
Alexey Tschudnowsky

End-User Development of Web-based Decision Support Systems

Doctoral Dissertations in Web Engineering and Web Science
Volume 4

Prof. Dr.-Ing. Martin Gaedke (Series Editor)

Alexey Tschudnowsky

End-User Development of Web-based Decision
Support Systems

Universitätsverlag Chemnitz
2017

Impressum

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen

Nationalbibliografie; detaillierte bibliografische Angaben sind im Internet über

http://dnb.d-nb.de abrufbar.

Titelgrafik: Alexey Tschudnowsky

Satz/Layout: Alexey Tschudnowsky

Technische Universität Chemnitz/Universitätsbibliothek

Universitätsverlag Chemnitz

09107 Chemnitz

http://www.tu-chemnitz.de/ub/univerlag

readbox unipress

in der readbox publishing GmbH

Am Hawerkamp 31

48155 Münster

http://unipress.readbox.net

ISSN 2199-5354 print - ISSN 2199-5362 online

ISBN 978-3-96100-014-2

http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-21982

Fakultät für Informatik
Distributed and Self-Organizing Systems Group

End-User Development of Web-based Decision

Support Systems

Dissertation

submitted in fulfillment of the

requirements for the degree of

Doktoringenieur (Dr.-Ing.)

by

Dipl.-Inf. Alexey Tschudnowsky
*December 11, 1985 in Dnepropetrowsk, Ukraine

February 3, 2017

Dissertation Committee:

Prof. Dr.-Ing. Martin Gaedke
Prof. Florian Daniel, PhD

Dipl.-Inf. Alexey Tschudnowsky

End-User Development of Web-based Decision Support Systems

Dissertation Committee:

Prof. Dr.-Ing. Martin Gaedke (Technische Universität Chemnitz, Germany),

Prof. Florian Daniel, PhD (Dipartimento di Elettronica, Informazione e

Bioingegneria, Politecnico di Milano, Italy)

Submitted on September 2, 2016

Defended on February 3, 2017

Technische Universität Chemnitz

Fakultät für Informatik

Distributed and Self-Organizing Systems Group

Straße der Nationen 62

09111 Chemnitz

Abstract

Recent innovations in the information technology and computing de-
vices magnified the volume of available information. Today’s decision
makers face the challenge of analyzing ever more data in shorter time-
frames. Demand for technology that can efficiently assist systematic data
analysis is constantly growing. Development of dedicated information
systems is, however, difficult both from organizational and technological
point of view. First, traditional software production is a complex and
time-consuming process that can not be performed under time-pressure.
Second, changing business conditions and evolving stakeholder needs
require solutions that can be efficiently tailored over time. Finally, costs
of custom software development are high, so that not all use cases and
scenarios can be covered sufficiently.

This thesis proposes a holistic approach to address the challenges above
and to enable efficient development of decision support software. The
main idea is to empower end users, i.e., decision makers, in constructing
their own case-specific solutions. The proposed approach called Web-
Composition for End-User Development consists of a systematic process
for development and evolution of decision support systems, assistance
mechanisms to address lack of programming skills by decision makers
and evolution facilities to enable cost- and time-efficient extensibility of
user-produced solutions. The thesis describes implementation of the de-
vised principles and ideas in the context of several open-source projects
and application scenarios. Applicability and usability of the concepts are
demonstrated in user studies with respective target groups. Based on
the outcome analysis the thesis concludes that end users can and should
actively participate in construction of decision support software.

vii

In loving memory of my father Roman Chudnovskyy
1951-2014

ix

Acknowledgments

This doctoral dissertation is the result of a six years research and would
not have been possible without the support and advice of many people.
In the following I would like to express my sincere thank to all of
them.

First of all, i thank my supervisor Prof. Dr.-Ing. Martin Gaedke for his
caring guidance and continuous support throughout the thesis. In a
friendly but demanding atmosphere Prof. Gaedke helped me to develop
skills required to conduct scientific research. He encouraged and guided
me, his knowledgeable feedback and recommendations contributed
to the success of numerous research activities. I am also grateful to
my second supervisor Prof. Florian Daniel, PhD for his extensive and
instructive feedback on the thesis. Publications and research of Prof.
Daniel inspired parts of my work and provided me with insights on high
quality scientific work.

I sincerely thank my wife Olga, my parents Nina and Roman, my brother
Pawel for their steadfast faith in my success. This dissertation would be
impossible without their encouragement, patience and support through-
out all these years.

I thank all former colleagues and friends at VSR – Stefan Wild, Ralph
Sontag, Dr.-Ing. Jörg Anders, Michael Krug, Sebastian Heil, Fabian
Wiedemann, Hendrik Gebhardt, Frank Weinhold and Bahareh Zarei
– for the friendly atmosphere, joint publications, amusing discussions
and continuous knowledge exchange during my PhD study. I am also

xi

grateful to Dr.-Ing. Matthias Heinrich and Dr.-Ing. Stefan Pietschmann
for the recommendations and inspirations they provided me with during
our joint research activities.

Finally, I would like to thank to the many students whom I worked
with in these six years – Sebastian Müller, Christian Fischer, Philipp
Schmiedel, Michael Hertel, Masha Didkovska, Martin Sommer and
many others. Their dedicated work yielded several joint publications
and significantly contributed to the results of this thesis.

xii

Publications

The thesis builds upon materials of the following publications1.

1. Chudnovskyy, Olexiy and Martin Gaedke (2010). “Development
of Web 2.0 Applications using WebComposition / Data Grid Ser-
vice”. In: The Second International Conferences on Advanced Service

Computing (Service Computation 2010). Ed. by Ali Beklen, Jorge
Ejarque, and Wolfgang Gentzsch. Best Paper Award. Lisbon, Por-
tugal: IARIA, pp. 55–61.

2. Chudnovskyy, Olexiy, Sebastian Brandt, and Martin Gaedke (2011).
“Integrating Human-services Using WebComposition/UIX”. In: Pro-

ceedings of the Workshop on Posters and Demos Track. PDT ’11.
Lisbon, Portugal: ACM, 21:1–21:2.

3. Chudnovskyy, Olexiy, Hendrik Gebhardt, Frank Weinhold, and
Martin Gaedke (2011). “Business Process Integration using Telco
Mashups”. In: Procedia Computer Science 5. The 8th International
Conference on Mobile Web Information Systems (MobiWIS 2011),
pp. 677–680.

1In November 2013 the name of the author changed from “Chudnovskyy, Olexiy” to
“Tschudnowsky, Alexey”

xiii

4. Chudnovskyy, Olexiy, Frank Weinhold, Hendrik Gebhardt, and
Martin Gaedke (2011). “Integration of Telco Services into Enter-
prise Mashup Applications.” In: ICWE Workshops. Ed. by Andreas
Harth and Nora Koch. Vol. 7059. Lecture Notes in Computer Sci-
ence. Springer, pp. 37–48.

5. Weinhold, Frank, Olexiy Chudnovskyy, Hendrik Gebhardt, and
Martin Gaedke (2011). “Geschäftsprozessintegration auf Basis
von Telco-Mashups”. In: INFORMATIK 2011. Ed. by Pepper Heiß
and Schneider Schlingloff. Berlin, Germany: Gesellschaft für Infor-
matik e.V. (GI), p. 376.

6. Chudnovskyy, Olexiy and Martin Gaedke (2012). “End-User-Deve-
lopment and Evolution of Web Applications: The WebComposition
EUD Approach”. In: Current Trends in Web Engineering. Ed. by
Michael Grossniklaus and Manuel Wimmer. Vol. 7703. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, pp. 221–
226.

7. Chudnovskyy, Olexiy, Sebastian Müller, and Martin Gaedke (2012).
“Extending Web Standards-Based Widgets towards Inter-Widget
Communication”. In: Current Trends in Web Engineering. Ed. by
Michael Grossniklaus and Manuel Wimmer. Vol. 7703. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, pp. 93–
96.

8. Chudnovskyy, Olexiy, Tobias Nestler, et al. (2012). “End-User-
Oriented Telco Mashups: The OMELETTE Approach”. In: Proceed-

ings of the 21st International Conference Companion on World Wide

Web. WWW ’12 Companion. New York: ACM, pp. 235–238.

9. Chudnovskyy, Olexiy, Stefan Wild, Hendrik Gebhardt, and Martin
Gaedke (2012). “Data Portability Using WebComposition/Data
Grid Service”. In: International Journal on Advances in Internet

Technology 4.3 & 4, pp. 123–132.

xiv

10. Chudnovskyy, Olexiy, Christian Fischer, Martin Gaedke, and Stefan
Pietschmann (2013). “Inter-Widget Communication by Demon-
stration in User Interface Mashups”. In: Web Engineering. Ed. by
Florian Daniel, Peter Dolog, and Qing Li. Vol. 7977. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, pp. 502–505.

11. Chudnovskyy, Olexiy, Stefan Pietschmann, Matthias Niederhausen,
Vadim Chepegin, et al. (2013). “Awareness and Control for Inter-
Widget Communication: Challenges and Solutions”. In: Web Engi-

neering. Ed. by Florian Daniel, Peter Dolog, and Qing Li. Vol. 7977.
Lecture Notes in Computer Science. Springer Berlin Heidelberg,
pp. 114–122.

12. Roy Chowdhury, Soudip, Olexiy Chudnovskyy, Matthias Nieder-
hausen, Stefan Pietschmann, et al. (2013). “Complementary As-
sistance Mechanisms for End User Mashup Composition”. In: Pro-

ceedings of the 22nd International Conference on World Wide Web

Companion. WWW ’13 Companion. Rio de Janeiro, Brazil: Interna-
tional World Wide Web Conferences Steering Committee, pp. 269–
272.

13. Wild, Stefan, Olexiy Chudnovskyy, Sebastian Heil, and Martin
Gaedke (2013a). “Customized Views on Profiles in WebID-Based
Distributed Social Networks”. In: Web Engineering. Ed. by Florian
Daniel, Peter Dolog, and Qing Li. Vol. 7977. Lecture Notes in
Computer Science. Heidelberg: Springer, pp. 498–501.

14. Wild, Stefan, Olexiy Chudnovskyy, Sebastian Heil, and Martin
Gaedke (2013b). “Protecting User Profile Data in WebID-Based So-
cial Networks Through Fine-Grained Filtering”. In: Current Trends

in Web Engineering. Ed. by Quan Z. Sheng and Jesper Kjeldskov.
Vol. 8295. Lecture Notes in Computer Science. Springer, pp. 269–
280.

15. Tschudnowsky, Alexey, Michael Hertel, Fabian Wiedemann, and
Martin Gaedke (2014). “Towards Real-time Collaboration in User
Interface Mashups”. In: ICE-B 2014 - Proceedings of the 11th In-

xv

ternational Conference on e-Business. Vienna, Austria, pp. 193–
200.

16. Tschudnowsky, Alexey, Stefan Pietschmann, Matthias Niederha-
usen, and Martin Gaedke (2014). “Towards Awareness and Con-
trol in Choreographed User Interface Mashups”. In: Proceedings of

the Companion Publication of the 23rd International Conference on

World Wide Web Companion. WWW Companion ’14. Seoul, Korea:
International World Wide Web Conferences Steering Committee,
pp. 389–390.

17. Tschudnowsky, Alexey, Stefan Pietschmann, Matthias Niederha-
usen, Michael Hertel, and Martin Gaedke (2014). “From Chore-
ographed to Hybrid User Interface Mashups: A Generic Transfor-
mation Approach”. In: Web Engineering. Ed. by Sven Casteleyn,
Gustavo Rossi, and Marco Winckler. Vol. 8541. Lecture Notes in
Computer Science. Springer International Publishing, pp. 145–
162.

18. Hertel, Michael, Alexey Tschudnowsky, and Martin Gaedke (2015).
“Conflict Resolution in Collaborative User Interface Mashups”. In:
Engineering the Web in the Big Data Era. Ed. by Philipp Cimi-
ano, Flavius Frasincar, Geert-Jan Houben, and Daniel Schwabe.
Vol. 9114. Lecture Notes in Computer Science. Springer Interna-
tional Publishing, pp. 659–662.

19. Tschudnowsky, Alexey and Martin Gaedke (2015). “Loop Discov-
ery in Publish-Subscribe-Based User Interface Mashups”. In: Engi-

neering the Web in the Big Data Era. Ed. by Philipp Cimiano, Flavius
Frasincar, Geert-Jan Houben, and Daniel Schwabe. Vol. 9114. Lec-
ture Notes in Computer Science. Springer International Publishing,
pp. 683–686.

20. Wild, Stefan, Fabian Wiedemann, Sebastian Heil, Alexey Tschud-
nowsky, and Martin Gaedke (2015). “ProProtect3: An Approach
for Protecting User Profile Data from Disclosure, Tampering, and
Improper Use in the Context of WebID”. In: Transactions on Large-

xvi

Scale Data- and Knowledge-Centered Systems. Lecture Notes in
Computer Science 8990: Special Issue on Big Data and Open Data

XIX. Ed. by Abdelkader Hameurlain, Josef Küng, Roland Wagner,
Devis Bianchini, et al., pp. 87–127.

xvii

Contents

1 Introduction 1

1.1 Decision Making under Time Pressure 1
1.2 Motivation . 2
1.3 Problem Statement . 3
1.4 Research Objectives . 4
1.5 Research Contributions 4
1.6 Research Method . 5
1.7 Scope of the Thesis . 7
1.8 Structure of the Thesis 8
1.9 Summary . 8

2 Requirements Analysis 9

2.1 Scenarios . 9
2.1.1 Emergency Response 9
2.1.2 Ad-hoc Reporting 11
2.1.3 Accommodation Search 12

2.2 Stakeholder . 14
2.3 Requirements . 15

2.3.1 Development Process 15
2.3.2 Tool Assistance 17

2.4 Summary . 20

3 State of The Art 23

3.1 Development Processes 23
3.1.1 End-User Development 24

xix

3.1.2 Component-Based Development 27

3.1.3 Model-Driven Development 35

3.2 Tool Assistance . 40

3.2.1 Web Content Management Systems 41

3.2.2 Dashboards and Ad-Hoc Reporting Tools 44

3.2.3 Composition Tools 49

3.3 Discussion . 59

3.4 Summary . 61

4 WebComposition/EUD Approach 63

4.1 Overview . 63

4.2 Principles . 65

4.3 Formalisms . 67

4.3.1 Component Model 67

4.3.2 Composition Model 71

4.4 Process Model . 76

4.5 Methods . 81

4.6 Tools . 82

4.6.1 Composition Platform 83

4.6.2 Development Assistance 83

4.6.3 Evolution Assistance 84

4.7 Summary . 86

5 Composition Platform 89

5.1 Research Questions . 89

5.2 Requirements . 90

5.3 Conceptual Architecture 91

5.4 Implementation . 93

5.4.1 WebComposition/EUD Components 93

5.4.2 WebComposition/EUD Composition 98

5.4.3 Run-Time Environment 101

5.4.4 Live Composition Editor 104

5.5 Evaluation . 110

5.5.1 Awareness and Control Facilities 111

5.5.2 Transformation Editor 115

5.6 Summary . 117

xx

6 Development Assistance 119

6.1 Research Questions . 119

6.2 Automatic Discovery and Composition Engine 120

6.2.1 Motivation Scenario 121

6.2.2 Requirements . 122

6.2.3 Automatic Discovery and Composition 122

6.2.4 Related Work . 128

6.2.5 Evaluation . 129

6.3 Loop Detection Facilities 133

6.3.1 Motivation Scenario 133

6.3.2 Requirements . 134

6.3.3 Loop Discovery 135

6.3.4 Related Work . 141

6.3.5 Evaluation . 142

6.4 Double Input Detector 143

6.4.1 Motivation Scenario 144

6.4.2 Requirements . 144

6.4.3 Automation of User Input 145

6.4.4 Related Work . 151

6.4.5 Evaluation . 152

6.5 Summary . 155

7 Evolution Assistance 157

7.1 Research Questions . 158

7.2 WebComposition/EUD Component Converter 158

7.2.1 Motivation Scenario 159

7.2.2 Requirements . 160

7.2.3 Conversion Process 160

7.2.4 Related Work . 166

7.2.5 Evaluation . 167

7.3 WebComposition/EUD ICCI Extender 169

7.3.1 Motivation Scenario 170

7.3.2 Requirements . 170

7.3.3 Semi-automatic ICCI Extension 171

7.3.4 Related Work . 177

7.3.5 Evaluation . 178

7.4 WebComposition/EUD Artifact Library 184

xxi

7.4.1 Motivation Scenario 185
7.4.2 Requirements . 185
7.4.3 Artifact Access and Management 186
7.4.4 Related Work . 196
7.4.5 Evaluation . 197

7.5 Summary . 199

8 Overall Evaluation 201
8.1 Requirements Evaluation 201

8.1.1 Development Process 201
8.1.2 Development Toolkit 203

8.2 Application Scenarios . 207
8.2.1 Public Information Screen 207
8.2.2 Collaborative Decision Making 208
8.2.3 Telecommunication Dashboards 210

8.3 Summary . 212

9 Conclusions and Outlook 213
9.1 Summary of the Thesis 213
9.2 Lessons Learned . 215
9.3 Summary of Contributions 216
9.4 Ongoing and Future Work 217

9.4.1 Toolkit Improvements 218
9.4.2 Open Questions 220

A Schemes 249
A.1 XSD schema of the proposed W3C configuration docu-

ment extension . 249
A.2 XSD schema of the proposed OMDL extension 251

B Evaluation Materials 255
B.1 Awareness and Control Facilities 255

B.1.1 Questionnaire . 255
B.1.2 Results . 258

B.2 Transformation Editor 259
B.2.1 Questionnaire . 259
B.2.2 Results . 261

B.3 Automatic Discovery and Composition Engine 262

xxii

B.3.1 Questionnaire . 262
B.3.2 Results . 264

B.4 WebComposition/EUD ICCI Extender 265
B.4.1 Questionnaire . 265
B.4.2 Results . 268

B.5 Performance Evaluation of the WebComposition/EUD Ar-
tifact Library . 269

Figures 271

Tables 275

Listings 277

xxiii

Abbreviations

ADCE Automatic Discovery and Composition Engine

API Application Programming Interface

BI Business Intelligence

BPEL Business Process Execution Language

CASE Computer-aided Software Engineering

CDB Component-Based Development

CBSE Component-Based Software Engineering

CBWE Component-Based Web Engineering

COM Component Object Model

CRM Customer Relationship Management

CRUD Create, Read, Update, Delete

CRUDS Create, Read, Update, Delete, Search

xxv

CSS Cascading Style Sheets

DGS Data Grid Service

DID Double Input Detector

DOM Document Object Model

DSL Domain Specific Language

DSS Decision Support System

EIS Executive Information System

EJB Enterprise Java Beans

ERP Enterprise Resource Planning

EUD End-User Development

EUSE End-User Software Engineering

GUI Graphical User Interface

HCI Human-Computer Interaction

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

ICC Inter-Component Communication

ICCI Inter-Component Communication Interface

IRI Internationalized Resource Identifier

IT Information Technology

xxvi

IWC Inter-Widget Communication

JSON Javascript Object Notation

KPI Key Performance Indicator

LDF Loop Detection Facilities

MCDM Multiple Criteria Decision Making

MDD Model-Driven Development

MIS Management Information Systems

MVC Model-View-Controller

NLP Natural Language Programming

OLAP Online Analytical Processing

OMELETTE Open Mashup Enterprise service platform for LinkEd data
in The TElco domain

OMDL Open Mashup Description Language

PBD Programming-by-Demonstration

PIM Platform Independent Model

PSM Platform Specific Model

REST Representational State Transfer

RDF Resource Description Framework

ROA Resource-Oriented Architecture

xxvii

ROI Return of Investment

RSS Really Simple Syndication

SHDM Semantic Hypermedia Design Method

SOA Service-Oriented Architecture

SPARQL SPARQL Protocol And RDF Query Language

UI User Interface

UML Uniform Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

UWA Universal Web App

UWE UML-based Web Engineering

V&V Verification and Validation

W3C World Wide Web Consortium

WAC Web Access Control

WADL Web Application Description Language

WebComposition/EUD-AL WebComposition/EUD Artifact Library

WebComposition/EUD-CC WebComposition/EUD Component Converter

WebComposition/EUD-IE WebComposition/EUD ICCI Extender

WebComposition/EUD WebComposition for End-User Development

xxviii

WCMS Web Content Management Systems

WebML Web Modeling Language

WebRE Web Requirements Engineering

WebSA Web Software Architecture

WPF Windows Presentation Foundation

WSDL Web Service Description Language

WSA Web Services Architecture

WYSIWYG What You See Is What You Get

XML Extensible Markup Language

XSD XML Schema Definition

XSLT XSL Transformations

xxix

1Introduction

Today’s competitive economy requires decision makers to analyze higher
volume of data in ever shorter periods of time. In 2005 data needed
for decision making came from 6-10 sources (Hurwitz et al., 2005).
Since the spread of Social Media and its extensive use for decision
making the number of relevant data sources increased significantly
(Zeng et al., 2010). At the same time decision makers are given ever
less time for information analysis. Shortened product delivery times and
accelerated internal processes constantly put employees under high time
pressure (Trinkfass, 1997). Informed decision making becomes more
challenging and less systematic (Isenberg, 1984). To avoid negative
effects on performance of decision makers new methods and assisting
technologies are required (Forrester Research, 2015).

1.1 Decision Making under Time

Pressure

Decision making can be defined as a “study of identifying and choosing
alternatives based on the goals, objectives, desires, values, and pref-
erences of decision makers” (Harris, 2012). Decision making usually
results in selection of course of action among several alternative options
or scenarios. It is a reasoning or emotional process, rational or irrational,
can be based on explicit or tacit assumptions. In contrast to unconscious

1

decision making, which is often acceptable in everyday life (Nightingale,
2007), science, industry and politics demand systematic, transparent
and justifiable methods (Baker et al., 2001).

As shown by studies systematic decision making is difficult to apply
under time-pressure (J. R. Busemeyer and A. Diederich, 2002; Isen-
berg, 1984; A. Diederich and J. R. Busemeyer, 2003). Time-pressuring
situations are characterized by strict deadlines, limited resources and
information overload that distort otherwise systematic and objective
decision making (Boundless, 2013). Available information and alter-
native options are analyzed superficially, which often results in lower
quality of decisions (Maule and Andrade, 1997). Under time-pressure
individuals tend to rely on heuristics and rules of thumb instead of on
systematic and thorough analysis methods (Gigerenzer and Todd, 2000;
Boussemart et al., 2009).

1.2 Motivation

To enable systematic decision making under time pressure effective
and efficient information systems are required (Hwang, 1994). Soft-
ware industry produced many solutions to address different scenarios
and activities (Hedgebeth, 2007). So called Decision Support Sys-
tems (DSSs) provide “communication technologies, data, documents,
knowledge and/or models to identify and solve problems, complete deci-
sion process tasks, and make decisions” (D. J. Power, 2002). Business In-
telligence (BI), data warehousing, Online Analytical Processing (OLAP)
software, expert systems and Management Information Systems (MIS)
(also known as Dashboards) are widely used systems to improve quality
of decisions and to optimize operational efficiency (Kielstra et al., 2007;
Brynjolfsson et al., 2011).

The large number of different systems highlights demand for tech-
nological assistance in decision making. However, time-pressuring
situations demand specific solutions tailored towards unique require-
ments (Hwang, 1994). Although existing systems can be customized

2 Chapter 1 Introduction

and extended towards new use cases, the process of customization itself
is a time-consuming and error-prone activity (Kumar, 2013). Usually
it is done by professional software developers that have corresponding
skills and education. Due to delays and produced costs delegation of
development activities is often not feasible. Ability of systems to be

customized or developed directly by decision makers becomes crucial and

often the only option to obtain an appropriate software in the emerged

situation (D. J. Power, 2002).

1.3 Problem Statement

The central problem addressed by this thesis is the high amount of work,

time and programming skills required for development of case-specific DSSs.
The latter are software solutions that provide data and functionalities
required for situational decision making under time-pressure. The main
effect of the problem is low performance of decision makers under time-
pressure due to absence of adequate software assistance. The central
problem is mainly caused by the following three subproblems:

Delays and Expenses Due to Delegation of Development Activities
Software development requires programming skills and education
that decision makers usually do not have (Repenning and Ioan-
nidou, 2006). As a result, actual product development is usually
delegated from decision makers (end users) to software vendors
and, thus, becomes costly. The delegation requires additional
steps such as domain exploration, requirements analysis, software
validation etc. that delay the development process. Potential com-
munication problems between customer and team can make it
even longer and more expensive (Gachet and Haettenschwiler,
2006).

Lack of Methodological and Technological Assistance Current meth-
ods and tools for software development address time-pressuring
situations only insufficiently (Hwang, 1994). Under tight time
constraints it is challenging to perform all development activities

1.3 Problem Statement 3

to their full extent. The latter, however, can lead to poor quality of
the end product. Little research has been performed on systematic
software development under time-pressure (Austin, 2001).

Poor Maintainability of Software Developed Under Time-Pressure
Developing a software that can be continuously tailored towards
new use cases is a difficult task. Design of a maintainable and
evolution-aware architecture becomes even more difficult if per-
formed under time-pressure (Lehman and Ramil, 2003). Improp-
erly or inefficiently designed software causes high expenses during
its whole life-cycle (Madhavji et al., 2006).

1.4 Research Objectives

The goal of this thesis is to enable time- and cost-efficient development of

case-specific DSSs under time-pressure. In achieving this goal the thesis
addresses three main objectives:

Objective1. Enable end users to develop case-specific DSSs with mini-
mal to no involvement of professional software developers.

Objective2. Provide methodological and technological assistance to
perform software development under time pressure.

Objective3. Enable time- and cost-efficient evolution of software solu-
tions that were developed under time-pressure.

1.5 Research Contributions

The main contribution of this thesis is a methodology for time- and

cost-efficient development of case-specific DSSs that can be applied by
non-programmers under time-pressure. The thesis results in a number
of developments to address the objectives stated above:

4 Chapter 1 Introduction

Enabled development of DSSs by end users Based on an analysis of
existing state-of-the-art technologies the thesis defines a UI-centric
composition-based approach for development of DSSs directly by
decision makers (Chapter 4). The approach consists of quality-
ensuring principles, formalisms, methods, tools and a process
model. Furthermore, it provides a platform (cf. Chapter 5) that
implements the proposed concepts and enables their evaluation
in user studies.

Accelerated development process The thesis develops three end-user
assistance mechanisms to speed-up construction of DSSs in time-
pressuring situations (cf. Chapter 6). First, a dialog-based expert
system is devised, whose goal is to automate discovery and com-
position of partial solutions based on high-level business goals
and, thus, to accelerate the development process. Second, algo-
rithms for detection of faulty configurations are developed that
improve system reliability while construction under time-pressure.
Finally, the Double Input Detector facility speeds up user inputs
by applying automatically learned interaction patterns.

Costs-optimized evolution of end-user-developed software The the-
sis explores methods for efficient maintenance and evolution of
end-user-produced DSSs (cf. Chapter 7). An algorithm for auto-
matic inclusion of new data sources and functionalities based on
proprietary software components is devised. Assistance mecha-
nisms to enrich existing functionalities with more flexible integra-
tion capabilities are developed. Finally, a reusable repository for
efficient management, sharing and discovery of software artifacts
is provided.

1.6 Research Method

The research has been conducted based on the following approach:

1.6 Research Method 5

• A literature study has been performed with the goal of identifying
obstacles and their causes for software development under time-
pressure.

• Thesis objectives have been formulated with focus on empower-
ing decision makers to quickly create DSSs with minimal to no
involvement of professional developers.

• Several scenarios highlighting demand for assisted development
of DSSs by decision makers have been identified and stakeholder
analysis has been performed. The two enabled elicitation of re-
quirements on the appropriate end-user involvement methodology
and related technological assistance.

• Current state of the art in Software- and Web Engineering as well
as End-User Development (EUD) has been analyzed and fulfill-
ment of stated requirements by existing technology evaluated.
Non-addressed challenges to be considered further in the thesis
have been identified.

• Based on the stated requirements and identified deficiencies in the
state of the art a theoretical foundation for end-user-oriented DSS
development platform and accompanying assistance mechanisms
has been designed.

• Prototypes of the platform and of assistance mechanisms were
implemented. Their purpose was 1) to proof validity of the design
and 2) to enable collection of data required for overall approach
evaluation.

• Achievement of the stated objectives and quality / efficiency of
the developed prototypes were evaluated within user studies con-
ducted in form of laboratory experiments.

• Research results were disseminated in form of scientific publi-
cations, presentations in workshops and conferences as well as
contributions to communities of utilized open source projects.

6 Chapter 1 Introduction

1.7 Scope of the Thesis

This thesis is mainly settled on the area of Web Engineering with several
cross-cutting concerns from Human-Computer Interaction (HCI) and
EUD. The following research questions were not considered in its
scope:

• The thesis doesn’t consider systems that support decision making
by manipulating simulation models, performing document man-
agement, enabling communication and collaboration or providing
expert capabilities. It rather focuses on solutions that enable effi-
cient access to data and functionalities required for case-specific
decision making.

• Usability and User Interface (UI) design are important aspects for
acceptance and success of software. This thesis partially addresses
this topic by developing mechanisms for aggregation and manipu-
lation of components by end users. However, the responsibility of
creating appealing and responsive UI design, corporate or uniform
Look-and-Feel lies on component developers.

• Development of Web-based DSSs that make use of several con-
nected devices, enables new usage scenarios and provides novel
user experience. Although this thesis focuses on one-screen DSSs,
its findings have been partially reused and extended towards multi-
screen scenarios in a German national research project Chrooma+
(Krug et al., 2013).

• Automatic reconfiguration of user-developed solutions depending
on new context or changed requirements has been addressed by
other research projects such as CRUISE (Pietschmann, Radeck,
et al., 2011). This thesis provides extension points to implement
adaptivity based on components and composition models.

1.7 Scope of the Thesis 7

1.8 Structure of the Thesis

The rest of the thesis is organized as follows. Chapter 2 introduces
motivation scenarios and key stakeholders, affected by the central prob-
lem. Based on the scenarios and characteristics of the stakeholders,
requirements on an appropriate DSS development method are elicited.
Chapter 3 reviews state of the art of existing technologies that have
a goal to enable time- and cost-efficient development of software so-
lutions. Chapter 4 presents a conceptual view on the proposed DSS
development and evolution method with focus on strong end-user in-
volvement. The subproblems described in Section 1.3 are addressed in
the subsequent chapters. Chapter 5 introduces the composition platform
that enables non-technical users to build and configure DSS out of a
library of reusable components. Chapter 6 presents assistance mech-
anisms to address the time-pressure constraint and to speed-up DSS
construction process. Afterwards, in Chapter 7 evolution assistance
mechanisms are described. Overall approach evaluation can be found
in Section Chapter 8. The thesis and its contributions are summarized
in Section Chapter 9, which also identifies non-addressed challenges
and points out further research directions.

1.9 Summary

This chapter introduced the context of the thesis and motivated research
on systematic DSS development under time pressure. Challenges in
enabling non-technical end users to obtain case-specific information
system under time-pressure have been identified. The chapter presented
objectives and contributions of the thesis. Research method and scope
were given. The following chapter explores the problem domain by
identifying its key stakeholders and eliciting requirements on a quality-
ensuring development approach.

8 Chapter 1 Introduction

2Requirements
Analysis

This chapter describes requirements on an appropriate solution of the
central problem. First, guiding scenarios from three different domains
are introduced. Then, involved stakeholders are identified. Finally,
requirements on the development process and assisting technologies
are elicited.

2.1 Scenarios

The following three scenarios highlight importance of ability to quickly
develop a case-specific DSS in time-pressuring situations.

2.1.1 Emergency Response

One of the responsibilities of emergency response agencies is to coor-
dinate rescue activities in case of hurricanes, fire, flood, earthquakes
or nature catastrophes. Fast and professional reaction in response to
emergency situations is crucial to minimize human and material losses.
To initiate appropriate rescue activities a profound analysis of the con-
crete emergency case should be conducted. Scale of damages, course

9

of events but also available rescue resources should be analyzed. The
corresponding data has to be collected quickly and rescue activities
initiated immediately (Bakonyi et al., 2008).

A concrete example of an emergency situation is the flood of Dresden
in Saxony, Germany in 2002. For coordination teams it was crucial to
quickly get an overview of water levels in different geographical regions
of the affected area, identify objects at risk, resident vulnerability etc.
For this purpose plenty of information sources including social media
reports had to be analyzed. Reliable and efficient communication with
police, fire and ambulance services was required to coordinate rescue
activities.

Figure 2.1.: FireView Dashboard1: A Software Solution for Fire and

Emergency Response Agencies

Various systems exist for expected and well-understood scenarios such
as fire response (cf. Figure 2.1). However, as indicated by (Bakonyi
et al., 2008), end-user requirements on flood management systems vary
“according to their responsibilities and technical capacity”. Members of
coordination team require customized tools that address their current in-
formation and communication needs. While the flood situation changes,
team members might need to access new and unforeseen informations

1http://www.theomegagroup.com/fire/omega_dashboard_fire.html, Retrieved:
5.7.2015

10 Chapter 2 Requirements Analysis

sources such as user-generated content or streams from specific web
cameras. The flood management system in use might lack the required
functionalities. Extending it towards new requirements is, however,
a complex and time-consuming process that is usually performed by
professional programmers. Team members do not have required skills
and time to appropriately extend the software during an emergency
situation. Lack of a possibility to perform fast customizations and exten-
sions towards unexpected situations results in decreased performance
of the team, longer response times and less efficient rescue process.

2.1.2 Ad-hoc Reporting

Ad-hoc reporting is a BI process, in that data required for answering
business-related questions is collected and visualized on demand, i.e.,
depending on concrete situation or requirements. In contrast to software
solutions or reports configured by professional software developers, ad-
hoc reporting is usually performed by users without technical skills
– managers, executives, administrative stuff etc. The goal of ad-hoc
reporting is usually twofold: First, business users should be empowered
to collect and analyze data for a wide range of business questions and
second, company IT should be unburdened from tedious and constantly
changing reporting tasks.

Consider a management meeting in a company, whose business is pro-
duction and selling of winter sport equipment across Europe. The goal
of the meeting is to evaluate Key Performance Indicators (KPIs) of the
most recent quarter and to adjust the marketing strategy correspond-
ingly. Many management information systems enable collection and
presentation of data based on templates and data sources as they were
foreseen by software providers. Figure 2.2 shows an example Web
application for aggregation and evaluation of company sales data.

However, questions raised in the meeting can be very different and
unexpected. One might be interested in feedback about newly intro-

2http://www.jinfonet.com/solutions/dashboard, Retrieved: 4.7.2015

2.1 Scenarios 11

Figure 2.2.: JReport Dashboards2: A Web Application for Visualization of KPIs

duced products in social media or in press. One might want to compare
product characteristics with those of competitors. Finally, one might
need to get in touch with people being currently not in the meeting and
to discuss the retrieved data with them.

Extending an existing system towards new use cases is a time-consuming
task that requires time and expertise in programming. Traditional soft-
ware development methods are too complex to be applied during the
management meeting. Furthermore, it can be costly and not feasible
to change the software for every new question raised. Without ade-
quate software support, however, quality of decisions made and overall
efficiency of the meeting significantly decrease (Sauter, 2014).

2.1.3 Accommodation Search

A total of 9,39 million Germans changed their place of living in 20133.
Choice of a new flat or a new house is usually driven by a number of
requirements on the accommodation itself and on its neighborhood. To

3Source: ummelden.de, http://www.ummelden.de/umziehen-in-deutschland-

daten-fakten-2014.html, Retrieved: 4.7.2015

12 Chapter 2 Requirements Analysis

find the “best match” one usually collects available data first, compares
and analyzes best-suited candidates, shares the findings with friends
or colleagues and gets in touch with the landlord. Available software
assistance significantly defines how time-consuming the evaluation
process will be.

For example, consider a situation, in which Alex, a Web designer from
Dresden, finds a new job position in Berlin and moves to the new city. A
real estate agent offered him several alternatives and Alex has to decide
fast, as the demand for flats in Berlin is strong. Alex opens a real state
search engine and compares the different offers (cf. Figure 2.3). It
is important for him to live in a green area with little crime, to have
sufficient shopping possibilities and to have a good public transport
connection to the new office.

Figure 2.3.: Immobilienscout244: A Web Application for Real Estate

Management

4http://www.immobilienscout24.de, Retrieved: 4.7.2015

2.1 Scenarios 13

Because the search engine doesn’t provide all the information he re-
quires, Alex visits additionally a picture gallery of Berlin’s streets, the
homepage of public transport agency and Web pages with statistical
data about pollution and crime in the city. The Web applications require
him to input location data several times, aggregate results manually
and switch back and forth between different contexts. If Alex wants to
discuss his findings with friends or family, he has to start yet another
application such as voice chat or email client and copy-paste interesting
information into it.

The example shows that manual aggregation and presentation of data
from heterogeneous sources is time-consuming and error-prone. End

users demand software solutions that would help to answer complex search

queries with as little manual actions as possible (Ceri, 2009). However,
in many cases users do not have access to dedicated solutions (or such
solutions do not exist yet). To address lack of specific solutions, it is
desirable to enable users to quickly develop required solutions on their
own.

2.2 Stakeholder

Based on the above scenarios two main stakeholder groups can be
identified that are affected by the central problem:

Decision Makers (End Users) This group comprises department man-
agers, knowledge workers, administrative stuff but also individuals
from a variety of domains that apply structured and systematic
decision making processes to solve situational problems, perform
strategic planning or coordinate group activities (Hodgkinson and
Starbuck, 2008). Decision makers are domain experts from all
age groups that possess knowledge, experience and skills in the
area of their specialization, e.g., medicine, project management,
accounting, emergency response, commerce etc. They are familiar
with operation of office software, Web browsers and PC / mobile
operating systems. However, being non-programmers, decision

14 Chapter 2 Requirements Analysis

makers usually lack skills for algorithmic thinking, understanding
of source code or technical software models, dealing with data
structures and representations.

Software Providers This group comprises software companies, individ-
ual developers and IT support staff, who are in charge of provi-
sioning and maintenance of organizational software infrastructure
as well as providing technical support. Usually software providers
have skills and education in programming and administration,
apply systematic processes and tools for software development
(Tockey, 1999). Software providers often lack domain knowledge
required for deep understanding of customer problems. Com-
munication and documentation is therefore coined by precise
models and abstractions that aim at better understanding of prob-
lem domain and minimizing ambiguity (often caused by natural
language).

2.3 Requirements

To enable time-efficient development of DSS by non-programmers two
groups of requirements have been identified: the first group focuses
on the development process and the second one on enabling tools and
assisting technologies. The requirements are elicited based on the thesis
objectives, the presented scenarios and stakeholder characteristics. To
assess the degree of requirement satisfaction a scale with 3 values
has been introduced (fully satisfied, partially satisfied, not satisfied).
Semantics of the values in context of each requirement depends on the
objectives of the thesis.

2.3.1 Development Process

The introduced scenarios highlighted situations that demand situational
software solutions, but do not let much time for systematic design,
programming or quality preservation activities. Thus, an enabling deve-

2.3 Requirements 15

lopment process should involve decision makers as much as possible (to
preserve domain-expertise and avoid time-consuming communication),
be concise (to address the time-constraint) and build upon existing tools
and building blocks (to increase quality and maintainability of resulting
solutions). These considerations lead to the following requirements on
the development process:

D1: End-User Involvement: Decision makers should actively par-
ticipate in development and evolution of DSSs. As discussed
in Section 1.2 shift of these activities towards end users would
potentially result in a number of advantages both from opera-
tional but also economical point of view. The challenge is, how-
ever, to identify activities that can and should be performed by
non-professionals without impacting security, reliability or per-
formance of the whole IT infrastructure (Ye and Gerhard Fischer,
2007). It is desirable to involve end users in as much develop-
ment activities as possible, so that fully-fledged software solutions
fitting situational needs of users can be produced.

