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Abstract—Speech enhancement model is used to map a noisy
speech to a clean speech. In the training stage, an objective function
is often adopted to optimize the model parameters. However, in the
existing literature, there is an inconsistency between the model op-
timization criterion and the evaluation criterion for the enhanced
speech. For example, in measuring speech intelligibility, most of the
evaluation metric is based on a short-time objective intelligibility
(STOI) measure, while the frame based mean square error (MSE)
between estimated and clean speech is widely used in optimizing
the model. Due to the inconsistency, there is no guarantee that the
trained model can provide optimal performance in applications. In
this study, we propose an end-to-end utterance-based speech en-
hancement framework using fully convolutional neural networks
(FCN) to reduce the gap between the model optimization and the
evaluation criterion. Because of the utterance-based optimization,
temporal correlation information of long speech segments, or even
at the entire utterance level, can be considered to directly optimize
perception-based objective functions. As an example, we imple-
mented the proposed FCN enhancement framework to optimize
the STOI measure. Experimental results show that the STOI of a
test speech processed by the proposed approach is better than con-
ventional MSE-optimized speech due to the consistency between
the training and the evaluation targets. Moreover, by integrating
the STOI into model optimization, the intelligibility of human sub-
jects and automatic speech recognition system on the enhanced
speech is also substantially improved compared to those generated
based on the minimum MSE criterion.

Index Terms—Automatic speech recognition, fully convolutional
neural network, raw waveform, end-to-end speech enhancement,
speech intelligibility.
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I. INTRODUCTION

R
ECENTLY, deep learning based spectral mapping or mask

prediction frameworks for speech enhancement have been

proposed and extensively investigated [1]–[30]. Although they

have been demonstrated to outperform conventional enhance-

ment approaches, there is still a room for further improvement.

For example, the objective function used for optimization in

the training stage, typically the mean squared error (MSE) [31]

criterion, is different from the human perception-based eval-

uation metrics. Formulating consistent training objectives that

meet specific evaluation criteria has always been a challenging

task for signal processing (generation). Since evaluation met-

rics are usually highly correlated to human auditory perception,

optimizing their scores directly may further improve the per-

formance of enhancement model, especially for the listening

test. Therefore, our goal of this study is to solve the mismatch

between the objective function and the evaluation metrics as

shown in Fig. 1.

For human perception, the primary goal of speech enhance-

ment is to improve the intelligibility and quality of noisy speech

[32]. To evaluate these two metrics, perceptual evaluation of

speech quality (PESQ) [33] and short-time objective intelligi-

bility (STOI) [34] have been proposed and used as objective

measures by many related studies [1]–[5], [10]–[17]. However,

most of the studies did not use these two metrics as the objective

function for optimizing their models. Instead, they simply mini-

mized the MSE between clean and enhanced features. Although

some research [10], [11] have introduced human auditory per-

ception into the objective function, these targets are still different

from the final evaluation metrics. Optimizing a substitute ob-

jective function (e.g., MSE) does not guarantee good results for

the true targets. This problem is discussed and some detailed

examples are provided in Section III.

The reasons for not applying the evaluation metrics as objec-

tive functions directly may be the complicated computation and

the need for whole (clean and processed) utterance in order to

accomplish the evaluation. Usually, conventional feed-forward

deep neural networks (DNNs) [1] enhance noisy speech in a

frame-wise manner due to restrictions of the model structures.

In other words, during the training process, each noisy frame

is individually optimized (or some may include context infor-

mation). On the other hand, recurrent neural networks (RNNs)

and long short-term memory (LSTM) networks can treat an
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Fig. 1. Mismatch between training objective function and evaluation metrics
which are usually highly correlated to human perception.

utterance as a whole and have been shown to outperform DNN-

based speech enhancement models [9], [24]–[28]. For example,

Hershey et al. [35] combined LSTM and global K-means on

the embeddings of the whole utterance. Although LSTM may

also be suitable for solving the mismatch issue between the

evaluation metrics and the employed objective function, in this

study, we apply the fully convolutional neural network (FCN)

to perform speech enhancement in an utterance-wise manner.

An FCN model is very similar to a conventional convolutional

neural network (CNN), except that the top fully connected layers

are removed [36]. Therefore, it only consists of convolutional

layers, and hence the local feature structures can be effectively

preserved with a relatively small number of parameters. Through

this property, waveform-based speech enhancement by FCN

was proposed, and it achieved considerable improvement when

compared to DNN-based models [37]. Here, we apply another

property of FCN to achieve utterance-based enhancement, even

though each utterance has a different length. The reason that

DNN and CNN can only process fixed-length inputs [38] is

that the fully connected layer is indeed a matrix multiplication

between the weight matrix and outputs of the previous layer.

Because the shape of the weight matrix is fixed when the model

structure (number of nodes) is decided, it is infeasible to perform

multiplication on non-fixed input length. However, the filters in

convolution operations can accept inputs with variable lengths.

We mainly follow the framework established in [37] to con-

struct an utterance-based enhancement model. Based on this

processing structure, we further utilize STOI as our objective

function. There are three reasons why we only focus on optimiz-

ing STOI in this study. First, the computation of PESQ is much

more complicated than STOI. In fact, some functions (e.g., the

asymmetry factor for modeling the asymmetrical disturbance) in

PESQ computation are non-continuous, so the gradient descent-

based optimization cannot be directly applied [39] (this prob-

lem can be solved by substituting a continuous approximation

function for the non-continuous function or by reinforcement

learning, as presented in [40]). Second, improving speech in-

telligibility is often more challenging than enhancing quality

[41], [42]. Because the minimum MSE criterion used in most

conventional learning algorithms is not designed to directly im-

prove intelligibility, the STOI based optimization criterion is

expected to perform better. Third, some researches [43], [44]

have shown that the correlation coefficient (CC) between the

improvement in word error rate (WER) of ASR and the im-

provement in STOI is higher than other objective evaluation

scores (e.g., PESQ). Their findings may suggest that a speech

enhancement front-end designed with the consideration of both

MSE and STOI may achieve better ASR performance than those

with the consideration of MSE only. Please also note that the

proposed utterance-based FCN enhancement model can handle

any kind of objective function from a local time scale (frame)

to a global time scale (utterance). More specifically, our model

can directly optimize the final evaluation criterion, and the STOI

optimization demonstrated in this paper is just one example.

