.

B. Comparison with Other Works

We present our comparison with other works [33, 53]
on the subject-independent split of GRID in Table VII. It
is clear that our model outperforms previous works in all
performance measures. Although, the improvement in PESQ
and STOI compared to these works is not as emphatic as the
gains reported for seen speakers, WER sees a very substantial
reduction. This improvement in WER can easily be observed
in our synthesized speech, and clearly shows that our model is
far more consistent for this task than previous approaches.
Furthermore, the observed MCD is substantially lower in
our work, indicating that our synthesized speech yields more
accurate spectrograms, which suggests a greater similarity
between the content of real and synthesized samples.

C. Additional Experiments

Additionally, we present a study on silent speakers. For
this experiment, we artificially produce a video of a speaker
from the GRID corpus being silent for five seconds by feeding

Method PESQ STOI MCD WER

Lip2Wav [43] 1.20 0.543 - 34.20a %

Ours 1.45 0.556 39.32 42.51 %

aReported using Google STT API.

TABLE VIII: Comparison between our model and Lip2Wav,
using the full LRW dataset.

Brownian noise into the facial animation model proposed in
[54]. We then use this video as input for our model trained
on the full GRID dataset (33 speakers, unseen speaker split).
This aims to measure two distinct factors: firstly, our model’s
ability to recognize a silent speaker and not produce any voiced
speech; and secondly, the baseline noise that is present in the
audio we synthesize with our network, which is clear to observe
when the speaker is silent. As discussed in Figure 8, our model
performs well in this scenario and produces minimal noise for
this silent example.

VIII. RESULTS IN THE WILD

In this section, we investigate the performance of the
proposed approach on utterances recorded ‘in the wild’. For
this purpose, we use the full LRW dataset, and its subsets
FLRW 500 Words, FLRW 100 Words and FLRW 20 Words,
which are introduced in Section IV. We split the utterances
using the default split for LRW (90-5-5 % ratio), such that there
is no overlap between the utterances in the training, validation
and test sets. To measure the Word Error Rate (WER) for our
samples, we use a pre-trained model (based on [40]) which
was trained and tested on full LRW using the same split, and
achieve a baseline WER of 1.68 % on the test set.

A. Comparison with Other Works

Our comparison with Lip2Wav [43] on LRW (500 Words)
is presented in Table VIII. We compare our model to Lip2Wav
on LRW (500 Words), in order to compare our model’s
performance “in the wild” to this recent work. Our work shows
a great improvement in PESQ compared to Lip2Wav, which
suggests that our samples are able to achieve a superior clarity
in this regard. On the other hand, our STOI is very similar to
the one reported in Lip2Wav, achieving a slight edge which
could indicate a minor improvement in intelligibility.

B. Performance for Different Subsets

In order to demonstrate our model’s ability to reconstruct
speech in less constrained conditions, we experiment with the
LRW dataset, as well as some of its subsets. These subsets
present increasing degrees of challenge, culminating with the
full LRW dataset which presents the greatest challenge given
its large vocabulary and large variance in video perspective.

Regarding the experiments with frontal LRW, we observe
that our model maintains a similar overall quality of outputs
for larger vocabularies, as demonstrated by the consistency in
PESQ, STOI and MCD. However, it is clear that the more
difficult task presented by larger vocabularies yields a decrease
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Fig. 8: The spectrogram and waveform for the audio produced by our model for a video of a silent speaker (Speaker 2 from
GRID) are portrayed in (a). As displayed in the waveform (b), the audio is almost completely silent, disregarding some low
frequency noise which is higlighted in the spectrogram (c). This shows that our model is robust to the scenario of silent speakers
and produces minimal baseline noise under these circumstances. This audio sample is also available on our website2.

Corpus PESQ STOI MCD WER

FLRW 20 Words 1.43 0.523 43.87 25.00 %

FLRW 100 Words 1.40 0.528 41.56 36.54 %

FLRW 500 Words 1.44 0.555 39.72 44.28 %

LRW 500 Words 1.45 0.556 39.32 42.51 %

TABLE IX: Study on the performance of our speech recon-
struction model for the three subsets of LRW mentioned in
Section IV, as well as the full LRW dataset.

in the average accuracy of samples, shown by the increasing
WER. This implies that our model scales well with larger
datasets, but has difficulties in adapting to larger vocabularies
in very unconstrained and inconsistent environments. Even still,
the word error rate reported for FLRW 20 Words is noticeably
low, implying that our model can realistically reconstruct speech
for hundreds of different speakers, even under such ‘wild’
conditions. Finally, we found that the full LRW dataset yields
a better performance than our full frontal subset (FLRW 500
Words). Although we expected the frontal data to provide an
easier task for the network during training and testing, this
result shows that the network benefits strongly from a larger
training set, even if the visual data is less consistent.

IX. CONCLUSION

In this work, we have presented our end-to-end video-
to-waveform synthesis model using a generative adversarial
network with two critics on waveform and spectrogram. First,
we showed through an ablation study on GRID that the use
of our losses, adversarial critics and other choices in training
methodology provide a positive impact on the quality of our
results for both seen and unseen speaker video-to-speech.
Furthermore, we demonstrated through our experiments on
LRW that our model is able to generate intelligible speech for
videos recorded entirely in the wild by hundreds of different
speakers. Finally, we compared our model to previous video-
to-speech models and found that it produces the best results on
most metrics for GRID and LRW and achieves state-of-the-art
performance on PESQ for TCD-TIMIT.

We observed that the choice of good critics as well as
adequate comparative losses is fundamental towards obtaining
realistic results. Therefore, we believe that the pursuit of
alternative loss functions (including different adversarial losses)

is a promising option for future work. Additionally, we believe
that there would be substantial benefit in experimenting with
a speaker embedding as input to the generator, in addition to
the video, in order to generalize to unseen speakers with a
more accurate voice profile, as proposed in [43, 46]. Finally,
extending our model towards other practical applications such
as speech inpainting i. e., reconstructing missing audio segments
in an audiovisual stream, would be a promising research
pursuit in order to show the empirical value of video-to-speech
synthesis.
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