The satisfaction criterion of this requirement is the permanent
involvement of end users into the development process that lets
them develop, maintain and extend solutions on their own without
any help. The requirement is partially fulfilled, if end users are
strongly involved into development process but some activities
(e.g., maintenance and evolution) are assigned to professionals.
Finally, the requirement is considered to be not satisfied, if end
users act solely as sources of requirements and all development
and evolution activities are carried out by professional developers.

D2: Process Conciseness: In time-pressuring situations it is impor-
tant to obtain a DSS as fast as possible and, thus, to leave more
time for analysis and evaluation of decision making-related data.
Traditionally, software development is a complex and long pro-
cess that consists of many steps: system specification, design and
implementation, verification, deployment (cf. Waterfall (Royce,
1987) or Spiral Models (Boehm, 1988)). Also agile processes,
which aim at iterative and continuous delivery of software, foresee

16 Chapter 2 Requirements Analysis

time-consuming planning, testing and review activities (Martin,
2002). To produce software under time-pressure, it is desired to
devise a process that would significantly shorten, simplify and
even skip some of traditional steps without decreasing quality of
the outcomes (Fitzgerald and Hartnett, 2005).

The satisfaction criterion for this requirement is a concise develop-
ment process, which means that time-consuming steps are skipped
or performed within separated processes before the actual deve-
lopment starts. The requirement is partially satisfied, if steps are
present but are simplified or automated using dedicated software
tools. Finally, the requirement is not satisfied, if all phases of
traditional development process are present.

D3: Reuse-Orientation: Development of solutions from scratch is usu-
ally a cost-intensive and time-consuming process. On the other
side, industries and organizations have already invested financial,
material and human resources into existing software infrastruc-
ture and expect appropriate Return of Investment (ROI) (Lim,
1994). Despite of financial savings, reuse decreases time required
to produce a product as well as its quality. The advantages of
reuse are, however, difficult to achieve if it is not performed sys-
tematically (Schmidt, 1999). The process of DSS development
should promote creation, management, discovery and reuse of
software artifacts as much as possible.

The satisfaction criterion for this requirement is a strong focus on
production and reuse of software artifacts. The requirement is
partially satisfied if a process focuses on reuse only. Finally, the
requirement is not satisfied if reuse of software artifacts is possible
but neither promoted nor enforced in process activities.

2.3.2 Tool Assistance

In time-constrained situations as presented in scenarios above it is
important to obtain an appropriate DSS quickly and with little effort

2.3 Requirements 17

(development step). Once user needs evolve or situation changes the ob-
tained solution should be changed or extended with new functionalities
(evolution step). Because development tools are applied under time-
pressure, non-functional properties such as usability, time-efficiency and
fault-tolerance gain particular importance (D. J. Power, 2002). Based
on these considerations, the requirements on assisting tools are defined
as follows:

T1: Development Assistance: Tools and technologies should support
development of data-driven DSSs and provide dedicated Web-
based run-time environments. In particular, they should enable
integration of multiple data sources and tailoring of the view to
meet personal preferences or situational needs (Hurwitz et al.,
2005). Ideally, integration logic should enable definition of any
control and data flow on top of integrated elements. Tailoring of
the view should be supported in terms of free placement of inte-
grated data sources or functionalities and flexible configuration of
application UI.

The requirement is fully satisfied if all mentioned functionalities
are provided. It is partially satisfied if they are present, but some
of the functionalities are limited in expressiveness or scope. The
requirement is not satisfied, if one or more functionalities are
completely missing.

T2: Evolution Assistance: Software evolution can be defined as a
“process of progressive change and cyclic adaptation over time
in terms of the attributes, behavioral properties and relational
configuration of some material, abstract, natural or artificial entity
or system” (Scacchi, 2006). Evolution in case of data-driven DSSs
means in first line integration of new data sources and functional-
ities, which is required in case of changed requirements or new
questions raised by decision makers (Orts, 2005). Interoperabil-
ity and compatibility among the new and existing functionalities
should be constantly preserved, which requires efficient updates
to interfaces and logic of reusable artifacts. Finally, systematic

18 Chapter 2 Requirements Analysis

management of reusable software artifacts and produced solutions
should be supported.

The requirement is fully satisfied if all mentioned functionalities
are provided. It is partially satisfied, if only subset of functional-
ities is present. The requirement is not satisfied, if none of the
above functionality is implemented.

T3: Ease of Use: All stakeholders should be able to focus on their
business goals instead of spending mental, time and financial
resources on operating technology (Hurwitz et al., 2005). In
this context ease of use, case- and target-group orientation are
considered to be key elements for acceptance of a technology
and for satisfaction of its users. Both development and evolution
assistance tools should be easy and comfortable to use, so that
they can be applied even in time-pressuring situations. The tools
should be easy to learn, intuitive in use and correspond to user
aesthetic values or behavior habits. Complexity of utilized abstrac-
tions, languages and interaction patterns should meet skills and
experiences of respective target user groups.

The requirement is considered to be fully satisfied, if tools make
use of vocabulary and interaction principles that are familiar or
domain-specific to respective target groups. It is partially satisfied,
if concepts and interaction patterns are not domain-specific but
can be easily learned given the IT skills of respective target group.
Finally, it is not satisfied, if tools use concepts and patterns that
impose too high challenges on their target groups.

T4: Fault Tolerance: Software fault tolerance can be defined as “the
ability...to detect and recover from a fault that is happening or has
already happened in either the software or hardware in the system
in which the software is running in order to provide service in
accordance with the specification” (Inacio, 1998). The stress factor
in time-pressuring situations can increase probability of faulty
specifications, so that reliability and availability of DSSs is put
at risk. Furthermore, users can simply avoid some development

2.3 Requirements 19

activities because of the fear to break the application (Mackay,
1990). It is required that assistance mechanisms provide high
level of fault tolerance.

The requirement is fully satisfied, if a tool is equipped with at
least one facility for failure forecast, detection and recovery. It is
partially satisfied, if facilities exist that cannot predict but enable
recovery from eventual errors. The requirement is no prediction
or recovery facilities are integrated.

T5: Efficiency: Efficiency is a measure for “resources expended in re-
lation to the accuracy and completeness with which users achieve
goals” (International Organization for Standardization, 1998).
Assistance mechanisms should require minimal time, mental and
financial resources to improve operational efficiency of their users
(Hurwitz et al., 2005). In the context of the assistance mecha-
nisms automation facilities are considered to be a decisive factor
for efficiency of all user groups.

The requirement is fully satisfied, if a tool produces results auto-
matically based only on the goal-based description of expected
results. It is partially satisfied, if some activities to produce the
results require involvement of tool operator. Finally, it is not
satisfied, if most of the activities should be done manually.

2.4 Summary

This chapter described requirements on a solution of the central prob-
lem addressed by the thesis. Three guiding scenarios from emergency
response, ad-hoc reporting and accommodation search domains were
presented. In the scenarios two main groups of stakeholders have been
identified: decision makers and software providers. The elicited re-
quirements address the experienced problems such as lack of time for
systematic development of DSSs and inability to tailor a software to-
wards changing requirements. Finally, an assessment scheme has been

20 Chapter 2 Requirements Analysis

introduced that enables evaluation of technologies regarding their suit-
ability for achieving the objectives of the thesis. The scheme is applied
in the next chapter to existing methods and tools of systematic software
development.

2.4 Summary 21

3State of The Art

This chapter reviews state of the art of existing technologies for system-
atic development of Web applications. Process models and assisting
tools are presented separately as they can be applied independently
from each other. The selection of reviewed technologies is based on their
orientation towards thesis objectives and availability of published re-
search results within software and Web engineering communities. Based
on the assessment scheme from the previous chapter, the suitability of
reviewed technologies for development of DSS under time-pressure is
evaluated.

3.1 Development Processes

Software development process can be defined as a structured set of activ-
ities that should be performed to develop a software product (Abran and
Moore, 2004). A process defines type and order of activities, artifacts
required and produced, required qualification and responsibilities of
involved stakeholders. So called process models are used to provide
abstractions and simplified representations of a process for particular
purpose. Definition of systematic, disciplined, quantifiable development
processes is the core focus of Software- and Web Engineering research
disciplines (Abran and Moore, 2004; Reich et al., 2006). In the follow-

23

ing, three groups of approaches from these disciplines are analyzed that
address objectives of this thesis from different perspectives.

3.1.1 End-User Development

End-User Development (EUD) can be defined as “a set of methods,
techniques, and tools that allow users of software systems, who are
acting as non-professional software developers, at some point to create,
modify, or extend a software artifact” (Lieberman et al., 2006). This
field of research focuses on making software systems more flexible in
terms of distribution of development activities, increasing their usability,
understandability and learnability. A related discipline, End-User Soft-
ware Engineering (EUSE), aims at improving quality of user-produced
artifacts and analyzes to which extent quality-ensuring activities usually
performed by professional can be performed also by end users. EUD
and EUSE integrate and advance findings from other research fields
such as Human-Computer Interaction, Software- and Web Engineering,
Artificial Intelligence etc.

The development process utilized in the field of EUD is usually prototype-
based and iterative (cf. Figure 3.1, which illustrates development pro-
cess of scientific software by non-professionals). Hereby the software
itself is not the goal but rather a tool to solve a situational problem
(Nardi, 1993). End users prefer to build software in the try-and-error
fashion instead of following a strict plan (Cao et al., 2010). Development
process is mostly limited to the implementation phase as traditional
planning and testing activities require programming skills that end
users usually do not possess. On the other side, there is an evidence
that design techniques such as drawing of mock-ups, writing simple
scenarios or listing expected functionality have positive effects on the
resulting solution (Rosson et al., 2007). While end users put value on
correctness and reliability of created solutions, they are unwilling to
invest time into systematic testing and debugging. End users seem to be
overconfident regarding the correctness of their solutions (Panko, 2008).
The responsibility of error detection and consistency checks is therefore
put on development environments and assistance mechanisms.

24 Chapter 3 State of The Art

Figure 3.1.: Exploratory and Evolutionary Development of Software by

Scientists (Segal and Morris, 2008)

For the implementation phase many techniques and strategies to create
or to customize a software artifact have been proposed. In the following
some of the most prominent techniques are presented.

Parametrization Parametrization is one of the simplest activities that
end users can perform to adjust software to their needs. Although being
not the primary focus of EUD it is still widely used as a first step to-
wards more complex operations. Parametrization assumes that software
is designed in a flexible way with possibility to modify its behavior
according to values of a pre-defined set of parameters. At run-time
software applies user-provided parameters for choice of functionality or
as inputs for internal computations. An example of parametrization is
configuration of toolbox layout in office suits, settings in diagramming
tools or choice of encoding parameters in video cut software.

Scripting Scripting refers to the activity of creating small programs
within software tools to automate manual actions (Blackwell, 2006).
Utilized programming languages can be interpreted directly by the
hosting tools and have different complexity. Single purpose languages
use domain-oriented vocabulary and address domain experts without
programming skills. The languages are used to implement keyboard

3.1 Development Processes 25

macros (e.g., Autohotkey1), e-mail filters (e.g., Sieve (Guenther and
Showalter, 2008)) or to enhance user experience during Web browsing
(e.g., Sticklet (Díaz et al., 2013)). General purpose languages are ori-
ented towards professional programmers and can be used for a wider
range of tasks. They are used to create macros in office suites (e.g.,
Visual Basic for Applications2), animations in multimedia suits (Adobe
Actionscript3) or complete Web applications (ECMAScript (ECMA Inter-
national, 2015)).

Programming-by-Demonstration (PBD) PBD is an EUD technique that
enables end users to specify desired functionality by providing examples
of its behavior (Blackwell, 2006). Based on demonstrated activities and
data samples a PBD system tries to generalize the observed behavior
and to infer a generic algorithm that can be applied to similar data
or/and in the similar context. Modification of the derived algorithm is,
however, not that simple as appropriate end-user-friendly representation
and editing operations should be defined. PBD is applied to automate
workflows (Gordon et al., 2010), text (T. Lau, 2001) and Graphical
User Interface (GUI) operations (Yeh et al., 2009), to record macros in
office suits (Sugiura et al., 1996) or to crawl the Web (Hartmann et al.,
2007).

Visual Programming Visual Programming technique makes use of graph-
ical representations to communicate technical concepts to end users
(Burnett, 2001). End users are supposed to define behavior and struc-
ture of software by means of metaphors from a well-known domain.
Visual programming doesn’t require strong programming skills and in
contrast to traditional text-based programming no syntax has to be
learned or remembered (Burnett, 2001). The technique has been widely
applied in educational environments, measurement and control systems,
rapid prototyping etc. Lego Mindstorms (S. H. Kim and Jeon, 2007)
and LabView (Sumathi and Surekha, 2007) are two popular program-
ming environments utilizing the technique. Some open challenges in

1http://www.autohotkey.com/, Retrieved: 1.7.2015
2https://msdn.microsoft.com/en-us/library/office/gg264383.aspx, Retrieved:

2.7.2015
3http://help.adobe.com/de_DE/as3/learn/index.html, Retrieved: 2.7.2015

26 Chapter 3 State of The Art

the use of this technique are fast increasing complexity of graphical
representation and efficient use of available screen spaces.

Natural Language Programming (NLP) NLP refers to usage of constrai-
ned natural language to complete different tasks in software develop-
ment process. The goal is to enable specification of computation or
behavior as close as possible to the way how people think about them
(Brad Myers et al., 2004). User input can be refined in several iterations
and then transformed into internal software models. For example, this
technique has been applied to infer user-task models from user descrip-
tions of expected system behavior (Tam et al., 1998). In (Leshed et al.,
2008) NLP is used to automate Web-based processes and in (Aghaee,
Pautasso, and De Angeli, 2013) to create mashups. Finally, there are
efforts to enable debugging and testing of applications by means of NLP
(A. Ko and BA Myers, 2004).

Assessment Development processes utilized in the field of End-User
Development are lightweight and focus on fast construction or modi-
fication of software artifacts. As coined by the name, EUD techniques
address end users as primary target group. The latter perform develop-
ment and evolution activities on their own without any assistance by
professionals, so that the degree of end-user involvement is very high.
Such activities as requirements engineering, design and testing from
traditional software processes are omitted due to lack of time, skills and
motivation by end users. The conciseness of the process is considered
to be high. EUD processes encourage and facilitate reuse of existing

artifacts to speed up development, to learn capabilities of utilized tools
and to collect ideas for possible solutions. Making produced artifacts
reusable doesn’t play a major role in EUD.

3.1.2 Component-Based Development

Component-Based Development (CDB) emerged as a response to in-
creasing complexity as well as growing costs for development, main-
tenance and evolution of software. One of existing definitions of the

3.1 Development Processes 27

term component describes it as a “software element that confirms to a
component model and can be independently deployed and composed
without modification according to a composition standard” (B. Councill
and Heineman, 2001). A component model defines hereby “specific
interaction and composition standards”. Development of component-
based software implies “assembling components already developed and
prepared for integration” (Crnković, 2003) and leads to a number of
advantages including higher flexibility, lower complexity, higher qual-
ity of software as well as improved productivity of developers (A. W.
Brown, 2000). The main challenge hereby is to identify, to build and to
integrate pieces of functionality that are simultaneously generic enough
to be used in many (possibly unknown) applications and easy enough
to be understood, adapted, deployed and replaced within applications,
where they have been integrated into (Crnković, 2003). Many com-
ponent models, implementations and assembly strategies have been
proposed. Industry widely adopted such technologies as Component Ob-
ject Model (COM) (Microsoft, 2015a), .NET (Microsoft, 2015b), CORBA
(OMG, 2015), Enterprise Java Beans (EJB) (I. Sun Microsystems, 2009)
and OSGi (OSGi Alliance, 2015). Component-Based Software Engineer-
ing and Component-Based Web Engineering proposed many methods for
systematic and disciplined development, assembly, customization and
maintenance of (Web) software out of reusable components (Heineman
and W. T. Councill, 2001; Gaedke and Rehse, 2000).

Existing process models for development and maintenance are usually
derived from generic process models such as Waterfall (Royce, 1987),
V-Model (Forsberg and Mooz, 1994), Spiral (Boehm, 1988) or Agile
(Martin, 2002) and are adjusted towards systematic discovery, compo-
sition and management of reusable components. Traditional phases
such as requirement elicitation, design, implementation, verification
and maintenance / evolution are all present and are applied (in adapted
and coordinated fashion) to both components and the software itself
(cf. Figure 3.2).

The process starts with analysis of requirements for the envisioned soft-
ware. Hereby possibilities of reuse of existing components are evaluated
and requirements are negotiated in accordance to available components.

28 Chapter 3 State of The Art

Requirements

Design

Glue-coding Test

Release

Maintenance

Selection

Adaptation

Implementation

Implementation of

new components Integration
Selection of the

component

candidates

Selection

Adaptation

Component

updates

Components

maintenance

Requirements

Design

Glue-coding Test

Release

Maintenance

Selection

Adaptation

Implementation

Implementation of

new components Integration
Selection of the

component

candidates

Selection

Adaptation

Component

updates

Components

maintenance

Figure 3.2.: Adaptation of Waterfall Model Towards Component-Based

Development(Crnković, 2003)

3.1 Development Processes 29

During the design phase the system is decomposed into its logical units.
Interfaces of components to be reused and implemented are identified.
Implementation of missing components can be done using any deve-
lopment process but with consideration of later reuse requirements.
Existing components matching system requirements are selected and
adjusted towards specified interfaces (by means of parametrization,
wrapping etc.). Finally, components are integrated into the overall
system. Integration refers hereby to specification of connections and
communication rules between components. The system is then tested
against original requirements and is delivered to customer. Maintenance
of component-based applications is done by replacing faulty components
with new versions. Evolution of a system may require further compo-
nents to be selected and added to existing design and implementation.
In Component-Based Software Engineering (CBSE) and Component-
Based Web Engineering (CBWE) several specialized process models have
been proposed. The most mature ones are presented next.

Y Process Model The Y model (Capretz, 2005) focuses on overlap-
ping and iteration of development activities to promote reusability of
software artifacts (cf. Figure 3.3). It defines 10 phases, which can
be overlapped and iterated: domain engineering (understanding the
problem domain and early identification of potentially reusable com-
ponents), frameworking (identification and grouping of components
into domain-specific workbenches), assembly (selection of components
and frameworks from specific application domains), archiving (prepara-
tion and storage of components for their later reuse), system analysis
(decomposition of a software system into high-level components), de-
sign (iterative refinement of system architecture based on available
components), implementation (adaptation of existing components and
development of new ones), testing (verification of expected behavior
of components and of the whole system), deployment (installation of
the system and customer training) and maintenance (error correction
and extension of a system towards new requirements). The first two
phases make the Y model especially useful for development of family of
systems from one application domain.

30 Chapter 3 State of The Art

System

Analysis

Deployment

Frameworking

Archiving

Design

Domain

Engineering

Implementat.

Maintenance

Testing

Assembly

Catalog/

Storage

Selection/

Adaptation

Figure 3.3.: The Y model for Component-Based Software

Development(Capretz, 2005)

3.1 Development Processes 31

Component
V&V, certification

Coding

testing

V&V
System

Acceptance

V&V
Compositional

Coding

(For one system in the domain)

knowledge
Domain

design
Component

requirements
System

specification
System

adaptation & deployment
Component selection,

System
assembly

Figure 3.4.: The W model for Component-Based Software

Development(K.-K. Lau et al., 2011)

W Process Model The W model (K.-K. Lau et al., 2011) puts a par-
ticular focus on Verification and Validation (V&V) of components and
component-based systems (cf. Figure 3.4). The process applies V-model
(Forsberg and Mooz, 1994) for their respective development and ver-
ification. Component life-cycle is explicitly described and consists of
design, testing and deployment phases. The design stage foresees build-
ing reusable composition blocks based on domain requirements and
publication of components in a dedicated repository. Component verifi-
cation, validation and certification take place in the V&V step. In the
deployment phase the component is instantiated and deployed into a
target system. Development process of a component-based system is
similar to the generic one described above. System design, however,
takes place in form of component selection, adaptation and deployment.
Together with system assembly (integration of components) system
design can be executed iteratively. Compositional V&V refers to integra-
tion tests of software architecture. Finally, system V&V implies testing
according to its specification.

WebComposition Process Model The WebComposition process model
(Gaedke and Gräf, 2001) considers development of a component-based
application as a continuous evolution. The approach refers to all
reusable artifacts of software as components and provides guidance
for their systematic reuse and composition. According to WebComposi-

32 Chapter 3 State of The Art

execution of

evolution evolution

design

evolution

analysis

strategic system

planning
strategic evolution

planning

WebComposition

Reuse-Repository

application

domain analysis
application

domain design
component design

and realisation

<<service>> <<service>>

evolution

e
v
o

lu
ti
o

nService-

Factory

Service-

Factory

Service-

Factory

Figure 3.5.: Evolution of Web Applications Based on WebComposition Process

Model (Gaedke and Gräf, 2001)

tion process model an evolution cycle consists of three phases: analysis
and planning, design and realization (cf. Figure 3.5).

Analysis and planning is based on domain engineering and assumes
acquisition of competence for development of a family of software
within a given domain. During the design phase the gained knowl-
edge is transformed into domain-specific models. Finally, realization
phase implies selection and integration of components that implement
required functionality or, if not existing, development of new ones. The
approach enables application of any process models for development of
single components and provides facilities for management of produced
artifacts. The latter are transformed towards a shared WebComposi-
tion Model and published within a dedicated Reuse Repository. The
repository provides assistance in reuse of the artifacts during subsequent
evolution iterations.

3.1 Development Processes 33

���������	�
��

������������
�	
����	�����	���

������
��

�
�������	���
�����
��

�	����
�����
�
��

�	���	���
�	
����	���

������������	�
�		��������

���������

�����	�����

������
�� ����������

Figure 3.6.: Lifecycle Model of Web Mashups(Daniel and Matera, 2014a)

Mashup Development Recent research on so-called mashups (Yu et al.,
2008) proposed a new lightweight and component-oriented develop-
ment process (Daniel and Matera, 2014a) with particular focus on
end users. A Web mashup is in general an application that combines
“content, presentation or application functionality from disparate Web
sources” (Yu et al., 2008). The process enables prototype-centric con-
struction of situational and short-living mashups. The process consists
of only three phases: 1) discovery and selection of required artifacts, 2)
mashup composition and 3) usage and maintenance (cf. Figure 3.6).

In the first step of the development process mashup designers analyze
and select building blocks that can be used to solve their business prob-
lem. The idea of the mashup represents hereby informal requirements
on the envisioned solution. The second step implies parametrization
of artifacts, definition of their coordinated behavior and configuration
of application UI (depending on utilized component and composition
models some activities can be skipped). Finally, the mashup is instanti-
ated and becomes available for interaction with its users. Deployment
and instantiation of mashups are usually automated by assisting tools
and platforms, so that mashup designers do not even notice a switch
from design to run-time phases. Maintenance phase implies activities
by both mashup designers and platform providers. The former usually

34 Chapter 3 State of The Art

repeat the first two phases to adjust existing solution towards new re-
quirements or to test and evaluate possible implementation options.
Platform providers perform maintenance of reusable software artifacts
(including development of new ones) and of execution environment.
For all phases the process assumes availability of appropriate tools and
assistance mechanisms that should simplify handling of Web technology
for non-programmers. Systematic development and maintenance of
mashup components is outside of its scope, meaning that any process
can be applied for this purpose.

Assessment Component-Based Development specifically focuses on
systematic production, management and reuse of software artifacts,
which should improve efficiency of development and maintainability
of resulting solutions. CDB foresees all traditional phases of software
development and additional activities related to production and man-
agement of reusable components. Although CDB processes are executed
iteratively and some activities are shortened due to reuse of components,
the conciseness of the overall process is average. End users are little
involved into development and evolution activities – most approaches
treat them as customers, with whom requirements on the system are
negotiated. The exception build recently proposed mashup techniques
that aim at enabling end users assemble software artifacts on their own.
The overall degree of end-user involvement is considered to be low.

3.1.3 Model-Driven Development

Model-Driven Development (MDD) is a method of software develop-
ment that makes use of abstract formal system specifications (models)
to automatically generate software artifacts. The goal of MDD is to
increase developer productivity, to improve quality and to lower costs
of software. Abstract models describe structures and behavior that are
similar to a family of applications or architectures and, thus, can be
used to automatically generate corresponding source code. Models are
in general easier to understand (also for non-programmers), faster to
create and cheaper to maintain. Automatic generation of code based
on abstract models reduces probability of defects, reuses programming

3.1 Development Processes 35

Figure 3.7.: Model-Driven Development Process (Kleppe et al., 2003)

expertise and, thus, contributes to quality of resulting software. Finally,
development of software for different execution environments becomes
more efficient as only environment-specific code generators have to be
implemented.

MDD process foresees all traditional phases of software development
and adjusts them towards continuous and systematic usage of abstract
models (cf. Figure 3.7) (Kleppe et al., 2003).

The first engineering step concerns with collection of functional and
non-functional requirements on the system to be developed. These
should be captured in form of text and formalized in the analysis phase
into so called Platform Independent Model (PIM). PIMs describe a

36 Chapter 3 State of The Art

software system from business point of view without going into details
of architectural design, implementation possibilities or possible execu-
tion environments. The process avoids production of documents and
diagrams that cannot be reused in the next phases for code generation
or validation. In the low-level design phase the PIM is mapped to a so
called Platform Specific Model (PSM), which describes structure and
behavior of a system in terms of a concrete target platform (EJB, COM,
Service-Oriented Architecture (SOA) etc.). One PIM yields one or more
PSMs depending on the number of platforms to be supported. Models
are usually expressed in Uniform Modeling Language (UML), its exten-
sion or some Domain Specific Language (DSL). In the code phase the
PSM is mapped onto constructs of a concrete programming language.
Also test code to be used during system verification can be produced
out of PSM. In MDD mappings from PIM to PSM and from PSM to code
are performed automatically by dedicated transformation tools. Manual
changes to models are possible, however, they can break logical connec-
tions between models and, thus, make later maintenance difficult. In
the deployment phase the system is installed and prepared for usage
by customer. Maintenance in MDD takes place in form of updates and
enhancements of high-level models with subsequent automatic gener-
ation of the low-level ones. Many development approaches exist that
specialize on concrete family of applications. The most adopted ones
are presented below.

Web Modeling Language (WebML) WebML (Brambilla et al., 2008) fo-
cuses on model-driven development of Web applications and proposes
a dedicated engineering process (cf. Figure 3.8). It applies principles
of iterative development and produces partial versions of application
after each cycle. The requirements phase identifies application user
groups, functional requirements, information objects and so called site
views specific to each user group. Conceptual modeling phase foresees
design of application data and of hypertext schema (based on identified
information objects and site views). Data schema is defined using Entity-
Relationship diagrams or UML, while hypertext model is specified using
a dedicated visual modeling language. Implementation is largely done
by means of automatic code generation out of the conceptual model.
Testing and validation of resulting applications is simplified due to the

3.1 Development Processes 37

Requirements

Analysis

Data Design

Hypertext Design

Conceptual Modeling

Business Requirements

Implementation

Testing &

Evaluation Deployment

Maintenance and

Evolution

Figure 3.8.: WebML Development Process (Brambilla et al., 2008)

availability of conceptual models. Maintenance and evolution is done by
repeating requirement analysis, modeling, implementation and testing
phases. The process is supported by a dedicated tool WebRatio4.

UML-based Web Engineering (UWE) A similar approach to WebML is
UWE (Koch and GmbH, 2006). The main difference is that it makes
extensive use of UML for modeling different aspects of a system instead
of proprietary languages. UWE enables model-driven development of
transaction-based, personalized, context-dependent, and asynchronous
applications (Koch, Knapp, et al., 2007). It introduces several meta-
models (UML profiles) to capture user requirements (UML use cases,
activity diagrams or Web Requirements Engineering (WebRE) (Escalona
and Koch, 2007)), structure and behavior (UWE metamodel) as well as
architecture (Web Software Architecture (WebSA) (Meliá et al., 2005))
of a system. The development process starts with specification of re-
quirements models that describe process, context and navigation-related
aspects of application. The models are then transformed into several
PIMs that describe content, presentation, navigation, adaptation and

4http://www.webratio.com, Retrieved: 4.7.2015

38 Chapter 3 State of The Art

business logic of a Web application (Koch and GmbH, 2006). Different
PIMs are then combined into the one that is used both for validation
and PSM / code generation purposes. Due to strong UML orientation
the process is supported by many existing Computer-aided Software
Engineering (CASE) tools.

Semantic Hypermedia Design Method (SHDM) SHDM (Schwabe et al.,
2004) makes use of Semantic Web technologies to extend expressive
power of utilized models. It defines five steps for respective development
process: Requirements Gathering, Conceptual Design, Navigational De-
sign, Abstract Interface Design and Implementation. The first step
performs modeling of requirements by means of use case diagrams, sce-
narios and design patterns. Conceptual Design concerns with modeling
of domain-related classes and relationships using ontologies. During
Navigational Design possible navigation paths (nodes, links, contexts,
access structures) between entities identified in the prior stage are de-
fined. The paths are categorized according to user profiles and business
tasks to be supported. In the Abstract Interface Design step navigation
objects and application functionality are made available by means of
abstract user interface elements. The latter are modeled using Abstract
Widget Ontology and then mapped onto concrete items from Concrete
Interface Widget Ontology. During Implementation the produced mod-
els are automatically transformed into executable code specific to target
execution environment. The approach is supported by Synth being
a dedicated modeling and code generation tool (Souza Bomfim and
Schwabe, 2011).

End-User-Involving MDD There is some early work on involving end
users into activities of model-driven development. In (Pérez et al., 2011)
authors propose a method to increase contribution of users to MDD pro-
cess. The method can be embedded into any existing MDD approach.
First parts of the software that can be specified by end users are identi-
fied (as a guidance authors propose to leave quality and security-related
aspects to professional programmers). Then a visual DSL is selected that
should be used for end-user produced descriptions. The third step is
definition of concern-specific technical models by software professionals,

3.1 Development Processes 39

which are annotated with parts to be included from end-user descrip-
tions. Developers also provide templates and reference models to be
reused by end users. Finally, end-user models are transformed and inte-
grated into the technical ones. The process is supported with dedicated
modeling and transformation tools. Development of data-intensive Web
applications using visual modeling languages have been investigated in
(Deufemia et al., 2013) and (Rivero et al., 2013). Authors use mock-ups
and annotations to model UI, content, navigation and business logic
of applications. Although the methods target non-programmers, at the
time of writing no empirical evidence on applicability of the methods
was available.

Assessment MDD aims in first line at improving productivity and effi-
ciency of professional software developers. All traditional engineering
phases are present, whereas implementation can be partly automated
by code generators. The conciseness of the process is average. Reuse
of existing artifacts in MDD is promoted due to the use of model trans-
formation engines that accumulate knowledge and code common to a
family of similar applications. However, reusability of produced models
and intermediate artifacts is not explicitly addressed. Despite of some
research prototypes that consider end users as creators of models, the
most approaches involve them only as sources for requirements. The
degree of end-user involvement is considered to be low.

3.2 Tool Assistance

Design, implementation, delivery and maintenance of software are
usually supported by dedicated programs called CASE tools, which
simplify or partially automate respective activities. A CASE tool can
be defined as “a software component, supporting a specific task in the
software-production process” (Fuggetta, 1993). The following review
focuses on tools and technologies that address the thesis objectives,
i.e., can be used for development of DSS and address non-professional
programmers as their target group. The tools are grouped into three
categories based on their common architectural properties.

40 Chapter 3 State of The Art

3.2.1 Web Content Management Systems

With the advent of Web 2.0 participation of end users in creation of Web
content significantly increased. Wikis, blog and content management
software enabled even non-programmers to produce, to manage and
to publish all kind of multimedia data on the Web. In general, Web
content management can be defined as “the process of controlling the
content to be consumed over one or more online channels through the
use of specific management tools based on a core repository” (Macco-
mascaigh et al., 2013). By means of dedicated tools called Web Content
Management Systems (WCMS) the latter can be achieved directly by
domain experts without involvement of IT professionals into informa-
tion management activities. WCMSs help to reduce costs for content
production and publication but also for development and maintenance
of data-centric Web applications. As coined by the name of these tools,
their core functionality is assistance in authoring of content and related
metadata. Application structure and layout are separated from the
content and, thus, enable its representations in different languages and
formats (incl. mobile views). Presentation and layout can be customized
by so called “themes” – configurable and exchangeable artifacts, created
by professional developers. Administration of WCMSs and content au-
thoring take place over end-user-friendly UI and dedicated What You
See Is What You Get (WYSIWYG) editors in a separated administration
area (cf. Figure 3.9). User and rights management enable collaborative
work and accounting. Some WCMSs provide native support or can
be extended by means of plugins towards version control, workflow
management, archiving, reporting and quality assurance functionality.
Similar to themes plugins are developed by professional programmers
but their integration and configuration doesn’t usually require tech-
nical skills. Enterprise WCMSs also support integration with existing
company IT services.

5Source: https://codex.wordpress.org/images/3/30/dashboard.png, Retrieved:
2.4.2015

3.2 Tool Assistance 41

Figure 3.9.: End-User-Friendly Dashboard for Administration of WCMS5

According to CMSCrawler6 and W3Tech7 WordPress8, Joomla!9 and
Drupal10 are the mostly installed WCMS on the Web. All of them
are open-source and provide similar functionality regarding content-
management. The slightly differ in their usability, performance and
flexibility / extensibility of architecture.

WordPress started originally as a Web blog software and evolved to
a fully-fledged WCMS. The focus of WordPress lies on usability and
customizability. WordPress can be extended by numerous themes and
plugins that turn the WCMS into a forum, an online shop, a social
network etc. Recent research in Web Engineering proposed methods
for end-user-friendly composition of plugins to achieve even better user
experience (Leone et al., 2013). WordPress has a large and active
community of contributors. Despite of its novice-friendliness and exten-

6http://www.cmscrawler.com/tool, Retrieved: 2.4.2015
7http://w3techs.com/technologies/overview/content_management/all, Re-

trieved: 2.4.2015
8https://wordpress.com/, Retrieved: 2.4.2015
9http://www.joomla.org, Retrieved: 2.4.2015

10http://www.drupal.org, Retrieved: 2.4.2015

42 Chapter 3 State of The Art

sibility, WordPress is criticized for its performance and scalability for
quickly evolving applications.

Joomla! offers similar functionality to WordPress but is more flexible
in terms of configuration, customization and extension. Layout and
functionality can be modified with plenty of themes and plugins. The
latter enable among others fast and easy development of portals and
intranets, e-commerce and social network applications. For advanced
customization of Joomla some technical experience is required. For
professional programmers Joomla offers a so-called Joomla! Frame-
work11, which consists of reusable modules for integration of external
systems such as Customer Relationship Management (CRM), Enterprise
Resource Planning (ERP), data warehousing systems etc.

Drupal is a flexible, efficient and customizable WCMS. Content manage-
ment capabilities are similar to those of WordPress and Joomla. A key
focus of Drupal lies on collaborative authoring of structured and semi-
structured content. Layout and functionality customization is achieved
by means of themes and plugins. However, basic programming skills
and familiarity with Web technologies are recommended for efficient
use and configuration of Drupal.

According to reports by Gartner and The Forrester Wave (Maccomas-
caigh et al., 2013; Schadler et al., 2015) Adobe Experience Manager12

and Sitecore Experience Platform13 are market leaders in the field of en-
terprise WCMS. Enterprise WCMS provide similar content-management-
related functionality but put particular focus on analytics (analysis
of customer behavior and site effectiveness), marketing automation
(spreading content over variety of communication channels such as the
Web, mobile devices or social media), personalization (view and content
adaptation based on customer profiles) and e-commerce (integration
with enterprise services, data and workflows).

11http://framework.joomla.org/, Retrieved: 2.4.2015
12http://www.adobe.com/de/solutions/web-experience-management.html, Retrie-

ved: 2.4.2015
13https://www.sitecore.net/platform.aspx, Retrieved: 2.4.2015

3.2 Tool Assistance 43

Assessment WCMS enable non-programmers to easily create data-
intensive Web applications and manage the corresponding content.
The content itself is meant to be consumed by other people. WCMS do
not focus on customizable integration of heterogeneous data sources
and functionalities. The latter is, however, possible by means of plugins
created by professional developers. Programmers can wrap any kind of
data source or functionality as a plugin and offer it for integration within
a WCMS system. Despite some early research on flexible plugin com-
position methods (Leone et al., 2013), most of existing WCMS support
visual aggregation of plugins only (i.e., without any orchestration or
choreography logic). Configuration of content layout and presentation
is possible within boundaries of the selected theme. Regarding evolution
assistance, WCMS do not offer any automation tools to develop plugins,
so that new data-sources and functionalities have to wrapped manually.
Due to missing integration logic, plugins can be freely combined with
existing ones. Once developed, plugins can be published and discovered
from local or global plugin repositories. The repositories automatically
publish plugin metadata and enable their efficient storage and discovery.
WCMSs address non-technical users (acting as WCMS administrators)
as primary target group and use vocabulary and operation techniques
familiar to most of Web users. No programming skills are required to
operate a WCMS. WCMSs allow administrators to perform a limited
and foreseen set of configurations, i.e., faulty ones can be early detected
and prevented by input validation. Configuration assistance mecha-
nisms show warnings on implications potentially harmful configuration
parameters. The degree of fault-tolerance is considered to be high.
Automation in WCMS is average – they automate internal processes
required to store and display Web content, but need manual design
and configuration of precise definition of the desired results on the UI
level.

3.2.2 Dashboards and Ad-Hoc Reporting Tools

Dashboards (also known as MIS, Executive Information System (EIS) or
portals) and ad-hoc reporting tools belong to the class of so-called Busi-
ness Intelligence software. BI refers usually to technologies that enable

44 Chapter 3 State of The Art

“collection and preparation of data about company and its environment
as well as its visualization in form of business-related information for
analysis, planning or control” (Gluchowski et al., 2008). Dashboards
and ad-hoc reports focus on interactive and flexible visualization of
distributed company data. In contrast to other BI tools, dashboards
and ad-hoc reporting tools are highly customizable and do not require
technical knowledge to be used by end users. As a result, they can be
used for development of data-driven DSS by end users.

Dashboards aim at aggregating business-related data on one screen and
providing compressed but expressive views on it. Dashboards make
extensive use of specialized visualizations such as tachometers, progress
bars, charts, maps etc. Usually they are tailored towards the needs of a
single person or group of people, which leads to differentiation between
executive, tactical and operative dashboards (Gluchowski et al., 2008).
Executive dashboards target business executives and support long-term
strategic planning. They focus on compressed performance indicators
and intuitive visualization instead of on rich interaction possibilities.
Tactical dashboards target leaders of department (financial, sales, hu-
man resources etc.) and support analytical processes that can help to
identify trends or to find problem causes. Operative dashboards target
project managers and knowledge workers, who need to monitor differ-
ent kind of processes or activities and have to quickly react in case of
exceptional situations. The latter is supported by integration of process
control or management functionality into the dashboard. In general
Hurwitz & Associates identify three functionalities that bring the great-
est value to dashboard users: linking historical business information
with real-time operational data, alerting stakeholders in case metrics or
indicators are out of tolerance and enabling connectivity to messaging
systems and business processes (Hurwitz et al., 2005).

