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Abstract

We tackle the task of semantic alignment where the goal

is to compute dense semantic correspondence aligning two

images depicting objects of the same category. This is a

challenging task due to large intra-class variation, changes

in viewpoint and background clutter. We present the follow-

ing three principal contributions. First, we develop a convo-

lutional neural network architecture for semantic alignment

that is trainable in an end-to-end manner from weak image-

level supervision in the form of matching image pairs. The

outcome is that parameters are learnt from rich appear-

ance variation present in different but semantically related

images without the need for tedious manual annotation of

correspondences at training time. Second, the main compo-

nent of this architecture is a differentiable soft inlier scor-

ing module, inspired by the RANSAC inlier scoring proce-

dure, that computes the quality of the alignment based on

only geometrically consistent correspondences thereby re-

ducing the effect of background clutter. Third, we demon-

strate that the proposed approach achieves state-of-the-art

performance on multiple standard benchmarks for semantic

alignment.

1. Introduction

Finding correspondence is one of the fundamental prob-

lems in computer vision. Initial work has focused on finding

correspondence between images depicting the same object

or scene with applications in image stitching [31], multi-

view 3D reconstruction [11], motion estimation [6, 34] or

tracking [4, 22]. In this work we study the problem of

finding category-level correspondence, or semantic align-

ment [1, 20], where the goal is to establish dense correspon-

dence between different objects belonging to the same cat-

egory, such as the two different motorcycles illustrated in

Fig. 1. This is an important problem with applications in

object recognition [19], image editing [3], or robotics [23].
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Figure 1: We describe a CNN architecture that, given an input im-

age pair (top), outputs dense semantic correspondence between the

two images together with the aligning geometric transformation

(middle) and discards geometrically inconsistent matches (bot-

tom). The alignment model is learnt from weak supervision in

the form of matching image pairs without correspondences.

This is also an extremely challenging task because of the

large intra-class variation, changes in viewpoint and pres-

ence of background clutter.

The current best semantic alignment methods [10, 17,

24] employ powerful image representations based on con-

volutional neural networks coupled with a geometric defor-

mation model. However, these methods suffer from one of

the following two major limitations. First, the image repre-

sentation and the geometric alignment model are not trained

together in an end-to-end manner. Typically, the image rep-

resentation is trained on some auxiliary task such as image

classification and then employed in an often ad-hoc geo-

metric alignment model. Second, while trainable geometric
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alignment models exist [2, 29], they require strong super-

vision in the form of ground truth correspondences, which

is hard to obtain for a diverse set of real images on a large

scale.

In this paper, we address both these limitations and de-

velop a semantic alignment model that is trainable end-to-

end from weakly supervised data in the form of matching

image pairs without the need for ground truth correspon-

dences. To achieve that we design a novel convolutional

neural network architecture for semantic alignment with

a differentiable soft inlier scoring module inspired by the

RANSAC inlier scoring procedure. The resulting architec-

ture is end-to-end trainable with only image-level supervi-

sion. The outcome is that the image representation can be

trained from rich appearance variations present in different

but semantically related image pairs, rather than synthet-

ically deformed imagery [14, 29]. We show that our ap-

proach allows to significantly improve the performance of

the baseline deep CNN alignment model, achieving state-

of-the-art performance on multiple standard benchmarks for

semantic alignment. Our code and trained models are avail-

able online [28].

2. Related work

The problem of semantic alignment has received signifi-

cant attention in the last few years with progress in both (i)

image descriptors and (ii) geometric models. The key inno-

vation has been making the two components trainable from

data. We summarize the recent progress in Table 1 where

we indicate for each method whether the descriptor (D) or

the alignment model (A) are trainable, whether the entire

architecture is trainable end-to-end (E-E), and whether the

required supervision is strong (s) or weak (w).

Early methods, such as [1, 15, 19], employed hand-

engineered descriptors like SIFT or HOG together with

hand-engineered alignment models based on minimizing a

given matching energy. This approach has been quite suc-

cessful [9, 32, 33, 35] using in some cases [33] pre-trained

(but fixed) convolutional neural network (CNN) descriptors.