Experimental results on speech enhancement show that in-

corporating STOI into the objective function can improve not

only the corresponding objective metric but also the intelligibil-

ity of the human subjects. In addition, it can also improve the

robustness of ASR under noisy conditions, which is particularly

important for real-world hands-free ASR applications, such as

human-robot interactions [45].

The rest of the paper is organized as follows. Section II intro-

duces the proposed FCN for utterance-based waveform speech

enhancement. Section III details the optimization for STOI.

The experimental results are evaluated in Section IV. Finally,

Section V presents our discussion, and this paper is concluded

in Section VI.

II. END-TO-END WAVEFORM BASED SPEECH ENHANCEMENT

In addition to frame-wise processing, the conventional DNN-

based enhancement models have two potential limitations. First,

they focus only on processing the magnitude spectrogram, such

as log-power spectra (LPS) [1], and leave the phase in its origi-

nal noisy form [1]–[6]. However, several recent studies have re-

vealed the importance of phase to speech quality when speech is

resynthesized back into time-domain waveforms [26], [46], [47].

Second, a great deal of pre-processing (e.g., framing, discrete

Fourier transform (DFT)) and post-processing (e.g., overlap-

add method, inverse discrete Fourier transform) are necessary

for mapping between the time and frequency domains, thus

increasing the computational load.

Although some recent studies have taken the phase com-

ponents into consideration using complex spectrograms [12]–

[14], these methods still need to transform the waveform into

the frequency domain. To solve the two issues listed above,

waveform-based speech enhancement by FCN was proposed

and achieved considerable improvements, compared to the LPS-

based DNN models [37]. In fact, other waveform enhancement

frameworks based on generative adversarial networks (GANs)

[48] and WaveNet [49], [50] were also shown to outperform

conventional models. Although most of these methods have al-

ready achieved remarkable performance, they still process the

noisy waveforms in a frame-based (or chunk-based) manner. In

the meanwhile, the final evaluation metrics are still not applied

as the objective functions to train their models.

A. FCN for Waveform Enhancement

As introduced in Introduction section, the FCN only consists

of convolutional layers; hence, the local structures of features
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Fig. 2. Utterance-based raw waveform enhancement by FCN.

can be effectively preserved with a relatively small number of

weights. In addition, the effect of convolving a time-domain

signal, x(t), with a filter, h(t), is equivalent to multiplying its fre-

quency representation, X(f), with the frequency response H(f)

of the filter [51]. This provides some theoretical bases for

FCN-based speech waveform generation.

The characteristics of a signal represented in the time do-

main are very different from those in the frequency domain.

In the frequency domain, the value of a feature (frequency

bin) represents the energy of the corresponding frequency

component. However, in the time domain, a feature (sample

point) alone does not carry much information; it is the rela-

tion with its neighbors that represents the concept of frequency.

Fu et al. pointed out that this interdependency may make DNN

laborious for modeling waveforms, because the relation between

features is removed after fully connected layers [37]. On the

other hand, because each output sample in FCN depends locally

on the neighboring input regions [52], the relation between fea-

tures can be well preserved. Therefore, FCN is more suitable

than DNN for waveform-based speech enhancement, which has

been confirmed by the experimental results in [36].

B. Utterance-Based Enhancement

In spite of the fact that the noisy waveform can be successfully

denoised by FCN [37], it is still processed in a frame-wise

manner (each frame contains 512 sample points). In addition

to the problem of a greedy strategy [53], this also makes the

convolution results inaccurate because of the zero-padding in

the frame boundary. In this study, we apply another property

of FCN to achieve utterance-based enhancement, even though

different utterances may have different lengths. Since all the

fully connected layers are removed in FCN, the length of input

features does not have to be fixed for matrix multiplication.

On the other hand, the filters in the convolution operations can

process inputs with different length. Specifically, if the filter

length is l and the length of input signal is L (without padding),

then the length of the filtered output is L − l + 1. Because FCN

only consists of convolutional layers, it can process the whole

utterance without pre-processing into fixed-length frames.

Fig. 2 shows the structure of overall proposed FCN for

utterance-based waveform enhancement, where Filter_m_n rep-

resents the nth filter in layer m. Each filter convolves with all the

generated waveforms from the previous layer and produces one

further filtered waveform utterance. (Therefore, filters have an-

other dimension in the channel axis.) Since the target of (single

channel) speech enhancement is to generate one clean utterance,

there is only one filter, Filter_M_1, in the last layer. Note that

this is a complete end-to-end (noisy waveform utterance in and

clean waveform utterance out) framework, and there is no pre-

or post-processing needed.

III. OPTIMIZATION FOR SPEECH INTELLIGIBILITY

Several algorithms have been proposed to improve speech

intelligibility based on signal processing techniques [54]–[56].

However, most of these algorithms focus on the applications in

communication systems or multi-microphone scenarios, rather

than in single channel speech enhancement, which is the main

target of this paper. In addition to solving the frame boundary

problem caused by zero-padding, another benefit of utterance-

based optimization is the ability to design an objective function

that is used for the whole utterance. In other words, each utter-

ance is treated as a whole so that the global optimal solution (for

the utterance) can be more easily obtained. Before introducing

the objective function used for speech intelligibility optimiza-

tion, we first show that only minimizing the MSE between clean

and enhanced features may not be the most suitable target due

to the characteristics of human auditory perception.