Dashboards are usually implemented using dedicated software that
enables integration of multiple heterogeneous applications within a
unified user interface (cf. Figure 3.10). In addition to data access
applications frequently performed office activities such as E-mail, voice
or chat communication, contact or calendar management can be inte-
grated. Single Sign On is considered to be one of the most important

3.2 Tool Assistance 45

Figure 3.10.: Example of a Dashboard Implemented Using Liferay14

features of dashboards and ensures that users can quickly authenticate
themselves and get immediate access to all relevant resources. Dash-
boards provide rich personalization facilities. First, functionality and
layout can be adapted based on user group or role. Second, users can
perform individual personalization, e.g., by choosing applications to
be integrated, changing their layout or display mode and modifying
application-specific preferences. Some dashboards support collabora-
tion in form of message-, voice- or video chats as well as forums or
group workflows.

Liferay15 and IBM WebSphere Portal16 are examples of tools to build Web
portals and dashboards. They rely on Java Portlet specifications (Sun
Microsystems, 2003) (Sun Microsystems, 2009) and enable application

14Source: https://www.liferay.com/de/community/wiki/-/wiki/Main/Pentaho+

Portlets, Retrieved: 13.4.2015
15http://www.liferay.com, Retrieved: 10.4.2015
16http://www-01.ibm.com/software/de/websphere/, Retrieved: 10.4.2015

46 Chapter 3 State of The Art

Figure 3.11.: Specification of Report Layout in JReport17

integration on the presentation level. UI components called portlets are
fully-fledged Web applications that can be developed by professionals
and are prepared for inclusion as well as parametrization within Java
portals. Portlets wrap internal and external data sources or provide
access to different Application Programming Interfaces (APIs). Portlets
can interact with each other using different mechanisms of inter-portlet
communication, which are, however, not configurable by end users.

Ad-hoc reporting tools aim at assisting analysts, knowledge workers,
executives and managers in fast collection and visualization of business-
related data. The goal is to fill a gap between reports created by profes-
sional developers for a fixed set of use cases and situational information
needs of end users. Furthermore, results should be produced faster
than in case of delegation to IT departments. The tools provide intuitive
UIs and guide users during report definition process. Usually, report
specifications consist of data sources to be aggregated, filters, grouping

17Source: http://www.jinfonet.com/kbase/jreport13/tutorial/index.htm, Re-
trieved: 15.4.2015

3.2 Tool Assistance 47

and sorting parameters as well as layout and visualization settings (cf.
Figure 3.11). Some solutions offer visual environments for construction
of queries or for definition of new layouts. Resulting reports can be
both simple data tables and charts and complex interactive solutions
such as dashboards. Examples of ad-hoc reporting tools with the de-
scribed functionality are JReport18, Style Report Enterprise19, or Ubiq
Reports20.

Assessment Dashboards and ad-hoc reporting tools provide intuitive
UIs and interaction concepts for customization and adaptation. Build-
ing blocks (data source adapters, visualization templates, widgets) are
developed by professional developers and can provide any data, logic
or presentation functionality. Reporting tools comprise data and presen-
tation artifacts only. Freedom of data source / functionality selection
is considered to be high. However, users are not able to specify any
additional behavior on top of the aggregated components, so that flex-
ibility in definition of integration logic is low. User interface can be
customized based on developer-provided themes and layouts. Dash-
boards and ad-hoc reporting tools provide little to no assistance for
evolution of resulting solutions. New data sources or layouts have to
be wrapped and prepared for inclusion manually. The same holds for
adaptation towards interoperability and composability. Internal reg-
istries, however, enable efficient management and discovery of reusable
functionality. The overall evolution support of dashboards and ad-hoc
reporting tools is considered to be average. Non-programmers is the
primary target group of this class of tools. Most activities are done
using wizards or simple drag-and-drop operations, so that complexity
of utilized abstractions and interaction patterns is low. Dashboards and
ad-hoc reporting tools prevent data corruption and crashes of run-time
environment by timely analyzing user-entered parameters and issuing
warning on faulty configurations. The degree of fault-tolerance is high.
Automation facilities are scarce, as users have to define all aspects of
the desired solutions manually.

18http://www.logianalytics.com/index.php?q=ad-hoc-reporting-overview, Re-
trieved: 15.4.2015

19https://www.inetsoft.com/products/StyleReportEE, Retrieved: 15.4.2015
20http://ubiq.co, Retrieved: 15.4.2015

48 Chapter 3 State of The Art

3.2.3 Composition Tools

Composition tools facilitate end-user development of software by sim-
plifying knowledge and code reuse. They enable construction or modifi-
cation of software using well-defined configurable components acting
as basic building blocks. The latter are usually provided by professional
programmers and have a goal to hide complexity of underlying tech-
nology behind end-user-friendly UI or intuitive visual metaphors. To
develop a solution out of given building blocks end users have to devise
a composition plan that would specify blocks to be used, their respective
configuration and mutual relationships. The process of discovery and
composition is usually supported by dedicated artifact repositories and
plan integrity check algorithms. To facilitate and speed up the develop-
ment process composition tools offer possibilities to reuse knowledge
and experience of other developers. While dedicated recommendation
mechanisms suggest artifacts or configurations to complete partial com-
positions, (real-time) collaboration facilities enable joint development
of solutions by a group of geographically distributed people.

Many research and commercial tools with focus on end-user-friendly
development of data-intensive Web applications have been proposed.
Microsoft FrontPage21 and Macromedia Dreamviewer22 were the first
tools with WYSIWYG capabilities. At the beginning they focused on
development of static Web sites, but were quickly enhanced towards
support of interactive, data-driven applications. The tools enabled
also integration of XML-based sources such as Web services, so that
users could construct simple portal applications aggregating data from
different sources. Click (Rode et al., 2005) and XIDE (Litvinova et al.,
2012) are research prototypes that applied findings from HCI, EUD
and Web Engineering fields to devise end-user-friendly composition
environments. The tools provide a library of reusable software artifacts
that can be combined and configured towards interactive data-driven
Web applications. The artifacts have different level of granularity that
were devised according to identified user mental models. Click and

21https://msdn.microsoft.com/en-us/library/aa167865%28v=office.11%29.

aspx, Retrieved: 8.4.2015
22http://www.adobe.com/de/products/dreamweaver.html, Retrieved: 8.4.2015

3.2 Tool Assistance 49

Figure 3.12.: A Platform for End-User Tailoring of Component-Based Software

(Source: (Mørch et al., 2004))

XIDE do not distinguish between design and runtime phases - user-
performed configurations become immediately visible. The tools offer
guidance through development process, consistency checks and support
for collaborative activities.

A composition tool that strictly applies principles of component-based
software development has been developed in (Won et al., 2006) (cf.
Figure 3.12). Authors propose a component model and a development
platform that should enable end-user tailoring of component-based soft-
ware. The so-called FlexiBeans model considers basic building blocks as
black boxes, whose interfaces consist of named event ports and shared
variables. These so-called atomic components can be composed to more
complex and intelligent structures, and, thus, simplify overall applica-
tion design. The FreEvolve platform enables discovery, configuration
and run-time re-composition of components by means of the “wiring”
metaphor. It provides multiple views (2D, 3D and multi-windowed
2D) on composition plans and devises a number of HCI techniques to
simplify the tailoring process. To avoid faulty configurations that can
break the overall application the platform performs rule-based integrity
checks of composition plans. Furthermore, groupware behavior of a
tailored system can be tested within a dedicated exploration environ-

50 Chapter 3 State of The Art

ment. Collaboration between different users and exchange of artifacts
is supported by means of a specialized component repository.

With the advent of SOA new technologies and methods for software
development emerged. SOA promotes decomposition of software into
loosely-coupled standardized building blocks, so that the latter can be
efficiently maintained and reused over time. In SOA basic business-level
functionalities are wrapped into so called “services” and are published
within one or several directories. Complex business processes are then
realized as a design- or run-time composition of services. Systematic
production, discovery and reuse of services make development and
maintenance of software more time- and cost-efficient. One of the
most prominent implementations of SOA is the Web Services Archi-
tecture (WSA) (Booth et al., 2004). Its primary goal is to promote
interoperability and compatibility between heterogeneous platforms
and programming languages. The elementary building block of WSA is
a Web Service, which is a “software system designed to support inter-
operable machine-to-machine interaction over a network” (Haas and A.
Brown, 2004). Interface of a Web service is described using a machine-
processable format such as Web Service Description Language (WSDL)
and defines its functional and non-functional properties. According to
(Booth et al., 2004) communication with Web services takes place using
SOAP messages, which are typically transferred over Hypertext Transfer
Protocol (HTTP). Composition of Web Services towards business pro-
cesses can be declaratively described by XML-based Business Process
Execution Language (BPEL) (Alves et al., 2007). Graphical BPEL editors
provide environments for visual composition and execution of Web Ser-
vices (e.g., BPEL Designer Project23 or Oracle BPEL Process Manager24).
Beside WS*-Technologies other implementations of SOA exist. So called
Resource-Oriented Architecture (ROA)s (Lucchi et al., 2008) rely on
Representational State Transfer (REST)ful Web services (Fielding, 2000)
instead of SOAP-based ones. In (Daniel, Soi, et al., 2011) authors de-
scribe an implementation of SOA using graphical components. While
SOA composition tools can simplify and speed-up orchestration of dis-

23https://eclipse.org/bpel/, Retrieved: 9.4.2015
24http://www.oracle.com/technetwork/middleware/bpel/overview/index.html,

Retrieved: 9.4.2015

3.2 Tool Assistance 51

tributed functionalities, they still address professional developers and
require deep understanding of underlying principles.

Composition tools addressing non-programmers have been developed
in the context of Web mashups. Mashups offer additional functionality
on top of the aggregated components in form of customizable views,
logic or novel interaction possibilities. Depending on the type of com-
bined components one distinguishes between data, application logic,
UI and hybrid mashups (Daniel and Matera, 2014b). Data mashups

retrieve, transform, combine and visualize heterogeneous Web data
sources. The latter are typically Really Simple Syndication (RSS) (Winer,
2003) or Atom (Nottingham and Sayre, 2005) feeds, Hypertext Markup
Language (HTML) pages or RESTful services. Logic mashups combine
distributed functionalities such as Javascript API or Web services to
interactive applications or automated processes. Presentation mashups

aggregate visual components such as Javascript UI widgets, portlets
(Sun Microsystems, 2003), World Wide Web Consortium (W3C) wid-
gets (Cáceres, 2012) or OpenSocial gadgets (OpenSocial and Gadgets
Specification Group, 2014) and define synchronization logic on top of
them. Finally, hybrid mashups combine different types of components
to full-fledged Web applications or services. So-called mashup editors
(or platforms) have been proposed to simplify development and execu-
tion of mashups. Usually they target non-programmers and focus on
simplicity and usability. Based on findings in the EUD and HCI fields
mashup editors enable development of mashups using visual or natural
programming environments. In the following, several commercial and
research tools focusing on different types of mashups are presented.
The selection is based on the latest published developments accessible
on the Web.

Yahoo Pipes25, DERI Pipes26 and MyCocktail27 are examples of editors
for development of data mashups. Yahoo Pipes enables graphical def-
inition of data flows based on selected data sources, operators and
connectors (cf. Figure 3.13). The tool can access any XML-, JSON- or

25http://pipes.yahoo.com, Retrieved: 11.4.2015
26http://pipes.deri.org, Retrieved: 11.4.2015
27http://sourceforge.net/projects/mycocktail, Retrieved: 11.4.2015

52 Chapter 3 State of The Art

CSV-based data sources and combine them into a so-called “pipe”. Differ-
ent operators enable aggregation, filtering and transformation of data.
Outputs of one operators or sources can be graphically mapped onto
inputs of others. The result of pipe execution is a new data feed, which
can be exported in RSS, Atom or Javascript Object Notation (JSON)
format. MyCocktail enables similar functionality to Yahoo Pipes. How-
ever, it is open-source and supports RESTful services described by Web
Application Description Language (WADL) (M. J. Hadley, 2009). Het-
erogeneous data sources can be combined into one by means of different
operators. The output is visualized using one of so-called renderers,
which are essentially HTML templates for different purposes. The tool
can render interactive tables, lists, maps, charts etc. and export the
result as a iGoogle or Netvibes gadget or W3C widget. Finally, several
rendered mashups can be placed on one canvas and exported as a
Web application. DERI Pipes also supports composition of Extensible
Markup Language (XML)-and JSON-based data sources but focuses on
semantic data sources such as Resource Description Framework (RDF)
or microformats. Provided operators enable among others querying
of data using SPARQL Protocol And RDF Query Language (SPARQL)
and XQuery (Robie et al., 2011). Programmers can also set of avail-
able operators with custom ones. Pipes can be executed locally using
a command-line tool or integrated into Web applications. Although
the tools claim that even non-programmers can use them and create
useful mashups, the complexity of data transformation task and the
need of basic programming skills didn’t bring them the expected popu-
larity. As a response to this observation, research community developed
end-user-oriented recommendation mechanisms and domain-specific
mashup tools. For example, Baya (Roy Chowdhury, Rodríguez, et al.,
2012) is a browser extension that enriches functionality of Yahoo Pipes
and MyCocktail. It makes use of collaborative-filtering techniques and
suggest possible mashup configurations based on prior community expe-
rience. Baya recommends operator parameters or module connections
and automatically applies them on users will. ResEval (Imran et al.,
2012) is an example of a domain-specific mashup. The editor focuses
on concepts and terminology from one particular domain (research
evaluation) and avoids tasks related to data mediation. The interface is
also specialized towards the domain and uses concrete visual metaphors

3.2 Tool Assistance 53

Figure 3.13.: Yahoo Pipes: a Data Mashup Editor28

instead of generic “data source” or “operator” blocks. First user stud-
ies indicated that domain-orientation and composition assistance can
significantly simplify mashup development.

SimpleBPEL (Juhnke et al., 2010), ServFace Builder (Nestler et al.,
2011) and Widget Composition Platform (Spahn and Wulf, 2009) focus
on logic mashups and enable end-user-friendly composition of Web
services. SimpleBPEL is a tool that enables composition of workflows
based on domain-oriented BPEL fragments. The latter are identified,
annotated and prepared for reuse by BPEL experts. Domain experts can
then graphically connect inputs and outputs exposed by the fragments.
The tool validates the composition, generates required mediation code
and exports results as a valid BPEL workflow. ServFace Builder makes
use of a dedicated annotation language to generate form-based UIs out
of Web service operations. The tool addresses non-programmers and
enables them to combine different Web services by defining data flow in
the WYSIWYG fashion (cf. Figure 3.14). Service compositions can be
placed within so-called pages and corresponding navigation behavior
can be defined. A similar approach has been proposed by Spahn and

28Source: http://pipes.yahoo.com/pipes/docs?doc=operators, Retrieved:
13.4.2015

54 Chapter 3 State of The Art

Figure 3.14.: ServFace Builder: a WYSIWYG Service Composition

environment(Nestler et al., 2011))

Wulf in (Spahn and Wulf, 2009). Authors describe a tool for graphi-
cal composition of enterprise resources such as ERP and CRM systems,
custom software and external resources. Each resource should be pre-
pared for composition by means of dedicated wrappers that unify their
interfaces. Iteratively users can put services to be combined on a com-
mon canvas and visually define connections between their inputs and
outputs. Compositions are then wrapped into widgets, i.e., “small, self-
contained, interactive applications” that can be executed within Yahoo!
Widget Engine29 or Microsoft Windows Vista Sidebar30. Some research
prototypes enable assisted and even automatic composition of services.
For example, in (Xiao et al., 2010) authors describe a framework to
generate Web service-based processes based on given keywords and
domain-specific ontologies. The latter describe annotated task models
that together with historical service usage data help to discover services
required for composition. Users can personalize constructed plans and

29https://info.yahoo.com/privacy/us/yahoo/widgets/details.html, Retrieved:
10.4.2015

30http://windows.microsoft.com/en-us/windows-vista/windows-sidebar-and-

gadgets-overview, Retrieved: 10.4.2015

3.2 Tool Assistance 55

add replace automatically assigned services. The tool, however, doesn’t
consider syntactic and semantic mismatch between service interfaces,
so that outputs have to be mapped on inputs manually by end users.
In (Mehandjiev, Lécué, et al., 2010) authors propose to apply semantic
technologies and formal logic to describe functional and non-functional
properties of Web services. End users can choose between task-based
templates organized in a domain taxonomy and the tool automatically
discovers compatible implementations. Users can accept proposed as-
signments or choose alternative services that are recommended based
on their functional compatibility.

Simple presentation mashups can be developed using tools like Netvibes31

or Apache Rave32. Netvibes enables aggregation of several UI compo-
nents called apps on one page. An app can be either manually developed
by professional developers or automatically generated for given RSS
feeds. Users can personalize apps by modifying exposed attributes.
Netvibes doesn’t allow any logic definition on top of the apps, which
affects overall usability and usefulness of produced mashups. Apache
Rave also enables composition of UI components on one screen but
applies other component technologies such as W3C widgets (Cáceres,
2012) and OpenSocial gadgets (OpenSocial and Gadgets Specification
Group, 2014) and offers infrastructure for interactions between com-
ponents. Development of mashups in Apache Rave is restricted to
selection, placement and personalization of UI components. Logic on
top of components cannot be defined by end users but rather emerges
in the self-organized fashion based on component capabilities.

Presentation mashups can be developed using such tools as Platform for
End User Development Of Mashups (PEUDOM) (Matera et al., 2013) or
Engineering of Do-it-Yourself Rich Internet Applications (EDYRA) (Rüm-
pel et al., 2011). PEUDOM is a mashup environment that enables visual
composition of UI components called widgets (cf. Figure 3.15). The lat-
ter follow a proprietary component model and can be developed within

31http://www.netvibes.com/en, Retrieved: 10.4.2015
32http://rave.apache.org, Retrieved: 13.4.2015
33Source: http://de.slideshare.net/matteo_picozzi/dashmash-a-mashup-

environment-for-end-user-development-8396506, Retrieved: 13.4.2015

56 Chapter 3 State of The Art

Figure 3.15.: PEUDOM: a Visual Environment for Development of UI

Mashups33

the platform itself. To develop a widget users have to define a mapping
between outputs of some RESTful service or RSS feed and a pre-defined
visualization template. Ready widgets can be freely aligned within the
composition canvas and interact with each other using Inter-Widget
Communication (IWC). The latter is specified by users as mapping
between events of one widget and operations of another. The platform
is equipped with real-time collaboration facilities to enable concurrent
development of mashups by groups of users. EDYRA builds on top of
the CRUISE composition platform (Pietschmann, Radeck, et al., 2011).
EDYRA enables composition of UI components with specification of their
communication behavior. Functional and non-functional properties of
components are semantically described, so that the platform can utilize
these descriptions to automatically mediate, discover or recommend
partial mashup configurations. Dedicated views provide explanations to
component capabilities and connections in natural language (Radeck
et al., 2013).

There are some tools that enable development of hybrid mashups. For
example, NaturalMash (Aghaee and Pautasso, 2014) can combine data
source, APIs and presentation elements into one Web application. The

3.2 Tool Assistance 57

composition takes place using controlled natural language, i.e., “natural
language restricted in terms of vocabulary and grammar”, and in the
WYSIWYG fashion. The tool accompanies text-based specification with
interactive visual environment. Mashup specifications are constantly
evaluated by a compiler that gives immediate feedback on composition
results or eventual errors to users. JackBe Presto34 is a commercial
tool that enables composition of data sources, Web services and UI
components. Data mashups are developed in the pipe fashion similar to
Yahoo Pipes. Results can be visualized using UI components called apps

and then be aggregated on once canvas and synchronized by means of
IWC. A similar approach has been investigated within the EzWeb/FAST
(Lizcano et al., 2008) and MashArt platforms (Daniel and Matera, 2009).
Development of the both has been discontinued, however.

Assessment Most of the tools enable integration of any data source
/ functionality if it is wrapped according to the respective component
model. The freedom of selection is therefore high. Logic defined on top
of the components is usually restricted by the composition model and
interfaces of aggregated components. Configuration of UI of composite
applications is possible by interactive placement of components and
their parametrization. The overall development assistance is average.
Many composition tools provide mechanism to support evolution of
user-created solutions. Integration of new components is facilitated by
semi-automatic transformation engines (cf. generation of widgets out
of Web services in MyCocktail and PEUDOM). Updates to components
and interoperability improvements are usually performed manually.
Composition tools usually operate dedicated repositories for collection,
discovery and sharing of reusable artifacts and of complete composi-
tions. Composition tools are equipped with interfaces that can be easily
learned and operated by non-programmers. Visual metaphors, con-
trolled natural language and domain-orientation help to lower overall
complexity of the tools. Nevertheless, basic understanding of program-
ming activities such as definition of control flow between components
are required to create solutions for real-world problems. The complexity
is considered to be average. User configurations and compositions are

34http://jackbe.com/products/presto, Retrieved: 13.4.2015

58 Chapter 3 State of The Art

usually checked against syntactic or semantic mismatches so that many
runtime errors can be prevented before they actually occur. Degree of
fault-tolerance is therefore high. Automation in composition tools have
been a topic of research for many years. Some prototypes are able to
automatically recommend partial compositions, to discover potential
components for a given task or to create complete solutions based on for-
mal goal descriptions. However, development using composition tools
remains mostly manual process – mostly due to the missing facilities for
end-user-friendly goal specification.

Table 3.1 summarizes the assessment of state-of-the-art technologies for
development and evolution of DSSs.

3.3 Discussion

As shown in the previous section suitable solutions exist to increase
involvement of end users into development process, to improve main-
tainability of produced artifacts or to automate programming activities.
However, no holistic approach exists that would address these aspects
simultaneously and, thus, enable end users to develop maintainable soft-
ware under time-pressure. Each reviewed technology has its weaknesses
with regard to at least one requirement from Chapter 2 – a suitable
combination or modification of technologies to fulfill all of them has not
been developed yet.

Techniques from the EUD group focus on maximal end-user involve-
ment and score best in the comparison with other groups. The utilized
processes are short and produce working results quickly. However, due
to insufficient quality ensuring activities maintainability and reusability
of produced solutions is rather low. Component-based methods enable
the highest reuse and, thus, time- and cost-efficient evolution of pro-
duced artifacts. Their primary target group is, however, professional
software developers. Application of these methods by decision makers
is therefore limited. The same is true for MDD technologies – they focus
on development of maintainable products, but can require program-

3.3 Discussion 59

Table 3.1.: Comparison of Analyzed State-of-the-Art Technologies. Labeling:

++ Requirement fully satisfied, + Requirement partially satisfied,

− Requirement not satisfied, / not applicable

Requirement \
Technology

E
n

d
-U

se
r

D
e
v
e
lo

p
m

e
n

t

C
o
m

p
o
n

e
n

t-
b
a
se

d

D
e
v
e
lo

p
m

e
n

t

M
o
d

e
l-

D
ri

v
e
n

D
e
v
e
lo

p
m

e
n

t

W
e
b

C
o
n

te
n

t
M

a
n

a
g
e
m

e
n

t
S

y
st

e
m

s

D
a
sh

b
o
a
rd

s
a
n

d
A

d
-H

o
c

R
e
p
o
rt

in
g

T
o
o
ls

C
o
m

p
o
si

ti
o
n

T
o
o
ls

End-User
Involvement

++ − − / / /

Reuse-orientation + ++ + / / /

Process Conciseness ++ + + / / /

Development
Assistance

/ / / + + +

Evolution Assistance / / / + + +

Ease of Use / / / ++ ++ +

Fault Tolerance / / / ++ ++ ++

Automation / / / + + +

60 Chapter 3 State of The Art

ming skills to be applied. All of the presented assistance tools can be
applied by decision makers to produce DSSs and customize them as
soon as requirements change. User-friendly interfaces and facilities to
prevent faulty specifications are provided. However, to increase usability,
tools often operate with abstractions that impede their own express-
ibility and limit functionality of the resulting DSSs. Deficiencies also
exist in the quality of automation facilities, resulting in time-consuming
configuration steps being performed manually.

The identified deficiencies make application of the reviewed technolo-
gies under time-pressure inadequate. To provide an efficient assistance,
a holistic approach is required that would take all the elicited require-
ments into account.

3.4 Summary

This chapter presented state-of-the-art technologies related to the objec-
tives of the thesis. Two categories of approaches has been introduced:
development processes and tool assistance. Their assessment unveiled
the lack of a holistic solution that would combine a concise, end-user-
involving process, reuse-orientation and efficient assistance mechanisms.
Findings of this chapter build input for the solution concept presented
next.

3.4 Summary 61

4WebComposition
for End-User
Development
Approach

This chapter presents an approach called WebComposition for End-
User Development. Section 4.1 gives an overview of the approach
components and describes their relationships. Section 4.2 introduces
the design principles for realization of the approach. Then conceptual
models and a process for development of DSSs under time-pressure
are presented (cf. Section 4.3 and Section 4.4). Finally, assisting
mechanisms for development and evolution of produced solutions are
introduced (cf. Section 4.6).

4.1 Overview

The WebComposition for End-User Development (WebComposition/EUD)
approach proposes a method for systematic development of DSS under
time-pressure. Its structure is based on design measures proposed in
(Wallmüller, 2001), which have a goal to ensure quality of both the

63

Component Development
Discovery and Composition

Artifacts Management

Conceptual Models
Architectures

Algorithms

Composition Platform
Development Assistance
Evolution Assistance

Tools

Principles

Formalisms

Methods

Figure 4.1.: Quality-ensuring Design Measures of the WebComposition/EUD

Approach (Based on (Wallmüller, 2001))

software development process and of the produced results (cf. Fig-
ure 4.1).

The core of the approach are quality-ensuring Principles, which in addi-
tion to the identified requirements drive design decisions for definition
of other components. The Formalisms provide theoretical basis for
concepts used in the approach. They include conceptual models of
elementary building blocks, compositions, interaction algorithms and
architectures of implementing platform. The Process Model describes
phases, artifacts, roles and responsibilities, required for systematic and
efficient development of software products under time-pressure. The
Methods are techniques, which are applied during various phases of
the Process Model to produce artifacts in time- and cost-efficient fash-
ion. WebComposition/EUD proposes methods for development and
evolution of model-compliant components, for dialog-based discovery
and for management of heterogeneous artifacts. Different steps of the

64 Chapter 4 WebComposition/EUD Approach

proposed process are assisted by Tools that aim at simplifying and au-
tomating time-consuming development activities. The main tool of the
WebComposition/EUD approach is so called Composition Platform with
integrated assistance mechanisms. Other tools targets evolution phase
of the process and provide assistance for maintenance and extension of
end-user-built solutions.

4.2 Principles

The following best practices from EUD, HCI and Web engineering re-
search fields (Lieberman et al., 2006; C. M. Brown, 1988; Wilde and
Gaedke, 2008) lead to several principles and design guidelines that
should increase effectiveness and efficiency of the devised approach.

Gentle Slope of Complexity A system should expose its capabilities
and flexibility according to skills of its users. Novices should
not be overwhelmed with complexity of development process but
rather start with simple or familiar concepts and gradually learn
the development environment (Repenning and Ioannidou, 2006).
An optimal balance between posed challenges and user skills
results in efficient learning process and helps to avoid anxiety or
boredom (Csikszentmihalyi, 2008).

Live programming The principle of “liveliness” promotes smooth trans-
lation between the phases of software design (modeling or pro-
gramming) and execution (Tanimoto, 1990; Aghaee and Pautasso,
2013). The goal is to foster understanding and evaluation of sys-
tem state by providing immediate feedback on performed changes
without need to rebuild the system or switch to alternative views.
Immediate feedback helps to spot relationships between system
modeling constructs and their outputs more easily. Furthermore,
sources and causes of errors can be identified faster.

Domain Orientation A development environment should support ac-
tivities from and apply terminology of end-user problem domain

4.2 Principles 65

(Nardi, 1993). Domain orientation avoids necessity of learning
generalized concepts and doesn’t require users to map their prob-
lems on artificial constructs (Repenning and Ioannidou, 2006).
Although domain-orientation decreases generality of tools and
shrinks their application areas, the usability and efficiency of tools
increases (Imran et al., 2012).

Separation of Responsibilities The principle promotes an appropriate
balance between development activities of end users and of pro-
fessional programmers. Tasks that require programming skills,
knowledge of or access to the whole IT environment, should be
assigned to stuff with corresponding education and responsibilities
(Nardi, 1993). As a result professional developers can better con-
trol and optimize end-user solutions towards efficiency, security
and reliability (G. Fischer et al., 2004).

Knowledge and Artifact Reuse Sharing of knowledge and software
artifacts is a widely applied practice in the field of EUD (Nardi,
1993). Novice users should be able to reuse and to learn from
artifacts developed by experienced peers (Wiedenbeck, 2005). So-
lutions for common problems should be shared to avoid repetitive
and time-consuming developments. Furthermore, building a new
software by modifying an existing one can speed up the process
and improve quality of results.

Loose Coupling The principle promotes agility in software architec-
tures, so that the software can adapt to changes and evolve more
efficiently (Kaye, 2003). Loose coupling facilitates reuse of soft-
ware artifacts and decreases effort required to integrate new func-
tionalities, particularly important in distributed Web applications
(Wilde and Gaedke, 2008). Decoupling of software components
can be achieved by minimizing their mutual dependencies, in-
troducing asynchronous document-style messaging, late binding,
standardizing interfaces etc. (Kaye, 2003).

66 Chapter 4 WebComposition/EUD Approach

4.3 Formalisms

The basic idea of the WebComposition/EUD development approach is
to wrap heterogeneous data sources and functionalities into uniform
building blocks and to enable their “end-user-friendly” composition into
integrated solutions. Conceptual models and core algorithms presented
in this section provide a theoretical basis for the approach. The concep-
tual architecture of enabling platform is discussed in Chapter 5.

4.3.1 Component Model

WebComposition/EUD components build up on the following definition
of a software component:

Definition 4.3.1. A software component is a software element that
conforms to a component model and can be independently deployed and
composed without modification according to a composition standard
(B. Councill and Heineman, 2001).

A component model defines hereby “specific interaction and composition
standards” (B. Councill and Heineman, 2001). WebComposition/EUD
components behave as fully-fledged applications with arbitrary business
logic. Depending on the application domain, they can provide access
to local or remote data sources, perform business-related calculations,
enable telecommunication etc. (cf. Domain Orientation guideline). The
intent behind taking fully-fledged applications as elementary building
blocks is to lower the learning curve of the approach (cf. Live Pro-
gramming principle). Non-programmers should be able to reuse their
experience in usage of traditional Web and smartphone applications.
WebComposition/EUD components expose their functionalities over
two interfaces: a GUI and a so-called Inter-Component Communication
Interface. The GUI is primarily used for interactions with human users
and enables visual access to (eventually parts of) component logic and
data. The Inter-Component Communication Interface (ICCI) targets
software entities external to the component and enables programmatic

4.3 Formalisms 67

WebComposition\EUD
Component

Metadata

-name: string

-description: string

Inter-Component
Communication
Interface

Topic

-name: IRI

<<stereotype>>
User Interface

has Subscription Topic

has Publication Topic

1

1

1

1

1

1

0..*

0..*

0..*

0..*

Schema

1

0..*

Notification Message

-data: <<variable>>

has sender

assigned to

1

0..*

0..*

1

Figure 4.2.: WebComposition/EUD Component Model

access to its (eventually different parts of) logic and data. The ICCI
reflects topic-based publish-subscribe capabilities of components. The
publish-subscribe-based communication model has been chosen due
to the low degree of coupling it induces (in space, time and synchro-
nization) (Eugster et al., 2003). The UI and ICCI interfaces enable
UI composition of components, i.e., aggregation on one canvas and
definition of state synchronization logic (Wilson et al., 2012).

The conceptual model of WebComposition/EUD components is illus-
trated in Figure 4.2.

Definition 4.3.2. A WebComposition/EUD component c is a tuple
〈M, GUI, ICCI〉 with

• M = 〈name, description〉 being the basic component Metadata,
which consists of at least the name and the description of the
component. The two describe content and purpose of a component
from end users’ point of view. They are mainly used for component
discovery during composition development.

68 Chapter 4 WebComposition/EUD Approach

• GUI being the User Interface of the component represented by a
Document Object Model (DOM) tree (Le Hors et al., 2004). Nodes
of the tree are HTML elements, which are characterized by a name,
content and a set of attributes. HTML elements are associated
with element-specific events that can be triggered either upon
interaction with user or using DOM API.

• ICCI = 〈T, PUB, SUB〉 being the Inter-Component Communica-

tion Interface with:

– T = {tn = 〈name, schema〉} being the Topic vocabulary
supported by the component. Each topic tn defines seman-
tics of messages that can be assigned to tn during inter-
component communication (cf. Definition 4.3.3). name is
an Internationalized Resource Identifier (IRI) and should
uniquely identify a topic in some context. schema defines
data type of messages that can be sent or received over the
topic.

– PUB = {pi|pi ∈ T} being the set of Publication Topics sup-
ported by the component c. A publication is an emission of
a message as a result of component-internal events such as
interactions with user or updates of underlying data sources.
Outgoing messages (cf. Definition 4.3.3) are assigned to pub-
lication topics pi and contain data relevant to the occurred
event.

– SUB = {si|si ∈ T} being the set of Subscription Topics sup-
ported by a component. A subscription is an assurance to
receive and process incoming messages assigned to specific
topics (cf. Definition 4.3.3). The messages are handled by
component-internal routines that are defined by the compo-
nent itself.

Messages that can be issued or received by components follow the model
from Definition 4.3.3.

4.3 Formalisms 69

Definition 4.3.3. A notification message m is a tuple 〈c, t, data〉 with
c being a WebComposition/EUD component(sender of the message),
t ∈ c.PUB being the topic, the message has been published on, and
data being the content of the message, which is valid according to the
scheme t.schema.

An example of a WebComposition/EUD component is an application
that shows emergency incidents around some given area. The model of
the component can be defined as follows:

• name = “Emergency Incidents Map”

• description = “Displays emergency incidents, locations of water

level monitoring stations and Web cams around a given location”

• GUI of the component draws an interactive map with dragging
and zooming capabilities. Emergency incidents, Web cameras
and water level monitoring stations are marked using dedicated
markers. Clicks on emergency incident markers result in a pop-up
window that displaying details of respective incident. Clicks on
other markers make the component issue notification messages
with Web camera or water level measurement station identifiers.

• ICCI consists of one subscription on topic tLocation = 〈http :
//artifact library.example.org/topics/location, SLocation〉, and
two publications tStation = 〈urn : topic : station, SStation〉,
tW ebcam = 〈urn : topic : webcam, SW ebcam〉. tLocation describes
messages that contain “longitude” and “latitude”of point to center
the map around. tStation and tW ebcam define the only concept
“id”, which identifies water level measurements stations and Web
cameras respectively. Schemata SLocation, SStation, SW ebcam de-
scribe data types of messages that can be sent or received over
respective topics. Example data types can be sets of value-pairs
{〈v, k〉} with v and k being strings.

70 Chapter 4 WebComposition/EUD Approach

4.3.2 Composition Model

The WebComposition/EUD composition model (cf. Figure 4.3) foresees
template-based aggregation and so-called customizable choreography
of WebComposition/EUD components. The former enables selection
and assignment of components to template placeholders. Placeholders
should simplify and speed up the composition process by avoiding over-
lapping between components. Choreography refers to the fact that the
composition model doesn’t require explicit definition of communication
channels between components if their ICCI interfaces are considered
to be “compatible” (cf. Section 4.3.1). Instead, the channels are es-
tablished automatically according to the topic-based publish-subscribe
interaction scheme (Eugster et al., 2003). The motivation behind choos-
ing customizable choreography as a communication model is to speed
up and to simplify the composition process. In contrast to orchestration
approaches, components establish communication channels automati-
cally as soon as they are added to the composition. The customization
aspect enables their manual modification to meet specific user require-
ments. Customization of communication channels takes place either
by disabling communication over some topic, by isolating components
or by defining topic transformations. The complexity of development
process increases from aggregation of visual components over communi-

cation restriction to topic transformations. The proposed model can be
considered as an extension of the basic UI mashup model introduced in
(Wilson et al., 2012).

Definition 4.3.4. A WebComposition/EUD composition cc is a tuple
〈M, C, V P, CP, ICC〉 with

• M = 〈name, description〉 being the basic composition Metadata,
which consists of at least the name and the description of the
application. The two describe its content and purpose from end
users’ point of view.

• C = {ci} being the set of WebComposition/EUD components as
defined in Section 4.3.1

4.3 Formalisms 71

WebComposition\EUD
Composition

Metadata

-name: string

-description: string

ICC Configuration

1

0..*

1

1

1

1

1

0..*

0..1

1

0..*

Viewport

1

1

0..*

0..*

1

Component
Placement

-definition: string

-left: integer

-top: integer

-width: integer

-height: integer

0..1

Restriction
0..*

Isolation
Transformation

-definition: string

Topic
has sender

has receiver

source

0..10..*

1

0..*

0..* 1

0..*

target

1

1

0..*

0..*

11

WebComposition\EUD
Component

Figure 4.3.: WebComposition/EUD Composition Model

• V P = {vj = 〈left, top, width, height〉} being the set of Viewports

for rendering of components

• CP = {(vj , ci) : vj ∈ V P, ci ∈ C} being the Component Placement

• ICC = 〈R, I, F 〉 being the Inter-Component Communication Con-
figuration with

– R = {rl : rl = 〈cl,sender, cl,receiver, tl〉} being Restrictions on
communication between components cl,sender, cl,receiver ∈ C
over some arbitrary topic tj

– I ⊆ C being the set of Isolations, i.e., components that are
forbidden to communicate with others.

72 Chapter 4 WebComposition/EUD Approach

– F = {fn : tg −→ th} being the set of Transformations, which
are functions that map content of messages published on
topic tg into schema-compliant content for topic th.

The communication rules between components are defined as follows:

• Components csender are not allowed to receive or send any mes-
sages if csender ∈ I

• Components csender are allowed to emit (publish) messages on
topics t if t ∈ csender.PUB. As described in Section 4.3.1 compo-
nents decide autonomously, i.e., corresponding to their internal
logic, when and which content to publish.

• Let a = 〈csender, t, data〉 be a notification message published by
csender. The message a is delivered to all components ci ∈ C :
ci �= csender if and only if

– t ∈ ci.SUB and

– ci /∈ I and

– ∄rj ∈ R : rj = 〈csender, ci, t〉.

• Let a = 〈csender, t, data〉 be a notification message published by
csender and ∃f ∈ F : t −→ t∗ ∈

⋃

∀c∈C

c.SUB. The message a∗ =

〈csender, t∗, f(a.data)〉 is delivered to all components ci ∈ C : ci �=
csender if and only if

– t∗ ∈ ci.SUB and

– ci /∈ I and

– ∄rj ∈ R : rj = 〈csender, ci, t∗〉.

4.3 Formalisms 73

Communication between components builds up on the topic-based
publish-subscribe messaging style (Eugster et al., 2003). Components
support it by design and, thus, initiate mutual communication without
any explicit configuration in the composition model (providing interface
compatibility). This principle simplifies and accelerates composition
process as no explicit configuration should be specified in order to let
components communicate (Chudnovskyy, Nestler, et al., 2012; Isaksson
and Palmer, 2010). To avoid rigidity of the composition and enable
its extensibility (Tschudnowsky, Pietschmann, Niederhausen, Hertel,
et al., 2014) the default topic-based publish-subscribe behavior can be
customized. The customization takes place using isolations, restrictions
and topic transformations. A component can be isolated either by
defining restrictions for all of its in- and outgoing connections or by
adding it to the set I. The difference is that the first configuration
isolates the component from its current “neighbors”, whereas the latter
one disables its communication also with new components if added. The
transformation function can be used to enforce communication between
two components that have incompatible ICCIs. The function creates
new notification messages out of actually published ones. The new
messages are delivered to all components subscribed to the specified
topic.