However, none of these methods train the image descriptor

or the geometric model directly for semantic alignment.

Others [16, 17, 24] have investigated trainable image de-

scriptors for semantic matching but have combined them

with hand-engineered alignment models still rendering the

alignment pipeline not trainable end-to-end.

Finally, recent work [10, 29] has employed trainable

CNN descriptors together with trainable geometric align-

ment methods. However, in [10] the matching is learned at

the object-proposal level and a non-trainable fusion step is

necessary to output the final alignment making the method

non end-to-end trainable. On the contrary, [29] estimate a

parametric geometric model, which can be converted into

dense pixel correspondences in a differentiable way, mak-

Paper Descriptor
Alignment

method

Trainable

D A E-E S

Liu et al.‘11 [19] SIFT SIFT Flow ✗ ✗ ✗ -

Kim et al.‘13 [15] SIFT+PCA DSP ✗ ✗ ✗ -

Taniai et al.‘16 [32] HOG TSS ✗ ✗ ✗ -

Ham et al.‘16 [9] HOG PF-LOM ✗ ✗ ✗ -

Yang et al.‘17 [35] HOG OADSC ✗ ✗ ✗ -

Ufer et al.‘17 [33] AlexNet DSFM ✗ ✗ ✗ -

Novotny et al.‘17 [24] AnchorNet
DSP ✓ ✗ ✗ w

PF-LOM ✓ ✗ ✗ w

Kim et al.‘17 [16] FCSS
SIFT Flow ✓ ✗ ✗ s

PF-LOM ✓ ✗ ✗ s

Kim et al.‘17 [17] FCSS DCTM ✓ ✗ ✗ s

Han et al.‘17 [10] VGG-16

SCNet-A ✓ ✓ ✗ s

SCNet-AG ✓ ✓ ✗ s

SCNet-AG+ ✓ ✓ ✗ s

Rocco et al.‘17 [29]
VGG-16 CNN Geo. ✓ ✓ ✓ s

ResNet-101 CNN Geo. ✓ ✓ ✓ s

Proposed method ResNet-101 CNN Geo. ✓ ✓ ✓ w

Table 1: Comparison of recent related work. The table indi-

cates employed image descriptor and alignment method. The last

four columns show which components of the approach are trained

for the semantic alignment task: descriptor (D), alignment (A) or

both in end-to-end manner (E-E); and the level of supervision (S):

strong (s) or weak (w).

ing the method end-to-end trainable. However, the method

is trained with strong supervision in the form of ground

truth correspondences obtained from synthetically warped

images, which significantly limits the appearance variation

in the training data.

Contributions. We develop a network architecture where

both the descriptor and the alignment model are trainable

in an end-to-end manner from weakly supervised data. This

enables training from real images with rich appearance vari-

ation and without the need for manual ground-truth cor-

respondence. We demonstrate that the proposed approach

significantly improves alignment results achieving state-of-

the-art performance on several datasets for semantic align-

ment.

3. Weakly-supervised semantic alignment

This section presents a method for training a semantic

alignment model in an end-to-end fashion using only weak

supervision – the information that two images should match

– but without access to the underlying geometric transfor-

mation at training time. The approach is outlined in Fig. 2.
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Figure 2: End-to-end weakly-supervised alignment. Source and target images (Is, It) are passed through an alignment network used to

estimate the geometric transformation g. Then, the soft-inlier count is computed (in green) by first finding the inlier region m in agreement

with g, and then adding up the pairwise matching scores inside this area. The soft-inlier count is differentiable, which allows the whole

model to be trained using back-propagation. Functions are represented in blue and tensors in pink.

Namely, given a pair of images, an alignment network es-

timates the geometric transformation that aligns them. The

quality of the estimated transformation is assessed using the

proposed soft-inlier count which aggregates the observed

evidence in the form of feature matches. The training ob-

jective then is to maximize the alignment quality for pairs

of images which should match.