A. Problems of Applying MSE as an Objective Function

One of the most intuitive objective functions used in speech

enhancement is the MSE between the clean and enhanced

speech. However, MSE simply compares the similarity between

two signals and does not consider human perception. For exam-

ple, Loizou and G. Kim pointed out that MSE pays no attention
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Fig. 3. An enhanced speech with lower MSE does not guarantee a better performance in evaluation. The upper row shows the case in the frequency domain,
where the MSE is measured between a clean LPS and an enhanced LPS. The lower row shows the case in the time domain, where the MSE is measured between a
clean waveform and an enhanced waveform.

to positive or negative differences between the clean and esti-

mated spectra [41], [42]. A positive difference would signify at-

tenuation distortions, while a negative spectral difference would

signify amplification distortions. The perceptual effect of these

two distortions on speech intelligibility cannot be assumed to

be equivalent. In other words, MSE is not a good performance

indicator of speech, and hence it is not guaranteed that better-

enhanced speech can be obtained by simply minimizing MSE.

The upper row of Fig. 3 shows an example of this case in the

frequency domain. Although the MSE (between clean LPS and

enhanced LPS) of enhanced speech in Fig. 3(b) is lower than

that in Fig. 3(c), its performance (in terms of STOI, PESQ, and

human perception) is worse than the latter. This is because the

larger MSE in Fig. 3(c) results from the noisy region (high-

lighted in the black rectangle), which belongs to silent regions

of the corresponding clean counterpart and has limited effects

on the STOI/PESQ estimation. On the other hand, the spectro-

gram in Fig. 3(b) is over-smoothing, and details of the speech

components are missing. As pointed out in [48], the prediction

results of minimizing MSE usually bias towards an average of all

the possible predictions. The two spectrograms are actually ob-

tained from the same model but with a different training epoch.

Fig. 3(b) is from an optimal training epoch by early stopping

[57] while Fig. 3(c) comes from an “overfitting” model due to

overtraining. Note that here we use double quotes to emphasize

that this overfitting is relative to the MSE criterion but not to

our true targets of speech enhancement. The above discussion

implies that sometimes a larger MSE in the optimization process

can produce speech sounds more similar to the clean version.1

Although the waveform-based FCN enhancement model in

[37] is optimized with an MSE objective function, it is also

not the best target for the time domain waveform because the

relation between the MSE value and human auditory percep-

tion is still not a monotonic function. For example, as shown in

Fig. 4, it is difficult for people to distinguish between the nega-

tive version and an amplitude shifted version of a waveform by

listenting, although the MSE between them is very large. This

also verifies the argument made in Section II-A that sample

point itself does not carry much information; it is the relation

with its neighbors that represent the concept of frequency. The

lower row of Fig. 3 also shows a real example in the time domain

in which an enhanced speech with a lower MSE (between the

clean and enhanced waveforms) does not guarantee a better per-

formance. In summary, we argue that it is not guaranteed a good

performance for human auditory perception can be obtained by

only minimizing MSE.

1We observe that this is not a single special case. A model that yields lower
average MSE scores on the whole data set may not guarantee to give higher
STOI and PESQ scores. Please note that, the experimental results reported in
Section IV followed the common machine learning strategy that the optimized
model is the one which optimizes the employed objective function.
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Fig. 4. The original waveform, its negative version, and its amplitude shifted
version sound completely the same to humans, but the MSE between the sample
points of these sounds is very large.

B. Introduction of STOI

To overcome the aforementioned problem of MSE, here we

introduce an objective function, which considers human audi-

tory perception. The STOI score is a prevalent measure used

to predict the intelligibility of noisy or processed speech. The

STOI score ranges from 0 to 1, and is expected to be mono-

tonically related to the average intelligibility of various listen-

ing tests. Hence, a higher STOI value indicates better speech

intelligibility.

STOI is a function of the clean and degraded speech, and

the overall computational process is illustrated as in Fig. 5. The

calculation of STOI includes 5 major steps, briefly described as

follows:

1) Removing silent frames: Since silent regions do not con-

tribute to speech intelligibility, they are removed before

evaluation.

2) Short-time Fourier transform (STFT): Both signals are

TF-decomposed in order to obtain a representation similar

to the speech representation properties in the auditory

system. This is obtained by segmenting both signals into

50% overlapping Hann-windowed frames, with a length

of 256 samples, where each frame is zero-padded up to

512 samples.

3) One-third octave band analysis: This is performed by

simply grouping DFT-bins. In total, 15 one-third octave

bands are used, where the lowest center frequency is set to

150 Hz and the highest one-third octave band has a center-

frequency of ∼4.3 kHz. The following vector notation is

used to denote the short-time temporal envelope of the

clean speech:

xj,m = [Xj (m − N + 1) , Xj (m − N + 2) ,

. . . Xj (m)]T (1)

where X ∈ R15∗M is the obtained one-third octave band,

M is the total number of frames in the utterance, m is

the index of the frame, j ∈ {1, 2, . . . 15} is the index of

the one-third octave band, and N = 30, which equals

an analysis length of 384 ms. Similarly, x̂j,m denotes the

short-time temporal envelope of the degraded speech.

4) Normalization and clipping: The goal of the normaliza-

tion procedure is to compensate for global level differ-

ences, which should not have a strong effect on speech

intelligibility. The clipping procedure ensures that the

sensitivity of the STOI evaluation towards one severely

degraded TF-unit is upper bounded. The normalized and

clipped temporal envelope of the degraded speech is de-

noted as x̃j,m .

5) Intelligibility measure: The intermediate intelligibility

measure is defined as the correlation coefficient between

the two temporal envelopes:

dj,m =

(

xj,m − µxj , m

)T (

x̃j,m − µx̃j , m

)

∥

∥

xj,m − µxj , m

∥

∥

2

∥

∥

x̃j,m − µx̃j , m

∥

∥

2

(2)

where ‖ · ‖2 represents the L2-norm, and µ(.) is the sam-

ple mean of the corresponding vector. Finally, STOI is

calculated as the average of the intermediate intelligibil-

ity measure over all bands and frames:

STOI =
1

15M

∑

j,m

dj,m (3)

The calculation of STOI is based on the correlation coef-

ficient between the temporal envelopes of the clean and the

noisy/processed speech for short segments (e.g., 30 frames).