An example of a composite application could be an emergency re-
sponse DSS described in Section 2.1.1. It could consist of the following
WebComposition/EUD components: a map (cf. Section 4.3.1), two
components visualizing information provided by a specified water level
measurement station, one component displaying view of a specified
Web camera, and one SMS component (cf. Figure 4.4).

The goal of the DSS can be to provide aggregated information on
emergency incidents during natural disasters such as in case of flood.
The composite application enables comparison of flood levels in dif-
ferent locations, access to live views on the most critical places and
sharing of information with other people. The composition model
CCEmergencyResponse of the application looks like as following:

• name = “Emergency Response”

74 Chapter 4 WebComposition/EUD Approach

Figure 4.4.: Example DSS for Flood Catastrophe Management

• description = “The application provides aggregated information on

emergency incidents occurred as a result of flood catastrophe”

• C = {cMap, cLevels,1, cLevels,2, cW ebcam, cSMS}

• V P = {v1, v2, v3, v4, v5, v6} being available viewports for render-
ing components

• V PA = {(v1, cLevels,1), (v2, cLevels,2), (v3, cMap), (v5, cSMS),
(v6, cW ebcam)} being the viewport-component associations

• ICC = 〈R, I, F 〉 being the Inter-Component Communication
(ICC) configuration with

– I = {cW ebcam} being the set of isolations that makes Web
camera widget keep its view, even if a marker in cMap gets
activated (e.g., to avoid accidental shifts).

– R = {〈cMap, cLevels,1, http : //artifactlibrary.example.org/
topics/station〉} being the set of restrictions that forbid com-
munication between cMap and cLevels,1.

4.3 Formalisms 75

– F = {f} being the set of transformation functions with the
only function f that maps publication http : //
artifactlibrary.example.org/topics/water−level of cLevels,1

on subscription topic http : //artifactlibrary.example.org/
topics/sms of cSMS . The mapping algorithm can be a con-
catenation of all elements from original water level data
assigned to the element text of target notification message.

Users can interact with each aggregated component – they can move
and explore the map, modify Web camera and water levels display
parameters or send SMS. Due to the default communication behavior
of the components and their compatible interfaces, both water level
components will always display the data related ti the marker selected
on the map. This is, however, undesired, if two measurements should
be compared. The specified restriction prevent cLevels,1 from reaction
on marker selection event and “freezes” its view. cLevels,2, however,
will continue to receive messages from cMap and will adapt its view
correspondingly. The same effect is achieved by isolating component
completely, cf. the isolation set I. The difference is that cLevels,1 is al-
lowed to receive or send messages to other components, while cW ebcam

not. Finally, in case, the SMS component should be automatically
populated with measurement data from cLevels,1, a new topic transfor-
mation function f is defined that performs content mapping between
publications and subscriptions of the two components.

4.4 Process Model

According to the principle of Separation of Responsibilities the WebCompo-
sition/EUD process model distinguishes among several logical roles
involved into development of WebComposition/EUD compositions (cf.
Figure 4.5).

Component Developers (CD) create WebComposition/EUD compo-
nents that address business-related tasks and that can be com-

76 Chapter 4 WebComposition/EUD Approach

bined together to more complex solutions. Component Developers
are skilled programmers with domain expertise.

Component Communication Experts (CCE) ensure composability of
components by adjusting their ICCIs or by implementing ICCI
transformations. Although ICCIs can be implemented by Com-
ponent Developers, Component Communication Experts resolve
incompatibility issues that might arise, if ICCIs utilize different
data structures or data types. Average programming skills and
some domain expertise are required to perform this task.

Artifact Library Managers (ALM) maintain public or organization-in-
ternal library of WebComposition/EUD components and their com-
positions. To enable efficient discovery and reuse, library artifacts
are annotated. Relationships and usage possibilities are made ex-
plicit. For maintenance activities Artifact Library Managers require
strong domain expertise as well as understanding of component
behavior and implementation.

Composition Developers (CSD) create and use DSSs by combining
WebComposition/EUD components into one composite applica-
tion. The resulting solutions are used to analyze data or access
functionalities required for decision making. Composition Devel-
opers are the main target group of this thesis. We assume that
Composition Developers do not have any programming skills but
are experts in their problem domain. However, with growing
expertise Composition Developers can customize their solutions
more flexibly and share their compositions with others.

Based on the skills of stakeholders introduced in Section 2.2 the role
of Composition Developers in the WebComposition/EUD process is as-
signed to Decision Makers. Software Providers should play the remain-
ing roles.

To address the requirements elicited in Chapter 2, the WebComposi-
tion/EUD process model builds up on several existing state-of-the-art
solutions. The core of the approach is the WebComposition Process

4.4 Process Model 77

Domain
Expertise

Programming
Skills

strongaverageweak

weak

average

strong

ALM

SP

no
CSD

CCE

SP

CD

Figure 4.5.: WebComposition/EUD Role Model

Model (Gaedke and Gräf, 2001). The motivation of building upon this
model is its strong component-orientation, extensibility and openness.
Furthermore, it explicitly addresses continuous evolution of software,
which is also one of the objectives of the thesis. The proposed extension
of the WebComposition Process Model adds steps, artifacts and roles
that are specific to end-user development under time-pressure.

The WebComposition/EUD process model distinguishes between two
coarse-grained phases: a so-called Bootstrap Phase and a Continuous

Evolution Phase (cf. Figure 4.6). The former has a goal to establish an
initial knowledge base and a set of general-purpose components for later
DSS development. The latter (derived from the WebComposition Process
Model) describes the process of iterative DSS evolution performed by
end users.

The Bootstrap Phase starts with so-called Domain Exploration. The
step has a goal to identify common data sources and functionalities
that can support daily activities of decision makers from a particular
domain. Based on recognized usage patterns Artifact Library Managers
define groups of coarse-grained entities that should be later wrapped

78 Chapter 4 WebComposition/EUD Approach

Domain
Exploration

- Data Sources
- Functionalities
- Usage Patterns

Component
Discovery

Composition
Development

Solution
Planning

Artifact Library

Component
Development

- WCEUD
Components

Requirements
Elicitation

- Component Specifications
- Communication Ontology
- Compositions Templates

ALM
CSD

ALM
CD
CCE

CD

ALM

CSD CSD

CSD

- System and Component

Requirements

- WCEUD Components

- Existing Solutions

- WCEUD Composition

Evolution Planning

Evolution DesignEvolution Realization

Figure 4.6.: WebComposition/EUD Process Model

4.4 Process Model 79

into reusable WebComposition/EUD components. Together with Com-
ponent Developers and Component Communication Experts functional
and non-functional requirements on the future components are elicited
(Requirements Elicitation step). Component Communication Experts
define a common communication ontology and derive ICCI interfaces
for seamless composability of components. Component metadata and
capabilities are documented. Artifact Library Managers also capture
relationships between components, potential component compositions
and business goals addressed by these compositions. This initial knowl-
edge base builds the basis for later DSS development by Composition
Developers. Once the requirements are elicited Component Developers
start designing, implementing and testing envisioned pieces of software
(Component Development step). Development process to be used is not
restricted and can be chosen by respective development teams freely.
After components are developed Artifact Library Managers make them
available for composition and, thus, finish the bootstrap phase.

The Continuous Evolution Phase promotes iterative development of
DSSs based on reuse of existing components and their compositions.
Similarly to the original WebComposition Process Model three iterative
steps around a centralized reuse repository are defined. The first one
called Solution Planning corresponds to the original Evolution Analy-
sis step. Composition Developers analyze, which functionalities are
required to solve their current problem and identify existing solutions
that fit their envisioned DSS best. For this purpose they either browse
the Artifact Library maintained by Artifact Library Managers manually
or make use of assisting discovery mechanisms. If no existing solution
is available that would fit the business goals, development starts with
an empty solution. Otherwise, the discovered solution is reused and
a copy of its composition model is created. The second step called
Component Discovery corresponds to Evolution Design in the original
model. Components that provide required functionality, are identified.
The Artifact Library acts as a source of potential candidates. If no
appropriate component is found or modifications to existing ones are
needed, a request to Artifact Library Manager can be issued. The latter
eventually initiates component development or modification as it is
done in the Bootstrap Phase. During the last Composition Development

80 Chapter 4 WebComposition/EUD Approach

step, which corresponds to Evolution Realization step in the original
model, discovered components are integrated into existing solution.
Properties, layout and communication capabilities of components in the
solution are configured. In the sense of Live Programming principle
these activities overlap with the actual usage of the solution, so that
each configuration change can be immediately tested and evaluated by
Composition Developers. Stable and reusable solutions are reviewed
and published by Artifact Library Managers to be reused as templates
for future compositions.

Similarly to the original process model the presented steps can be per-
formed in cycle. By enriching existing solutions with new components
changing requirements and new use cases can be supported.

4.5 Methods

The WebComposition/EUD approach introduces three techniques that
enable systematic execution of the most complex and time-consuming
activities in the development process. The addressed activities are 1)
development of WebComposition/EUD components, 2) development of
component-based DSSs and 3) management of various WebComposi-
tion/EUD artifacts.

The first one called Component Conversion and Enrichment enables
time- and cost-efficient production of model-compliant components
out of legacy ones. Instead of developing required functionality from
scratch, the method proposes to reuse existing code of Web-based wid-
gets with adaptations that can be described by a set of rules specific
to the source widget format. To equip the resulting component with
inter-component communication capabilities a UI-based configuration
technique is proposed. To speed up the development process it en-
ables interactive demonstration of the desired behavior instead of direct
source code adaptations. Details of the Component Conversion and
Enrichment method are described in the context of implementing tools
(cf. Section 7.2 and Section 7.3).

4.5 Methods 81

The second technique called Dialog-based Discovery aims at short-
ening the time required for Component Discovery and Composition
Development steps. It proposes to use interactive dialog-based UI for
expressing business goals of decision makers. Instead of discovery,
configuration and assembly of components from scratch, it promotes
customization of existing solutions that at least partially satisfy the
stated goals. The dialog-based interface should minimize potential er-
rors in solution configuration and decrease the complexity of the system.
The reuse aims at increasing quality of the resulting product and mini-
mizing the development time. Section 6.2 describes a software tool that
implements the Dialog-based Discovery technique.

The last technique called Linked Artifact Metadata has a goal to sim-
plify discovery and access to artifacts produced during the development
process. It foresees publication and linking of metadata of artifacts using
Linked Data principles (Berners-Lee, 2009). The technique promotes
and simplifies internal and external reuse of WebComposition/EUD com-
ponents and compositions. Component Developers can find and access
component description in a uniform way. Explicit linking and use of
shared vocabularies should enable Composition Developers to discover
new solutions or components both within and outside one organiza-
tion. Section 7.4 describes a software tool that supports and partially
automates application of the Linked Artifact Metadata technique.

4.6 Tools

The WebComposition/EUD tools support various activities and roles
within the introduced process model (cf. Figure 4.7). In line with the
thesis objectives the tools aim at 1) enabling development of DSSs by
end-users, 2) speeding up time-consuming activities and 3) ensuring
time- and cost-efficient evolution of produced artifacts. The objectives
enable grouping of the proposed tools into three corresponding cate-
gories: the composition platform, development assistance and evolution
assistance mechanisms, which are introduced next.

82 Chapter 4 WebComposition/EUD Approach

4.6.1 Composition Platform

The Composition Platform acts as a run-time environment and a visual
editor for WebComposition/EUD composition models (cf. Section 4.3.2).
The platform addresses Composition Developers as its main user group
and enables interactive customization and execution of DSSs. Integrated
component browser provides access to available WebComposition/EUD
components, which can be instantiated and aggregated on one canvas.
The composition platform blurs the edge between development and
usage activities (cf. Live Programming principle), i.e., any change to
the composition model becomes immediately visible and explorable to
platform users. The Gentle Slope of Complexity principle is applied
while offering different types of customization of component commu-
nication behavior. The simplest activity is the isolation of components
from mutual communication. For definition of restrictions a basic un-
derstanding of underlying communication model is required. Finally,
the most challenging task is specification of mappings between various
communication channels.

4.6.2 Development Assistance

Various automation mechanisms aim at simplifying and accelerating
development of DSSs by Composition Developers.

Automatic Discovery and Composition Engine The first tool called Auto-
matic Discovery and Composition Engine (ADCE) (cf. Section 6.2)
supports novice Composition Developers in the first steps of DSS de-
velopment and suggests possible solutions for common business goals.
The tool applies the Dialog-based Discovery technique (cf. Section 4.5)
and acts as an expert system for various problem domains. Composition
Developers start with selection of business goals from a knowledge base
and refine them during a question-answering game. If no ready-to-use
solution for user problem exists, ADCE provides a possibility to describe
required data sources and functionalities that will be automatically
searched for and eventually included into the first solution prototype.

4.6 Tools 83

After automatic instantiation the prototype can be customized or ex-
tended using facilities provided by the composition platform.

Double Input Detector The second tool called Double Input Detec-
tor (DID) (cf. Section 6.4) simplifies usage of DSSs in time-pressuring
situations and automates various manual actions such as repeated user
inputs or form submissions. For this purpose it observes user interactions
with GUIs of aggregated components and creates logical connections
between GUI elements considered to be related. The “related” rela-
tionship is computed dynamically by comparing user inputs into the
two elements. Once a logical connection is established, the tool au-
tomatically synchronizes content of the elements without the need of
time-consuming and potentially error-prone manual input. As a result
users can access data and functionality offered by different components
faster and more reliably.

Loop Detection Facilities The third tool called Loop Detection Facilities
(LDF) (cf. Section 6.3) is capable of detecting erroneous configurations
in the composition model and preventing faulty behavior of the resulting
solutions. The goal is to increase the reliability and fault-tolerance of
the platform. LDF consists of two mechanisms that can detect and
prevent potentially unwanted communication between components.
The first one analyzes composition model and ICCIs of aggregated
components and notifies users, if intense mutual communication among
subset of components is possible. The second mechanism analyzes
actual communication among components at run-time and produces
warnings, if it is considered to be potentially long-lasting and harmful

to the application. LDF enables timely feedback on eventual errors in
the application and can prevent them by automatically adjusting the
composition model.

4.6.3 Evolution Assistance

Evolution of existing DSSs is supported by a toolkit consisting of three
mechanisms.

84 Chapter 4 WebComposition/EUD Approach

WebComposition/EUD Component Converter The first tool called
WebComposition/EUD Component Converter (WebComposition/EUD-CC)

enables efficient development of WebComposition/EUD components
out of components of other types and models (cf. Section 7.2). It
automates the first step of the Component Conversion and Enrich-
ment technique (cf. Section 4.5). The goal is to efficiently enrich the
set of data sources and functionalities available for integration and,
thus, to enable adaptation of existing DSS solutions towards changing
requirements. The target group of the tool are Component Develop-
ers. WebComposition/EUD-CC automatically maps structure and meta-
data of components of other types on corresponding elements within
WebComposition/EUD components. To simplify and automate conver-
sion of many components a configurable batch mode is implemented.

WebComposition/EUD ICCI Extender The second tool called WebCompo-

sition/EUD ICCI Extender (WebComposition/EUD-IE) enables efficient ex-
tension of ICCI of WebComposition/EUD components (cf. Section 7.3).
It automates the second step of the Component Conversion and Enrich-
ment technique (cf. Section 4.5). The goal of WebComposition/EUD-IE
is to accelerate the extension process and to avoid manual error-prone
source code adaptations. The target group is Component Communica-
tion Experts. WebComposition/EUD-IE offers a visual environment that
allows interactive specification of new publications and subscriptions.
The definition takes place in the PBD fashion (Lieberman, 2001): one
performs a sequence of actions on the GUI of a component and the tool
automatically converts it (or its subset) into new ICCI primitives. The
latter represent high-level functionalities that encapsulate low-level GUI
events and operations. New ICCI primitives are tightly coupled to the
GUI of the original component. They propagate changes of interaction
elements and enable indirect invocation of their operations.

WebComposition/EUD Artifact Library The last facility from the evo-
lution support toolkit is the so-called WebComposition/EUD Artifact
Library (cf. Section 7.4). The library enables efficient management
of various types of reusable artifacts involved into development of
DSSs. The target group of the tool are Artifact Library Managers. The

4.6 Tools 85

library stores available WebComposition/EUD components, their meta-
data, shared composition models and various ontology definitions. The
resources can be accessed and managed over a configurable RESTful in-
terface. A built-in authentication and authorization mechanism enables
fine-grained access control to library resources.

4.7 Summary

This chapter introduced the WebComposition/EUD approach for time-
constrained development of DSSs by end users. The basic idea of the
approach is to enable end-user-friendly development and customization
of DSSs based on compositions of specialized components. The approach
consists of several measures to ensure quality of the development pro-
cess and of the produced artifacts. Its core principles promote artifact
reuse, gentle slope of complexity and separation of responsibilities. The
process model based on the WebComposition approach describes roles,
phases and activities for systematic DSS development by end users. The
formalisms include component and composition models, algorithms
and reference architectures that should hide complexity of underlying
technology behind appropriate abstractions. The methods define sev-
eral techniques for time- and cost-efficient development and evolution
activities. Tools, which include the WebComposition/EUD composition
platform and various assistance mechanisms, provide implementations
of the proposed ideas and techniques. The next three chapters provide
a detailed view on the tools and methods of the WebComposition/EUD
approach.

86 Chapter 4 WebComposition/EUD Approach

The Web

Component Converter

WCEUD Components

Artifact Library

ICCI Extender

WCEUD Components
with Enriched ICCI

Automatic Discovery
and

Composition Engine

Initial DSS Prototype

Customized DSS

produces

published in

used by

produces

Composition Platform

Loop
Detection
Facilities

Double
Input

Detection

Proprietary UI
Components

CD

CCE

ALM

CSD

CSD

produces

Figure 4.7.: WebComposition/EUD Toolkit and Corresponding Target Roles

4.7 Summary 87

5Composition
Platform

This chapter introduces the WebComposition/EUD composition plat-
form, which is the core of the whole technological toolkit. First, appro-
priate requirements on design and implementation of the platform are
defined. Then a conceptual architecture of the platform is presented
and its implementation using Web technologies is shown. Finally, results
on usability evaluation of the platform are given.

5.1 Research Questions

Development environments are collections of tools and workbenches to
support professional software development process (Fuggetta, 1993).
WebComposition/EUD approach, however, targets end users and aims
at simplifying the process. The main challenge addressed by this chapter
is how to enable access to and use of WebComposition/EUD framework.
The research questions addressed are:

Research Question 1 Is it possible to define a technology-independent
platform architecture for storage, instantiation and manipulation
of WebComposition/EUD models? This question aims at identify-
ing abstract components, relationships, data and control flows that
can be used as a footprint to build technology-specific solutions.

89

Research Question 2 Do the proposed awareness and control facilities
make users more efficient in simple data comparison tasks? This
questions addresses the usability of the proposed concepts and
evaluates if they decrease time required for solving given data
comparison tasks.

Research Question 3 Does the proposed Transformation Editor match
skills of Composition Developers? This question analyzes confi-
dence of users while applying the tool and evaluates its usability.

5.2 Requirements

The main goal of the WebComposition/EUD composition platform is to
enable development of DSSs by iterative customization of discovered
solutions. To achieve this goal the platform should fulfill the following
requirements (implied by the ones from Chapter 2 and principles from
Section 4.2):

Customization Support As discussed in Section 4.4 the customization
step foresees five main activities:

1. Modifying the metadata of the solution.

2. Modifying the set of components that constitute the DSS.

3. Modifying the set of available viewports

4. Modifying component-viewport assignments

5. Modifying the communication configuration (isolating com-
ponents, defining restrictions and transformation functions)

The platform should enable all the above activities.

90 Chapter 5 Composition Platform

Ubiquity Time-pressuring situations require DSSs that are available
on any device at any time. The composition platform should,
therefore, produce solutions that do not require any specialized
hard- or software to run.

Usability The main target group of the composition platform are de-
cision makers without programming skills. Therefore, the com-
position environment should be easy to learn, easy to apply and
efficiently support solution of domain problems.

5.3 Conceptual Architecture

The conceptual architecture of the WebComposition/EUD composition
platform is presented in Figure 5.1. It represents a slight modifica-
tion of the OMELETTE mashup architecture (OMELETTE Consortium,
2013a), which has been developed by consortium of the EU FP7 Re-
search Project OMELETTE1 with participation of the author. Simi-
larly to the original proposal the WebComposition/EUD architecture
aims at establishing a platform-independent infrastructure for end-user
mashup development. The introduced modifications address manipu-
lation of WebComposition/EUD specific models (restrictions, isolations
and topic transformations), foresee integration of future end-user assis-
tance mechanisms (by means of Extension modules) and abstract away
from some scenario-specific components (Service Mashup Environment,
OMELETTE Information Store etc.).

The main component of the architecture is the Live Composition Editor,
which acts as a development and run-time environment for WebCom-
position/EUD components and compositions. Customization activities
are performed directly on running applications by means of direct com-
ponent manipulation, additive views and context menus. The editor
updates the underlying Composition Model on every change and im-
mediately reflects the changes back in the running instance (cf. Live
Programming principle, Section 4.2). Composition models can be ex-

1http://cordis.europa.eu/project/rcn/95584_en.html, Retrieved: 6.8.2016

5.3 Conceptual Architecture 91

WebComposition/EUD Composition Platform

Live Composition Editor

Awareness and
Control Facilities

visualize and modify

Authentication /
Authorization

Manager

reads / writes

reads

Composition
Model

Inter-Component
Communication
Infrastructure Component

Instances

use

Component
Browser

adds

updates

controls access to

Extension
Extension

n
Extensionnn

Extension

read / write

User Profile
Repository

WWP

Component
Repository
Component

WWC

Composition
Models

Repository

Composition

MMCM

updates

Figure 5.1.: Conceptual Architecture of the WebComposition/EUD

Composition Platform

92 Chapter 5 Composition Platform

ported into the Composition Model Repository. Editor interface enables
integration of additional model observation and modification modules
(Extensions) such as ADCE (cf. Section 6.2) or LDF (cf. Section 6.3).
Component packages are stored in the Components Repository, which
can be explored with the help of the Component Browser. Run-time
communication between components is enabled by a dedicated ICC

Infrastructure, which distributes component notification messages ac-
cording to the communication rules defined in Section 4.3.2. Finally,
Authentication and Authorization Manager enables authentication, au-
thorization and management of platform users, whose profiles are stored
in the Profile Repository.

5.4 Implementation

The composition platform has been implemented using standard Web
technologies. The choice of the Web as a technology basis is motivated
by device and platform independence of resulting solutions as well as
potential for installation and maintenance cost reduction especially in
case of Cloud deployment (Miller, 2008). Furthermore, popularity of
the Web and its wide acceptance resulted in concepts and interaction
patterns that became well-understood and widely applied by users
even without programming skills. In the following, Web realization of
WebComposition/EUD components, composition models and the above
architecture is presented.

5.4.1 WebComposition/EUD Components

WebComposition/EUD components are implemented on the basis of
W3C Packaged Web Apps (Widgets) specification (Cáceres, 2012). The
choice of this particular technology is motivated by its vendor-indepen-
dence, openness and open-source tool support. Similarly to the Pack-
aged Web Apps WebComposition/EUD components are “full-fledged
client-side applications that are authored using technologies such as
HTML and then packaged for distribution” (Cáceres, 2012). An app

5.4 Implementation 93

Figure 5.2.: Example of a W3C Packaged App Content (Source: Cáceres, 2012)

package is a ZIP-archive with file extension *.wgt, which contains source
code files and a configuration document. The source code consists
of HTML, Cascading Style Sheets (CSS) and JavaScript files and their
optionally localized copies. The configuration document describes app
metadata (title, description, author, license etc.), requirements on the
execution environment (proxy, communication libraries etc.) and default
app preferences. An example of a W3C Web app package is depicted in
Figure 5.2. The package is installed and executed in dedicated run-time
environments called Widget Containers. The latter interpret the source
code, provide required run-time services and implement JavaScript API
defined by the specification. Apache Wookie2 is an example of a Web-
based widget container that enables hosting and integration of W3C
Web apps into third-party applications.

WebComposition/EUD components are specialized W3C Web Apps that
have been enriched with ICCI as proposed in Section 4.3.2. Each
WebComposition/EUD component can produce and consume notifica-
tion messages assigned to various logical channels, i.e., topics. Topics
names are IRIs. In case of HTTP-IRIs they point to schemata of valid

2http://wookie.apache.org, Retrieved: 18.05.2015

94 Chapter 5 Composition Platform

topic messages. For simplicity and convenience purposes the resources
behind the HTTP-IRIs are JSON-schema3 documents.

The messaging API for WebComposition/EUD components is specified
and implemented by OpenAjax Hub (OpenAjax Alliance, 2009). The
OpenAjax Hub framework enables “isolation of components into se-
cure sandboxes” and equips the isolated components with managed
topic-based publish-subscribe infrastructure. For compliance with the
WebComposition/EUD composition model the framework has been ex-
tended to support restrictions, isolations and transformation functions.
Listing 5.1 exemplifies usage of OpenAjaxHub API for sending and
receiving of notification messages.

The ICCI of WebComposition/EUD components is described in the pack-
age configuration document. Explicit declaration of ICC capabilities
facilitates discovery and composition of components as well as analysis
and control of ICC (cf. Figure 5.3).

Figure 5.3.: Extensions of W3C Configuration Document to Describe ICC

Behavior

The description uses new XML elements that describe topic vocabulary,
publications and subscriptions supported by a component. The topic
vocabulary consists of references or definitions of used topic IRIs, their
textual descriptions and corresponding JSON schemes. Component pub-
lications and subscriptions reference elements from the declared topic
vocabulary. Listing 5.2 shows an excerpt from the configuration docu-
ment that describes the example map component from Section 4.3.1.

3http://json-schema.org, Retrieved: 22.05.2015

5.4 Implementation 95

Listing 5.1: Inter-Component Communication using OpenAjax Hub

. . .

/* S u b s c r i b e f o r map c e n t e r messages */

hub . subsc r i be (

"http://artifactlibrary.example.org/topics/location" ,

centerChanged) ;

. . .

function centerChanged (top ic , data , meta) {

pos = new google . maps . LatLng (data . l a t i t u d e , data .

long i tude) ;

map . panTo(pos) ;

}

. . .

/* Pu b l i s h i d e n t i f i e r s o f measurement s t a t i o n s */

for (i n t i =0; i<s t a t i o n s . length ; i++) {

s t a t i o n = s t a t i o n s [i] ;

marker = createGener icMarker (new google . maps . LatLng (

s t a t i o n . l a t i t u d e , s t a t i o n . long i tude) , "

marker_station" , "Station:␣"+s t a t i o n . id) ;

google . maps . event . addL i s tener (marker , ’click’ ,

function (event)

{

. . .

hub . pub l i sh ("http://artifactlibrary.example.org/

topics/station" , s t a t i o n) ;

. . .

}

) ;

}

96 Chapter 5 Composition Platform

It references one topic (tLocation), declares two other (tStation and
tW ebcam) and defines two component publications and one subscription.
The referenced topic definition is presented in Listing 5.3.

Listing 5.2: Extension of the W3C Configuration Document

<feature name="http://www.openajax.org/hub"

xmlns:oa="http://www.openajax.org/hub">

<!−− Declaration of supported vocabulary −−>

<oa:topics>

<oa:topic id="tLocation"

name="http://artifactlibrary.example.org/topics/location"

/>

<oa:topic id="tStation" name="topic:station">

<oa:description>Identifier of a water level measurement

station</oa:description>

<oa:schema>

<![CDATA[

{

"type":"object",

"properties":{

"id":{"type":"string"}

}

}

]]>

</oa:schema>

</oa:topic>

<oa:topic id="tWebcam" name="topic:webcam">

<oa:description>Identifier of a Web camera</oa:description>

<oa:schema>

<![CDATA[

{

"type":"object",

"properties":{

"id":{"type":"string"}

}

}

]]>

</oa:schema>

</oa:topic>

</oa:topics>

5.4 Implementation 97

<!−− Declaration of publications −−>

<oa:publications>

<oa:publication topic="tStation"/>

<oa:publication topic="tWebcam"/>

</oa:publications>

<!−− Declaration of subscribtions −−>

<oa:subscriptions>

<oa:subscription topic="tLocation"/>

</oa:subscriptions>

</feature>

Listing 5.3: Topic Declaration using a JSON-Scheme Document

c u r l h t tp : // a r t i f a c t l i b r a r y . example . org / t o p i c s / l o c a t i o n

{

"description" : "GPS␣Coordinates" ,

"type" : "object" ,

"properties" : {

"longitude" : { "type" : "number" } ,

"latitude" : { "type" : "number"}

}

}

5.4.2 WebComposition/EUD Composition

Compositions of WebComposition/EUD components are specified us-
ing configuration documents in the Open Mashup Description Lan-
guage (OMDL) format (OMELETTE Consortium, 2013a). The OMDL
specification enables interoperable description of metadata, structure
and layout of widget-based mashups in different life-cycle phases. The
specification has been reused due to its openness, similarity of concepts
and availability of open-source tool support. OMDL described composite
applications called workspaces and their building blocks called apps. The
latter are instances of Web-based widgets that can be accessed through

98 Chapter 5 Composition Platform

an IRI. Various life-cycle phases of mashups (conceptual, logical and
physical) are addressed by dedicated vocabularies and data types.

The composite application from Section 4.3.2 in the physical design
phase can be described using OMDL as shown in Listing 5.4.

Listing 5.4: OMDL Description of the Emergency Response Application

<workspace xmlns="http://omdl.org/">

<identifier>http://artifactslibrary.example.org/dss/379</identifier>

<title>Emergency Response</title>

<description>The application provides aggregated information on

emergency incidents occurred as a result of flood

catastrophe</description>

<creator>Alexey Tschudnowsky</creator>

<date>2013−06−18T14:39:58+0200</date>

<layout>THREE COLUMNS</layout>

<!−− Map −−>

<app id="a1">

<link href="http://container.example.org/instance/12"

type="application/widget" rel="source"/>

<position>LEFT TOP</position>

</app>

<!−− Web Camera −−>

<app id="a2">

<link href="http://container.example.org/instance/7"

type="application/widget" rel="source"/>

<position>LEFT MIDDLE</position>

</app>

<!−− Flood Levels 1 −−>

<app id="a3">

<link href="http://container.example.org/instance/10"

type="application/widget" rel="source"/>

<position>RIGHT TOP</position>

</app>

<!−− Flood Levels 2 −−>

<app id="a4">

5.4 Implementation 99

<link href="http://container.example.org/instance/11"

type="application/widget" rel="source"/>

<position>RIGHT MIDDLE</position>

</app>

<!−− SMS Component −−>

<app id="a5">

<link href="http://container.example.org/instance/4"

type="application/widget" rel="source"/>

<position>RIGHT TOP</position>

</app>

</workspace>

To address the peculiarities of the WebComposition/EUD composition
model, the OMDL format is extended with vocabulary to describe ICC
configuration of a composite application (cf. Figure 5.4).

Figure 5.4.: OMDL Extensions to Describe ICC Configuration

The restriction element is used to specify component restrictions. The
mandatory source attribute references a component, whose communi-
cation behavior should be restricted. The mandatory target attribute
references the potential communication partner. If only source and tar-

get attributes are present, any communication between the referenced
components is forbidden. The optional topic attribute defines restriction
on a particular topic.

100 Chapter 5 Composition Platform

The isolation element with only attribute source references a component
that should be completely excluded from ICC.

The transformation element defines topic transformation functions (cf.
Section 4.3.2). The topics are referenced using mandatory attributes
source and target. The algorithm type is given in the type attribute.
The extension specifies three types: javascript, jsont and xslt. The
algorithm itself is defined as opaque character data within the ele-
ment. For the javascript type an implementation of a function trans-

form(topicSource,topicTarget,data) should be provided that produces
a new JSON object complying with schema of topicTarget. ICC con-
figuration of the example application from Section 4.3.2 is given in
Listing 5.5.

5.4.3 Run-Time Environment

The conceptual architecture presented in Section 5.3 is implemented on
top of several open-source projects (cf. Figure 5.5).

The first one, Apache Wookie, is a Web-based container for W3C widgets.
It acts as a run-time environment and enables hosting and integration
of widgets into other Web applications. Furthermore, it provides in-
stance management, proxy and instance-to-instance communication
services. The second project, Apache Rave4, is a Web-based platform for
composition of mashups out of W3C and OpenSocial (OpenSocial and
Gadgets Specification Group, 2014) widgets. It provides a visual editor
and a run-time environment for composite applications. The editor
enables interactive layouting of widgets in the boundaries of grid-based
templates. Widgets are integrated via iframes and communicate using
facilities of OpenAjax Hub. Apache Rave implements a browser for local
and remote widget repositories.

Apache Rave and Wookie were extended to support models and pro-
cesses specific to WebComposition/EUD framework. Structure of data-

4http://rave.apache.org, Retrieved: 20.05.2015

5.4 Implementation 101

Listing 5.5: Example of Proposed OMDL Extension to Describe ICC

Configuration

<!−− Isolated Web Cam component −−>

<oa:isolations xmlns:oa="http://www.openajax.org/hub">

<oa:isolation source="a2" />

</oa:isolations>

<!−− Forbid Communication between Map and One Flood Levels

Component −−>

<oa:restrictions xmlns:oa="http://www.openajax.org/hub">

<oa:restriction

source="a1"

target="a3"

topic="http://artifactlibrary.example.org/topics/gps"/>

</oa:restrictions>

<!−− Transform Flood Level Data into SMS Messages −−>

<oa:transformations xmlns:oa="http://www.openajax.org/hub">

<oa:transformation

source="http://artifactlibrary.example.org/topics/floodlevel"

target="http://artifactlibrary.example.org/topics/sms"

type="javascript">

<![CDATA[

function transform(topicSource,topicTarget,data) {

output = {};

output.text = ’Current flood level in ’ +

data.longitude + ’,’ + data.latitude + ’ is ’ +

data.level + ’m’.

return output;

}

]]>

</oa:transformation>

</oa:transformations>

102 Chapter 5 Composition Platform

Figure 5.5.: Implementation of the Composition Platform

5.4 Implementation 103

bases, APIs and deployment routines of the two applications have been
adjusted to store ICC configuration of WebComposition/EUD compo-
nents and compositions. OpenAjax Hub has been extended with control
mechanisms that respect the ICC configuration. Finally, visual editor
of Apache Rave has been enriched with Awareness and Control facili-
ties, which visualize and enable modification of ICC configuration for
Composition Developers.

5.4.4 Live Composition Editor

The implementation of Live Composition Editor is based on the interac-
tive drag-and-drop editor provided by Apache Rave. Basic operations on
the WebComposition/EUD composition model (configuration of meta-
data, layout and aggregated components) are built-in in Apache Rave.
Configuration of the ICC behavior, however, is missing, so that new UI
has been developed.

The implementation incorporates findings from the user study in (OME-
LETTE Consortium, 2013c) on implicit communication mechanisms.
Implicitly established communication paths tend to impose usability
problems that hinder acceptance of corresponding solutions. First,
Composition Developers have to interact with components in order
to learn data and control flows. This is not only a time-consuming
activity, but can also affect live data. Second, direct and transitive
connections are not obvious. The latter occur when one component
triggers action in another one that in turn triggers a third component.
Misinterpretation of relationships leads to unexpected behavior once
components are removed or added. Finally, users typically do not see the
data being transferred between components. Instead, they only perceive
the effects of their transfer i.e., a receiving component is updated with
new data. Missing understanding of data being exchanged leads to
wrong expectations on component capabilities.

The implemented Awareness and Control facilities builds upon a dedi-
cated model that describes communication relationships of components
using a directed graph. The motivation for definition of a dedicated com-

104 Chapter 5 Composition Platform

munication model is that – from an end user point of view – components
communicate in pairs by means of unidirectional message transfers. In
terms of a concrete messaging pattern, messages may have different
semantics e.g., invocation of a remote procedure, read/write operation
to a shared memory or publication/subscription to some topic. Regard-
less of the pattern, the user-perceived result is that one component
receives data from another one. These considerations build a basis for
the communication model described below.

The WebComposition/EUD communication model is a graph G = (V, E)
with

• V = {v|v = (id, s)} set of vertices with identifier id and state
s ∈ S = {ENABLED, BLOCKED}. Each vertex corresponds
to exactly one component in a composite application.

• E = {e|e = (v1, v2, s, t)} set of edges corresponding to possible
communication paths between components v1, v2 ∈ V with state
s ∈ S and with textual annotation t.

A data flow restricted by the model G = (V, E) takes place as follows:

• A component corresponding to the vertex v is allowed to emit or
receive messages only if v.s = ENABLED.

• A message m from a component corresponding to v1 is allowed to
be delivered to a component corresponding to v2 only if ∃e ∈ E :
e = (v1, v2, ENABLED, t).

• The data flow takes place according to the original messaging
pattern if none of the above restrictions apply.

The model is visualized and can be modified by dedicated UI extensions
(cf. Figure 5.6).

5.4 Implementation 105

• States s ∈ S of vertices are visualized using borders of different
color and type around the corresponding components.

• Potential communication paths e = (v1, v2, s, t) ∈ E are visualized
using arrows between components corresponding to v1 and v2.
The arrow style indicates the state of the communication path
s ∈ S. Annotation t is displayed above the corresponding arrow
to provide additional information on the communication path. In
case of topic-based publish-subscribe communication, name and
description of the topic are displayed.

• For every vertex v, visualization of its state s ∈ S and in-/outgoing
edges e = (v, ∗) ∈ E can be turned on or off to avoid cognitive
overload in case of strong connectivity.

• For every vertex v, its state s ∈ S can be toggled through the
components configuration menu.

• For each edge e = (v1, v2), its state s ∈ S can be toggled by
clicking on the corresponding arrow.

Two architectural extensions have been introduced to implement man-
agement of communication models. The Awareness and Control Module
has been added to Apache Rave and is responsible for synchronization
among the communication model and the WebComposition/EUD com-
position model. To derive a communication model out of a composition
one the Algorithm 5.1 is applied.

The algorithm is executed on every change of the composition model. It
starts with an empty graph and adds a vertex for each component of the
application. States of vertexes are set to BLOCKED or ENABLED
depending on if components are isolated in the composition model.
The edges between the vertexes are derived out of publications and
subscriptions common to pairs of components and eventual transfor-
mation functions. If communication between two components over
some topic is restricted, the state of the corresponding edge is set to
BLOCKED.

106 Chapter 5 Composition Platform

Algorithm 5.1: Creating a Communication Model out of a
WebComposition/EUD Composition Model

Input : WebComposition/EUD Composition Model as defined in
Section 4.3.2

Output : Communication Model G = (V, E)

1. Set V = ∅, E = ∅

2. For each component ci ∈ C, create a new vertex vi = 〈i, si〉 with
si = ENABLED if vi /∈ I and si = BLOCKED otherwise. Set
V = V ∪ vi. In the following, component ci will correspond to the
vertex vi and vice versa.

3. For each pair of components 〈ci, cj〉 and for each
pik ∈ ci.PUB : pik ∈ cj .SUB, create a new edge
eik = (vi, vj , sj , pik) where sj = ENABLED if
ci, cj /∈ I ∧ 〈ci, cj , pik〉 /∈ R and sj = BLOCKED otherwise. Set
E = E ∪ eik

4. For each pair of components 〈ci, cj〉 and for each
pik ∈ ci.PUB : ∃f : tg −→ th, tg ∈ ci.PUB, th ∈ cj .SUB, create
a new edge eik = (vi, vj , sj , tg) where sj = ENABLED if
ci, cj /∈ I ∧ 〈ci, cj , tg〉 /∈ R and sj = BLOCKED otherwise. Set
E = E ∪ eik

5. Return G = (V, E)

5.4 Implementation 107

Isolated
Component Active

Component

Communication
Topic

Restricted
Communication

Path

Figure 5.6.: Awareness and Control Facilities

The reverse mapping from the communication model onto the composi-
tion one is performed using the Algorithm 5.2.