The key idea is that, instead of requiring strongly su-

pervised training data in the form of known pairwise align-

ments and training the alignment network with these, the

network is “forced” into learning to estimate good align-

ments in order to achieve high alignment scores (soft-inlier

counts) for matching image pairs. The details of the align-

ment network and the soft-inlier count are presented next.

3.1. Semantic alignment network

In order to make use of the error signal coming from

the soft-inlier count, our framework requires an alignment

network which is trainable end-to-end. We build on the

Siamese CNN architecture described in [29], illustrated in

the left section of Fig. 2. The architecture is composed of

three main stages – feature extraction, followed by feature

matching and geometric transformation estimation – which

we review below.

Feature extraction. The input source and target images,

(Is, It), are passed through two fully-convolutional feature

extraction CNN branches, F , with shared weights. The re-

sulting feature maps (fs, f t) are h × w × d tensors which

can be interpreted as dense h × w grids of d-dimensional

local features fij: ∈ R
d. These individual d-dimensional

features are L2 normalized.

Pairwise feature matching. This stage computes all pair-

wise similarities, or match scores, between local features in

the two images. This is done with the normalized correla-

tion function, defined as:

S : Rh×w×d × R
h×w×d → R

h×w×h×w

(1)

sijkl = S(fs, f t)ijkl =
〈fs

ij:, f
t
kl:〉

√

∑

a,b〈f
s
ab:, f

t
kl:〉

2

, (2)

where the numerator in (2) computes the raw pairwise

match scores by computing the dot product between fea-

tures pairs. The denominator performs a normalization

operation with the effect of down-weighing ambiguous

matches, by penalizing features from one image which have

multiple highly-rated matches in the other image. This is

in line with the classical second nearest neighbour test of

Lowe [21]. The resulting tensor s contains all normalized

match scores between the source and target features.

Geometric transformation estimation. The final stage of

the alignment network consists of estimating the parame-

ters of a geometric transformation g given the match scores

s. This is done by a transformation regression CNN, repre-

sented by the function G:

G : Rh×w×h×w → R
K , g = G(s) (3)

where K is the number of degrees of freedom, or param-

eters, of the geometric model; e.g. K = 6 for an affine

model. The estimated transformation parameters g are used

to define the 2-D warping Tg:
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(a) Inliers and outliers (b) Inlier mask function (c) Discretized space

Figure 3: Line-fitting example. (a) The line hypothesis ℓ can be evaluated in terms of the number of inliers. (b) The inlier mask m
specifies the region where the inlier distance threshold is satisfied. (c) In the discretized space setting, where the match score sij exists for

every point (i, j), the soft-inlier count is computed by summing up match scores masked by the inlier mask m from (b).

Tg : R2 → R
2, (us, vs) = Tg(u

t, vt) (4)

where (ut, vt) are the spatial coordinates of the target im-

age, and (us, vs) the corresponding sampling coordinates in

the source image. Using Tg , it is possible to warp the source

to the target image.

Note that all parts of the geometric alignment network

are differentiable and therefore amenable to end-to-end

training [29], including the feature extractor F which can

learn better features for the task of semantic alignment.

3.2. Soft­inlier count

We propose the soft-inlier count used to automatically

evaluate the estimated geometric transformation g. Mak-

ing an effort to maximize this count provides the weak-

supervisory signal required to train the alignment network,

avoiding the need for expensive manual annotations for g.

The soft-inlier count is inspired by the inlier count used in

the robust RANSAC method [7], which is reviewed first.

RANSAC inlier count. For simplicity, let us consider the

problem of fitting a line to a set of observed points pi, with

i = 1, . . . N , as illustrated in Fig. 3a. RANSAC proceeds

by sampling random pairs of points used to propose line

hypotheses, each of which is then scored using the inlier

count, and the highest scoring line is chosen; here we only

focus on the inlier count aspect of RANSAC used to score

a hypothesis. Given a hypothesized line ℓ, the RANSAC in-

lier scoring function counts the number of observed points

which are in agreement with this hypothesis, called the in-

liers. A point p is typically deemed to be an inlier iff its

distance to the line is smaller than a chosen distance thresh-

old t, i.e. d(p, ℓ) < t.