Therefore, this measure cannot be optimized by a traditional

frame-wise enhancement scheme. For a more detailed setting of

each step, please refer to [34].

C. Maximizing STOI for Speech Intelligibility

Although the calculation of STOI is somewhat complicated,

most of the computation is differentiable, and thus it can be em-

ployed as the objective function for our utterance optimization

as shown in Fig. 6. Therefore, the objective function that should

be minimized during the training of FCN can be represented by

the following equation.

O = −
1

U

∑

u

stoi (wu (t) , ŵu (t)) (4)

where wu (t) and ŵu (t) are the clean and estimated utterance

with index u, respectively, and U is the total number of training

utterances. stoi(.) is the function that includes the five steps

stated in previous section, which calculates the STOI value of

the noisy/processed utterance given the clean one. Hence, the

weights in FCN can be updated by gradient descent as follows:

f
(n+1)
i,j,k = f

(n)
i,j,k +

λ

B

B
∑

u=1

∂stoi (wu (t), ŵu (t))

∂ŵu (t)

∂ŵu (t)

∂f
(n)
i,j,k

(5)

Where f
(n+1)
i,j,k is the i-th layer, j-th filter, k-th filter coefficient in

FCN. n is the index of the iteration number, B is the batch size

and λ is the learning rate. Note that the first term in summation

depends on STOI function only. We use Keras [58] and Theano
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Fig. 5. Calculation of STOI is based on the correlation coefficient between the temporal envelopes of the clean and noisy/processed speech for short segments
(e.g., 30 frames).

Fig. 6. The STOI computation function (Fig. 5) is cascaded after the proposed
FCN model (Fig. 2) as the objective function.

[59] to perform automatic differentiation, without the need of

explicitly computing the gradients of the cost function.

IV. EXPERIMENTS

In the experiments, we prepared three data sets to evaluate

the performance of different enhancement models and objective

functions. The first was the TIMIT corpus [60] so that the results

presented here could also be compared to the frame-based FCN

as reported in [37]. The second data set was the Mandarin ver-

sion of the Hearing in Noise Test (MHINT) corpus [61], which

is suitable for conducting listening test. The last corpus was

the 2nd CHiME speech separation and recognition challenge

(CHiME2) medium vocabulary track database [62], which is a

more difficult challenge because it contains both additive and

convolutive noise. We presented the FCN model structure used

in these sets of experiments in Fig. 7. Note that the frame-based

FCN has the same model structure as the utterance-based FCN,

except that the input is a fixed-length waveform segment (512

Fig. 7. The FCN structure used in this paper. In the TIMIT data set, we use
K = 5 and F = 15 as used in [37]. In the MHINT and CHiME2 data sets,
we use K = 7 and F = 30.

sample points). The comparison of frame-based FCN and LPS-

based DNN were reported in [37].

A. Experiment on the TIMIT Data Set

In this set of experiments, the utterances from the TIMIT

corpus were used to prepare the training and test sets. For the

training set, 600 utterances were randomly selected and cor-

rupted with five noise types (Babble, Car, Jackhammer, Pink,

and Street) at five SNR levels (−10 dB, −5 dB, 0 dB, 5 dB, and

10 dB). For the test set, we randomly selected another 100 ut-

terances (different from those used in the training set). To make

the experimental conditions more realistic, both the noise types

and SNR levels of the training and test sets were mismatched.
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TABLE I
PERFORMANCE COMPARISON OF THE TIMIT DATA SET WITH RESPECT TO

STOI AND PESQ

Thus, we adopted three other noise signals: white Gaussian

noise (WGN), which is a stationary noise, and an engine noise

and a baby cry, which are non-stationary noises, using another

five SNR levels (−12 dB, −6 dB, 0 dB, 6 dB, and 12 dB) to

form the test set. All the results reported were averaged across

the three noise types. For more detailed experiment settings and

model structure, please refer to [37].

To evaluate the performance of speech intelligibility, the STOI

scores were used as a measure. We also presented PESQ for

speech quality evaluation to make a complete comparison with

the results shown in [37]. (Although this metric was not op-

timized in this study, we also reported the results for com-

pleteness). Table I presented the results of the average STOI

and PESQ scores on the test set for the frame-based FCN [37]

and the proposed utterance-based FCN with different objective

functions, where obj represented the objective function used

for training. Please note that all three models have the same

structure, and the only difference between them is the objective

function or input unit (frame or utterance). From this table, we

overserved that the utterance-based FCN (with MSE objective

function) could outperform frame-based FCN in terms of both

PESQ and STOI. This improvement mainly comes from solving

the frame boundary problem in the frame-based optimization.

When employing the STOI as the objective function, it could

considerably increase the STOI value (with an improvement of

0.04 on average), especially in low-SNR conditions. Although

the average PESQ decreased, the STOI was increased, which is

the main goal of this study.

B. Experiment on the MHINT Data Set

1) Experiment Setup: In this set of experiments, the MHINT

corpus was used to prepare the training and test sets. This corpus

includes 240 utterances, and we collected another 240 utterances

from the same speaker to form the complete task in this study.

Each sentence in the MHINT corpus consists of 10 Chinese

characters and is designed to have similar phonemic character-

istics among lists [61]. Therefore, this corpus is very suitable

for conducting listening test. Among these 480 utterances, 280

utterances were excerpted and corrupted with 100 noise types

[63], at five SNR levels (−10 dB, −5 dB, 0 dB, 5 dB, and

10 dB) as training set. Another 140 utterances and the remain-

ing utterances were mixed to form the test set and validation set

respectively. In this experiment, we still considered a realistic

condition, where both noise types and SNR levels of the training

and test sets were mismatched. Thus, we intentionally adopted

three other noise signals: engine noise, white noise, and street

noise, with another six SNR levels: −6 dB, −3 dB, 0 dB, 3 d B,

6 dB, and 9 dB to form the test set. All the results reported were

averaged across the three noise types.