The transformation is straightforward and creates isolations and restric-
tions for every vertex and edge with corresponding states.

To extend automatically derived communication paths, the transfor-
mation functions described in the Section 4.3.2 are used. The latter
enable message exchange between components that do not share com-
mon publications and subscriptions. The definition of these channels
takes place in a dedicated module called Transformations Editor (cf. Fig-
ure 5.7) (Schmiedel, 2013). The target group of Transformations Editor
are Composition Developers with basic understanding of information
representation or basic programming skills.

To define a transformation function Composition Developers first select
a publication and a subscription of two different components. The func-
tion editor imports then corresponding topic definitions and visualizes
their schemes. Users can then “map” data elements from one scheme

108 Chapter 5 Composition Platform

Algorithm 5.2: Deriving ICC Configuration out of a Communication
Model

Input : Communication Model G = (V, E)
Output : Partial ICC Configuration 〈R, I〉 as defined in Section 4.3.2

1. Set R = ∅, I = ∅

2. For each vertex vi ∈ V : vi.s = ISOLATED, set I = I ∪ ci,
where ci is a component that corresponds to the vertex vi.

3. For each edge
ej = 〈vj,sender, vj,receiver, sj , tj〉 ∈ E : sj = BLOCKED, set
R = R ∪ 〈cj,sender, cj,receiver, t〉

4. Return 〈R, I〉

Figure 5.7.: Visual Definition of Transformation Functions

5.4 Implementation 109

onto elements of the other and define optional transformations using
so-called Functoids. The latter represent parameterizable string func-
tions that accept a list of data elements as input and produce another
list as output. The editor offers four types of functoids: Concatenation,
Splitting, Template Instantiation and Javascript Transformation. The
Concatenation functoid joins two inputs using a given separator string.
The Splitting functoid performs the reverse operation and splits one
data element into two using a given separator. Template Instantiation
functoid replaces a placeholder within given template with the value of
input element. Finally, Javascript Transformation enables arbitrary map-
ping from one input to one output element. Functoids can be combined
into a pipeline to realize more complex transformations. The mapping
defined in the editor is then transformed into an executable Javascript
code acting as the final topic transformation function.

5.5 Evaluation

This section analyses to which extent the requirements from Section 5.2
are fulfilled by the implemented prototype.

Customization Support is a functional requirement that can be evaluated
within acceptance tests with the platform. The composition platform
has been installed and made available for public5. The correspond-
ing extensions have been submitted as patches to the communities of
respective open-source projects6. The requirement has been fulfilled
completely: the Live Composition Editor enables full control of the
composition model including metadata, components, component place-
ment and communication configuration. All elements beside of viewport
definitions can be visually customized by Composition Developers. View-
ports and their attributes are dynamically managed by Apache Rave in
the context of so-called templates. The latter can be assigned to the
composition by Composition Developers.

5http://vsr-demo.informatik.tu-chemnitz.de:8080/portal, Retrieved:
22.05.2015

6https://issues.apache.org/jira/browse/RAVE-831, Retrieved: 22.05.2015

110 Chapter 5 Composition Platform

The Ubiquity requirement is implicitly fulfilled by choice of Web technolo-
gies for implementation and by responsive design techniques applied
in visual editor of Apache Rave. To access the platform Composition
Developers only need an Internet-capable device and a standard Web
browser. No additional software installation or operating system is
required.

The Usability requirement has been tested in the context of two user
studies. The goal of the first study was to check if the proposed aware-
ness and control facilities make Composition Developers more efficient
in simple data collection and comparison tasks. Furthermore, usability
of the applied concepts has been assessed based on user feedback. The
second study tested suitability of the Transformation Editor for skills of
Composition Developers. Its usability has been also evaluated based on
user feedback.

5.5.1 Awareness and Control Facilities

To answer the question if the awareness and control facilities make
users more efficient in simple data collection and comparison tasks,
a laboratory experiment with 27 participants has been conducted. It
results have been analyzed using statistical hypothesis testing (two-
tailed t-test with significance level 95%) with null-hypothesis: The

average time for task completion using the awareness and control facilities

is lower than the average task completion time without them. Usability
properties of the mechanisms have been assessed with average user
ratings based on a 5-point Likert scale.

The user study has been conducted in cooperation with several research
partners mainly T-Systems MMS7 and TIE Kinetix8 during the European
FP7 Open Mashup Enterprise service platform for LinkEd data in The
TElco domain (OMELETTE) project9 (OMELETTE Consortium, 2013c).
Complete evaluation material can be found in Appendix B.1).

7http://www.t-systems-mms.com, Retrieved: 1.11.2014
8http://tiekinetix.com, Retrieved: 1.11.2014
9http://cordis.europa.eu/project/rcn/95584_en.html, Retrieved: 29.5.2015

5.5 Evaluation 111

Figure 5.8.: Evaluation Application for Testing Usability of Awareness and

Control Facilities

Setup 27 users participated in the study, 90% of which had no pro-
gramming skills but were domain experts in marketing and telecommu-
nication. The majority of users (74%) had an understanding of the term
“widget”, which was mostly related to mobile devices and the “Windows
Vista Sidebar”. Only 4 out of 27 users had ever configured a composite
application (mostly intranet portals) on their own e.g., by repositioning
of widgets and changing the color scheme.

Procedure The study applied laboratory experiment evaluation method.
For each of the 27 participants, the evaluation procedure involved
the following steps. Before the task execution, participants filled in a
pre-evaluation questionnaire to judge their skill levels. Based on the
results, they were evenly distributed over test and control groups. After
that, users were given an introduction on the composition platform, its
purpose, concepts and core functionalities. Following the introduction,
users had the chance to explore and try out different aspects of the
platform as they liked.

112 Chapter 5 Composition Platform

In the experiment, participants had to solve a comparison task using two
components (cf. Figure 5.8). The context was given by the motivation
scenario introduced in Section 2.1.3. Two component types were used:
the one provided an overview of flat offers in the selected city and the
other showed details of the offer. The task was to find the cheapest
flat in one city and then a comparable one in another city. While
the control group used the default setting with one “overview” and
one “detail” component, the test group was provided with two “detail”
components. The test group could use facilities for visualization of
possible communication paths and isolate one component to simplify
the comparison. Once isolation was enabled for a detail component,
it would “freeze”, so that new details could be loaded in the second
component and easily be compared to the first one. The task completion
time was measured for each user group. After the experiment users
were asked to fill in a questionnaire and to assess the perceived ease of
use and usefulness of the tools (cf. Appendix B.1).

Results The average time required to solve comparison tasks using the
proposed measurements was slightly below the corresponding value of
the control group (cf. Figure 5.9). The advantage is not statistically
significant, so that the null hypothesis is rejected. Thus, there is not
enough evidence to claim that the facilities make Composition Devel-
opers more efficient. However, the measurement is an indication for
possible positive influence of the mechanisms on the task completion
time.

The analysis of the post-questionnaire led to the following results. 64%
of users disagreed or strongly disagreed that the proposed awareness
and control facilities were cumbersome (cf. Figure 5.10, left). Some
users recommended introducing more systematics in color assignments
during visualization of communication channels. Others suggested
making isolation controls accessible from the component header bar
and to use alternative terms to “isolation” such as “fixing”.

The vast majority of users (93%) found the awareness and control
mechanisms useful (cf. Figure 5.10, right). One reason might be that
users could accomplish the task in the workspace, without additional

5.5 Evaluation 113

Figure 5.9.: Impact of Awareness and Control Facilities on Efficiency of

Composition Developers

Figure 5.10.: Usability Evaluation of Awareness and Control Facilities

114 Chapter 5 Composition Platform

helpers, like pen and paper. Also, the cognitive load of comparing
numbers in widgets directly on the screen is lower than switching back
and forth between different media.

5.5.2 Transformation Editor

The goal of the second user study was to test suitability of the Trans-
formation Editor for skills of Composition Developers and to evaluate
its usability. The suitability has been assessed based on user-expressed
confidence regarding application of the tool. Usability properties of
the tool have been assessed with average user ratings based on a 4-
point Likert scale. The complete evaluation material can be found in
Appendix B.2.

Setup The study applied laboratory experiment evaluation method. 7
users with different programming skills participated in the experiment.
5 of them were non-programmers. However, 3 of them assessed their
PC skills as advanced. 2 had experience in programming. The extended
versions of Apache Rave and Wookie have been installed on a local
machine.

Procedure Each participant received a short explanation of the Web-
Composition/EUD concepts and of ICCI incompatibility problem. The
functionality of the tool was not explained and had to be learned by par-
ticipants themselves. Afterwards, users had to solve two tasks regarding
data mapping between two components and fill in a questionnaire on
different aspects of the system.

In the first task users had to create a new communication channel
between a map and an address book component (cf. Figure 5.11, top).
The first component could locate a given address on the map, while
the other one displayed a list with addresses and published entry data
upon mouse click. The goal was to display location of a selected address
book entry on the map. The two components used different topics with
incompatible schemes, so that a mapping between them was required.

5.5 Evaluation 115

Figure 5.11.: Tasks for Evaluation of Transformations Editor

116 Chapter 5 Composition Platform

The first task didn’t require any Functoids to be used, but rather to
provide a simple mapping between scheme elements.

In the second task users were asked to establish compatibility between
the above address book component and a component that enabled
creation of simple post cards (cf. Figure 5.11, bottom). The goal was
to set recipient address of the post card using selected entry from the
address book. Again, the interfaces were originally incompatible and
had to be made so by users. The second task, however, required usage
of several Concatenation and Template Instantiation Functoids.

Results The two tasks have been solved successfully by all study par-
ticipants. In the post-questionnaire 86% of users confirmed or partially
confirmed that they learned the Transformations Editor quickly (cf. Fig-
ure 5.12, left). The high rating indicates, that the UI of the tool was
clear and self-explaining. 57% confirmed or partially confirmed that it
was clear how to solve the task using the tool (cf. Figure 5.12, right).
72% confirmed or partially confirmed that the definition of mappings
could have been simpler. Some users expressed doubts that they would
be able to solve similar problems outside the experiment. Many users
asked for assistance mechanisms or introductory videos to get more
confidence and to learn the tool faster. Also they suggested different
UI improvements such as more prominent symbols for Functoids, for
their inputs/outputs and for intermediate results. The responses and
requests for better assistance show that the participants were unconfi-
dent while applying the tool. This suggests that the proposed UI and
interaction techniques do not significantly lower the complexity of data
transformation task. Thus, the Transformation Editor matches skills of
non-programmers insufficiently.

5.6 Summary

This chapter presented the WebComposition/EUD composition platform,
which enables development and execution of component-based DSSs.
Its conceptual architecture and implementation using Web technologies

5.6 Summary 117

Figure 5.12.: Usability Evaluation of the Transformations Editor

have been described. Evaluation of the proposed DSS customization
techniques during a user study showed feasibility and acceptance of
the approach. It also provided valuable insights into possible improve-
ments, especially related to visualization of component communication.
The next two chapters present various extensions to the composition
platform. Chapter 6 describes mechanisms to speed-up development of
DSSs, while Chapter 7 focuses on evolution and management activities
of software artifacts.

118 Chapter 5 Composition Platform

6Development
Assistance

The composition platform presented in Chapter 5 enables development
and customization of component-based DSSs. Under time-pressure,
however, the development process has to be accelerated. This chap-
ter presents three mechanisms that address this goal. The first one,
Automatic Discovery and Composition Engine, is intended to speed-up
composition development by suggesting solutions that might fit user
goals best (cf. Section 6.2). The two others improve reliability and
efficiency of solutions during their usage: Loop Detection Facilities
detect potentially faulty configurations that might harm the run-time
environment (cf. Section 6.3), and Double Input Detector automatically
detects implicit relationships between components and automates user
input within (cf. Section 6.4).

6.1 Research Questions

Despite of the simplicity of the WebComposition/EUD models, their
discovery and composition still require manual effort. Mistakes in the
configuration due to time-pressure can further delay the development
process. The main challenge addressed by this chapter is how to speed
up development of solutions and make it less error-prone. The research
questions addressed are:

119

Research Question 1 Is it possible to speed-up development of Web-
Composition/EUD compositions by automating discovery and com-
position of components? This question analyzes if Composition
Developers become more efficient with the proposed assistance
mechanism.

Research Question 2 Under what conditions WebComposition/EUD
compositions cause a looping message behavior and is it possible
to detect the loops automatically? This question studies the causes
and effects of looping messages and assesses the applicability of
the proposed algorithms for early loop detection.

Research Question 3 Is it possible to automatically complete user in-
puts across WebComposition/EUD components based on history
of repeated data entries? This question analyzes the suitability of
the proposed algorithms and architectural extensions for automa-
tion of user inputs.

6.2 Automatic Discovery and

Composition Engine

Development of component-based Web applications from scratch is a
tedious and time-consuming process. Composition Developers have to
find, understand and appropriately configure components to achieve
their business goal. The WebComposition/EUD development process
avoids building solutions from scratch and systematically supports reuse
of existing artifacts. One of the activities of the Solution Planning step is
to obtain a first DSS prototype that would partially fulfill requirements
of Composition Developers, and then enable its iterative refinement
through customization (cf. Section 4.4). The ADCE creates such pro-
totypes on-the-fly based on its knowledge base and a dialog with the
user.

120 Chapter 6 Development Assistance

6.2.1 Motivation Scenario

To illustrate the advantage of discovery and composition mechanism,
consider a situation, where Peter, a coordinator of an emergency re-
sponse team, wants to inform himself about rising water levels in his
city and to decide on eventual rescue activities. He wants to create an
application that would act as a DSS and would provide different kind of
information for decision making. In particular, he needs an overview
of water level measurement stations and their locations, measurements
themselves and live views on different city areas. Additionally, he wants
to contact other people in case further actions are required.

To create such a DSS using traditional composition environments Peter
has to find and assemble appropriate components. Peter would use
some sort of Component Browser and would search for components
using keywords. Inspection of each result would be time-consuming
- in many cases, textual descriptions are scarce or ambiguous. Never-
theless, Peter would go through the result sets and select components,
he thinks would fit best. Having added them to the empty application
Peter would find out, that some components do not have any inputs,
but rather expect them to come from others, not yet present in the
composition. After playing a bit with the composition, it would turn out
that some components have incompatible ICCIs and do not exchange
any information among each other. Peter would have to search for other
combinations of components that would both provide the envisioned
functionality and also be compatible in the composition.

The scenario shows, that finding and configuring a composite application
can be a time-consuming and error-prone process. It would be desirable
to support Composition Developers in this task and to let them start
with existing implementations or patterns for common problems instead
of building ones from scratch.

6.2 Automatic Discovery and Composition Engine 121

6.2.2 Requirements

The following specific requirements have been derived based on the
goals of the Solution Discovery step and the described motivation sce-
nario.

Automation Composition Developers should be able to obtain a first
prototype of DSS without manual specification of its composition
model.

Efficiency Development of WebComposition/EUD applications should
be accelerated compared to the manual construction process.

Usability The assistance mechanism should be accepted by users and
perceived as a useful tool that they also prefer to use.

The following section presents the idea and architecture of a mechanism
that addresses the above requirements.

6.2.3 Automatic Discovery and Composition

The goal of the ADCE is to efficiently discover or produce a prototype of
a DSS that would meet user goals as close as possible. To achieve this
ADCE provides a dialog-based UI that enables interactive specification
of business goals in form of a question-answer game. The produced
goal model is then used to query Compositions Repository and internal
knowledge base in order to obtain the best matching solution. Details
of the discovery process are described in the next sections in more
details.

The approach employs the definition of goals as targets for achieve-
ments that provide a framework for the desired system (Anton, 1997).
Goals represent “high level objectives of the business, organization, or
system” and “guide decisions at various levels within the enterprise”.
Examples of high-level business goals could be “to collect information

122 Chapter 6 Development Assistance

Automatic Discovery and Composition Engine

Dialogue

Controller

Goal Model
Domain Ontology

Discovery

Module

interacts

Task Ontology

produces used by

queries

gy

used by

used by p

Dialogue

User Interface

notifies controls

Composition
Models

Repository

Composition

CM

Component
Repository
C t

C
queries

Composition
Model

tion
el

produces

Composition
Developer

int

C

Figure 6.1.: Discovery and Composition Process

on emergency incidents”, “to plan a trip” or “to organize a meeting”.
Due to the plenty of possible goals and ways to achieve them, ADCE
refines initially specified business goals and proposes possible solutions
based on internal knowledge base (cf. Figure 6.1).

Composition Developers interact with Dialog Controller through its UI.
The latter uses Domain and Goal Ontologies to drive the conversation.
The Domain Ontology describes concepts, their structure and relation-
ships for a particular domain. It distinguishes between two top-level
classes – Actions and Objects – and describes their subclasses. Figure 6.2
illustrates an excerpt of the Domain Ontology related to the emergency
response scenario. The ontology defines a set of action (“Find”, “Create”,
“Organize” etc.) and object classes (“Storm”, “Flood”, “Social Media”
etc.). Each class is labeled with keywords that are used in natural lan-
guage while referring to corresponding action or object. For example,
the “Find” action class is labeled with keywords “show”, “display” and
“find”. They keywords build the basis for dialog-based interaction with
users.

The Goal Ontology contains knowledge about common business goals
and their hierarchy. The ontology makes use of a single top-level class
Goal, defines its instances and mutual relationships. Each instance is

6.2 Automatic Discovery and Composition Engine 123

 Legend

Action Object

Find

Create

Connect

Organize

subClassOf

subClassOf

subClassOf

subClassOf

„show“,

„display“,

„find“

hasLabel

„create“,

„build“,

„construct“

hasLabel

„organize“,

„manage“,

„collect“

„connect“,

„call“,

„send“

hasLabel

Emergency
Incident

Flood

Earthquake

Storm

subClassOf

subClassOf

subClassOf

subClassOf

Information
Social

Media

Live View

News

Article
subClassOf

subClassOf

subClassOf

subClassOf

hasLabel
„emergency

incident“

hasLabel

„information“

hasLabel
„storm“

hasLabel
„flood“

„earthquake“
hasLabel

„news“
hasLabel

„social feeds“,

„social media“

hasLabel

„Web camera“,

„live view“

hasLabel

hasLabel

Class
label

Property

Figure 6.2.: Excerpt from the ADCE Domain Ontology

associated with one Action and one Object concepts from the Domain
Ontology. Figure 6.3 illustrates an excerpt from the Goal Ontology
related to the emergency response scenario. It defines among others
the goal “Collect information on emergency incidents”, which has corre-
sponding relationships to the “Find” and “Emergency Incident” concepts
from the domain ontology. Both ontologies are maintained by Artifact Li-
brary Manager and can be created either manually or semi-automatically
by harvesting RDF data sets published on the Web.

The Dialog Controller lets user specify a goal and refines his selection in
a number of question-answering steps. First, the user is asked to confirm
the proposed goal decomposition. The decomposition can be adjusted
or further subgoals can be added. Afterwards, the controller suggests
refining Objects used in the subgoals. The result of the conversation is a
model of user’s business goal. It consists of one high-level goal coming
from the Goal Ontology and its eventually customized decomposition.
Each goal is represented through an Action-Object pair.

The model is used by Solution Discovery Module to find or produce
solutions that would fit the stated goal best. The module makes

124 Chapter 6 Development Assistance

Legend

Goal
Collect Information On
Emergency Incidents

Collect News

Get Live View

instanceOf

instanceOf

instanceOf

hasAction

hasObject

Class

Instance

type
Property

Emergency

Incident

Find

subGoalOf

Find

News

hasAction

subGoalOf

hasObject

Find

Live View

hasAction

hasObject

Figure 6.3.: Excerpt from the ADCE Goal Ontology

use of dedicated annotations of WebComposition/EUD Composition
Models and Components. The annotations symbolized with goals =
{〈action, object〉} are pairs that can be added by Artifact Library Man-
agers to user solutions and available components. Query Builder applies
Algorithm 6.1 to find an existing solution that would match the model
of user’s business goal best.

The algorithm searches for existing composition models that were anno-
tated with the goal selected by user. In case several models are found,
they are ranked based on included components – the more subgoals
are fulfilled, the higher the rank is. The best ranked solution is then
selected. The discovered composition model (also if empty) is then
completed with components that address the yet unfulfilled subgoals.
Algorithm 6.2 presents the applied completion algorithm.

First, subgoals are detected, for that no matching components are
present in the discovered solution. Then the set of all available compo-
nents is analyzed and the ones are selected that match the “unfulfilled”
subgoals. In case one subgoal is matched by multiple components, those

6.2 Automatic Discovery and Composition Engine 125

Algorithm 6.1: Discovery of Solutions based on a Model of Business
Goals

Input : Set of Annotated Composition Models CC = {cci}, Model of
User’s Business Goal g = 〈gtop, {gsub}〉, Domain Ontology DO

Output : Composition Model CCNew

1. Find all cc ∈ CC : gtop ∈ cc.goals.

2. If no cc is found, return an empty model
CCNew = 〈gtop, gtop, ∅, ∅, 〈∅, ∅, ∅〉〉.

3. For each found cci calculate its rank being the number of
subgoals gsub matched by any component cj ∈ cci.C. A
component cj matches a subgoal gsub if
∃〈action∗, object∗〉 ∈ cj .goals : (gsub.action =
action∗ ∨ gsub.action sameAs action∗) ∧ (gsub.object =
object∗ ∨ gsub.object subclassOf object∗. The relationships
sameAs and subclassOf are discovered from DO.

4. Return cci with the highest rank.

126 Chapter 6 Development Assistance

Algorithm 6.2: Completion of Discovered Solutions

Input : Discovered Composition Model CCNew, Set of Available
Annotated Components C = {ci}, Model of User’s Business
Goal g = 〈gtop, {gsub}〉

Output : Components to be Added CNew

1. Find all subgoals gsub that are not matched by any component of
CCNew. Use matching condition from Algorithm 6.1.

2. For each found subgoal gsub,k find all components ci ∈ C that
match gsub,k. Use matching condition from Algorithm 6.1. Let
Ck ⊂ C be a set of components matching gsub,k.

3. ∀k rank each component ck,j ∈ Ck with a number that
corresponds to the number of ct ∈ CCNew.C : ck,j .T ∩ ct.T �= ∅

4. Set CNew = ∅. ∀k add one component from Ck with the highest
rank to CNew. Return CNew.

components are selected that have the most “compatible” ICCIs with
the ones from discovered solution. The latter is completed with new
components and then loaded into Composition Platform for further
customization by Composition Developers.

The implementation of ADCE is split into client and server parts. The
client-side UI of the ADCE is implemented as a separate W3C widget,
which communicates with server-side Dialog Controller using a RESTful
API (cf. Figure 6.4).

Domain and Goal Ontologies are described in RDF and are parts of
the Dialog Controller. The latter uses Apache Jena1 framework for
RDF processing. Annotations required for discovery and composition
algorithms are stored in OMDL and W3C configuration documents
in serialized form. OMDL places them into the goal XML-element,
which already exists in the specification. Configuration documents of

1https://jena.apache.org, Retrieved: 5.3.2015

6.2 Automatic Discovery and Composition Engine 127

Dialogue Controller

REST/HTTP
Domain

Ontology
Goal

Ontology

Goal Refinement
Module

Solution Discovery
Module

use
use

used by

produces

User Goal
Model

Apache Wookie

Apache Rave

User Profile and
Composition

Models
Repository
(HSQLDB)

Component
Repository
(HSQLDB &
File System)

REST/HTTP

REST/HTTP

OMDLP

W3C
Widget

Figure 6.4.: Dialog-based Solution Discovery and Composition

WebComposition/EUD components are extended with dedicated tag

XML-elements.

6.2.4 Related Work

Several approaches that simplify or automate composition of component-
based applications has been proposed. The one group, which can be
referred to as bottom-up composition engines, automates assembly
of components without taking high-level user goals into account. In
(Ngu et al., 2010) authors propose a framework enabling a progressive
composition of portlets based on semantic annotations and dedicated
matching algorithms. The system requires its users repeating search
requests to find every next component and doesn’t focus on high-level
business goals. (Roy Chowdhury, Rodríguez, et al., 2012) describes a
similar system, whose purpose is to analyze current constellation of a
composite application and to suggest further possible components and
configurations. Recommendations come from a repository with mined
composition patterns. Again, high-level business goals are not taken
into account.

Another group of approaches performs a top-down application composi-
tion, starting with high-level description of user goals. In (Pietschmann,
Radeck, et al., 2011) the user goal is described by a static template
containing abstract component descriptions. Based on the template, the
composition engine performs context-aware discovery, selection and

128 Chapter 6 Development Assistance

integration of component implementations. Authors do not describe the
template specification process, however. In (Tietz et al., 2011) authors
propose a task-based component discovery approach. A lightweight task
ontology is introduced and a matching algorithm based on semantically
annotated components is proposed. The starting point of the discovery
algorithm is an instance of the semantic task model. Authors do not
describe how non-programmers can produce such an instance.

6.2.5 Evaluation

In the following the approach is evaluated against the requirements
from section 6.2.2.

Automation The presented approach doesn’t require manual specifi-
cation of composition models. Instead, they are discovered or
composed automatically based on internal knowledge base and
available artifacts. In case goal is not captured in the Goal Ontol-
ogy users can select a similar one and refine its subgoals manually.

Efficiency and Usability The two properties have been evaluated in
the context of the user study presented in Section Section 5.5
(OMELETTE Consortium, 2013c). The goal of the evaluation was
to answer the question, if the ADCE speed-ups development of
WebComposition/EUD compositions, and to assess its usability
based on user feedback.

For this purpose a user study (laboratory experiment) with 27
participants has been conducted and its results have been eval-
uated using statistical hypothesis testing (two-tailed t-test with
significance level 95%). The null hypothesis was: The average time

required for developing described solutions using ADCE is smaller

than the average time required for developing the same solutions

without the help of the tool. Usability properties of the tool have
been assessed with average user ratings based on a 5-point Likert
scale. The complete evaluation material related to this experiment
can be found in Appendix B.3.

6.2 Automatic Discovery and Composition Engine 129

Setup The same 27 users as in the user study presented in Sec-
tion 5.5 took part in the experiment. The experiment used a local
installation of the composition platform with an activated ADCE
module.

Procedure First, users filled in a questionnaire, where they ex-
pressed their skills and familiarity with mashup and widget tech-
nologies. After that, users were introduced into the concepts of
composition platform and the ADCE and could try out the tools as
they liked. Then a test and a control groups with even distribu-
tion of skills, age and gender were built. The participants were
asked to complete a task that required them to build a mashup
consisting of three components. While the test group used ADCE,
the control group created a composite application manually using
the platform built-in facilities. The time required to accomplish
the task for each group was measured. Finally, users filled a post-
questionnaire, where they could assess usefulness and usability of
ADCE using a 5-point Likert scale.

The following task was given: “Imagine you live in the city of
’Dresden’ and there is a flood warning. Build a workspace to
gather more information about the situation: (a) list messages
from your social networks, (b) check where emergency incidents
were reported, and (c) compare the flood levels at these locations”
(OMELETTE Consortium, 2013c).

Results Users that were using the ADCE to build a solution were
slightly faster than the ones, who used the platform built-in fa-
cilities (cf. Figure 6.5). The time spent was 15 seconds shorter
- the difference is not statistically significant though (the null
hypothesis is rejected). There is not enough evidence to claim
the speed-up. The measurements, however, indicate a positive
influence of automatic discovery and composition facilities on the
overall development speed.

130 Chapter 6 Development Assistance

Figure 6.5.: Acceleration of Mashup Creation (Source:

(OMELETTE Consortium, 2013c))

Most of the participants liked the idea of guidance during the com-
position process (79% agreed or strongly agreed, cf. Figure 6.6).

93% of participants agreed or strongly agreed that the ADCE is
a useful mechanism (cf. Figure 6.7, left). Finally, 86% of users
agreed or strongly agreed that they would use the ADCE again for
building mashups; 14% were undecided (cf. Figure 6.7, right).

Regarding the users in the control group, which created solution
manually, the majority of them (92%) found it easy to find appro-
priate components to fulfill their task. However, only 69% of users
were sure that the widgets were the right ones. These finding
underlines the necessity of user assistance during the composition
process.

User study results indicate that non-programmers like interactive
dialog-based interfaces. This finding should be considered while
developing future end-user-oriented programming environments.
The evaluation didn’t show a significant time advantage while us-
ing ADCE. For the one it might be caused by several usability issues

6.2 Automatic Discovery and Composition Engine 131

Figure 6.6.: Acceptance of the Guidance Idea

Figure 6.7.: Perceived Usefulness (Left) and Reuse Willingness (Right) of

ADCE

132 Chapter 6 Development Assistance

and bugs discovered in the tool during experiments. Furthermore,
the algorithm of discovery and composition wasn’t explained clear
enough, so that some users applied the tool inadequately. UI
seems to play a very important role in performance-related tasks.
Improper UI can negate time advantages gained by automation
mechanisms.

6.3 Loop Detection Facilities

The WebComposition/EUD composition model foresees “self-organizati-
on” of components regarding their messaging behavior. While this
behavior doesn’t require any explicit configuration by users, an uncon-
trolled and, thus, unreliable communication can emerge. This can lead
to time-consuming or cost-causing effects that are especially critical
under time pressure. This section presents an assistance mechanism
that analyzes structure and behavior of an WebComposition/EUD appli-
cation and detects eventual problems in configuration.

6.3.1 Motivation Scenario

Consider the slightly modified example of application from Section 4.3.2
that produces an undesired loop behavior. The application aggregates
information on emergency incidents caused by flood. Additionally
to already included components it adds a new one, cAllStations that
lists passed water measurement stations in a table and highlights the
one that is closest to the user. The data to display should come as a
notification message on topic tStationList. Coordinates of the station
closest to current user are automatically computed and published on
topic tLocation. ICC capabilities of the map component are extended
to work with the new component: once focus of cMap is changed
(either by user or by incoming messages with new focus coordinates),
details to all water measurement stations around the centered area
are published on tStationsList. Although not explicitly configured, this
application produces a self-reinforcing loop: once the center point of

6.3 Loop Detection Facilities 133

cMap is changed, a message to cAllStations is published, which, in its
turn, produces a message on tLocation with coordinates of the closest
station. This message is received by cMap, which moves its focus to the
new location, and the communication starts for anew. Depending on
the concrete run-time environment, the application can become slow,
stop responding or even crash.

To avoid situations like the above, both the run-time environment and
components should be protected from self-reinforcing loops. In the
following, appropriate mechanisms are presented in details.

6.3.2 Requirements

Based on the above problem description and motivation scenario, we
first elicit requirements on facilities that should help improve reliability
of WebComposition/EUD applications.

Loop Discovery Messaging behavior that can cause uncontrolled and
“looping” communication, should be automatically detected. The
detection should take place as early as possible best before the
application is instantiated and executed.

User Control Users should be notified and decide on the feasibility of
potentially harmful WebComposition/EUD configurations. The
goal is to enable communication behavior constructed by intent
but to warn users about its possible consequences.

Efficiency Discovery of “looping” communication should be performed
efficiently. In terms of algorithmic complexity a linear or at least
quadratic complexity is desirable.

134 Chapter 6 Development Assistance

6.3.3 Loop Discovery

Before presenting the devised discovery algorithms and their implemen-
tation, several assisting definitions and formalization of the problem is
introduced.

Terminology

Let cc = 〈M, C, V P, CP, ICC〉 be a WebComposition/EUD composition
as defined in Section 4.3.2 and a = 〈csender, t, data〉 with csender ∈
C, a.t ∈ c.PUB being some notification message.

Definition 6.3.1. A notification message a is called user-triggered if it
was issued as a result of user interaction with csender.

Example of a user-triggered message is the one from cMap to cAllStations

containing details on water measurements stations around some area.
The message is issued immediately after user moves the focus of the
map.

Definition 6.3.2. A publication message a is called subscription-triggered

with trigger a′ (or triggered by a′) if csender automatically issued a after
receipt of the publication message a′.

In the above example messages issued by cAllStations are all subscription-
triggered. They are issued as soon as messages with measurements
stations from cMap are delivered to the component.

Definition 6.3.3. A publication message a is called internally-triggered

if it has been issued by csender independently of any prior interaction
with user or receipt of any other message a′.

Internally-triggered messages are e.g., timer events or push messages
from remote services. For instance, cAllStations could issue updated data

6.3 Loop Detection Facilities 135

of closest water measurement station every 10 minutes without any
explicit user request or incoming notification messages.

According to the above classification, one observes, that the unwanted
behavior as described in Section 6.3.1 is caused by components that auto-
matically issue responses to incoming messages i.e., produce subscription-
triggered messages. On the other hand, the duration of such “looping”
communication is unpredictable as any component can change its be-
havior at any point of time depending on the internal logic. These
observations lead to the following two definitions of loops, which build
a basis for subsequent discovery algorithms:

Definition 6.3.4. A run-time loop La in the composition cc is a message
sequence L = (a0, a1, ..., an−1) so that ai, i = 1..n − 1 is subscription-
triggered by ai−1 and ∀i = 0..n − 1 : (ai.t ∈ ai+1 mod n.c.SUB ∨ ∃t′ ∈
ai+1 mod n.c.SUB : ∃f : ai.t −→ t′ ∈ F ∧ 〈ai.c, ai+1 mod n.c, t′〉 /∈ R) ∧
〈ai.c, ai+1 mod n.c, ai.t〉 /∈ R ∧ ai.c /∈ I.

The definition focuses on message sequences that have been produced
by “compatible” components and where the sender of the first mes-
sage becomes also the receiver of the last one. Though the receipt
of the last message doesn’t necessarily mean, that the component
will start a new iteration (it depends on its internal logic), the idea
is to warn users of the potentially harmful situation and let them
decide if the detected behavior is desirable or not. In the scenario
from Section 6.3.1 a run-time loop could be a sequence from a0 =
〈cMap, tStationsList, dataSurroundingStations〉 and a1 = 〈cAllStations,
tLocation, dataClosestStation〉. The loop emerges as soon as user moves
the map focus to new location.

Definition 6.3.5. A design-time loop Lp in a composition cc is a se-
quence of components Lp = (c0, c1, ..., cn−1) so that ∀i = 0..n − 1 : ci /∈
I ∧ (∃t ∈ ci.PUB : t ∈ ci+1 mod n.SUB ∧ 〈ci, ci+1 mod n, t〉 /∈ R) ∨ (∃t1 ∈
ci.PUB, t2 ∈ ci+1 mod n.SUB : ∃f ∈ F : t1 −→ t2 ∧ 〈ci, ci+1 mod n, t2〉 /∈
R).

A design-time loop represents a sequence of senders that design-timely
can produce a run-time loop at composition execution time. It con-

136 Chapter 6 Development Assistance

sists of non-isolated components that have non-blocked communication
paths in the order defined by the sequence. Existence of a design-time
loop in a mashup doesn’t mean, that a run-time loop will inevitably
occur. Depending on the internal logic and a concrete internal state com-
ponents in the sequence might never publish any messages or publish
only user-triggered ones. Existence of a design-time loop is a necessary
condition for existence of a run-time loop, not the sufficient one.

In the above example (cMap, cAllStations) constitute a design-time loop.
The two components are able to communicate over the topics tAllStations

and tLocation and both produce subscription-triggered messages.

In the following, we decompose the problem of loop discovery into two
distinct ones – detection of loops before they actually occur (design-time
loop discovery) and at run-time based on the message traffic (run-time
loop discovery).

Design-Time Loop Discovery

Discovery of design-time loops is based on analysis of WebCompo-
sition/EUD composition model. In particular, it focuses on possible
communication paths that can be described by WebComposition/EUD
communication model (cf. Section 5.4.4). The model is a graph, with
components as nodes and possible communication channels as edges.
Both nodes and edges can be put into blocked state, meaning that corre-
sponding restrictions or isolations exist in the composition model.

To find design-time loops in a composition, the Tarjan’s algorithm (Tar-
jan, 1983) is applied on the communication model (cf. Algorithm 6.3).
The algorithm identifies all strongly connected components. The latter
correspond to design-time loops by definition – they contain at least one
directed path that starts and ends in the same node. This means, that a
WebComposition/EUD component can potentially produce a message
that can trigger further ones that end in the component itself.

6.3 Loop Detection Facilities 137

Algorithm 6.3: Discovery of Design-Time Loops

Input : WebComposition/EUD communication model G = (V, E) as
defined in Section 5.4.4

Output : Set of design-time loops P = {(ci1, ci2, ..., cin)}

1. Remove vertices vi ∈ V : vi.s = ISOLATED from V and
corresponding in-/outgoing edges from E.

2. Remove edges ej ∈ E : ej .s = BLOCKED from E.

3. Remove all vertices vi ∈ V without any in-/outgoing edges.

4. Apply Tarjan’s algorithm (Tarjan, 1983) to the graph G:

a) Let P = ∅ be a set of all identified strongly connected
components.

b) Mark all vertices in the graph as not-visited. Let S be a stack
that holds all visited vertices (S = ∅ at the beginning). Let
indexj ∀vj ∈ V be the depth-search visit time of the vertex
vj and lowlinkj ∀vj ∈ V be the smallest index (depth-search
visit time) of the vertex that is reachable from vj .

c) For each not-visited vertex vi ∈ V perform the steps 4d - 4f

d) Push the vertex vi under consideration to S. Update the visit
time indexi of the vertex and set lowlinki = indexi.

e) For each neighbor vj of vi do:

i. If vj is not-visited, then perform steps 4d - 4f for vj

(recursive call). Set
lowlinki = MIN(lowlinki, lowlinkj) afterwards.

ii. If vj is visited and vj ∈ S, then set
lowlinki = MIN(lowlinki, indexj)

f) If lowlinki = indexi, then set P = P ∪ (vi, vi1, vi2, ..., vin),
where vi1, vi2, ..., vin are the elements above vi on the stack
S. Remove vi, vi1, vi2, ..., vin from S.

g) Replace each vertex in P with the corresponding
WebComposition/EUD component and return P .

138 Chapter 6 Development Assistance

The result of the algorithm is a set of discovered design-time loops.

Run-Time Loop Discovery

Discovery of run-time loops is based on “traffic” produced by commu-
nicating components. Components do not need to be aware of the dis-
covery facilities - neither source code nor metadata have to be adjusted.
Issued notification messages are stored in the order of appearance in
a buffer and the buffer is analyzed using the Algorithm 6.4 after each
new incoming message. The algorithm returns True if the newly added
message yields a run-time loop and False otherwise.

Algorithm 6.4: Discovery of Run-Time Loops

Input : Composition model cc, notification message sequence
S = (a1, a2, ..., an) in order of message appearance

Output : La = {ai1, ai2, ..., aik, an} being a run-time loop if the message
an yields one, and ∅ otherwise

1. Construct a directed graph Gc = (Ec, Vc) (so called causality

graph) using the following steps:

a) Let Vc = {an}, Ec = ∅.

b) For each ai ∈ S\{an} : (an.t ∈
ai.c.SUB ∧ 〈ai.c, ai+1 mod n.c, an.t〉 /∈ R ∧ ai.c /∈ I) ∨ (∃t′ ∈
ai.c.SUB : ∃f : an.t −→ t′ ∈ F ∧ 〈ai.c, ai+1 mod n.c, t′〉 /∈ R)
add ai to V and add the directed edge (an, ai) to Ec.

c) For each ai, aj ∈ S : ai subscription − triggered by aj , i < j:

• Add ai and aj to Vc (if the vertices do not exist yet)

• Add the directed edge (ai, aj) to Ec.

2. Using a depth-first search with an as a start node, check if an

belongs to a circle in Gc. If a circle containing an exists (meaning
the message an causes a run-time loop), return the circle nodes in
the traversal order. Return ∅ otherwise.