The RANSAC inlier count, cR, can be formulated

by means of an auxiliary indicator function illustrated in

Fig. 3b, which we call the inlier mask function m:

cR =
∑

i

m(pi), where m(p) =

{

1, if d(p, ℓ) < t

0, otherwise.
(5)

Soft-inlier count. The RANSAC inlier count cannot be

used directly in a neural network as it is not differentiable.

Furthermore, in our setting there is no sparse set of match-

ing points, but rather a match score for every match in a

discretized match space. Therefore, we propose a direct

extension, the soft-inlier count, which, instead of counting

over a sparse set of matches, sums the match scores over all

possible matches.

The running line-fitting example can now be revisited

under the discrete-space conditions, as illustrated in Fig-

ure 3c. The proposed soft-inlier count for this case is:

c =
∑

i,j

sijmij , (6)

where sij is the match score at each grid point (i,j), and mij

is the discretized inlier mask:

mij =

{

1 if d
(

(i, j), ℓ
)

< t

0 otherwise
(7)

Translating the discrete-space line-fitting example to our

semantic alignment problem, s is a 4-D tensor containing

scores for all pairwise feature matches between the two im-

ages (Section 3.1), and matches are deemed to be inliers

if they fit the estimated geometric transformation g. More

formally, the inlier mask m is now also a 4-D tensor, con-

structed by thresholding the transfer error:

mijkl =

{

1 if d
(

(i, j), Tg(k, l)
)

< t

0 otherwise,
(8)
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where Tg(k, l) are the estimated coordinates of target im-

age’s point (k, l) in the source image according to the ge-

ometric transformation g; d
(

(i, j), Tg(k, l)
)

is the transfer

error as it measures how aligned is the point (i, j) in the

source image, with the projection of the target image point

(k, l) into the source image. The soft-inlier count c is then

computed by summing the masked matching scores over the

entire space of matches:

c =
∑

i,j,k,l

sijklmijkl. (9)

Differentiability. The proposed soft-inlier count c is dif-

ferentiable with respect to the transformation parameters

g as long as the geometric transformation Tg is differen-

tiable [13], which is the case for a range of standard geomet-

ric transformations such as 2D affine, homography or thin-

plate spline transformations. Furthermore, it is also differ-

entiable w.r.t. the match scores, which facilitates training of

the feature extractor.

Implementation as a CNN layer. The inlier mask m can

be computed by warping an identity mask mId with the

estimated transformation Tg , where mId is constructed by

thresholding the transfer error of the identity transforma-

tion:

mId

ijkl =

{

1 d
(

(i, j), (k, l)
)

< t

0 otherwise.
(10)

The warping is implemented using a spatial transformer

layer [13], which consists of a grid generation layer and a

bilinear sampling layer. Both of these functions are readily

available in most deep learning frameworks.

Optimization objective. For a given training pair of images

that should match, the goal is to maximize the soft-inlier

count c, or, equivalently, to minimize the loss L = −c.

Analogy to RANSAC. Please also note that our method is

similar in spirit to RANSAC [7], where (i) transformations

are proposed (by random sampling) and then (ii) scored by

their support (number of inliers). In our case, during train-

ing (i) the transformations are proposed (estimated) by the

regressor network G and (ii) scored using the proposed soft-

inlier score. The gradient of this score is used to improve

both the regressor G and feature extractor F (see Fig. 2). In

turn, the regressor produces better transformations and the

feature extractor better feature matches that maximize the

soft-inlier score on training images.

4. Evaluation and results

In this section we provide implementation details,

benchmarks used to evaluate our approach, and quantitative

and qualitative results.