As shown in Fig. 7, the FCN model had 8 convolutional layers

with zero padding to preserve the same size as the input. Except

for only 1 filter used in the last layer, each of the previous

layers consisted of 30 filters with a filter size of 55. There

were no pooling layers in the network as used in WaveNet [52].

We also trained a (257 dimension) LPS-based DNN model and

bidirectional long short-term memory (BLSTM) as baselines.

The DNN had 5 hidden layers with 500 nodes for each layer.

The BLSTM had 2 bidirectional LSTM layers, each with 384

nodes as in [26] followed by a fully connected output layer. Both

the model structure and number of training epoch were decided

based on monitoring the error of the validation set. Specifically,

we gradually increased the number of filters, filter size, and the

number of layers until the decrease of validation loss started to

saturate.

All the models employed leaky rectified linear units

(LeakyReLU) [64] as the activation functions for the hidden

layers. There was no activation function (linear) in the output

layer of DNN and BLSTM. The FCN applied hyperbolic tangent

(tanh) for output layer to restrict the range of output waveform

sample points between −1 to +1. Both DNN and FCN were

trained using Adam [65] optimizer with batch normalization

[66]. BLSTM was trained with RMSprop [67], which is usually

a suitable optimizer for RNNs.

During the STOI calculation, the first step is to exclude the

silent frames (with respect to the clean reference speech). In

other words, it does not take the non-speech regions into the

consideration of the STOI score calculation. In addition, unlike

minimizing MSE that has a unique optimal solution (i.e., for a

fixed target vector c, the unique solution that can minimize MSE

(equals to zero) is c itself) whilst maximizing the correlation co-

efficient used in (2) for intermediate intelligibility has multiple

optimal solutions (i.e., for a fixed target vector c, the solutions

that can maximize CC (equals to one) are S1 ∗ c + S2 . Where

S1 > 0 and S2 is an arbitrary constant). Therefore, if we do not

limit the solution space, the obtained solution may not be the one

we want. Specifically, S1 and S2 may make the STOI-optimized

speech sounds noisy as shown in the next section about Spec-

trogram Comparison. To process the regions not considered in

STOI and constrain the solution space (for noise suppression),

we also tried to incorporate both the MSE and STOI into the

objective function, which can be represented by the following

equation.

O =
1

U

∑

u

(

α

Lu

‖wu (t) − ŵu (t)‖2
2 − stoi (wu (t) , ŵu (t))

)

,

(6)
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TABLE II
PERFORMANCE COMPARISON OF THE MHINT DATA SET WITH RESPECT TO STOI AND PESQ

Fig. 8. Average objective evaluation scores for different models (including
the oracle IBM) on the MHINT data set.

where Lu is the length of wu (t) (note that each utterance has a

different length), and α is the weighting factor of the two targets.

Here, α was simply set to 100 to balance the scale of the two

targets. Since the first term can be seen as related to maximizing

the SNR of enhanced speech, and the second term is to maximize

the STOI, the two targets in (6) can also be considered as a multi-

metrics learning [14] for speech enhancement.

2) Experiment Results of Objective Evaluation Scores: The

STOI and PESQ scores of the enhanced speech under differ-

ent SNR conditions were presented in Table II. Furthermore,

we also reported the average segmental SNR improvement (SS-

NRI) [68], STOI and PESQ by different enhancement models

and oracle “ideal binary mask”(IBM) [69] (simply as a refer-

ence) in Fig. 8. Please note that the SSNRI in this figure is di-

vided by 10 to make different metrics have similar ranges. From

these results, we observed that BLSTM could considerably out-

perform the DNN baseline. For utterance-based enhancement

models, the proposed FCN (with MSE objective function) had

higher SSNRI and STOI scores with lower PESQ when com-

pared to BLSTM. Moreover, the number of parameters in FCN

was roughly only 7% and 23% to that in BLSTM and DNN re-

spectively. When changing the objective function of FCN from

MSE to STOI, the STOI value of the enhanced speech could

be considerably improved with a decreased PESQ score. This

might be because the FCN processed the STOI-undefined re-

gion (silent and high frequency regions) in an unsuitable way

(we can more easily observe this phenomenon by spectrograms

of the processed speech in the next section). Optimizing both

MSE and STOI simultaneously seemed to strike a good bal-

ance between speech intelligibility and quality, with PESQ and

SSNRI considerably improved and STOI marginally degraded

compared to STOI-optimized speech.

3) Spectrogram Comparison: Next, we presented the spec-

trograms of a clean MHINT utterance, the same utterance cor-

rupted by engine noise at −3 dB, and enhanced speeches by

BLSTM and FCN with different objective functions in Fig. 9.

Because the energy of speech components was less than that

of noise, the speech pattern was hardly identified, as shown in

Fig. 9(b). Therefore, how to effectively recover the speech con-

tent for improving intelligibility is the critical concern in this

case.

From Fig. 9(c), we observed that although BLSTM could

most effectively remove the background noise, it misjudged the

regions in the dashed black boxes as speech region. We found

that this phenomenon usually happened when input noisy SNR

was below 0 dB and became much more severe at −6 dB. This

misjudgment might be due to the recurrent property in LSTM

when noise energy was larger than speech. Next, when compar-

ing Figs. 9(c) and (d), the speech components in FCN enhanced

spectrogram seemed to be clearer although there were some

noise remains. This agreed with the results shown in Table II

that FCN had higher STOI and lower PESQ scores compared to

BLSTM. For STOI-optimized speech in Fig. 9(e), it could pre-

serve much more (low- to mid-frequency) speech components

compared to the noisy or MSE-optimized speech. However,

because of the lack of definition about how to process high fre-

quency parts (due to step 3 in the STOI evaluation and shown

in the dashed brown box) and silent regions (due to step 1 in the

STOI evaluation and shown in the dashed blue boxes), the opti-
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Fig. 9. Spectrograms of an MHINT utterance: (a) clean speech, (b) noisy
speech (engine noise at−3 dB) (STOI = 0.6470, PESQ = 1.5558), (c) enhanced
speech by BLSTM (STOI = 0.7677, PESQ = 1.7398), (d) enhanced speech
by FCN with MSE objective function (STOI = 0.7764, PESQ = 1.8532),
(e) enhanced speech by FCN with STOI objective function (STOI = 0.7958,
PESQ = 1.7191), and (f) enhanced speech by FCN with MSE+STOI objective
function (STOI = 0.7860, PESQ = 1.8843).