6.3 Loop Detection Facilities 139

The above algorithm spans a directed graph on the sequence of recorded
messages. Graph edges show 1) casual relationships between messages
and 2) messages, whose senders can potentially trigger further communi-
cation after receipt of an. A circle in graph G containing an corresponds
to the definition of a run-time loop.

The module for design-time loop discovery has been implemented as an
extension to the Live Composition Editor of Apache Rave. It observes
changes in the current composition model and re-executes Algorithm 6.3
on every change. In case design-time loops are found, a corresponding
notification is shown to the user. User can then display communication
model and isolate part of components.

The module for run-time loop discovery has been integrated into the
OpenAjax Hub and executes the algorithm 6.4 on every new message.
Due to the missing information on the origin of notification messages
(user-, subscription-, or internally-triggered one), the module applies a
heuristic to distinguish between the different message types: a message
aj is assumed to be subscription-triggered by ai, if (ai.t ∈ aj .c.SUB ∨
∃t′ ∈ aj .c.SUB : ∃f : ai.t −→ t′ ∈ F)∧〈ai.c, aj .c, ai.t〉 /∈ R∧ai, aj /∈ I∧
Tj − Ti < ε with Ti, Tj being occurrence times of ai, aj correspondingly
and ε – a fixed time threshold. The prototype implementation uses 10ms
as value for ε and has been selected empirically. All other messages are
considered to be user-triggered. The time threshold should ensure, that
the second message was not produced as the result of user-component
interactions. The latter is unlikely to happen within the short period.
However, faulty classification is still possible. If a run-time loop has
been detected, the module issues a warning to user with details on
the loop. Any communication between components is stopped for the
time of decision making. Users can either ignore the warning (in this
case components causing the loop are added to a white list and no
further warnings are issued) or forbid the communication (in this case
isolations for loop-causing components are automatically added to the
composition model).

140 Chapter 6 Development Assistance

6.3.4 Related Work

Related work on the topic may be found in self-organizing systems,
where communication is not controlled by any single entity and where
undesired effects such as looping messages or self-reinforcing communi-
cation can emerge.

For example, loops in E-Mail communication can be discovered using
statistical analysis of message chains. In (Solana et al., 1996) authors
introduce a heuristic function that detects suspicious messages based
on a historical information about their occurrence. The function takes
number of occurrences, occurrence time and time lapses between oc-
currences into account. Authors claim a “remarkable accuracy” of the
loop detection algorithm. While the approach is applicable to find run-
time loops, it requires rich statistical information to perform well. For
time-pressuring situations early detection is desirable to avoid possible
side-effects or even costs caused by implicit ICC configuration.

In the field of parallel programming the so called Livelock situation is
very close to the described problem. A livelock is a state of a system,
in that it remains active but doesn’t make any progress in executing its
tasks (Tai, 1994). This might be caused due to communication overhead,
where two systems exchanges too many coordination messages among
each other and are too busy to continue with their respective tasks. The
problem is usually tackled with explicit state model checking techniques
for finite state systems(Dong et al., 2003). Appropriate methods have
been introduced for systems utilizing asynchronous message-passing
paradigm for communication (Leue et al., 2006). In both cases, the
livelock prevention is based on analysis of system’s internal logic specifi-
cation, i.e., source code, which is inaccessible for utilized application
and component models. The proposed detection facilities are “non-
invasive”, i.e., the analysis takes place using composition model and
issued messages only.

6.3 Loop Detection Facilities 141

6.3.5 Evaluation

In the following, the approach is evaluated based on the requirements
stated above.

Loop Discovery The proposed mechanisms are able to automatically
detect so-called design-time and run-time loops. The design-time
ones are discovered by analyzing the communication model, which
describes potential message flows. Though design-time loops do
not necessarily imply existence of run-time ones, a timely isolation
of the affected components prevents their occurrence. The algo-
rithm for run-time loop discovery is based on analysis of history
of issued messages. It is executed after each new notification
message and issues warnings if sequences satisfying definition of
run-time loops are discovered.

Current prototype has several limitations. Under certain circum-
stances it produces both false negative and false positive errors.
First, it doesn’t discover “long-lasting” run-time loops, i.e., the
ones, where time difference between a subscription-triggered
message and its trigger is larger than the chosen threshold ε. Sec-
ond, it discovers message sequences that might contain internally-
triggered messages or even user-triggered ones, if they occur
within ε from the last message publication. The reason for the
errors is the absence of information on the cause of messages –
the utilized component, composition and message models do not
provide such data explicitly.

User Control LDF provide notifications and means for control of how
the system should proceed in case run-time or design-time loops
are detected. Until user meets a decision, the modules follow a
defensive strategy – the communication gets blocked until it is
enabled again by the user. The blockade of the communication
is done by changing states of components in the WebCompositi-
on/EUD communication model.

142 Chapter 6 Development Assistance

Efficiency The efficiency of the both algorithms is evaluated in terms
of algorithmic complexity.

The run-time loop discovery algorithm takes n messages as input.
The construction of the causality graph takes place in O(n2) time
as maximal all pairs of messages are considered. The subsequent
depth-first traversal starting with the last message is performed
in maximal O(|E|) steps, where E the set of edges in the graph
(|E| < n2). The summarized complexity doesn’t exceed O(n2)
and, thus, satisfies the original requirement.

The design-time loop discovery algorithm takes a communication
model consisting of |V | vertices and |E| edges as input. The
clean up of the model, i.e., removal of isolated components and
blocked communication paths is performed in |V | + |E| steps. The
complexity of Tarjan’s algorithm is |V ∗| + |E∗| with V ∗, E∗ being
the sets of vertices and edges after the first clean up steps. In
summary the complexity of the overall algorithm is O(|V | + |E|)
and, thus, also satisfies the efficiency requirement.

6.4 Double Input Detector

In time-pressuring situations manual interactions with component-based
DSSs can become error-prone and time-consuming. If aggregated com-
ponents have incompatible ICCIs and do not exchange data automati-
cally, users have to either specify dedicated transformation functions or
manually synchronize component views (e.g., by copying form inputs).
The both are time-consuming operations and are not feasible to be
performed under time-pressure. It is required to support users in usage
of component-based DSSs and to make them efficient while interacting
with aggregated components.

6.4 Double Input Detector 143

6.4.1 Motivation Scenario

To illustrate the problem consider the example application from Sec-
tion 4.3.2. Additionally to the map with water measurement stations
and visualization of their data, the application should show weather
forecast for location selected on the map. A user adds a new component
that queries temperature and rainfall data for given location. However,
the component doesn’t react to changes in the map component – the
map doesn’t publish search queries entered into its search field. Also
the map doesn’t react to selections made in the forecast component
– the topics used to identify display locations are different. If user
doesn’t have time or skills to resolve incompatibility issues, he has to
retype or copy-paste the input in both components. The latter is at least
time-consuming and can lead to typos under time-pressure.

It is desirable that the system unburdens users from repeated input and
provides automation facilities for this purpose. For the above example,
it would be desirable to automatically pass the entered location between
the two components.

6.4.2 Requirements

In the following, requirements on the solution for the above problem
are derived.

Input automation The system should enable automation of repeated
input for two or more components. Data entered into one compo-
nent should be immediately passed to others.

Personalization Each user should be able to decide independently if
and how the input automation should take place in the current
context. In the example above, users might have different expec-
tations on the synchronization behavior. While the ones would
like the location to be synchronized between the two components,
the others can prefer only one direction.

144 Chapter 6 Development Assistance

Simplicity No programming skills should be required to apply the so-
lution. Well-known UI concepts and control elements should be
used to define, modify and remove the automation rules. The sys-
tem should support end-user awareness and continuously provide
feedback on its current state.

Efficiency Definition and execution of automated behavior should take
place efficiently. Composition Developers should be able to de-
fine the desired behavior fast, so that the advantage of investing
attention into the proposed assistance mechanism exceeds the
temptation to perform all actions manually.

6.4.3 Automation of User Input

The presented approach makes use of the PBD technique (Lieberman,
2001) to produce behavior specifications by providing examples of the
desired actions. The system generalizes the provided samples and ap-
plies them automatically to other similar contexts. The changes/inputs
should be demonstrated using GUI of components only, so that users
do not need to learn any modeling constructs but rather can reuse
well-known and already understood interaction methods.

Before presenting the facilities to automate user input, we first introduce
several assisting definitions.

Terminology

The following definitions describe user actions that can be automated
by the proposed mechanism.

Definition 6.4.1. A user input action a in WebComposition/EUD com-
ponent c is a tuple 〈e, ta, v〉 with

6.4 Double Input Detector 145

• e = 〈id, te〉, e ∈ c.GUI being an input element with unique name
id and type te ∈ Te = {TEXT − INPUT, DROPDOWN, BUT -
TON}

• ta ∈ Ta = {click, type, change, startdragging, enddragging} be-
ing the type of user input action

• v being a new string value of the affected input element or NULL
if e.te = BUTTON

An example of the user input action is aexample = 〈〈”city − name”,
TEXT − INPUT 〉, type, ”Chemnitz”〉. Though current DOM specifi-
cations (Le Hors et al., 2004) foresee many other element and action
types supported by Web browsers, the definition focuses on the most
crucial input elements and user actions that are especially relevant for
the scenarios of this thesis.

Definition 6.4.2. A pattern for user input action p in component c is
a tuple 〈e, ta〉 with e ∈ c.GUI and ta being input element and action
type as defined in 6.4.1. We say, a pattern p matches the user action
a = 〈e, ta, v〉 if p.e = a.e ∧ p.ta = a.ta. A pattern sequence (pi), i = 1..n
matches a sequence of user input actions (aj), j = 1..k if n = k ∧ pi

matches ai ∀i = 1..n.

An example of a pattern for the user input action aexample is pexample =
〈〈”city − name”, TEXT − INPUT 〉, type〉. The term pattern is used
to classify similar user input actions that differ only in the value en-
tered into an input element of a component. For example, the pat-
tern pexample would also match the user input action aexample2 =
〈〈”city − name”, TEXT − INPUT 〉, type, ”Dresden”〉.

Definition 6.4.3. Let A∗ be a set of all possible user input action se-
quences. An automation rule AR for two components c1, c2 is a function
r : A∗ −→ A∗ that maps a given user input action sequence performed
in component c1 (so called trigger actions) to a new input action se-
quence to be immediately performed in component c2 (so called reaction

actions).

146 Chapter 6 Development Assistance

An example of an automation rule is the function rexample that for
one TEXT − INPUT -action in component c1 produces a sequence
of TEXT − INPUT -actions for component c2 that copies the value
entered into component c1 into all TEXT −INPUT elements in compo-
nent c2. Obviously, rexample is of limited practical value as it overwrites
all fields in c2 with the value entered in c1. Furthermore it considers
only one user input in component c1.

The challenge is, thus, to enable users to specify feasible automation
rules in a convenient way and to develop an infrastructure for their
management and execution.

Input Automation

The proposed mechanism observes user inputs in one component and au-
tomatically derives corresponding inputs for others. The demonstrated
interactions can be describes using the following definition:

Definition 6.4.4. An automation sample S is a tuple 〈T, R〉 with
T = (at,1, at,2, ..., at,n) being user input actions in component c1 (called
demonstrated trigger actions) and R = (ar,1, ar,2, ..., ar,k) being user
input actions in component c2 (called demonstrated reaction actions).

An automation sample describes user input actions that user wants to
be automated between two components c1 and c2. The demonstrated
sample represents a result of execution of an automation rule that user
intends to specify - the demonstrated pair is one known argument-
value pair of automation rule function r : A∗ −→ A∗. Given only one
argument-value pair, one can define indefinitely many functions r that
would map the given argument onto the given value but would differ in
at least one other pair.

The intelligence to generalize the given automation sample and to define
a feasible automation rule is put into the following guidelines:

6.4 Double Input Detector 147

1. Reaction actions should be performed only if all demonstrated
trigger actions are repeated in component c1, whereas the new
values might differ from the originally demonstrated ones.

2. Relationships between input elements in two components are
defined by equality of their values in the demonstrated trigger and
reaction actions. The first element et affected in the demonstrated
trigger actions, whose value is equal to the value of some element
er affected in the demonstrated reaction actions, is considered to
be the value source of er.

3. All demonstrated reaction actions are repeated in component c2,
whereas their values ar,j .v are set to the ones from value sources
as identified in 2. If element has no source, it keeps its original
value.

The Algorithm 6.5 takes the above guidelines into account and derives
an automation rule based on a given automation sample:

The algorithm first computes a pattern sequence that matches given
trigger actions T . The pattern is used to identify user inputs in com-
ponent c1 that are similar to the trigger actions in the sense of the
guideline 1. Afterwards, it defines a value-source function g computed
according to the guideline 2. Finally, a function (automation rule) is
defined that maps given trigger actions onto reaction actions. All action
sequences that are not matched by the derived pattern sequence, should
be ignored, meaning they are not related to the demonstrated trigger
actions. If a matching sequence is detected, it is mapped onto reaction
actions in line with the guideline 3.

Implementation

The execution of algorithm 6.5 requires observation and manipulation
of GUI controls inside of aggregated components. However, due to the
black box nature of W3C packaged apps, it is impossible to directly

148 Chapter 6 Development Assistance

Algorithm 6.5: Deduction of an Automation Rule based on an Automa-
tion Sample

Input : Composite application cc, automation sample
S = 〈T, R〉, T = (at,i), R = (ar,j), i = 1..n, j = 1..k for two
components c1, c2 ∈ cc.C

Output : Automation rule AR

1. Let P = (p1, p2, ..., pn) be a sequence of patters with
pi.e = at,i.e ∧ pi.ta = at,i.ta, i = 1..n. P matches T by the
construction.

2. Let g : {ar,j} −→ {pi} ∪ {NULL}j ∈ 1..k, i ∈ 1..n be a so called
value-source function that identifies sources of values for reaction
actions in S. The function is defined as follows:

a) ∀j ∈ 1..k : ∄i ∈ 1..n : ar,i.v = at,j .v let g(ar,j) = NULL.

b) ∀j ∈ 1..k : ∃i ∈ 1..n : ar,i.v = at,j .v let g(ar,i) = pmin(i).

3. Let A = (a1, a2, ..., am) be some arbitrary sequence of input
actions in component c1. The automation rule AR is defined as
the following function:

a) If P doesn’t match A, return ∅. Otherwise m = n by
definition of a matching pattern sequence.

b) Return A′ = (a′
1, a′

2, ..., a′
k) with a′

j being defined as follows:

i. ∀j ∈ 1..k ∧ g(ar,j) = NULL : a′
j = ar,j

ii. ∀j ∈ 1..k ∧ g(ar,j) = pl : a′
j = 〈ar,j .e, ar,j .ta, amin(i).v〉

where i ∈ 1..n ∧ pl matches ai

6.4 Double Input Detector 149

Components

Deployment and
ICCI-Extension

S
h

in
d

ig
deployed to

deployed to

Widget Containers & Composition Environment Automation Rule Configuration

{"from":{

 "widgetID":"org.iwc.Weather.143",

 "recordedData":[

 {"event":"onClick",

 "path":"input#sett ings" },

 {"event":"onChange",

 "path":"select#city_selector" },

 {"event":"onClick",

 "path":"input#done" }]},

"to":{

 "widgetID":"org.iwc.Map.142",

 "recordedData":[

 {"operation":"change",

 "path":"input#locat ion" },

 {"operation":"click",

 "path":"button#find" }]}

 }

deddddededddddedededddddddeddddddeeddddeeeeddee

deddddddddddddddd

GUI Monitoring
and

Orchestration

observes and
manipulates

observes and
manipulates

deployed to

Figure 6.8.: Observation and Automation of Repeated Input

access their UI and logic at run-time. The only provided interface
is the ICCI one. The idea is, thus, to automatically modify source
code of components to enrich their ICCI interface with primitives for
observation and manipulation of component GUI. Components should
produce notification messages on GUI state changes and consume ones
containing operations for modification of their GUI elements.

The modification of source code is performed automatically during de-
ployment of a component to corresponding component container (cf.
Figure 6.8). Apache Wookie has been extended to inject a piece of
Javascript code into component packages that attaches DOM-event lis-
teners to all detected input elements (cf. Definition 6.4.1). The injected
code enables also manipulation of element values. State change notifi-
cations and manipulation requests are communicated using notification
messages on dedicated “system” topics.

The Algorithm 6.5 is executed by a dedicated component being imple-
mented as a standalone W3C packaged app (called Controller Compo-

nent). The component should be part of the application to be able to
observe and to replay user interactions. After an initial handshake phase,
during which components from current composition model register
themselves by Controller Component, the component starts observation
of user interactions. Users do not need to trigger the learning process

150 Chapter 6 Development Assistance

explicitly - it starts automatically as soon as users start interacting with
components. The Controller Component maintains a list of 10 last
interactions and searches for automation samples. Current prototype
supports only automation samples consisting of value changes with
optional button clicks as trigger or reaction actions. If values of inputs
in the trigger and reaction actions are equal, a new automation rule is
created. The user is notified about the newly created rule with a pop-up
window.

From then on, whenever a user starts interaction similar to the trig-
ger actions with the source component, the system will automatically
complete the corresponding interaction in the target component. The
prototype stores automation rules in the Web storage of the browser
(Hickson, 2013).

The Controller Component provides facilities for inspection and removal
of the derived automation rule. The inspection enables highlighting of
the affected input elements. Automation rules can be removed, if user
is not interested in the behavior anymore.

The motivation scenario from Section 6.4.1 can be realized as follows.
The two components are deployed into the system, where they are
extended towards observation and modification of GUI. User creates a
mashup out of the two components and adds the Controller Component.
Afterwards, he demonstrates the desired behavior by selecting/typing
and submitting some city name in both components. The controller
component recognizes the given automation sample and derives an
automation rule that maps selection and submission of any city name
in the weather forecast component onto typing and submission of the
same city name in the map component.

6.4.4 Related Work

Geppeto project introduced the idea of programming on the GUI level
and applied it the context of widget-based dashboards (Skrobo, 2009).
Using several special-purpose components and the PBD technique users

6.4 Double Input Detector 151

were able to define workflows consisting of multiple GUI actions across
different widgets. However, the recorded workflows could only be
triggered by user or by pre-defined system events and not by widgets
themselves.

An approach for automatic synchronization of Web-based widgets is
described in (Ghiani et al., 2011). Here, end users can interact with
different Web applications aggregated on one canvas, while the data
flow is recorded on a protocol level (e.g., parameters passed after a form
submission). Afterwards, users are presented a dialog where they can
establish connections between parameters of different requests, thereby
denoting they share the same semantic concept. Every time an appli-
cation then issues a server request, the system automatically submits
connected applications, based on the “wired” parameters. As a result,
reiterative manual data input is avoided and end users are presented a
view of synchronized applications. The proposed solution works on the
GUI level instead of the protocol one and derives relationships between
“parameters” automatically.

Several research projects have focused on simplification of ICC config-
uration with the goal to automatically synchronize component states.
For example, the drag&drop technique has been applied in the CRUISE
project (Pietschmann, Voigt, et al., 2012) to establish ad-hoc connections
between components. Interfaces have been extended with correspond-
ing events that were triggered as soon as users dragged a piece of data
outside of component boundaries. The platform offered compatible
inputs of other components to receive the data and stored the assign-
ment if desired. In the proposed solution a similar technique is applied
with the difference that component extension is done automatically and
synchronization of data takes place using GUIs of components.

6.4.5 Evaluation

In the following, the requirements from subsection 6.4.2 are reviewed
and the approach is evaluated.

152 Chapter 6 Development Assistance

Input automation The approach enables automatic completion of user
inputs across several components. Transitive relationships can be
defined by demonstrating the automation behavior between pairs
of components.

The proposed algorithm learns relationships between component
input elements based on the history of entered data (equality of
entered values). Automation rules are executed just after input se-
quences “similar” to the demonstrated ones are detected in source
components. The algorithm has several limitations regarding rec-
ognizable relationships between input elements. It focuses on
equality of values only and doesn’t consider combination, splitting
and transformation of input values. Specification of these more
complex relationships is not feasible to under time pressure but is
theoretically possible using transformation functions editor pre-
sented in Section 5.4.4. Execution of different reaction actions
depending on the values of elements in the trigger actions is not
supported yet and should be explored in future work. Another
limitation of the implementation is the missing support for non-
standard and dynamically added input elements such as ones
implemented using various third-party Javascript libraries. The
prototype relies on the HTML standard-based inputs available at
the component instantiation time.

Personalization Personalization is achieved by enabling definition of
automation rules for each user separately. To activate the automa-
tion functionality, users have to add the controller component to
their applications. The configuration is stored within user browser
and, thus, cannot interfere with configurations of other users. A
drawback of this approach is that users are “bound” to one browser
instance and cannot access the recorded configurations on other
machines. An improvement of the current prototype would be
integration of the automation rules into composition model and
their persistence on the server side.

Simplicity Definition of automation rules doesn’t require any program-
ming skills and takes place automatically during users-application

6.4 Double Input Detector 153

interaction. Users are notified about discovered repeated inputs
and can inspect involved elements in the controller component.
Defined automation rules can be removed using dedicated control
elements.

An open issue is, however, modification of automation rules. End-
user-friendly editing of specifications produced by PBD method is
in general complicated as it requires explanation of the derived
generalizations (Lieberman, 2001). Currently, the editing is not
supported – in case, an automation sample has been demonstrated
wrongly, the user has to remove it and repeat the demonstration
process from start.

Efficiency The definition and execution of automation algorithms takes
place smoothly without any time delays for end users. The com-
plexity of the automation rule learning algorithm is linear in the
number of demonstrated actions. The construction of pattern se-
quence matching demonstrated trigger actions can be done in |T |
steps. The computation of value-source function pattern sequence
can be performed in time |T |+|R| if values of demonstrated trigger
actions are pre-processed and information about their occurrence
is memorized. Finally, the construction of an automation rule
acting as a specification of the run-time behavior can be done in
constant time.

Execution of automation rules is performed in linear time (con-
sidering sequence of input actions in some component as input).
Input actions of length n are tested against the pattern sequence
derived from demonstrated trigger actions in n steps. The ap-
plication of value-source function to produce resulting reaction
sequence requires maximal |R|∗n steps (depending on the number
of non-empty input values in the original demonstrated reaction
sequence).

154 Chapter 6 Development Assistance

6.5 Summary

This chapter presented three assistance mechanisms that aimed at as-
sisting Composition Developers during the Component Discovery and
Composition Development steps of the proposed DSS development
process. The mechanisms have been integrated and evaluated within
the WebComposition/EUD Composition Platform. The next chapter de-
scribes facilities that support evolution and maintenance of artifacts
involved into the WebComposition/EUD development process.

6.5 Summary 155

7Evolution
Assistance

As presented in Section 4.4 the WebComposition/EUD development
process starts with a Bootstrap phase, which concerns with analysis of
the domain and initial provisioning of a set of reusable components for
construction of DSSs. During evolution of resulting applications some of
these steps are repeated – components have to be changed, their capabil-
ities extended or new ones should be added. This chapter presents three
assistance mechanisms that support Component Developers, Component
Communication Experts and Artifact Library Managers in their respec-
tive tasks. The first tool, WebComposition/EUD-CC, enables efficient de-
velopment of new functionalities by turning existing Web-based widgets
into WebComposition/EUD components (cf. Section 7.2). The second
tool, WebComposition/EUD-IE, supports modification and extension of
existing components with new ICC capabilities (cf. Section 7.3). Finally,
WebComposition/EUD Artifact Library (WebComposition/EUD-AL) acts
a service that provides assistance in systematic management and ef-
ficient discovery of various WebComposition/EUD artifacts (cf. Sec-
tion 7.4).

157

7.1 Research Questions

Capabilities of DSSs produced by end users are mainly defined by un-
derlying WebComposition/EUD components. To enable development of
DSSs for many use cases, it is important to provide a rich set of reusable
components and enable their efficient discovery. This chapter addresses
the challenge on how to efficiently create WebComposition/EUD com-
ponents and how to enable their systematic management. The research
questions addressed are:

Research Question 1 Is it possible to automatically transform Web-
based widget packages of selected formats into WebCompositi-
on/EUD components? The question analyzes compatibility of
WebComposition/EUD components with several legacy widget
formats. Quality of the developed transformation algorithms is
evaluated.

Research Question 2 Does the proposed visual environment speed-up
the ICCI extension process? This question analyzes if the proposed
tool makes Component Communication Experts more efficient in
their tasks.

Research Question 3 Is it possible to perform centralized management
of WebComposition/EUD artifacts using the Artifacts Library? The
question analyzes if the proposed architecture and algorithms
enable publishing, discovery and access control management of
heterogeneous content.

7.2 WebComposition/EUD Component

Converter

Effectiveness and acceptance of any composition platform significantly
depends on the number and quality of components it provides. Without

158 Chapter 7 Evolution Assistance

a sufficient set of building blocks, Composition Developers are unable to
construct useful and efficient support systems. Development of compo-
nents, however, is a tedious and time-consuming task, especially if done
from scratch. Although many repositories with reusable components
exist on the Web, their reuse is hindered by incompatibilities in pack-
aging formats, metadata descriptors and functional dependencies. It is
required to support Component Developers and Artifact Library Man-
agers in efficient provisioning and deployment of WebComposition/EUD
components.

7.2.1 Motivation Scenario

Consider the example application from Section 4.3.2, which provides
an aggregated view on emergency incidents around some location.
Peter, a coordinator of a emergency response team, wants to add a
component that would search for news from social media for a given
keyword. However, he doesn’t find any component with comparable
functionality and performs a request to Artifact Library Managers to
provide it. Although similar components can be found and downloaded
from widget repositories on the Web, the components cannot be sim-
ply added to the WebComposition/EUD platform due to incompatible
formats. Their manual transformation into WebComposition/EUD com-
ponents or development of new ones from scratch are both costly and
time-consuming.

In contrast, the development process would be much more efficient, if
components of other types could be converted into the WebCompositi-
on/EUD format automatically. Artifacts Library can be then populated
with popular and high-quality components from existing Web reposi-
tories, so that Composition Developers have richer choice of building
blocks and fewer delays caused by development requests.

7.2 WebComposition/EUD Component Converter 159

7.2.2 Requirements

Based on the above considerations the following requirements on auto-
matic conversion mechanisms can be devised:

Compliance The assistance mechanism should produce WebCompo-
sition/EUD components out of existing Web-based components.
Packaging format, dependencies and configuration documents
should respect the WebComposition/EUD specification.

Efficiency The process of population should be efficient in terms of
time and effort required. An optimal solution should be able to
populate component library automatically, but at the same time
provide sufficient control mechanisms of conversion process.

Extensibility The conversion mechanism should be applicable to more
than one proprietary component format. The goal is to enable
import of functionalities that users might have used before.

7.2.3 Conversion Process

The proposed tool enables transformation of proprietary Web widgets
and gadgets into WebComposition/EUD components (Hertel, 2012). For
this purpose, it defines a dedicated metamodel that acts as a common
denominator between heterogeneous component formats. Adapters for
different formats should produce package models that are then used
to generate ready-to-use WebComposition/EUD components. Three
adapters for different widget formats has been implemented: iGoogle
gadgets1, Opera Widgets2 and Universal Web App (UWA) gadgets3. The
conversion process foresees two steps: First, a widget model is derived
out of a concrete packaging format and Second, a generic conversion

1https://developers.google.com/igoogle/docs/igoogledevguide, Retrieved
3.6.2015

2http://web.archive.org/web/20130128182808/http://widgets.opera.com/de/,
Retrieved: 31.10.2014

3http://uwa.netvibes.com/docs/Uwa/html/index.html, Retrieved: 31.10.2014

160 Chapter 7 Evolution Assistance

Component Converter

imported in Model
Deductor

Widget Model

produces Package
Generator

refines

uses generates

Batch
Configuration

creates

used by

Templates

used by

Component
Developer

Adapter
AdapterAdapAdAdapAAAdAdapAAdapAAdapAdAdappppterterterterterter

Adapter

used by

Figure 7.1.: Conversion of Proprietary Widgets into WebComposition/EUD

Components

algorithm is applied to produce a WebComposition/EUD package out of
the model (cf. Figure 7.1). In the following, the transformation steps
are described in details.

Model Deduction

The goal of the first step is to derive a widget package model inde-
pendent of a concrete packaging format. A corresponding metamodel
that describes the abstract structure of WebComposition/EUD compo-
nent packages (based on W3C Packaged Web Apps) is illustrated in
Figure 7.2.

A WebComposition/EUD component package consists of 3 main ingre-
dients: Metadata, Configuration and Content Resources. Metadata com-
prises a globally unique identifier and version of the widget as well as at
least one localized set of further attributes. Localized Metadata consists
of a name, a description and an icon of the widget. Additionally, it
stores information about widget developer. Configuration data provides
runtime parameters to the widget execution environment. Such param-

7.2 WebComposition/EUD Component Converter 161

Widget Package

-file name: String

Metadata

-version: String

Author
Metadata

-name: String

-email: E-Mail

-homepage: URI

Configuration

-width: Integer

-height: Integer

Feature
Requirement

-name: String

Content Resource

-name: String

-location: String

HTML Resource

CSS Resource

User Preference

-content: Binary

1

1

1

*

*

*

1

1

1

1..*

1

1

IMG Resource

-id: URI

has start file

1

1

has icon

*

*

Localized
Metadata

-name: String

-description: String

1..*

1

User Locale
Preference

-locale: Locale

Generic User
Preference

-name: String

-value: String

JavaScript Resource

-locale: Locale

-locale: Locale

Figure 7.2.: Metamodel WebComposition/EUD Component Packages (based

on W3C Packaged Web Apps)

162 Chapter 7 Evolution Assistance

eters are dimensions of the widget, a reference to the start file, so called
Feature Requirements and User Preferences. Features are pluggable and
configurable functionalities of widget execution platforms. An example
of a Feature is some form of middleware that can be used by widgets
to exchange data. A Feature Requirement states that a particular plat-
form functionality is required for proper widget execution. In general,
a widget cannot be instantiated if one of its Feature Requirements is
not fulfilled. User Preferences that are also part of configuration data,
contain default locale preference and generic name-value pairs. The
latter can be used as initial parameters for business logic of a widget.

The last ingredient of a widget package – Content Resources – define
business logic and user interface of a widget. Resources are option-
ally localized, i.e. there is a concrete locale assigned to each of the
resources. Resources with specified locale provide language and region-
specific translations of user interface or business logic. Runtime envi-
ronments usually enable users to select a locale they prefer most. Each
resource has a name, a relative location within the package and a con-
tent. The metamodel distinguishes between HTML, image, style sheet
and JavaScript resources.

Model deduction takes place similarly for all source package formats.
First, metadata is extracted from a given widget package. In case, iden-
tifier of a widget package or version are missing, the model attributes
are set to automatically generated values. Referenced resources are
downloaded and corresponding model elements are instantiated. If
localization resources are available, the metadata is completed with
corresponding entries. Then, configuration data is extracted. Dependen-
cies identified in this step influence later adaptation of widget’s source
code. After that content of the original widget package is analyzed and
new model elements (HTML, image, CSS and JavaScript resources) are
created. Special considerations are required by HTML and JavaScript
resources – the original widgets can rely on platform APIs that may be
missing in other execution environments. For this purpose, package
format-specific resources are added to models and corresponding HTML
files are adjusted to include these resources.

7.2 WebComposition/EUD Component Converter 163

In the following, some details on package model deduction for different
widget formats are presented.

Opera Widgets The Opera widget specification4 has been published
2007 and was based on the early W3C widget packaging draft. An
opera widget is a compressed file with configuration, localization
and content resources inside. The deduction algorithm extracts
metadata and configuration files from a dedicated manifest file.
Content resources are slightly modified to become compatible with
current CSS standards and JavaScript APIs.

iGoogle Gadgets iGoogle gadgets have been used from 2005 till 2013
for personalized starting pages. An iGoogle gadget package is
made of a single XML file that comprises gadget metadata, config-
uration and content resources (some resources are only referenced
using Uniform Resource Locators (URLs) and, thus, have to be
downloaded first). The model deduction algorithm has to take
several peculiarities into account. For gadgets without inplace-
content (of special type url) new HTML resources are created
containing a single iframe element pointing to the given URL. New
localization resources have to be generated based on so called
message bundles referenced by a concrete package. As in case of
Opera Widgets, new JavaScript resources (originating from related
Apache Shindig5 project) are added to emulate iGoogle-specific
JavaScript APIs. Configuration of user preferences is implemented
by extracting parameter names and their values from the original
gadget package and by inserting preference management code
into HTML resources. Authentication data is ignored as current
W3C specification doesn’t foresee corresponding attributes.

UWA Widgets The format has been introduced by Netvibes6 for build-
ing personalized dashboards. Similar to the iGoogle gadgets, UWA

4https://github.com/operasoftware/devopera-static-backup/blob/master/

http/dev.opera.com/articles/view/opera-widgets-specification-11-

fourth-ed/index.html, Retrieved 3.6.2015
5http://shindig.apache.com, Retrieved: 3.6.2015
6http://netvibes.com. Retrieved: 3.6.2015

164 Chapter 7 Evolution Assistance

packages consist of a single XML file that comprises metadata, user
preferences, markup and JavaScript code. Referenced resources
are downloaded first. At the time of writing UWA specification
didn’t define any standard way of persisting localized resources
or message bundles i.e., this aspect of UWA widgets is ignored.
Furthermore, the format doesn’t foresee definition of widget di-
mensions by widget developers - the resulting model should be
completed in the next conversion phase.

If the automatically derived widget model misses some mandatory
elements (e.g., configuration parameters or metadata), they have to be
added to the model manually.

Generation of Component Packages

Generation of WebComposition/EUD component packages takes place
automatically based on the model produced during Model Deduction
step. The generation process can be divided into three steps: generation
of the W3C Configuration Document; creation of folders with content
resources and, finally, packaging of the content into one archive. The
Configuration Document contains complete widget and author meta-
data (also localized one) and widget configuration including feature
requirements and user preferences. Folders are created based on both
the W3C specification (for locale-specific resources) and on relative
paths of content resources. All files are then put into one zip archive
named according to the original file name and date of conversion.

The algorithm has been implemented as a stand-alone tool with GUI
interface. It enables both transformation of single packages and batch
processing. If some information is missing, the information is com-
pleted either manually or using pre-configured values in a full-automatic
mode.

7.2 WebComposition/EUD Component Converter 165

7.2.4 Related Work

Automatic creation of UI components is widely applied for RSS (Winer,
2003) and Atom feeds (Nottingham and Sayre, 2005). Pre-defined
templates are instantiated with concrete URLs and usually provide view,
search, bookmark and sharing functionalities. The idea is applied by
many dashboard platforms such as iGoogle, Netvibes and myYahoo7.
However, the approach is rather limited as it produces components
with very specific functionality only. Furthermore, it requires content
providers to stick to the syndication formats supported by widget gener-
ation tools.

Several prototypes exist that produce W3C widgets based on existing
code. One of them, so-called AppCache to Widget Converter (ac2wgt8),
utilizes HTML5 Application Cache (Hickson et al., 2014) to enable ac-
cess to HTML, CSS, JavaScript and media resources even if network
connection is unavailable. The converter downloads all cachable files
from a given resource, creates a configuration file and produces a W3C
package file. The challenge is, however, to find sufficient number of
input Web applications that are supported by the converter tool. Further-
more, at time of writing the software wasn’t available for download.

Another prototype called crx2widget9 transforms Google Chrome appli-
cations10 into W3C packaged Web apps. The converter makes use of the
fact that the structure of Chrome-native *.crx files is very similar to the
one specified by W3C specification and, therefore, they can be easily
mapped on each other. The prototype has been successfully applied to
“a few apps” from Google Web Store. It could be used in conjunction
with the proposed tool, which follows similar idea but covers other input
formats.

7https://my.yahoo.com/, Retrieved: 3.6.2015
8http://berjon.com/hacks/ac2wgt, Retrieved: 4.9.2012
9http://scottbw.wordpress.com/2011/02/17/converting-chrome-installed-

web-apps-into-w3c-widgets, Retrieved: 3.6.2015
10https://chrome.google.com/webstore, Retrieved: 3.6.2015

166 Chapter 7 Evolution Assistance

7.2.5 Evaluation

In the following the tool is evaluated based on requirements stated in
Section 7.2.2.

Compliance The package model used for generation algorithm has
been derived from the current W3C Packaged Web App specifica-
tion, which builds the basis of WebComposition/EUD components.
The output of the algorithm is a W3C package file that corresponds
to the specification and can be deployed to the component con-
tainer of the composition platform. The requirement is considered
to be fulfilled.

Efficiency Time and effort required for library population is minimal as
widget transformation happens mostly automatically. Only if some
data is not found in the original package, manual input is required.
The batch processing mode enables to completely automate the
process. However, as shown in the experiment below, the tool
fails to convert some components correctly. In this case the broken
packages have to be reviewed and repaired manually. Therefore,
the requirement is considered to be partially fulfilled.

Extensibility The tool provides adapters to convert components of 3
different formats. The extensibility of the tool is given by plug-
gable adapter architecture. To integrate new component format, a
dedicated adapter should be implemented that would produce the
model defined in Section 7.2.3. The module for model refinement
and generation of component packages are independent from
source format. The requirement is considered to be fulfilled.

The success rate of the tool has been tested during an experiment with
25 most popular components11 from each supported format (iGoogle,
Opera and UWA). The components were downloaded from respective
repositories, converted by the tool and then deployed to a widget con-
tainer (Apache Wookie v0.11). Instantiated components were reviewed

11According to widget ratings on corresponding platforms on 13.07.2012

7.2 WebComposition/EUD Component Converter 167

Figure 7.3.: Success Rate of WebComposition/EUD-CC

manually and their functionality compared with original widgets. The
results of the experiment are presented in the Figure 7.3.

21 of 25 Opera widgets have been converted successfully. Two widgets
used proprietary JavaScript APIs that were not supported by the tool.
Two further widgets were invalid according to the Opera specification,
although they were runnable in original Opera environment. Out of the
21 converted widgets only 13 functioned properly in Apache Wookie.
The problems occurred mainly in Opera-specific API calls such as access
to local hard drive files. The success rate for Opera widgets is therefore
52%.

All 25 iGoogle gadgets were converted successfully. 23 of 25 converted
widgets worked correctly in Apache Wookie. One widget could not
be imported because of a Wookie-related bug (already reported to the
developer team at the moment of evaluation). Another widget caused
several JavaScript exceptions after instantiation. The success rate of
iGoogle gadgets is 92%.

The 25 selected UWA widgets were all converted into the W3C format.
22 of them worked correctly in Apache Wookie. 3 other widgets were in-

168 Chapter 7 Evolution Assistance

compatible with Wookie-provided proxy object and didn’t work properly.
The success rate for UWA widgets is, thus, 88%.

The overall success rate calculated over the three different widget for-
mats is 77%. The findings from the above experiment show that automa-
tic conversion of existing widgets is possible and feasible. Initial effort
to implement adapters for specific component format is large. However,
it pays off quickly if many source packages have to be converted into
the WebComposition/EUD component format.

7.3 WebComposition/EUD ICCI

Extender

A rich set of components enables construction of DSSs to support large
number of different scenarios. With evolving requirements, however,
Composition Developers might demand new components and compo-
sition possibilities to be provided by the platform. While completely
new functionalities can be realized by adding new components to the
repository, composition possibilities are often restricted by ICCIs of com-
ponents. In WebComposition/EUD development process Component
Communication Experts take care of the availability and quality of these
interfaces. One of the most time-consuming activities is enabling newly
added components to communicate with existing ones. Their source
code has to be learned and manually extended with new publications
and subscriptions, which is in general a time-consuming and error-prone
task. If components have been imported from external repositories, sup-
port from original Component Developers is not guaranteed at all. Thus,
it is desirable to provide support for Component Communication Ex-
perts, so that they can perform this task efficiently without the need to
contact original Component Developers.