4.1. Implementation details

Semantic alignment network. For the underlying seman-

tic alignment network, we use the best-performing architec-

ture from [27] which employs a ResNet-101 [12], cropped

after conv4-23, as the feature extraction CNN F . Note

that this is a better performing model than the one described

in [29], mainly due to use of ResNet versus VGG-16 [30].

Given an image pair, the model produces a thin-plate spline

geometric transformation Tg which aligns the two images;

Tg has 18 degrees of freedom. The network is initialized

with the pre-trained weights from [27], and we finetune it

with our weakly supervised method. Note that the initial

model has been trained in a self-supervised way from syn-

thetic data, not requiring human supervision [29], therefore

not affecting our claim of weakly supervised training1.

Training details. Training and validation image pairs are

obtained from the training set of PF-PASCAL, described in

Section 4.2. All input images are resized to 240× 240, and

the value t = L/30 (where L = h = w is the size of

the extracted feature maps) was used for the transfer error

threshold. The whole model is trained end-to-end, includ-

ing the affine parameters in the batch normalization layers.

However, the running averages of the batch normalization

layers are kept fixed, in order to be less dependent on the

particular statistics of the training dataset. The network is

implemented in PyTorch [25] and trained using the Adam

optimizer [18] with learning rate 5 · 10−8, no weight de-

cay and batch size of 16. The training dataset is augmented

by horizontal flipping, swapping the source and target im-

ages, and random cropping. Early stopping is required to

avoid overfitting, given the small size of the training set.

This results in 13 training epochs, taking about an hour on

a modern GPU.

4.2. Evaluation benchmarks

Evaluation is performed on three standard image align-

ment benchmarks: PF-PASCAL, Caltech-101 and TSS.

PF-PASCAL [9]. This dataset contains 1351 semantically

related image pairs from 20 object categories, which present

challenging appearance differences and background clutter.

We use the split proposed in [10], which divides the dataset

into roughly 700 pairs for training, 300 pairs for valida-

tion, and 300 pairs for testing. Keypoint annotations are

provided for each image pair, which are used only for eval-

uation purposes. Alignment quality is evaluated in terms

of the percentage of correct keypoints (PCK) metric [36],

which counts the number of keypoints which have a transfer

error below a given threshold. We follow the procedure em-

ployed in [10], where keypoint (x, y) coordinates are nor-

1The initial model is trained with a supervised loss, but the “supervi-

sion” is automatic due to the use of synthetic data.
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Method aero bike bird boat bottle bus car cat chair cow d.table dog horse moto person plant sheep sofa train tv all

HOG+PF-LOM [8] 73.3 74.4 54.4 50.9 49.6 73.8 72.9 63.6 46.1 79.8 42.5 48.0 68.3 66.3 42.1 62.1 65.2 57.1 64.4 58.0 62.5

VGG-16+SCNet-A [10] 67.6 72.9 69.3 59.7 74.5 72.7 73.2 59.5 51.4 78.2 39.4 50.1 67.0 62.1 69.3 68.5 78.2 63.3 57.7 59.8 66.3

VGG-16+SCNet-AG [10] 83.9 81.4 70.6 62.5 60.6 81.3 81.2 59.5 53.1 81.2 62.0 58.7 65.5 73.3 51.2 58.3 60.0 69.3 61.5 80.0 69.7

VGG-16+SCNet-AG+ [10] 85.5 84.4 66.3 70.8 57.4 82.7 82.3 71.6 54.3 95.8 55.2 59.5 68.6 75.0 56.3 60.4 60.0 73.7 66.5 76.7 72.2

VGG-16+CNNGeo [29] 75.2 80.1 73.4 59.7 43.8 77.9 84.0 67.7 44.3 89.6 33.9 67.1 60.5 72.6 54.0 41.0 60.0 45.1 58.3 37.2 65.0

ResNet-101+CNNGeo [29] 82.4 80.9 85.9 47.2 57.8 83.1 92.8 86.9 43.8 91.7 28.1 76.4 70.2 76.6 68.9 65.7 80.0 50.1 46.3 60.6 71.9

Proposed 83.7 88.0 83.4 58.3 68.8 90.3 92.3 83.7 47.4 91.7 28.1 76.3 77.0 76.0 71.4 76.2 80.0 59.5 62.3 63.9 75.8

Table 2: Per-class PCK on the PF-PASCAL dataset.

malized in the [0, 1] range by dividing with the image width

and height respectively, and the value α = 0.1 is employed

as the distance threshold.