mized spectrogram looks noisy with high frequency components

missing. Specifically, the missing high frequency components

are attributed to the definition of STOI. As the highest one-third

octave band (in step 3) has a center-frequency equal to∼4.3 kHz

[34], the frequency components above this value do not affect

the estimation of STOI (i.e., whether this region is very noisy or

empty, the STOI value is not decreased). Therefore, FCN learned

not to make any effort on this high-frequency region and just

removed most of the components. As pointed out previously,

in addition to the silent regions being ignored, another reason

caused noisy results comes from the calculation of intermediate

intelligibility in (2), which is based on the correlation coefficient.

Since the correlation coefficient is a scale- and shift-invariant

measure, STOI concerns only the shape of (30-frames) temporal

envelopes instead of their absolute positions. (i.e., when the vec-

tor is shifted or scaled by a constant, the correlation coefficient

with another vector keeps unchanged). These two characteris-

tics were the main reasons for the decreased PESQ compared to

the MSE-optimized counterpart. The two aforementioned phe-

nomena of the STOI-optimized spectrogram could be mitigated

by also incorporating MSE into the objective function, as shown

in Fig. 9(f).

4) Analysis of Learned Filters: In this section, we analyzed

the 30 learned filters in the first layer of FCN, and their mag-

nitude frequency responses were illustrated in Fig. 10. Please

note that the horizontal axis in the figure is the index of the

filter, and we reordered the index according to the location of

the peak response for clear presentation. From this figure, it

could be observed that the pass-band of learned filters with

MSE objective function (Fig. 10(a)) almost covered the entire

frequency region (0–8 kHz). However, most of the pass-band

of the STOI-optimized filters (Fig. 10(b)) concentrated on the

frequency range below 4 kHz. This may be because the high

frequency components are not important for the estimation of

STOI. In fact, the energy of the frequency region above 4 kHz

occupied 31% of the entire range for the MSE-optimized filters.

However, in the case of STOI-optimized filters, the ratio was

only 21%, which implied that the high-frequency region was a

stop-band for those filters. Therefore, this explained the missing

high-frequency components in Fig. 9(e).

5) Listening Test: Although the intelligibility of noisy

speech can be improved by denoising autoencoder for cochlear

implant users [70], [71], this is usually not the case for speech

evaluated on people with normal hearing [41], [42]. Therefore,

the intelligibility improvement is still an open challenge even

for deep learning-based enhancement methods [22]. This sec-

tion shed some light on the possible solutions and reported the

listening test results of noisy, and FCN enhanced speech with

different objective functions with real subjects. Twenty normal

hearing native Mandarin Chinese subjects (sixteen males and

four females) aged 23–45 participated in the listening tests. The

same MHINT sentences used in the objective evaluations were

adopted in the listening test. Because real subjects were involved

in this set of experiments, the number of test sets is confined to

avoid biased results caused by listening fatigue [72] and ceiling

effects of speech recognition [73]. Thus, we decided to prepare

only two SNR levels (i.e., −3 and −6 dB), where intelligibility

improvements were most needed in our test set. Each subject

only participated in one SNR condition. In addition, we selected

the two relatively challenging noise types, namely engine and

street noises, to form the test set.

The experiments were conducted in a quiet environment in

which the background noise level was below 45 dB SPL. The

stimuli were played to the subjects through a set of Sennheiser

HD headphones at a comfortable listening level with our Speech-

Evaluation-Toolkit (SET).2 Each subject participated in a total of

8 test conditions: 1 SNR levels × 2 noise types × 4 processing

approaches—i.e., noisy, FCN (MSE), FCN (STOI), and FCN

(MSE+STOI). Each condition contained ten sentences, and the

order of the 8 conditions was randomized individually for each

listener. None of the ten sentences was repeated across the test

conditions. The subjects were instructed to verbally repeat what

they heard and were allowed to repeat the stimuli twice. The

character correct rate (CCR) was used as the evaluation metric

for speech intelligibility, which was calculated by dividing the

2Available at https://github.com/Dati1020/Speech-Evaluation-Toolkit
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Fig. 10. Magnitude frequency response of the learned filters in the first layer of utterance-based FCN. The filter index is reordered by the location of the peak
response for clear presentation. (a) Learned with the MSE objective function, and (b) learned with the STOI objective function.

number of correctly identified characters by the total number of

characters under each test condition. In addition to intelligibility,

we also evaluated the speech quality by mean opinion score

(MOS) tests. Specifically, after listening to each stimulus, the

subjects were also asked to rate the quality of the stimulus in a

five-point Likert scale score (1: Bad, 2: Poor, 3: Fair, 4: Good,

5: Excellent).

Fig. 11 illustrated the results of listening test for −3 dB and

−6 dB. We observed that although the quality of all the enhanced

speech could be improved compared to the noisy one, intelligi-

bility was not easy to be improved. This verifies two things. 1)

As stated in the Introduction section, improving speech intelli-

gibility is more challenging than enhancing quality [41], [42].

For example, the intelligibility of MSE-optimized speech is gen-

erally worse than noisy speech as reported in [22]. 2) Speech

intelligibility and quality are different aspects of speech. They

are related to each other, yet not necessarily equivalent [74].