7.3 WebComposition/EUD ICCI Extender 169

7.3.1 Motivation Scenario

A Component Repository has been populated with numerous compo-
nents that have been developed manually by different developers or con-
verted automatically using WebComposition/EUD-CC. Peter, a platform
user, wants to extend his application for analysis of flood consequences
with two new components – the one called PhoneDB, which would
query phone numbers of public institutions in a given city, and the other
one called VoIPCall, which would enable VoIP calls to a given phone
number. The two components stem from different developers and were
not designed to work together. Peter notices that they do not synchro-
nize data among each other. He has to extract found phone number
from results table of the one component and manually copy it into the
other. Peter issues a feature request to extend the two components
towards ICC – however, it will take significant time until the source code
of the components gets updated. It would be beneficial for Component
Communication Experts, if they could extend capabilities of repository
components on their own. To avoid the need for learning the source
code of components, semi-automatic facilities for such extensions are
desirable.

7.3.2 Requirements

The following requirements can be derived on the envisioned assistance
mechanism.

Effectiveness The assistance mechanism should enable extension of
components with new ICC capabilities. Components should pro-
duce and consume notification messages as specified by users.

Efficiency The goal of the tool is to make Component Communication
Experts more efficient in their work. Time and effort required to
extend components with new capabilities should be minimized.

170 Chapter 7 Evolution Assistance

Usability The assistance mechanism should be easy to use and easy
to learn. Users should perceive it as a useful tool that they also
prefer to use.

The following section presents an interactive visual environment that
addresses the above requirements.

7.3.3 Semi-automatic ICCI Extension

The proposed assistance mechanism enables interactive semi-automatic
extension of component ICCIs. Publications and subscriptions can be
mapped on state changes of component’s GUI being represented by
a DOM tree (cf. Section 4.3.1). Specification takes place using the
PBD technique (Lieberman, 2001): users interact with the GUI of an
instantiated component, while the tool records and analyzes performed
user actions. If one of built-in action sequence pattern is detected, the
corresponding actions can be further configured either as triggers for
some outgoing notifications or as reactions (actions to be performed)
to some incoming notification. The outgoing or expected notification
messages are parametrized in a dedicated dialog based on values of ele-
ments involved into the detected actions sequence. Additionally to the
PBD technique, the tool enables visual annotations of table structures.
The goal is to make table data interactive by passing displayed values
(cells or complete rows) as notification messages to other components.
Extraction and publication take place upon cell or row selections.

The produced configuration is used by WebComposition/EUD-IE to au-
tomatically enrich component source code. After extension, component
publishes and subscribes for notification messages as specified during
demonstration or annotation. In the following details of the specification
process and of automatic source code extension are presented.

7.3 WebComposition/EUD ICCI Extender 171

Terminology

To describe the proposed solution we first introduce several assisting
definitions. The concepts user input action and pattern for user input ac-

tion are reused from Section 6.4.3. The set of element types in definition
6.4.1 is extended towards Te = {TEXT − INPUT, MULTIPLE −
CHOICE, BUTTON, TABLE − ROW, TABLE − CELL}. Addition-
ally, the following definitions are introduced:

Definition 7.3.1. Let A = {ai : ai = 〈ei, ta,i, vi〉, i = 1..n} be a se-
quence of user actions performed in some component c. A pattern
sequence P = {pi : pi = 〈ei, ta,i〉, i = 1..n} that matches the sequence
A is called trigger-reactor pattern sequence.

Definition 7.3.2. A GUI-based ICC publication pubGUI is a tuple 〈PP UB ,
tP UB , fP UB〉 with

• PP UB being a trigger-reactor pattern sequence,

• tP UB being some publish-subscribe topic,

• fP UB : PP UB −→ string being a function that assigns string
names to the patterns in PP UB . The names should be later used
as keys in published notification messages. For simplicity of im-
plementation the keys should be unique: ∀pi, pj ∈ PP UB , i �= j :
fP UB(pi) �= fP UB(pj)

pubGUI is a specification of component publication behavior. The pattern
sequence PP UB is used to identify user actions that should cause a new
notification message to be published. tP UB specifies the topic to be used
and fP UB the content of notification message.

Definition 7.3.3. A GUI-based ICC subscription subGUI is a tuple 〈PSUB ,
tSUB , fSUB〉 with

• PSUB being a trigger-reactor pattern sequence,

• tSUB being some publish-subscribe topic,

172 Chapter 7 Evolution Assistance

• fSUB : PSUB −→ string being a function that assigns string
names to the patterns in PSUB. The names are later used to
find values in incoming notification messages to be assigned to
elements from the pattern sequence PSUB .

subGUI is a specification of component subscription behavior. The
pattern sequence PSUB provides a template for user input actions that
should be executed on GUI of component c as soon as some notification
message arrives.

Specification of ICC behavior

Specification of the required ICC behavior is performed using the PBD
technique. Hereby a dedicated algorithm analyzes input actions made
within a component and produces patterns for ICC publications or
subscriptions (based on the choice of the operator). The topic to be
used for notification messages and the naming function are provided
manually. The two are of particular importance as they define the
ICCI of the component. It is a developer responsibility to choose the
topic and message attributes consistently in order to maximize semantic
compatibility of extended component with others.

Algorithm 7.1 shows utilized rules to produce a trigger-reactor pattern
sequence out of a buffered sequence of user input actions. On each new
action the algorithm is executed anew. On each derived specification
the buffer is reset.

The algorithm considers only action sequences that affect at least one
input field and finish with button clicks. To illustrate the deduction
process, consider the VoIPCall component from the motivation scenario
above. To establish a call one has to type the phone number of callee
into a dedicated input field and confirm the input using a Call button
(cf. Figure 7.4).

7.3 WebComposition/EUD ICCI Extender 173

Algorithm 7.1: Deduction of a trigger-reactor pattern sequence based
on a given user input action sequence

Input : Component c, user action sequence
A = {ai = 〈ei, ta,i, vi〉}, i = 1..n

Output : A trigger-reactor pattern sequence or NULL if no deduction
possible

1. If en.t �= BUTTON ∨ ∄i ∈ 1..n − 1 : ei.t ∈
{TEXT − INPUT, DROPDOWN} return NULL.

2. Otherwise, return P = {pi : pi = 〈ei, ta,i〉}, i = 1..n.

1. Producing and annotating events

2. Completing specification 3. Source code extension with
behavior specification

4. Publishing and receiving messages

{ "topic": "topic:phonenumber",
 "data" : [{
 "number": "+49371111222"
 }]}

{"topic":"topic:phonenumber",
 "type":"subscription",

 "events": [

 {"concept": "number",

 "element": {"tag":"input","id":"number"},

 "event": "change"},

 {"concept": null,

 "element": {"tag":"input","id":"call"},

 "event": "click"}] }

Figure 7.4.: Interactive Demonstration of Desired ICC Functionality

174 Chapter 7 Evolution Assistance

After each action, the algorithm 7.1 is executed. A click on the Call but-
ton produces a non-empty pattern sequence
P = {p1 = 〈inputP honenumber, change〉, p2 = 〈buttonCall, click〉}. The
topic to be used and the naming function should be provided by a
user, e.g., t = ”topic : phonenumber” and f = {(p1, ”number”)}. User
can decide if the produced tuple 〈P, t, f〉 should cause a publication of
entered phone number or if it should yield actions to be executed on sub-
scriptions. For the above scenario it makes sense to make the component
become a receiver of notification messages and not a sender.

Once GUI-based publications and subscriptions for a component were
specified, it starts participating in ICC upon instantiation. The new
publication behavior of a component is defined by the set of all specifi-
cations {pubGUI,i = 〈PP UB,i, tP UB,i, fP UB,i〉}. Any time user inter-
acts with the component, his actions A = {ak} are recorded in a
buffer and analyzed using the Algorithm 7.1. If the algorithm de-
rives some trigger-reactor pattern sequence P∗, it is matched against
all of the pattern sequences pubGUI,i.Pi. For every matched speci-
fication pubGUI,j = 〈PP UB,j , tP UB,j , fP UB,j〉, a notification message
mj = 〈c, tP UB,j , dataj〉 is published, with data being defined as fol-
lows: data =

⋃

pm∈PP UB,j∧fP UB,j(pm)�=EMP T Y

(fP UB,j(pm), am.vm). In

other words, the notification message consists of values from the user
input sequence A named according to fP UB,j .

Subscription specifications {subGUI,i = 〈PSUB,i, tSUB,i, fSUB,i〉} make
component accept notification messages on topics tSUB,i. If a message
m = 〈c, tSUB,i, data〉 arrives, the following user action sequence A is ex-
ecuted on the GUI of the component: A = {aj : aj = 〈pj .e, pj .t, v〉, ∀pj ∈
PSUB,i} where v is the value that corresponds to the key fSUB(pj) in
data if such a key exists and empty string otherwise.

Architecture

The conceptual architecture of the WebComposition/EUD-IE is pre-
sented in Figure 7.5.

7.3 WebComposition/EUD ICCI Extender 175

Figure 7.5.: Architecture of the WebComposition/EUD-IE

Using a dedicated browser user selects a component to be extended from
Component Repository. Component Extender module then enriches the
source code of the selected component with several functionalities that
are able to observe and replay user actions on the GUI level. The
included functionalities are:

Action Observer The module observes user-component interactions
and notifies the environment about user input actions described by
Definition 6.4.1. The module is used both during the specification
of desired ICC behavior and during actual usage.

Action Player The module is able to replay a given sequence of user
input actions. It is used to realize reaction routines on incoming
notification messages according to provided specification.

Message Emitter If interactions observed by Action Observer match
any pattern from given ICC specification, message emitter con-
structs corresponding notification messages and publishes them
on specified topic.

176 Chapter 7 Evolution Assistance

Message Receiver The module receives incoming notification mes-
sages and constructs action sequences that should be replayed by
Action Player.

After required modules have been added to component source code,
the component is instantiated and the instance is loaded into the
WebComposition/EUD-IE. A user then demonstrates input actions that
should act as triggers or reactors to notification messages, and annotates
table elements to extract the data from. The so-called Pattern Detector

applies the Algorithm 7.1 to derive pattern sequences and passes them
to the Dialog Agent, which asks the user for topic and naming function
to be used. The resulting specification is then automatically added to
the source code of the component and new package is stored in the
repository. From then on, component can be instantiated and used in
the composition environment in conjunction with other components.

The tool is implemented as a stand-alone ASP.NET Model-View-Controller
(MVC) application. Apache Wookie, part of the Composition Platform
acts as Component Repository and Container. The extension modules
are JavaScript libraries that use OpenAjaxHub for communication with
the main application. Recorded ICC specifications are stored as JSON-
objects. Additionally, configuration documents of W3C widgets are
extended with descriptions of component ICC capabilities.

7.3.4 Related Work

A few projects have tackled the problem of component extension to-
wards ICC so far. The scrapplet.com12 mashup platform enables develop-
ment of mashups out of UI components. Mashup developers can extend
aggregated components with publish-subscribe messaging capabilities
by adding snippets of Javascript that are executed on GUI events such
as clicks, key presses etc. Similarly, callback routines can be defined to
handle incoming messages. The tool supports developers in injection
of communication libraries, with code templates and with GUI-based

12http://scrapplet.com, Retrieved: 5.6.2015

7.3 WebComposition/EUD ICCI Extender 177

topic definition. However, the Javascript code has to written manually
and there is no support for dealing with long sequences of input actions.
Scrapplet offers higher flexibility than the WebComposition/EUD-IE,
but requires stronger Javascript skills and is more time-consuming.

In (Daniel and Matera, 2009) authors propose to convert traditional
Web applications into mashup UI components by means of source code
annotations. A dedicated wrapper loads then applications into con-
tainers that equip them with ICC functionality. The wrapper utilizes a
dedicated microformat within application’s HTML code and a separate
component description document. The microformat enables annotation
of application UI controls with information on associated application-
level events and parameters. Although the approach has higher flexi-
bility than WebComposition/EUD-IE, it still requires manual and, thus,
time-consuming source code modification.

7.3.5 Evaluation

The Efficiency and Usability requirements have been evaluated within
a dedicated user study. The goal of the evaluation was to test, if the
proposed tool speed-ups the ICCI extension process, and to assess its
usability. To answer these questions a laboratory experiment with 10
participants has been conducted and its results have been evaluated
using statistical hypothesis testing (two-tailed t-test with significance
level 95%). The following two null hypotheses were tested:

H1. For given scenario the average time to perform an ICCI extension
using the tool is lower than the average time for the same task but
without the tool.

H2. For given scenario and time constraints the success rate in making
extended components loop-resistant is higher if ICC extender is
used.

178 Chapter 7 Evolution Assistance

Usability properties of the tool have been assessed with average user
ratings based on a 5-point Likert scale. Complete data collected during
evaluation is given in Appendix B.4.

Setup

Overall 10 participants (students, PhD students and researchers of
the Faculty of Computer Science, Technische Universität Chemnitz,
Germany) took part in the evaluation. All the participants had basic or
advanced Javascript skills. 90% of them have already used or developed
Web-based UI components. However, only 20% of the participants had
prior experience in development of W3C widgets. ICC was a familiar
concept for everyone - 50% have seen it working and 50% developed
ICC behavior on their own. OpenAjaxHub was a new concept to 40% of
the participants.

WebComposition/EUD-IE has been installed locally on three worksta-
tions with similar hardware and software characteristics. Local installa-
tions of Apache Rave 0.17 and Wookie 0.11 were used. All participants
used Notepad++13 for manual source code modifications.

Procedure

The evaluation procedure took place as follows. First, the participants
filled a questionnaire, where they assessed their skills and experience
in development of Web-based components. Then they were given an
introduction into the WebComposition/EUD component model and
underlying technologies (W3C packaging format and OpenAjaxHub
API). One example for extending two components manually and using
the WebComposition/EUD-IE was shown. After that each participant
had to solve two tasks related to extension of components towards
ICC – once without the tool and once with. The time required for

13http://notepad-plus-plus.org, Retrieved: 5.6.2015

7.3 WebComposition/EUD ICCI Extender 179

completion of the first task has been measured. Regarding the second
task it was only checked, if the task was completed in a fixed time
span. Finally, the participants filled a post-evaluation questionnaire,
where they assessed the usability, understandability, applicability and
reusability of the tool.

In the first task participants were asked to extend three given compo-
nents towards ICC (cf. Figure 7.6). One component called MovieList

enabled browsing through a collection of movies and search by key-
words. The second one called WikiSearch showed Wikipedia14 articles
related to an entered concept. The last one called YoutubeBrowser

searched for Youtube15 videos using a given term. Originally the three
components do not share any data to others. The goal of the first
task was to extend their source code, so that a keyword entered into
the MovieList component was automatically passed to the two others
upon its submission. The other components had to show their respec-
tive search results to the passed keyword. The second task required
a similar behavior but into another direction: if a keyword had been
entered into the WikiSearch component, it should have been passed to
the YoutubeBrowser and MovielList ones. The complexity of the task lied
in prevention of message loops that would occur between MovielList

and WikiSearch as soon as one of them publishes a notification message
that can be consumed by the other. Depending on the implementation,
a receiving component can retransmit the incoming keyword and, thus,
cause a self-reinforcing message exchange.

Results

All participants were successful in the first task (both manually and
using the tool) and extended components towards ICC correctly. The
time required for solution of task 1 using the tool was at least 50%
shorter (cf. Figure 7.7), indicating that the tool makes developers more
efficient. The hypothesis H1 is accepted.

14http://en.wikipedia.org, Retrieved: 5.6.2015
15http://www.youtube.com, Retrieved: 5.6.2015

180 Chapter 7 Evolution Assistance

publishes entered text

publishes entered text

Additional communication direction in Task 2Communication direction in Task 1

Figure 7.6.: WebComposition/EUD-IE: Evaluation tasks

Figure 7.7.: WebComposition/EUD-IE: Performance and Success Rate

Increase

7.3 WebComposition/EUD ICCI Extender 181

Figure 7.8.: WebComposition/EUD-IE: Ease of Use and Learnability

The loop prevention task (manual try) has been solved by 50% of par-
ticipants only (in given time constraint). In contrast, all the participants
completed the task in time using the tool. The hypothesis H2 is accepted.
The results suggest that the tool makes Component Communication
Experts more efficient in ICCI extension tasks.

The post-questionnaire analysis yielded the following results. 70% of
participants agreed or strongly agreed that the manual extension process
had been cumbersome, which once again underlines the necessity for
assistance mechanisms. Other ratings indicate that the tool was easy
to use (60% agreed and 40% strongly agreed) and easy to learn (50%
agreed and 50% strongly agreed) (cf. Figure 7.8).

70% of the participants found the WebComposition/EUD-IE well ap-
plicable for extension of Web widgets in general (cf. Figure 7.9, left).
However, 10% were undecided and 20% disagreed, which indicates that
some participants were aware of situations that could not be handled by
the tool. The reason surely lies in the fact that WebComposition/EUD-IE
focuses on monitoring and analysis of UI state changes only (form inputs,
form submissions and static tables). As indicated in recommendations
by participants, further event specification methods should be explored
to improve applicability of the tool.

182 Chapter 7 Evolution Assistance

Figure 7.9.: WebComposition/EUD-IE: Applicability and Reuse Willingness

80% of the participants agreed or strongly agreed that they would reuse
the tool in the future. 20% were undecided.

The post-evaluation questionnaire delivered many suggestions on how
to improve the tool and which aspects of ICC extension process are espe-
cially important to support. For example, many participants suggested
to automatically extract text from anchor elements or to react to events
other than form submissions. Some missed a possibility to edit action
sequences once they have been recorded – a well-known challenge in
PBD-based systems. Also, a better control of when recording starts
and ends was desired. Some participants complained about ambiguous
explanations given by the tool. One participant suggested improving
the quality of automatically extracted data by e.g., focusing on popu-
lar Javascript MVC frameworks. Incorporation of the above comments
should be taken into account in future environments for semi-automatic
extension of ICCIs.

The participants also described, which activities of the extension process
were the most cumbersome ones and which of them they would like
to be supported in. Understanding source code of widgets and finding
elements for event binding have been mentioned several times. Also,
loop prevention was considered as a non-trivial task. Finally, participants
mentioned packaging and message compatibility making as cumbersome

7.3 WebComposition/EUD ICCI Extender 183

activities to be supported. The feedback provides further improvement
points for WebComposition/EUD-IE and new aspects to focus on.

In the following, the requirements from the Section 7.3.2 are reviewed.

Effectiveness The WebComposition/EUD-IE is able to extend compo-
nents towards ICC based on monitoring and replay of events on
the UI level. The extended widgets behave according to the com-
munication model from Section 4.3.1. As also indicated in the
study, the tool focuses on form- and table-based components and
is only partially applicable to other types. Thus, the effectiveness
requirement is considered to be partially fulfilled.

Efficiency The user study showed that the tool increases performance
of Component Communication Experts. The success rate of pre-
venting a looping behavior also increases. The requirement is
considered to be fully fulfilled.

Usability Two aspects of the usability, namely learnability and ease of
use, were confirmed by participants in the user study. Though
there is an improvement potential in the explanations and mes-
sages shown by the tool, the requirement is considered to be fully
fulfilled.

7.4 WebComposition/EUD Artifact

Library

Maintenance of artifacts that are produced during WebComposition/EUD
development process is a time-consuming activity and becomes even
more challenging with growing set of deployed components and pro-
duced compositions. To retain their reusability and ease of discovery,
metadata, documentation and history of WebComposition/EUD artifacts
should be systematically organized and maintained. Dedicated tools
are required that would help Artifact Library Managers, Component

184 Chapter 7 Evolution Assistance

Developers and Component Communication Experts to perform these
activities time- and cost-efficiently.

7.4.1 Motivation Scenario

To illustrate the problem consider the following scenario. Alex, an Arti-
fact Library Manager, collects and stores artifacts produced by Compo-
nent Developers, Component Communication Experts and Composition
Developers in different repositories. Components and Compositions are
stored in respective repositories, documentation and feature requests –
in company-internal file server, topic definitions and respective schemes
– in a restricted Web space. If Alex wants to update or add a new compo-
nent, he needs to find and update data distributed in different locations,
which is a time-consuming task. Sharing and access to resources (e.g.,
installed components, documentations or problematic composition mod-
els) is inefficient due to heterogeneity of access protocols, data formats
and access control mechanisms.

A solution that would centralize and support storage, management
and sharing of different types of resources, could significantly optimize
platform maintenance processes.

7.4.2 Requirements

Based on the above considerations, the following requirements can be
derived.

Heterogeneous Content Storage and management of composition mod-
els, component packages, various metadata and documentation
should be supported.

Access Control Artifact Library Managers should be able to define fine-
grained rules for access and modification of stored resources.

7.4 WebComposition/EUD Artifact Library 185

Heterogeneous Interface Integration of the solution into third-party
systems should be facilitated by means of flexible and configurable
API.

In the following a dedicated repository for WebComposition/EUD arti-
facts is presented.

7.4.3 Artifact Access and Management

The proposed solution is based on Data Grid Service (DGS) – an ex-
tensible and configurable Web service that provides uniform access to
heterogeneous resources (Chudnovskyy, Wild, et al., 2012). Each re-
source type is handled by a dedicated plugin called Data Space Engine

(cf. Figure 7.10). DGS takes care of plugin configuration, metadata
management, routing of incoming client requests and access control.

Clients communicate with DGS over the uniform REST/HTTP interface.
The generic access control layer checks if a requester is authorized
to perform given action on the given resource. If so, the request is
analyzed by the Request Router module and forwarded to the responsible
Data Space Engine. All modules have access to the global metadata,
which represents a knowledge base about available resources, their
configurations and relationships. The response produced by Data Space
Engines is directly forwarded to the requesting client.

To enable management of various WebComposition/EUD artifacts, the
following Data Space Engines were integrated:

XML Data Space Engine The engine is used to manage so called XML
lists – data structures, consisting of pieces of XML. Each item
of the list can represent a single composition model in OMDL
format, a structured feature request or a reusable definition of
transformation function. The plugin provides data validation and
search functionality.

186 Chapter 7 Evolution Assistance

Client

Request
Router

REST/HTTP

Access Control

Metadata
Management

Binary
Resources
Data Space
R

Semantic Data
Data Space

SSSSSSSS XML
Data Space

External
Resources
Data Space

requests / responses

requests / responses requests / responses

requests /responses

uses

Figure 7.10.: Architecture of the WebComposition/EUD-AL

7.4 WebComposition/EUD Artifact Library 187

Binary Data Space Engine The engine provides Create, Read, Update,
Delete operations for binary files with possibility of automatic
publishing of their metadata in semantic formats. The metadata
is extracted for several file formats such as W3C packaged Web
apps, PDF, JPEG and MP3 resources. The engine can be used
to store and access WebComposition/EUD components as well as
accompanying documentation.

Semantic Data Space Engine The engine manages resources created
in RDF format and enables their transformation in alternative
representations. The engine is used to store and to provide access
to metadata of WebComposition/EUD artifacts.

In the following, details of the integrated Data Space Engines are pre-
sented.

XML Data Space Engine

The main purpose of the XML Data Space Engine is to manage so called
XML lists i.e., XML resources that have a flat tree structure and contain
a list of semantically and structurally related XML items. XML Data
Space Engine is implemented on top of BaseX 7.616 - an open-source
XML database. By restricting the view from general XML resources to
XML lists, the Data Space Engine can provide additional functionality
specific to lists. In particular, the module provides operations to identify,
retrieve, search for single items, append new and delete existing ones.
Each item is uniquely identified by its primary key - an attribute or
sub-element that is computed and filled automatically by the engine.
Primary keys can be defined for each list separately.

XML Schema is used to define a valid structure of the elements and to
guarantee the list integrity. Each time the list is changed, it is validated
against a pre-defined XML schema. Either list- or element-wise valida-
tion is possible. The post-processing of the XML data can be specified

16http://basex.org, Retrieved: 7.6.2015

188 Chapter 7 Evolution Assistance

using a XSL Transformations (XSLT) stylesheet. This way, arbitrary
representations of original data can be produced.

Search within the dataset is performed using so called XQuery templates.
Hereby, user associates a URL pattern with an XQuery command. The
command contains placeholders that are filled with actual values from
the URL at run-time (cf. Listing 7.1).

Listing 7.1: Definition of XQuery Templates

p r e f i x meta :

<ht tp ://www. webcomposition . net /2008/02/ dgs/meta/>.

<ht tp :// a r t i f a c t s l i b r a r y . example . org / composit ions>

meta : queryTemplate

[

meta : u r l " composi t ions / query :{ value1 } :{ value2 } " ;

meta : query " f o r $x in [l i s t]/*
where $x[conta ins (de s c r i p t i on , ’ { value1 } ’)]

order by $x/ t i t l e / t e x t ()

re turn $x/{ value2 } "

] .

The above pattern, which is defined in Turtle format (Beckett et al.,
2014), makes the service to respond to URLs such as
http : //artifactslibrary.example.org/compositions/sms/title. The
data space engine returns then an XML document with titles of those
compositions that contain the keyword “sms” in their description.

Binary Data Space Engine

The Binary Data Space Engine implements Create, Read, Update, Delete
(CRUD) functionality for binary resources. The latter are grouped in
collections and are exposed to service clients as Atom feeds (Notting-
ham and Sayre, 2005). Standard HTTP methods are used to add,
update or delete the resources. Annotations and metadata is exposed in

7.4 WebComposition/EUD Artifact Library 189

RDF-format and can be retrieved from a well-defined URL - {resource

URL}/meta.

Automatic metadata extraction is defined for several resource types
– W3C packaged Web apps, PDF, JPEG and MP3 formats. Format-
specific metadata is mapped onto well-known RDF vocabularies such as
Dublin Core Metadata Terms 17, Music Ontology18 and EXIF ontology19.
An example of the automatically extracted W3C Packaged Web App
metadata is given in Listing 7.2.

The thumbnail of the widget is extracted and stored as a separate
resource. Listing 7.3 shows EXIF metadata of the JPEG-thumbnail.

Semantic Data Space

Semantic Data Space Engine provides configurable access to RDF meta-
data of the service and its resources. Its SPARQL endpoint enables
arbitrary queries to the RDF dataset stored in a Sesame triple store20,
whereas full text search is facilitated by internal indexing provided by
uSeekM library21. The engine enables definition of so called SPARQL
templates – rules to map URL patterns onto SPARQL queries. The result
can be transformed depending on the content type of the incoming
request. The transformation can be configured using an XSLT stylesheet.
Figure 7.11 shows an example of the template and its processing.

An incoming URL is matched against URL patterns of stored SPARQL
templates. The first match is activated, meaning that actual parameters
from the incoming URL are inserted into the SPARQL pattern and the
resulting query is executed against the service metadata store. The result
is transformed using the corresponding transformation algorithm.

17http://dublincore.org/documents/dcmi-terms/, Retrieved: 7.6.2015
18http://musicontology.com, Retrieved: 7.6.2015
19http://www.kanzaki.com/ns/exif, Retrieved: 7.6.2015
20http://rdf4j.org, Retrieved: 7.6.2015
21https://dev.opensahara.com/projects/useekm, Retrieved: 7.6.2015

190 Chapter 7 Evolution Assistance

Listing 7.2: Automatic Extraction and Publishing of Packaged Web App

Metadata

<rdf:Description

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:wdg="http://www.w3.org/ns/widgets/"

xmlns:dc="http://purl.org/dc/elements/1.1/"

xmlns:om="http://www.ict-omelette.eu/schema.rdf#"

rdf:about="https://artifactslibrary.example.org/

binaries/testwidget.wgt" >

<rdf:type

rdf:resource="http://www.ict-omelette.eu/schema.rdf#Widget" />

<dc:title>HelloWorldWidget</dc:title>

<dc:description>This is my first widget</dc:description>

<dc:creator>Max Mustermann</dc:creator>

<dc:language>en−us</dc:language>

<wdg:height>300</wdg:height>

<wdg:width>400</wdg:width>

<wdg:viewport>windowed floating</wdg:viewport>

<wdg:icon rdf:resource="https://artifactslibrary.example.org/

binaries/b55-icon.jpg" />

<wdg:hasFeature>

<rdf:Description>

<rdf:type

rdf:resource="http://example.org/api/geolocation"

/>

<wdg:required>false</wdg:required>

</rdf:Description>

</wdg:hasFeature>

<om:commercialLicense>This is my license</om:commercialLicense>

<wdg:version>1.0 Beta</wdg:version>

</rdf:Description>

7.4 WebComposition/EUD Artifact Library 191

Listing 7.3: Automatic Extraction and Publishing of Image Metadata

<rdf:RDF xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:dc="http://purl.org/dc/elements/1.1/"

xmlns:dct="http://purl.org/dc/terms/"

xmlns:exif="http://www.w3.org/2003/12/exif/ns#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<rdf:Description rdf:about="https://artifactslibrary.example.org/

binaries/b55-icon.jpg">

<dct:created>13.05.2014 10:04:37</dct:created>

<dct:creator

rdf:resource="http://people.example.org/webids/max#me"

/>

<exif:date>13.05.2014 10:04:37</exif:date>

<exif:copyright>VSR−2014</exif:copyright>

<dc:format>image/jpeg</dc:format>

<exif:software>Adobe Photoshop CS6 (Windows)</exif:software>

<exif:make>Canon</exif:make>

<exif:model>Canon EOS 5D Mark II</exif:model>

</rdf:Description>

</rdf:RDF>

192 Chapter 7 Evolution Assistance

GET /semantic-resources?q=sms HTTP/1.1
Host: http://dgs.example.org

HTTP/1.1 200 OK
Content-Type: application/json

{"services": [
 { "url": "http://smsservice1.example.org",
 "title": "Simple SMS service"},
 { "url": "http://smsservice2.example.org",
 "title": "Complex SMS service"}
]}

Semantic Data Space Engine

produces

reads

Data Grid Service
Metadata Repository

URL Pattern SPARQL Pattern Transformation

...

...

...

...

<omr:view xmlns:omr="http://www.ict-omelette.eu/schema.rdf#omr">
<omr:url>?q={aaa=}&start={limit=100}&

 rows={offset=0}</omr:url>
<omr:sparql>

PREFIX ...
SELECT ?service ?title
WHERE {
?service rdf:type om:Service.
?service rdfs:label ?title.
FILTER search:text(?title, "{aaa}")
}
LIMIT {limit}
OFFSET {offset}

</omr:sparql>
<omr:output-filter>

<omr:condition>*/*</omr:condition>
 <omr:target>application/json</omr:target>
 <omr:transformation>

 <xs l:stylesheet vers ion="1.0"
xmlns:xs l="http://www.w3.org/1999/XSL/Transform">

...
 </xs l:stylesheet>

 </omr:transformation>
 </omr:output-filter>
</omr:view>

.

.

.

.

..

..

..

..

<

x

<

ata Grid Serv

Figure 7.11.: Processing of SPARQL Templates

7.4 WebComposition/EUD Artifact Library 193

With the help of SPARQL templates, different representations of RDF
resources can be produced. The EDUKAPP JSON API22 has been imple-
mented to enable integration of the DGS into Apache Rave.

Service Access Control

Access to service resources can be controlled both on the level of sin-
gle service clients and on the level of groups identified by common
properties or mutual relationships. Authorization is performed on the
resource/operation basis. The DGS doesn’t perform any identity man-
agement, but rather relies on self-managed identities using the WebID
identification mechanism (Sambra et al., 2014).

WebID enables decentral persistence and management of digital identi-
ties. Identity attributes can be arbitrary claims that users (or machines)
make about themselves, about other users or about mutual relationships.
One important attribute (called WebID) is the IRI of a resource that
provides RDF description of identity attributes (called WebID profile).
Another important attribute is a cryptographic key pair for binding a
WebID profile to the identity.

WebID authentication takes place during SSL/TLS handshake between
a client (e.g., a user agent) and a server. A client claiming to possess a
particular WebID identity presents a self-signed X.509v3 certificate that
is logically and physically bound to the claimed identity as follows:

1. The certificate’s public key is the public key of the identity

2. The certificate contains the identity’s WebID in its Subject Alterna-

tive Name (SAN) extension field

3. The referenced WebID profile contains among others the identity’s
public key

22https://code.google.com/p/edukapp/wiki/JsonApi, Retrieved: 4.7.2015

194 Chapter 7 Evolution Assistance

To check the claimed identity possession, the server performs several
steps. First, the presented certificate and its key are validated based on
the SSL/TLS validation procedure. Second, the server reads WebID from
the certificate and fetches the corresponding WebID profile. Finally, it
checks if the profile contains a public key from the presented certificate.
If all the steps succeed, the server assumes that the identity represented
by the profile belongs to the client. It should be noted that due to
self-managed and self-hosted identities, the above process doesn’t check
trustworthiness of identity claims others than write access to the WebID
profile and possession of the keypair.

The authorization takes place using identity- and group-based access
control lists. Authorization rules are specified using the Web Access
Control (WAC) mechanism23, which enables decentralized management
of group memberships. An authorization rule is a triple consisting of a
resource to be accessed, set of permissions (read, write, control, append)
and an IRI being either a WebID or an identifier of a group. Permissions
to access a resource are granted, if the WebID of an accessing client is
explicitly listed in one of the corresponding authorization rules or if
there is a group in those rules that contains the WebID.

Listing 7.4 shows a WAC access control list that enables read access to
a topic specification to any client, but write access only to the Compo-
nent Communication Expert with WebID http://homepage.example.org

/foaf#joe.

Listing 7.4: Example of Access Control Rules Definition in Data Grid Service

@p r e f i x a c l : <ht tp ://www.w3. org /ns/ auth / acl >.

[a c l : accessTo <ht tp :// a r t i f a c t s l i b r a r y . example . org /

t o p i c s / loca t ion >; a c l :mode a c l : Read , a c l : agentC lass

f o a f : Agent] .

[a c l : accessTo <ht tp :// a r t i f a c t s l i b r a r y . example . org /

images /img . png>; a c l :mode a c l : Read , a c l : Write ; a c l :

agent <ht tp :// homepage . example . org / f o a f#joe >]

23http://www.w3.org/wiki/WebAccessControl, Retrieved 7.6.2015

7.4 WebComposition/EUD Artifact Library 195

WAC enables four access permissions: Read, Write, Append and Control.
Read permission enables read-only access to a resource. Write enables
all kind of modifications including complete resource removal. Append

is a permission to add content to the resource only. Finally, Control is
used to enable modification of the associated access control list. For
the REST/HTTP interface the operations have been mapped onto HTTP
verbs as follows: Read maps on GET, Write on POST, PUT, DELETE

and Append on POST. Control is ignored due to the fact that the access
control list is maintained internally by Artifacts Library Manager.

7.4.4 Related Work

Several research project targeted the problem of efficient access and
maintenance of heterogeneous data.

data.fm24 is an open-source Web service that supports enables manage-
ment of structured data over a RESTful API and GUI. Access to the data,
which is organized in files and directories, can be restricted. Compared
to DGS, data.fm doesn’t focus on automatic metadata extraction and
configurable resource representations.

OpenLink Virtuoso25 is a service that supports management of hetero-
geneous data sources. It operates on different types of structured data
and provides various APIs such as SOAP, REST/HTTP, XML-RPC, and
SPARQL. However, automatic extraction of resource metadata is not
supported.

iServe (Pedrinaci et al., 2010) is a research prototype for publishing
Semantic Web Services as Linked Data. It makes use of semantic service
descriptions and enables users to search for services based on their
“high-level” APIs. The registry provides capability for free text search as
well. iServe focuses on semantically described resources only and lacks
support for other types such as widget packages or XML documents.

24http://data.fm, Retrieved: 7.6.2015
25http://virtuoso.openlinksw.com, Retrieved: 7.6.2015

196 Chapter 7 Evolution Assistance

7.4.5 Evaluation

In the following, the requirements stated in section 7.4.2 are evalu-
ated.

Heterogeneous Content The proposed solution consists of several mod-
ules that are able to persist various kinds of content. As described
above, structured content in form of XML, arbitrary binary con-
tent and semantic metadata are supported. Beside basic CRUD
functionality the corresponding modules implement filtering and
manipulation methods specific to the type of content they han-
dle. As a result, the service can persist composition models in
OMDL format, WebComposition/EUD components, their semantic
metadata and various structured content such as topic definitions,
feature requests etc. The requirement is considered to be fully
fulfilled.

Heterogeneous Interface The default interface of the DGS is
REST/HTTP. For reading operations the XML content can be
transformed into other formats by means of XSLT stylesheets. Sim-
ilarly, semantic content can be exposed in different formats using
the SPARQL templates. Such interface flexibility enables the ser-
vice to be integrated into third-party applications as it is done for
Apache Rave. The requirement is considered to be fully fulfilled.

Access Control Access restrictions on resources within the DGS can be
expressed using WAC lists. Restrictions can be defined both for
single identities or for their groups. The rules are evaluated on
each HTTP request. In case of SPARQL requests, however, the
mechanism works only partially – one can either enable or forbid
all SPARQL requests without any fine-grained differentiation. The
requirement is therefore considered to be partially fulfilled.

Several performance measurements have been conducted to test appli-
cability of the WebComposition/EUD-AL to real-life scenarios. For this
purpose the DGS has been populated with 250000 component descrip-

7.4 WebComposition/EUD Artifact Library 197

Figure 7.12.: Response Times of DGS for Component Search Queries by

Keyword

tions from Netvibes repository26. The tests should check if the library
was capable to handle given amounts of data and if the response time
was below 2 seconds, which is considered to be an upper limit that
doesn’t impact user experience (Nah, 2004). The tests run on a local
installation of DGS on a machine with X CPU, 4GB Memory, 120GB hard
drive and Windows 7 as operating system. The library was populated in
logarithmic steps, after which different read and write operations were
issued. The time between requests and responses has been measured.

Figure 7.12 shows time measurements that were collected while search-
ing for components by a pre-defined keyword. The results show that
the uSeekM indexing engine significantly speeds up free text search
operations. Standard SPARQL operations in contrast exceed the limit
of 2 seconds already by 50000 components. Figure 7.13 shows results
of search operation based on semantic reasoning. Components were
annotated with property rdf:type and evenly distributed into two groups

26http://eco.netvibes.com, Retrieved: 7.6.2015

198 Chapter 7 Evolution Assistance

Figure 7.13.: Response Times of DGS for Component Search Queries by

Component Type

W3CWidget and NetvibesWidget. The two concepts have been declared
to be subclasses of Widget. Time measurements show that requests that
involve the semantic reasoner are much more time-intensive. The limit
is exceeded by approx. 20000 entries in the library.

Figure 7.14 shows time measurements for publishing and accessing new
components. The results show that the values are almost independent
of the number of overall components and do not exceed the limit of 2
seconds.

7.5 Summary

This chapter presented the last chain of WebComposition/EUD frame-
work that consists of mechanisms to support evolution of WebComposi-
tion/EUD components and compositions. It started with description of

7.5 Summary 199

Figure 7.14.: Response Times of DGS for Adding and Accessing New

Components

WebComposition/EUD Component Converter – a tool that helps Com-
ponent Developers to develop and provide new functionalities by auto-
matically converting proprietary Web-based widgets into WebCompositi-
on/EUD components. Then it presented WebComposition/EUD ICCI Ex-
tender being a tool that targets Component Communication Experts and
helps them to efficiently improve composability of WebComposition/EUD
components by enriching their ICCI interfaces. The chapter concluded
with presentation of WebComposition/EUD-AL that supports Artifact Li-
brary Managers in maintaining platform artifacts and organizing access
and their usage by interested parties.

200 Chapter 7 Evolution Assistance

8Overall Evaluation

This chapter has a goal to evaluate the WebComposition/EUD approach
according to the requirements stated in Chapter 2. Afterwards, its
benefits and weaknesses compared to the state of the art are analyzed.
Finally, the chapter describes several use cases and application domains,
where the framework has been practically applied.