Caltech-101 [5]. Although originally introduced for the

image classification task, the dataset was adopted in [15]

for assessing semantic alignment, and has been then exten-

sively used for this purpose [9, 10, 16, 29]. The evaluation

is performed on 1515 semantically related image pairs, 15

pairs for each of the 101 object categories of the dataset.

The semantic alignment is evaluated using three different

metrics: (i) the label transfer accuracy (LT-ACC); (ii) the

intersection-over-union (IoU), and; (iii) the object localiza-

tion error (LOC-ERR). The label transfer accuracy and the

intersection-over-union both measure the overlap between

the annotated foreground object segmentation masks, with

former putting more emphasis on the background class and

the latter on the foreground object. The localization error

computes a dense displacement error. However, given the

lack of dense displacement annotations, the metric com-

putes the ground-truth transformation from the source and

target bounding boxes, thus assuming that the transforma-

tion is a simple translation with axis-aligned anisotropic

scaling. This assumption is unrealistic as, amongst others,

it does not cover rotations, affine or deformable transfor-

mations. Therefore, we believe that LOC-ERR should not

be reported any more, but report it here for completeness

and in order to adhere to the currently adopted evaluation

protocol.

TSS [32]. The recently introduced TSS dataset contains

400 semantically related image pairs, which are split into

three different subsets: FG3DCar, JODS and PASCAL, ac-

cording to the origin of the images. Ground-truth flow is

provided for each pair, which was obtained by manual an-

notation of sparse keypoints, followed by automatic den-

sification using an interpolation algorithm. The evaluation

metric is the PCK computed densely over the foreground

object. The distance threshold is defined as αmax(ws, hs)
with (ws, hs) being the dimensions of the source image, and

α = 0.05.

Assessing generalization. We train a single semantic align-

ment network with the 700 training pairs from PF-PASCAL

without using the keypoint annotations, and stress that our

weakly-supervised training objective only uses the informa-

tion that the image pair should match. The same model is

then used for all experiments – evaluation on the test sets

of PF-PASCAL, Caltech-101 and TSS datasets. This poses

an additional difficulty as these datasets contain images of

different object categories or of different nature. While PF-

PASCAL contains images of common objects such as car,

bicycle, boat, etc., Caltech-101 contains images of much

less common categories such as accordion, buddha or oc-

topus. On the other hand, while the classes of TSS do ap-

pear in PF-PASCAL, the pose differences in TSS are usu-

ally smaller than in PF-PASCAL, which modifies the chal-

lenge into obtaining a very precise alignment.

4.3. Results

In the following, our alignment network trained with

weak supervision is compared to the state-of-the-art align-

ment methods, many of which require manual annotations

or strong supervision (c.f . Table 1).

PF-PASCAL. From Table 2 it is clear that our method

sets the new state-of-the-art, achieving an overall PCK of

75.8%, which is a 3.6% improvement over the best com-

petitor [10]. This result is impressive as the two methods are

trained on the same image pairs, with ours being weakly su-

pervised while [10] make use of bounding box annotations.

The benefits of weakly supervised training can be seen

by comparing our method with ResNet-101+CNNGeo [27,

29]. The two use the same base alignment network (c.f .

Section 4.1), but ResNet-101+CNNGeo was trained only on

synthetically deformed image pairs, while ours employs the

proposed weakly supervised fine-tuning. The 3.9% boost

clearly demonstrates the advantage obtained by training on

real image pairs and thus encountering rich appearance vari-

ations, as opposed to using synthetically transformed pairs

in ResNet-101+CNNGeo [29].