Speech with poor quality can be highly intelligible [75] (e.g.,

only optimizing STOI), while, on the other hand, speech with

high quality may be totally unintelligible [76] (e.g., only opti-

mizing MSE). Although the quality of STOI-optimized speech

was worse than MSE-based one, its intelligibility was better.

This implies that the intelligibility model defined in STOI is

indeed helpful for persevering speech contents.

The results of optimizing MSE and STOI simultaneously

seem to acquire advantages from the two terms, and hence can

obtain the best performance in both intelligibility and quality.

We also found that the intelligibility improvement in −3 dB

SNR condition was very limited. This may be due to the fact

that there is not much room for improvement since the human

auditory system are quite robust to moderate noises (CCR∼80%

under this noisy condition). On the other hand, the intelligibility

improvement was statistical significant (p < 0.05) in the −6 dB

SNR condition.

6) ASR Experiments: We have demonstrated that the pro-

posed utterance-based FCN enhancement model could handle

any kind of objective functions. To further confirm the applica-

bility of the framework, we tested the speech enhancement on

Fig. 11. Average CCR and MOS scores of human subjects for (a) −3 dB and
(b) −6 dB.

the performance of ASR. Although the WER or character error

rate (CER) is widely used as an evaluation criterion, it is dif-

ficult to formulate the criterion in a specific objective function

for enhancement optimization. Several studies have shown that

speech enhancement can increase the noise-robustness of ASR

[9], [43], [77]–[82]. Some research [43], [44] has further shown
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Fig. 12. CER of Google ASR for noisy speech, DNN-based LPS enhancement
method, and (utterance-wise) FCN-based waveform enhancement models with
different objective functions. (The CER for clean speech is 9.84%)

that the CC between the improvement in WER of ASR and the

improvement in STOI is higher than other objective evaluation

scores (e.g., Moore et al. [43] showed that the CC can reach

to 0.79). Since we demand high accuracy noise-robust ASR in

real-world applications, a speech enhancement front-end which

considers both MSE and STOI may achieve better ASR perfor-

mance than simply MSE-optimized alternatives. Note that we

are not pursuing a state-of-the-art noise-robust ASR system; in-

stead we treat the ASR as an additional objective evaluation met-

ric. In this study, we took a well-trained ASR (Google Speech

Recognition) [83] to test speech recognition performance.

The same MHINT test sentences used in the objective eval-

uations were also adopted in the ASR experiment, and the re-

sults reported were averaged across the three noise types. The

CER of ASR for noisy speech, enhanced speech by LPS-based

DNN method, and waveform-based FCN enhancement mod-

els with different objective functions were shown in Fig. 12.

This figure provided the following four observations: 1) the

conventional DNN-based LPS enhancement method could only

provide CER improvement under low-SNR conditions. Its CER

was even worse than the noisy speech in the cases when SNR

was higher than 6 dB. 2) All the FCN enhanced speech sam-

ples could obtain lower CER compared to the noisy ones, and

the improvement at around 0 dB was the most obvious. 3) The

CER of STOI-optimized speech was worse than that of MSE-

optimized speech. This might be because the spectrogram of

STOI-optimized speech remain too noisy for ASR (compare

Fig. 9(d) and (e)). Furthermore, PESQ was decreased by chang-

ing the objective function from MSE to STOI (compare the 8th

to 11th columns in Table II). Although not as highly correlated

as the STOI case, the decrease of PESQ might also degrade

the ASR performance (the correlation coefficient between im-

provement in CER and the improvements in PESQ is 0.55 [43]).

Therefore, most of the CER reduction from increasing STOI

might be canceled out by the decreased PESQ. 4) As the results

of listening test, when incorporating both MSE and STOI into

the objective function of FCN, the CER could be considerably

reduced compared to the MSE-optimized model. This verified

that bringing STOI into objective function of speech enhance-

ment could also help ASR to identify the speech content under

noisy conditions.

Although this ASR experiment was tested on a trained sys-

tem, this is indeed more practical in many real-world applica-

tions where an ASR engine is supplied by a third-party. Our

proposed FCN enhancement model can simply be treated as

pre-processing to obtain a more noise-robust ASR.

In summary, although optimizing STOI alone only provides

marginal CER improvements, incorporating STOI with MSE as

a new objective function can obtain considerable benefits. This

again shows that the intelligibility model defined in STOI is

helpful for persevering speech contents. However, because STOI

does not consider non-speech regions and is based on CC in the

original definition, its noise suppression ability is not enough

for ASR applications. Therefore, optimizing STOI and MSE

simultaneously seems to strike a good balance between noise

reduction (by MSE term) and speech intelligibility improvement

(by STOI term).

C. Experiment on the CHiME-2 Data Set

Finally, we tested the proposed algorithm in a more chal-

lenging task. The noisy and reverberant CHiME2 dataset were

adopted to evaluate the effect of removing both additive and con-

volutive noise simultaneously. The reverberant and noisy signals

were created by first convolving the clean signals in the WSJ0-5k

corpus with binaural room impulse responses (BRIRs) and then

added in binaural recordings of genuine room noise at six differ-

ent SNR levels linearly spaced from −6 dB to 9 dB SNR levels.

The noises included a rich collection of sounds, such as children

talking, electronic devices, distant noises, background music,

and so on. There was a 7138-utterance training set (∼14.5h in

total), which included various noisy mixtures and speakers, a

2460 utterance development set (∼4.5h in total), which was de-

rived from 410 clean speech utterances, each mixed with a noise

signal at six different noise levels, and an evaluation set, which

included 1980 utterances (∼4h in total) derived from 330 clean

speech signals. The original clean utterances from the WSJ0-5k

were used as the output targets.

In this set of experiments, we used the same model structure

as that used in the MHINT experiment. The optimal training

epoch was decided by the development set. Fig. 13 illustrated

the average objective evaluation scores for the different mod-

els. From these results, we could first observe that both the

improvements of SSNR and PESQ were not so obvious com-

pared to the MHINT experiment because of the appearance of

convolutive noise. In addition, STOI optimization could also

achieve the highest STOI score for reverberant speech. Overall,

the performance trends of different models were similar to the

previous MHINT experiment, except that the PESQ score of

FCN (MSE) could also outperform BLSTM. Please note that

the mathematical model (convolution) for producing reverber-

ant speech is the same as single layer FCN without activation

function. Therefore, FCN may be more suitable to model rever-
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Fig. 13. Average objective evaluation scores for different models on the
CHiME2 data set.

beration; nevertheless, a more rigorous experiment is needed to

verify this, which will be our future work.

V. DISCUSSION

The main purpose of this study is to reduce the gap between

the model optimization and evaluation criterions for deep learn-

ing based speech enhancement systems. Based on our proposed

algorithm which takes the STOI as an optimization criterion,

the system can indeed improve speech intelligibility. However,

directly applying it as the only objective function seems to be

not good enough. This is mainly because of that STOI does not

define how silent and high frequency regions should be pro-

cessed; therefore, the STOI optimized speech may appear in

an unexpected way in these regions. Accordingly, the objective

function formed by combining MSE and STOI is a reasonable

solution. As confirmed from the experimental results of the lis-

tening test and ASR, optimizing MSE and STOI simultaneously

can obtain the best performance. In addition to the combination

of these two terms, we also designed a conditional objective

function, which assigns different loss in different regions. More

specifically, to reduce the influence of the MSE term on the

speech region, we only applied it in the silent regions instead

of the whole utterance. Hence, the objective function can be

represented as the following equation.

O =

{

α
|Si| ‖wu (t) − ŵu (t)‖2

2 , if t ∈ silent of wu (t)

−stoi (wu (t) , ŵu (t)) , (if t ∈ speech of wu (t))
,

(7)

where |Si| is the number of sample points in silent regions. We

put the second condition about STOI in parentheses because this

condition is already considered in the original STOI evaluation.

Unfortunately, preliminary experimental results show that this

conditional objective function does not work very well. Since

the target of the MSE term, wu (t), is usually close to zero (silent

region), the model only learns to scale down the weights (this

would not degrade the STOI term because the STOI computation

is based on CC as shown in (2)). Therefore, the output utterance

is a trivial solution similar to the STOI-optimized speech only

with very small energy.

The calculation of STOI seems only depend on the magni-

tude spectrogram and is not related to phase (hence waveform-

based model is not necessary). However, if we only focus on

optimizing magnitude spectrogram, the magnitude spectrogram

of the synthesized time-domain signal cannot keep optimality

[47], [84]. Hence, the phase should also be considered in the

optimization process or performing speech enhancement in the

waveform-domain directly. In summary, although we adopted

the STOI as the objective function, the model is optimized based

on the difference of enhanced and clean target waveforms. Ac-

cordingly, the optimization process considers magnitude spec-

trum and phase simultaneously.

In [85], Kolbæk et al. applied DNNs to optimize approximate-

STOI with several approximations on the original STOI defini-

tion. Possibly due to those approximations along with the limi-

tation of a short segment-based model, their method could not

outperform MSE-optimized systems. The present study, on the

other hand, intends to directly optimize STOI without any ap-

proximation by using a FCN utterance-based model. The benefit

of this utterance-based enhancement is that it can integrate the

long-term speech continuity property (determined by the con-

tinuous vocal tract movement in producing continuous speech

utterances). This continuity helps to improve the speech intel-

ligibility which could not be explored in frame-based enhance-

ment models even context features are used as inputs [17].

As showed in Fig. 6, our proposed utterance-based waveform

enhancement FCN model is flexible and can be easily extended

to other objective functions, from the local time scale (frame or

short segment) to the global time scale (long segment or utter-

ance), and from measures in the time domain to the frequency

domain. The STOI optimization demonstrated in this paper is

just one example. Specifically, the STOI function in Fig. 6 can

be replaced by another specific evaluation metrics (e.g., SNR,

SSNR or PESQ, etc.). When a new objective evaluation metric

is proposed, our model can be readily applied to optimize the

metrics, as long as every step in the evaluation metric is dif-

ferentiable (otherwise, a continuous approximation function is

needed).

Last but not least, the experimental results of listening test

and ASR confirm the importance of the objective function for

optimizing the model parameters. Although the model struc-

ture is fixed, changing the objective functions may induce very

different results. Currently, some evaluation metrics still not

perfectly reflect the human auditory perception while it is ex-

pectable that more accurate evaluation metrics will be proposed

in the future. By combining the proposed framework with more

accurate evaluation metrics, we hope the mismatch between the

training objective and human auditory perception can be effec-

tively reduced.

VI. CONCLUSION

This paper proposes a speech enhancement framework which

takes testing evaluation metrics in model parameter train-

ing. This is different from conventional methods which takes

un-consistent objectives in training and evaluations. In order

to solve the mismatch problem, we proposed an end-to-end
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utterance-based raw waveform speech enhancement system by

FCN architecture. Through the novel framework, several prob-

lems that exist in conventional DNN-based enhancement model

can be solved simultaneously. 1) The mismatch between the

true targets of speech enhancement and the employed objective

function can be solved by utterance-based waveform optimiza-

tion. 2) There is no need to map the time domain waveform

to the frequency domain for enhancing the magnitude spectro-

gram. Therefore, all the related pre- and post-processing can

be avoided. 3) Because the proposed model directly denoises

the noisy waveform, the phase information is not ignored. 4)

The discontinuity of enhanced speech observed in conventional

frame-based processing is solved by treating each utterance as

a whole. Since deep learning has a strong capacity to learn a

mapping function, we found that it is extremely important to

apply our real target as the objective function for optimization.

The STOI optimization shows its excellent connections to the

purpose of speech intelligibility improvement when it is for-

mulated into objective functions. By efficiently integrating this

type of objective functions in data-driven model learning, it is

possible to reveal real connections of physical acoustic features

with the complex perception quantities.
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