Caltech-101. Table 3 presents the quantitative results

for this dataset. The proposed method beats state-of-

the-art results in terms of the label-transfer accuracy and

intersection-over-union metrics. Weakly supervised train-

ing again improves the results, by 2%, over the synthetically

trained ResNet-101+CNNGeo. In terms of the localization-

error metric, our model does not attain state-of-the-art per-
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Method LT-ACC IoU LOC-ERR

HOG+PF-LOM [9] 0.78 0.50 0.26

FCSS+SIFT Flow [16] 0.80 0.50 0.21

FCSS+PF-LOM [16] 0.83 0.52 0.22

VGG-16+SCNet-A [10] 0.78 0.50 0.28

VGG-16+SCNet-AG [10] 0.78 0.50 0.27

VGG-16+SCNet-AG+ [10] 0.79 0.51 0.25

HOG+OADSC [35] 0.81 0.55 0.19

VGG-16+CNNGeo [29] 0.80 0.55 0.26

ResNet-101+CNNGeo [29] 0.83 0.61 0.25

Proposed 0.85 0.63 0.24

Table 3: Evaluation results on the Caltech-101 dataset.

Method FG3D. JODS PASC. avg.

HOG+PF-LOM [9] 0.786 0.653 0.531 0.657

HOG+TSS [32] 0.830 0.595 0.483 0.636

FCSS+SIFT Flow [16] 0.830 0.656 0.494 0.660

FCSS+PF-LOM [16] 0.839 0.635 0.582 0.685

HOG+OADSC [35] 0.875 0.708 0.729 0.771

FCSS+DCTM [17] 0.891 0.721 0.610 0.740

VGG-16+CNNGeo [29] 0.839 0.658 0.528 0.675

ResNet-101+CNNGeo [29] 0.901 0.764 0.563 0.743

Proposed 0.903 0.764 0.565 0.744

Table 4: Evaluation results on the TSS dataset.

formance, but we argue that this metric is not a good indi-

cation of the alignment quality, as explained in section 4.2.

This claim is further backed up by noticing that the relative

ordering of various methods based on this metric is in direct

opposition with the other two metrics.

TSS. The quantitative results for the TSS dataset are pre-

sented in Table 4. We set the state-of-the-art for two

of the three subsets of the TSS dataset: FG3DCar and

JODS. Although our weakly supervised training provides

an improvement over the base alignment network, ResNet-

101+CNNGeo, the gain is modest. We believe the reason

is a very different balancing of classes in this dataset com-

pared to our training. Recall our model is trained only once

on the PF-PASCAL dataset, and is then applied without any

further training on TSS and Caltech-101.

Qualitative results. Figures 4a, 4b and 5 show qual-

itative results on the Caltech-101, TSS and PF-PASCAL

datasets, respectively. Our method is able to align images

across prominent viewpoint changes, in the presence of sig-

nificant clutter, while simultaneously tolerating large intra-

class variations. For additional qualitative examples, please

refer to [26].

5. Conclusions

We have designed a network architecture and training

procedure for semantic image alignment inspired by the ro-

(a) Caltech-101

(b) TSS

Figure 4: Alignment examples on the Caltech-101 and TSS

datasets. Each row shows the (left) source and (middle) target

images, and (right) the automatic semantic alignment.

bust inlier scoring used in the widely successful RANSAC

fitting algorithm [7]. The architecture requires supervi-

sion only in the form of matching image pairs and sets the

new state-of-the-art on multiple standard semantic align-

ment benchmarks, even beating alignment methods that re-

quire geometric supervision at training time. However, han-

dling multiple objects and non-matching image pairs still

remains an open challenge. These results open-up the pos-

sibility of learning powerful correspondence networks from

large-scale datasets such as ImageNet.
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(a) Semantic alignment (b) Strongest inlier matches

Figure 5: Alignment examples on the PF-PASCAL dataset. Each row corresponds to one example. (a) shows the (right) automatic

semantic alignment of the (left) source and (middle) target images. (b) shows the strongest inlier feature matches.
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