8.1 Requirements Evaluation

In the following the process model and the toolkit of the WebCom-
position/EUD approach are analyzed in the context of the respective
requirements.

8.1.1 Development Process

The requirements on the development process are fulfilled to the follow-
ing extent:

D1: End-User Involvement: The WebComposition/EUD development
process enables non-programmers to perform development of com-
posite DSSs autonomously. Given sufficient number of reusable
building blocks, users can address many of problems related to

201

decision making by combining these blocks in appropriate way.
Some activities in the WebComposition/EUD development pro-
cess, however, are assigned to professionals as they require techni-
cal skills and programming experience that cannot be expected
from non-programmers. These activities include development of
new components, updates to existing ones and tasks related to
management of produced artifacts. According to the assessment
scheme, the requirement is partially fulfilled.

D2: Process Conciseness: The WebComposition/EUD process con-
sists of two stages - the bootstrap and continuous evolution. The
former, which doesn’t involve end users, foresees all activities of
systematic software development and prepares a dedicated infras-
tructure required for the subsequent phase. The latter, however, is
reduced to three steps only, whereas the process finishes, if appro-
priate solution has been found during the Solution Discovery step.
This approach specifically addresses needs and capabilities of non-
programmers working under time constraints. The development
process is therefore concise and the requirement is fully fulfilled.

D3: Reuse-Orientation: The proposed development process promotes
production and reuse of software artifacts at several stages. In
the bootstrap phase, Component Developers build WebCompositi-
on/EUD components – reusable building blocks for composition of
DSSs. Component Developers are free to choose the development
method, however supplied WebComposition/EUD tools promote
reuse of existing services and visual components and their conver-
sion towards WebComposition/EUD components. In the evolution
phase, reuse represents the core of DSS construction activities.
Reuse takes place on the level of solutions (Solution Discovery)
and on the level of components (Customization). Produced com-
positions extend the library of reusable artifacts and contribute
to the efficiency of future Composition Developers. The degree
to which the process focuses on reuse of existing artifacts is high.
The requirement is fully fulfilled.

202 Chapter 8 Overall Evaluation

8.1.2 Development Toolkit

The requirements on the tool assistance are fulfilled to the following
extent:

T1: Development Assistance: Development of data-driven DSSs is
enabled and facilitated by the WebComposition/EUD composition
platform (cf. Chapter 5). The platform enables composition of
data sources and functions if these are wrapped according to the
WebComposition/EUD composition model. The freedom of data
source / functionality selection offered by the platform is high.
The logic that can be defined on top of aggregated components
consists of restrictions, isolations and transformation functions.
The expressiveness of the integration logic depends, however, on
the ICCIs of components. Finally, freedom of configuration of user
interface is average as platform provides a limited set of possibil-
ities for layout customization by end users. The requirement is
partially fulfilled.

T2: Evolution Assistance: The WebComposition/EUD toolkit pro-
vides three mechanisms that have a goal to make management
and maintenance of user-produced solutions more efficient (cf.
Chapter 7). New functionalities and data sources can be auto-
matically produced by reusing code of proprietary components.
Extensions to interfaces of WebComposition/EUD components
(and thus ensuring interoperability of new and old ones) can
be performed semi-automatically and in an interactive fashion.
Finally, produced software artifacts (components and composi-
tions) can be centrally collected and efficiently managed using the
WebComposition/EUD-AL. The requirement is fully fulfilled.

T3: Ease of Use: Ease of use of developed assistance mechanisms
has been evaluated during several user studies. The results have
been presented in respective chapters of this thesis. The tools
apply vocabulary and interactions techniques that address skills
and responsibilities of their respective target groups. Composi-

8.1 Requirements Evaluation 203

tion platform operates with visual and interactive components
that immediately give feedback to its users. ADCE provides a
gialog-based UI that guides users through discovery and compo-
sition process in the step-by-step fashion. DID applies the PBD
technique that does not require any programming skills to be
used. Evolution assistance mechanisms use technical vocabulary
and enable Information Technology (IT) professionals to gain full
control of respective processes. Automated activities can always
be manually adjusted to achieve the optimal result. Complexity
of utilized concepts and interaction patterns for respective target
group is therefore low. The requirement is fully fulfilled.

T4: Fault Tolerance: Configurations produced by Composition Devel-
opers can potentially lead to high message traffic on the message
bus that in turn can cause data corruption or crash of client-side
run-time environment (Web browser). To prevent such situations,
the Loop Detection Facilities have been integrated into the run-
time environment. They warn users if their configurations can
produce looping message behavior and block communication if
unsafe traffic is detected. Although the facilities can issue false
warnings, they still help to avoid unsafe situations and do it in
advance. The requirement is fully fulfilled.

T5: Automation: The WebComposition/EUD assistance mechanisms
aim at making development and evolution of DSSs more efficient
by automating as much of manual activities as possible. ADCE,
DID, WebComposition/EUD-CC, WebComposition/EUD-IE and
WebComposition/EUD-AL widely automate finding, usage, exten-
sion and maintainance of WebComposition/EUD software arti-
facts. High-level specification of results to be produced takes place
using interactive interfaces. The requirement is therefore fully
fulfilled.

Table 8.1 summarizes the results of evaluation and compares the Web-
Composition/EUD framework with the state-of-the-art approaches pre-
sented in Chapter 3.

204 Chapter 8 Overall Evaluation

Table 8.1.: Comparison of the WebComposition/EUD Framework with

State-of-the-Art Technologies. Labeling: ++ Requirement fully

satisfied, + Requirement partially satisfied, − Requirement not

satisfied, / not applicable

Requirement \
Technology

E
n

d
-U

se
r

D
e
v
e
lo

p
m

e
n

t

C
o
m

p
o
n

e
n

t-
b
a
se

d

D
e
v
e
lo

p
m

e
n

t

M
o
d

e
l-

D
ri

v
e
n

D
e
v
e
lo

p
m

e
n

t

W
e
b

C
o
n

te
n

t
M

a
n

a
g
e
m

e
n

t
S

y
st

e
m

s

D
a
sh

b
o
a
rd

s
a
n

d
A

d
-H

o
c

R
e
p
o
rt

in
g

T
o
o
ls

C
o
m

p
o
si

ti
o
n

T
o
o
ls

W
e
b
C

o
m

p
o
si

ti
o
n

/E
U

D

End-User
Involvement

++ − − / / / +

Reuse-orientation + ++ + / / / ++

Process
Conciseness

++ + + / / / ++

Development
Assistance

/ / / + + + +

Evolution
Assistance

/ / / + + + ++

Ease of Use / / / ++ ++ + ++

Fault Tolerance / / / ++ ++ ++ ++

Automation / / / + + + ++

8.1 Requirements Evaluation 205

The WebComposition/EUD framework is characterized by high reuse-
orientation and process conciseness. The former is achieved by focusing
on development based on discovery of reusable templates and on cus-
tomization using principles of CDB. The process conciseness is compara-
ble with the one of EUD approaches – the activities of DSS construction
do not foresee explicit requirements engineering, design and testing
phases. Instead, users build and customize solutions while implicitly
testing them and adjusting to their business goals. The involvement of
end users into the development and evolution process is higher than in
CDB and MDD, but lower than in EUD. End users actively participate
in the development process by composing building blocks provided by
professional developers. However, integration of new functionality and
data-sources as well as their maintenance and management have been
assigned to skilled staff.

The WebComposition/EUD toolkit provides the same degree of develop-
ment and evolution assistance as existing End-User Composition Tools.
It follows similar principles and techniques as existing UI mashups and,
thus, has a similar functionality set. However, it doesn’t fully satis-
fies the requirement as it limits expressiveness of integration logic and
UI configuration. This limitation has been introduced intentionally in
accordance to recent research findings that claim generality of com-
position tools limits their usability (Imran et al., 2012). The toolkit
is more powerful than WCMS, Dashboards and Reporting Tools due
to the flexibility of Composition Model and extensibility of Artifacts
Library. The Ease of Use requirement is, however, fulfilled in the same
degree – end users are acting on domain-specific visual components and
are offered intuitive dialog-based UIs. In contrast to existing End-User
Composition tools, the toolkit doesn’t require users to configure data or
control flow in their solutions – it is established automatically based on
the communication capabilities of WebComposition/EUD components.
Fault Tolerance is as well addressed as by existing technologies. Finally,
the Automation requirement is better fulfilled due to the particular focus
of WebComposition/EUD assistance mechanisms on simplification and
automation of development and evolution activities that are crucial in
time-pressuring situations.

206 Chapter 8 Overall Evaluation

8.2 Application Scenarios

Applicability of the WebComposition/EUD framework has been tested
in several scenarios presented below. The first one, Public Informa-
tion Screen, describes usage of the Composition Platform to provide
aggregated and interactive information on some area of interest. The
second one, Collaborative Decision Making, presents composition of
DSSs on Microsoft PixelSence1, a touchscreen device designed as a
couch table. Finally, various tools of the framework have been applied
to implement demonstrators of the EU FP7 OMELETTE project – the
Ermegency Response and First Line Support applications.

8.2.1 Public Information Screen

The WebComposition/EUD toolkit has been applied to build a public in-
formation screen of the Distributed and Self-Organizing Systems Group2

at Faculty of Computer Science, Technische Universität Chemnitz, Ger-
many. The application enabled faculty students, staff and visitors easily
navigate through the activities and educational offers of the group. Im-
plementation of the application using WebComposition/EUD framework
aimed at raising interest of users in the underlying Web technologies
and the group itself.

Two Web applications, consisting of several WebComposition/EUD com-
ponents provided an aggregated view on group’s profile (cf. Figure 8.1).
The first composition displayed news and social media posts of group
members. Users could scroll through the timelines and inform them-
selves about recent activities and announcements. The two involved
components were autonomous and didn’t synchronize their states. The
second composition consisted of three components: list of group mem-
bers, contact details of a group member and list of advised student
projects. The components synchronized themselves by means of ICC:

1http://www.microsoft.com/en-us/pixelsense/default.aspx, Retrieved
19.06.2015

2https://vsr.informatik.tu-chemnitz.de, Retrieved: 18.06.2015

8.2 Application Scenarios 207

Figure 8.1.: Application of the WebComposition/EUD Framework to build a

Public Information Screen

once a group member has been selected in the first component, his/her
contact details and advised projects have been display in the others.
Selection of a project resulted in the members list to be filtered to dis-
play only staff involved into the advising process. Interaction with the
application took place over the touch interface of a screen, put in one of
the faculty corridors.

8.2.2 Collaborative Decision Making

Design of Microsoft PixelSense as a couch-table with 30 inch large
display and up to 52 simultaneous points of contacts make it specif-
ically interesting for education, research, financial services, health,
entertainment or travel industry. The WebComposition/EUD toolkit has
been partially ported to the PixelSense platform to enable collaborative
composition of DSSs using multi-touch capabilities of the device. The
conceptual architecture of the composition platform (cf. Section 5.3)

208 Chapter 8 Overall Evaluation

Figure 8.2.: Application of the WebComposition/EUD Framework to Travel

Planning Domain

has been implemented using the Microsoft .NET framework3, Microsoft
Surface 1.0 SDK4, Awesomium.NET browser component5 and the Plane
graphic transformation component6.

Three dedicated components were implemented to showcast the use
of the platform and Microsoft PixelSense in the travel domain (cf. Fig-
ure 8.2). An application constructed on-the-fly out of these components
should help customers of a travel agency to plan their trip and meet
decisions on accommodation, travel route etc. The first component dis-
played an interactive map and enabled selection of arbitrary locations.
The second one provided search results for accommodations around a
given location. Finally, the third one showed details of a given location
such as description, prices, pictures etc. The three components syn-
chronized their states by means of ICC. Composition Developers could
place components from Artifacts Library on the shared canvas and move,

3https://msdn.microsoft.com/en-us/vstudio/aa496123, Retrieved: 19.06.2015
4http://www.microsoft.com/en-us/download/details.aspx?id=15532, Retrieved:

19.06.2015
5http://awesomium.com/, Retrieved: 19.06.2015
6https://github.com/endquote/Plane, Retrieved: 19.06.2015

8.2 Application Scenarios 209

resize or configure them. The multi-touch capabilities of the device facil-
itated the process of collaborative design, configuration and use. Users
could duplicate any of them and e.g., compare search results in different
locations or chosen accommodation possibilities. The interaction took
place using different wiping gestures with one, two or three fingers. The
implementation made use of so called identity tags, which are 128-bit
codes printed as square patterns. A WebComposition/EUD composition
can be assigned to a specific tag and was loaded immediately as soon as
an object with the tag was put on the surface of the device.

8.2.3 Telecommunication Dashboards

The composition model of the WebComposition/EUD framework en-
ables efficient integration of event-driven functionalities such as telecom-
munication services. Being wrapped into WebComposition/EUD com-
ponents these can be easily combined with data access and processing
functions used to support decision making. The framework has been
applied in the context of EU FP7 OMELETTE project to build several
demonstrators of telecommunication dashboards (cf. Figure 8.3).

The first one, so-called Emergency Cockpit, supported coordination of
rescue activities in case of nature catastrophes. It acted as implementa-
tion of the motivation scenario in Section 2.1.1 and consisted of several
components providing access to map, live water level statistics, feeds
from social media, web cameras, contact book, voice and sms calls. The
map visualized locations of web cameras, water measurement stations,
police departments and origins of social media posts. Using ICC it passed
the data on user interactions to other components that synchronized
their view correspondingly. The application has been initially populated
using ADCE (cf. Section 6.2) and then customized using component
browser. Platform awareness and control facilities enabled comparison
of water levels in different locations (cf. Section 5.4.4). The second
dashboard, so-called First Line Support application, addressed activities
related to processing of customer requests received over hotline of a
software company. The application consisted of various components to
access customer details, order history, order details, sms services, license

210 Chapter 8 Overall Evaluation

Figure 8.3.: Application of the WebComposition/EUD Framework to

Implement Telecommunication Dashboards (Source:

(OMELETTE Consortium, 2013b))

8.2 Application Scenarios 211

check and generation. On incoming customer call, the operator could
easily find details of the caller, his order history, confirm his identity us-
ing sms service and generate a new license if required. The components
synchronized their views using ICC. WebComposition/EUD-IE has been
used to enrich customer and order access components with ICCI capa-
bilities. Basic components of the application have been interactively
discovered by ADCE.

8.3 Summary

Previous sections evaluated WebComposition/EUD assistance mecha-
nisms in isolation. This section analyzed, to which extend the Web-
Composition/EUD framework as a whole fulfills requirements on an
end-user-friendly DSS development method stated in Chapter 2. The
analysis showed that all requirements except for End-User Involvement
were fully fulfilled. The latter requirement is only partially satisfied
due to the intentional decision of separation of responsibilities based
on skills of the target groups. The intent behind the decision was to
achieve better quality and maintainability of user-produced solutions,
even on costs of lower End-User Involvement. The section also pre-
sented three domains, were the WebComposition/EUD framework has
been practically applied and proved its effectiveness. It has been used
to build interactive information screens, collaborative decision making
systems and telecommunication dashboards.

212 Chapter 8 Overall Evaluation

9Conclusions and
Outlook

This section summarizes results and contributions of the thesis. It
discusses not addressed problems and points out open research chal-
lenges.

9.1 Summary of the Thesis

Motivated by the need of timely and ubiquitous access to information in
today’s competitive economy, the goal of the thesis was set to minimize
time, costs and skills required to develop a DSS under time-pressure.
The resulting solutions should enable aggregated and interactive access
to heterogeneous data sources and functionalities. Development of
DSSs directly by decision makers (end users) should lead to fast and
cost-efficient solution of their problems.

Experience and knowledge that users collect while using their PCs,
tablets or smartphones, is meanwhile deep enough to enable them create
their own software instead of being “only” consumers of professionally
developed one. Ubiquity of the Internet and growth of the smartphone
software industry foster application EUD techniques that build up upon
well-understood and widely-applied concepts and interaction patterns.
The WebComposition/EUD components can be considered as apps for

213

the Web and WebComposition/EUD compositions as aggregations of
these apps on one screen. These background considerations led to the
development approach devised by this thesis.

To address the challenges of time and cost-efficient software develop-
ment by non-professionals three subordinate research objectives have
been identified: 1) definition of principles and methods of DSS con-
struction by end users 2) development of assistance tools to accelerate
the construction process and 3) development of mechanisms for cost-
efficient maintenance and evolution of user-produced solutions. Based
on three motivation scenarios, requirements on appropriate method-
ology and assisting toolkit have been identified. An analysis of the
state-of-the-art technologies resulted in the finding, that the peculiari-
ties of time-constrained end-user development haven’t been sufficiently
addressed so far.

The proposed solution called WebComposition/EUD consists of five
quality-ensuring design measures to establish a systematic develop-
ment method under time-pressure. The principles promote among
others reusability, gentle learning curve and separation of responsibility.
The formalisms define WebComposition/EUD conceptual models, re-
lated algorithms and architectures. The methods propose techniques to
speed-up development and maintenance activities. The process model
distinguishes between activities performed by decision makers and by
professional programmers. It defines their temporal order and describes
handling of produced artifacts. The WebComposition/EUD toolkit con-
sists of a composition platform, development and evolution assistance
mechanisms. The composition platform is the core of the framework and
provides a visual interactive environment for DSS development. Three
platform extensions (ADCE, LDF and DID) aim at accelerating and sim-
plifying the process. Time- and cost-efficient evolution of the solutions
is supported by three other mechanisms: WebComposition/EUD-CC,
WebComposition/EUD-IE and WebComposition/EUD-AL.

Effectiveness and applicability of the WebComposition/EUD toolkit has
been evaluated in several user studies. Participants positively assessed
ideas behind the tools and found them useful. The main identified

214 Chapter 9 Conclusions and Outlook

problems were usability and non-mature UIs of prototype implementa-
tions. Analysis of the framework in the context of stated requirements
confirmed that the original objectives have been achieved.

9.2 Lessons Learned

Practical application of the developed framework and the presented user
studies yielded findings that are not specific to the developed framework
but rather interesting for EUD in general:

• Non-programmers easily understand the concept of configurable
building blocks that can be combined to more complex solutions.

• Fully-fledged applications can also act as elementary building
blocks if wrapped and presented to users appropriately.

• Explanation of capabilities and composition possibilities of pro-
vided building blocks is crucial for self-confidence of end users.
Symbolic representations and textual descriptions are insufficient
for this purpose. Examples, screenshots and explanation videos
are better alternatives.

• Users expect to see interfaces and apply interaction techniques
that they already know from other related domains (e.g., from the
Web or smartphone apps).

• Dialog-based interfaces are effective additions to visual composi-
tion environments. They help reduce information overload and
increase user’s self-confidence while learning new tools.

• Visual programming environments with recommendation and
assistance mechanisms enable skilled end users to perform simple
schema mapping. Complex data type transformations, however,
require programming skills and should be defined by professional
developers.

9.2 Lessons Learned 215

• While automation mechanisms can save time and avoid otherwise
error-prone manual activities, transparency is important for their
acceptance. Users demand explanations on how an algorithm
produced its results (e.g., why particular widgets have been found
or why particular communication channels have been established).

9.3 Summary of Contributions

The thesis produced models, algorithms and architectures that en-
able end-user development of Decision Support Systems under time-
constraints. The summary of thesis research contributions is given
below:

• Modelling of data-driven DSS as composition of reusable end-
user-friendly building blocks called WebComposition/EUD com-
ponents.

• Definition of a role and a process model for systematic develop-
ment and evolution of user-created DSSs

• Definition of a conceptual architecture for construction, operation
and management of component-based DSSs

• Specification of visualization and interaction mechanisms for end-
user-friendly DSS construction process

• Definition of a technology-independent language to describe com-
munication capabilities of components and their behavior in com-
position

• Development of models, algorithms and description languages to
discover and produce partial DSS solutions based on a model of
user’s business goal

216 Chapter 9 Conclusions and Outlook

• Development of algorithms to ensure reliability of user-produced
solutions and run-time environments

• Specification of models, algorithms and an architecture to auto-
mate repeated user input in semantically related contexts

• Development of algorithms and tools to automatically transform
proprietary source code of Web-based widgets into WebCompositi-
on/EUD components

• Specification of models, algorithms and an architecture to auto-
matically extend Inter-Component Communication Interface of
WebComposition/EUD components based on demonstration of
desired capabilities.

• Definition and implementation of an architecture for artifact stor-
age and management repository with configurable interface and
efficient metadata extraction functionality

9.4 Ongoing and Future Work

The WebComposition/EUD framework addressed several challenges re-
lated to time-constrained DSS development by non-programmers. The
proposed composition platform aimed at lowering the barrier of soft-
ware development and hiding complexity of underlying technologies.
Assistance mechanisms reduced the time required to development so-
lutions. Tools for evolution support enabled efficient management and
maintenance of software artifacts. Future work should focus on both
improvements to the efficiency and usability of proposed mechanisms
but also explore issues not addressed by the framework.

9.4 Ongoing and Future Work 217

9.4.1 Toolkit Improvements

Efficiency and usability of composition platform and assistance mech-
anisms can be improved in several ways. As indicated by user studies
non-programmers demand intuitive explanations, guided processes and
consistent self-explaining UI. User experience on alternative devices
such as mobile phones or tablets should be improved e.g., by applying
techniques of responsive design. In the following, improvements to each
component of WebComposition/EUD toolkit are discussed.

The composition platform produces interactive dashboard-like solutions
that aggregate distributed data sources and functionalities on one screen.
With rising number of aggregated components, usability and perfor-
mance of such solutions might decrease. It should be explored how
components can be alternatively visualized or thematically grouped on
a screen and which interactions among groups lead to better user expe-
rience. Another possible improvement is the possibility of collaborative
platform usage that can support joint activities among geographically
distributed users. Although Apache Rave enables sharing of compo-
sition models among registered users, the running instances are not
synchronized in real-time and no communication facilities such as chat
or voice calls are supported. An ongoing work is exploring application
of Operational Transformation (OT) algorithm to realize conflict-free
concurrent usage of WebComposition/EUD compositions (Hertel et al.,
2015).

The Automatic Discovery and Composition Engine makes use of ex-
plicit composition model and component annotations to automatically
discover and build prototype compositions. The approach doesn’t pro-
vide assistance in creating these annotations, so that they have to be
provided manually by Artifact Library Managers and Component De-
velopers. The future work should explore if these annotations can be
extracted from textual descriptions of respective artifacts automatically.
Furthermore, patterns in user solutions can be mined to automatically
populate the goal ontology with new definitions and, thus, continuously
extend applicability of the tool.

218 Chapter 9 Conclusions and Outlook

Loop Detection Facilities help to avoid faulty compositions and con-
figurations. As already discussed in Section 6.3, they produce false
positives caused by lack of information on internal business logic of
WebComposition/EUD components. However, dedicated annotations
e.g., on origin of notification messages, could improve efficiency of the
tool and decrease probability of false warnings. Alternatively, auto-
matic source code analysis of WebComposition/EUD components and
detection of message retransmissions can be considered.

The Double Input Detector tool can be improved towards higher control
of implicitly derived automation rules. The tool focuses on synchro-
nization of input elements only and doesn’t enable definition of more
complex workflows on top of the GUI. Furthermore, editing of estab-
lished logical connections is not foreseen, so that users have to remove
and demonstrate them anew if first attempts were faulty or unsuccessful.
Future work can explore solutions for these deficiencies to make the
tool more efficient and easy to use.

The WebComposition/EUD Component Converter enables reuse of
source code of proprietary widgets to produce WebComposition/EUD
components. Currently the tool support only three source formats
(iGoogle, Netvibes, Opera) and should be extend with other adapters.
Maintenance of iGoogle and Opera Widgets projects stopped by the mo-
ment of writing and new sources of components have to be found. One
possibility would be to enable conversion of Apple Dashboard Widgets1

or Chrome Webapps2 or even native smartphone apps. Alternatively,
conversion of complete Web applications into WebComposition/EUD
components can be considered. Promising results have been achieved
by recent research e.g., in the context of Java Portlets (Bellas et al.,
2008).

The WebComposition/EUD ICCI Extender extends ICCI of components
based on observation and manipulation of their GUI. As discussed in
Section 7.3, observation of generic DOM node changes and support
of JavaScript MVC frameworks can contribute to applicability and ef-

1https://www.apple.com/downloads/dashboard/,Retrieved: 20.06.2015
2https://chrome.google.com/webstore/category/apps, Retrieved: 20.06.2015

9.4 Ongoing and Future Work 219

ficiency of the tool. As in the case of DID, it should be explored how
defined patterns can be changed once recorded. The peculiarity of the
task is , however, the target group: while DID addressed Composition
Developers, the WebComposition/EUD ICCI Extender targets skilled IT
staff, namely Component Communication Experts.

The WebComposition/EUD Artifact Library centrally collects and man-
ages access to WebComposition/EUD software artifacts. It stores com-
ponents, composition models, their metadata and accompanying binary
documents. Currently management of artifacts can be performed by the
RESTful API only, which makes manual access and review cumbersome.
Usability of the tool can be improved by providing a GUI with access
to internal search and management functionality. Integration of alter-
native authentication and authorization methods such as HTTP Basic
(J. Franks et al., 1999) or OAuth 2.0 (Hardt, 2012) can further improve
reusability and flexibility of the library.

9.4.2 Open Questions

Several research questions have not been tackled by the proposed solu-
tion and should be explored in future work.

As already noted in the Chapter 8 end users are not involved into evo-
lution and maintenance activities. The WebComposition/EUD frame-
work considers these activities as too complex to be performed by
non-programmers and assigns them to professionals. This decision,
however, leads to situations, where users stuck with their solutions and
cannot continue, because they miss a component, cannot adjust behav-
ior of existing ones or cannot define more flexible composition logic.
According to WebComposition/EUD process model, Composition Devel-
opers issue extension requests to the support team, which decides on an
optimal way to resolve the problem (development of a new component,
extension to existing ones or provisioning of specific transformation
functions). Future work should consider transferring some (or all) evo-
lution activities to non-programmers. These could be done by providing
case-specific assistance mechanisms (e.g., template-based or guided

220 Chapter 9 Conclusions and Outlook

component development), simplifying technology (e.g., domain specific
or restricted natural languages) or improving communication between
users (e.g., collaborative composition).

Another open question is applicability of the proposed tools and inter-
faces for non-desktop devices. The market share of smartphones, tablets
and “smart” devices has significantly increased in the last years and
is expected to grow3. The WebComposition/EUD framework, however,
makes use of programming techniques and interaction patterns that
target primarily desktop and notebook devices. Peculiarities of mobile
and tablet devices require new methods of information visualization
and interaction. In the context of this thesis one prototype for simple
multi-touch interactions has been successfully tested (cf. Section 8.2).
However, applicability of more complex gestures and other input meth-
ods such as using speech interaction should be further explored.

Finally, ensuring performance and security requirements of user-created
solutions should be explored in the future work. This thesis consid-
ered components as “black boxes”, meaning that their efficiency and
policy-compliance are ensured by Component Developers only. How-
ever, these considerations might not be insufficient, if components are
put into composition or if they stem from untrusted sources. Current
implementation enables client-side data exchange only, which can lead
to performance drawbacks in case of frequent traffic or large amount of
transferred data (e.g., documents or media streams). Alternative meth-
ods of data exchange and enabling architectures should be investigated.
Security threats related to undesired data exposure, access and identity
theft should be additionally considered on the level of composition.
Although WebComposition/EUD composition model foresees possibility
of communication restrictions, it is desirable to devise mechanisms that
would enable early detection of improper implementation and run-time
behavior. Certification of components, single-sign-on mechanisms and
centralized uniform data access are some methods that can be applied
to ensure quality and policy-compliance of user-produced solutions.

3http://www.gartner.com/newsroom/id/2408515, Retrieved: 21.06.2015

9.4 Ongoing and Future Work 221

Bibliography

Abran, Alain and James W. Moore (2004). Guide to the Software Engineering

Body of Knowledge. Tech. rep. IEEE, p. 204. URL: http://www.computer.

org/portal/web/swebok/htmlformat (Retrieved Mar. 28, 2015).

Aghaee, Saeed and Cesare Pautasso (2013). “Live mashup tools: Challenges

and opportunities”. In: Proceedings of the 1st International Workshop on Live

Programming (LIVE 2013). IEEE Press Piscataway, pp. 1–4.

Aghaee, Saeed and Cesare Pautasso (2014). “End-User Development of Mashups

with NaturalMash”. In: Journal of Visual Languages & Computing 25.4, pp. 414–

432.

Aghaee, Saeed, Cesare Pautasso, and Antonella De Angeli (2013). “Natural

end-user development of Web Mashups”. In: Proceedings of IEEE Symposium

on Visual Languages and Human-Centric Computing, VL/HCC ii, pp. 111–118.

Alves, Alexandre, Assaf Arkin, Sid Askary, Charlton Barreto, et al., eds. (2007).

Web Services Business Process Execution Language Version 2.0. OASIS. URL:

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

(Retrieved July 4, 2015).

Amabile, Teresa M, Jennifer S Mueller, William B Simpson, Constance N Hadley,

et al. (2002). “Time pressure and creativity in organizations: A longitudinal

field study”. In: Harvard Business School Working Paper Series.

223

Anton, Ana I. (1997). “Goal Identification and Refinement in the Specification of

Software-based Information Systems”. PhD thesis. Atlanta, GA, USA: Georgia

Institute of Technology.

Austin, Robert D. (2001). “The Effects of Time Pressure on Quality in Software

Development: An Agency Model”. In: Info. Sys. Research 12.2, pp. 195–207.

URL: http://dx.doi.org/10.1287/isre.12.2.195.9699.

Baker, Dennis, Donald Bridges, Regina Hunter, Gregory Johnson, et al. (2001).

Guidebook to Decision-Making Methods. Tech. rep. Department of Energy, USA,

p. 40.

Bakonyi, Peter, Joost Mak, Alfred Olfert, Pierre-antoine Versini, and Bridget

Woods-ballard (2008). Evacuation and traffic management. Tech. rep. FLOOD-

site, p. 178. URL: http://www.floodsite.net/html/cd%5C_task17-

19/docs/reports/T17/T17%5C_07%5C_02%5C_Evacuation%5C_and%5C_

traffic%5C_management%5C_D17%5C_1%5C_V4%5C_4%5C_P01.pdf.

Beckett, David, Tim Berners-Lee, Eric Prud’hommeaux, and Gavin Carothers

(2014). RDF 1.1 Turtle: Terse RDF Triple Language. W3C Recommendation.

W3C. URL: http://www.w3.org/TR/turtle/ (Retrieved July 4, 2015).

Bellas, Fernando, Inaki Paz, Alberto Pan, and Oscar Díaz (2008). “New Ap-

proaches to Portletization of Web Applications”. In: Handbook of Research on

Web Information Systems Quality. IGI Globa, pp. 250–265.

Berners-Lee, Tim (2009). Linked-Data Design Issues. URL: http://www.w3.org/

DesignIssues/LinkedData.html (Retrieved May 28, 2015).

Blackwell, AlanF. (2006). “Psychological Issues in End-User Programming”. In:

End User Development. Ed. by Henry Lieberman, Fabio Paternò, and Volker

Wulf. Vol. 9. Human-Computer Interaction Series. Springer Netherlands,

pp. 9–30.

Boehm, Barry William (1988). “A Spiral Model of Software Development ans

Enhancement”. In: Computer 21.5, pp. 61–72.

Booth, David, Hugo Haas, Francis McCabe, Eric Newcomer, et al. (2004). Web

Services Architecture. W3C. URL: http://www.w3.org/TR/ws-arch/ (Re-

trieved Mar. 28, 2015).

224 Bibliography

Boundless (2013). Boundless: Management. Boundless.

Boussemart, Yves, Birsen Donmez, ML Cummings, and Jonathan Las Fargeas

(2009). “Effects of time pressure on the use of an automated decision sup-

port system for strike planning”. In: Proceedings of the 15th International

Symposium on Aviation Psychology.

Brambilla, Marco, Sara Comai, Piero Fraternali, and Maristella Matera (2008).

“Designing Web Applications with WebML and WebRatio”. In: Web Engineering

Modelling and Implementing Web Applications, pp. 221–261.

Brown, Alan W. (2000). Large-Scale, Component Based Development. Upper

Saddle River, NJ, USA: Prentice Hall PTR.

Brown, C. M. (1988). Human-computer Interface Design Guidelines. Norwood,

NJ, USA: Ablex Publishing Corp.

Brynjolfsson, Erik, Lorin Hitt, and Heekyung Kim (2011). “Strength in Numbers:

How does data-driven decision-making affect firm performance?” In: ICIS

2011 Proceedings, p. 18.

Burnett, Margaret M. (2001). “Software engineering for visual programming

languages”. In: Handbook of Software Engineering and Knowledge Engineering.

Ed. by S. K. Chang. Vol. 2. World Scientific Publishing Company, pp. 77–93.

Busemeyer, Jerome R. and Adele Diederich (2002). “Survey of decision field

theory”. In: Mathematical social sciences 43.3, pp. 345–370.

Busemeyer, JeromeR. (1993). “Violations of the Speed-Accuracy Tradeoff Rela-

tion”. In: Time Pressure and Stress in Human Judgment and Decision Making.

Ed. by Ola Svenson and A.John Maule. Springer US, pp. 181–193.

Cáceres, Marcos (2012). Packaged Web Apps (Widgets) - Packaging and XML

Configuration. Web Applications Working Group. URL: http://www.w3.org/

TR/widgets/ (Retrieved Mar. 28, 2015).

Cao, Jill, Yann Riche, Susan Wiedenbeck, Margaret Burnett, and Valentina

Grigoreanu (2010). “End-user mashup programming: through the design

lens”. In: Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, p. 1009.

Bibliography 225

Capretz, Luiz Fernando (2005). “Y: A New Component-Based Software Life

Cycle Model”. In: Journal of Computer Science 1.1, pp. 76–82.

Ceri, S. (2009). “Search Computing”. In: Web Intelligence and Intelligent Agent

Technologies, 2009. WI-IAT ’09. IEEE/WIC/ACM International Joint Conferences

on. Vol. 1, pp. 1–1.

Chudnovskyy, Olexiy, Sebastian Brandt, and Martin Gaedke (2011). “Integrating

Human-services Using WebComposition/UIX”. In: Proceedings of the Workshop

on Posters and Demos Track. PDT ’11. Lisbon, Portugal: ACM, 21:1–21:2.

Chudnovskyy, Olexiy, Christian Fischer, Martin Gaedke, and Stefan Pietschmann

(2013). “Inter-Widget Communication by Demonstration in User Interface

Mashups”. In: Web Engineering. Ed. by Florian Daniel, Peter Dolog, and Qing

Li. Vol. 7977. Lecture Notes in Computer Science. Springer Berlin Heidelberg,

pp. 502–505.

Chudnovskyy, Olexiy and Martin Gaedke (2010). “Development of Web 2.0

Applications using WebComposition / Data Grid Service”. In: The Second

International Conferences on Advanced Service Computing (Service Computation

2010). Ed. by Ali Beklen, Jorge Ejarque, and Wolfgang Gentzsch. Best Paper

Award. Lisbon, Portugal: IARIA, pp. 55–61.

Chudnovskyy, Olexiy and Martin Gaedke (2012). “End-User-Development and

Evolution of Web Applications: The WebComposition EUD Approach”. In:

Current Trends in Web Engineering. Ed. by Michael Grossniklaus and Manuel

Wimmer. Vol. 7703. Lecture Notes in Computer Science. Springer Berlin

Heidelberg, pp. 221–226.

Chudnovskyy, Olexiy, Hendrik Gebhardt, Frank Weinhold, and Martin Gaedke

(2011). “Business Process Integration using Telco Mashups”. In: Procedia Com-

puter Science 5. The 8th International Conference on Mobile Web Information

Systems (MobiWIS 2011), pp. 677–680.

Chudnovskyy, Olexiy, Sebastian Müller, and Martin Gaedke (2012). “Extending

Web Standards-Based Widgets towards Inter-Widget Communication”. In:

Current Trends in Web Engineering. Ed. by Michael Grossniklaus and Manuel

Wimmer. Vol. 7703. Lecture Notes in Computer Science. Springer Berlin

Heidelberg, pp. 93–96.

226 Bibliography

Chudnovskyy, Olexiy, Tobias Nestler, et al. (2012). “End-User-Oriented Telco

Mashups: The OMELETTE Approach”. In: Proceedings of the 21st International

Conference Companion on World Wide Web. WWW ’12 Companion. New York:

ACM, pp. 235–238.

Chudnovskyy, Olexiy, Stefan Pietschmann, Matthias Niederhausen, Vadim Chep-

egin, et al. (2013). “Awareness and Control for Inter-Widget Communication:

Challenges and Solutions”. In: Web Engineering. Ed. by Florian Daniel, Peter

Dolog, and Qing Li. Vol. 7977. Lecture Notes in Computer Science. Springer

Berlin Heidelberg, pp. 114–122.

Chudnovskyy, Olexiy, Frank Weinhold, Hendrik Gebhardt, and Martin Gaedke

(2011). “Integration of Telco Services into Enterprise Mashup Applications.”

In: ICWE Workshops. Ed. by Andreas Harth and Nora Koch. Vol. 7059. Lecture

Notes in Computer Science. Springer, pp. 37–48.

Chudnovskyy, Olexiy, Stefan Wild, Hendrik Gebhardt, and Martin Gaedke

(2012). “Data Portability Using WebComposition/Data Grid Service”. In:

International Journal on Advances in Internet Technology 4.3 & 4, pp. 123–

132.

Councill, Bill and George T. Heineman (2001). “Component-based Software

Engineering”. In: ed. by George T. Heineman and William T. Councill. Boston,

MA, USA: Addison-Wesley Longman Publishing Co., Inc. Chap. Definition of

a Software Component and Its Elements, pp. 5–19.

Crnković, Ivica (2003). “Component-Based Software Engineering - New Chal-

lenges in Software Development”. In: Journal of Computing and Information

Technology 11, pp. 151–161.

Crnkovic, Ivica, Michel Chaudron, and Stig Larsson (2006). “Component-Based

Development Process and Component Lifecycle”. In: Proceedings of the Inter-

national Conference on Software Engineering Advances. ICSEA ’06. Washington,

DC, USA: IEEE Computer Society, pp. 44–44.

Csikszentmihalyi, Mihaly (2008). Flow: The psychology of optimal performance.

Harper Perennial Modern Classics.

Bibliography 227

Daniel, Florian, Fabio Casati, Boualem Benatallah, and Ming-Chien Shan (2009).

“Hosted Universal Composition: Models, Languages and Infrastructure in

mashArt”. In: Conceptual Modeling - ER 2009. Ed. by AlbertoH.F. Laender, Sil-

vana Castano, Umeshwar Dayal, Fabio Casati, and JoséPalazzoM. de Oliveira.

Vol. 5829. Lecture Notes in Computer Science. Springer Berlin Heidelberg,

pp. 428–443.

Daniel, Florian and Maristella Matera (2009). “Turning Web Applications into

Mashup Components: Issues, Models, and Solutions”. In: Web Engineering.

Ed. by Martin Gaedke, Michael Grossniklaus, and Oscar Díaz. Vol. 5648.

Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 45–60.

Daniel, Florian and Maristella Matera (2014a). “Mashups and End-User De-

velopment”. In: Mashups. Data-Centric Systems and Applications. Springer

Berlin Heidelberg, pp. 237–268.

Daniel, Florian and Maristella Matera (2014b). Mashups: Concepts, Models and

Architectures. Springer-Verlag Berlin Heidelberg, p. 319.

Daniel, Florian, Stefano Soi, Stefano Tranquillini, Fabio Casati, et al. (2011).

“Distributed Orchestration of User Interfaces”. In: Information Systems 37.6,

pp. 539–556.

Deufemia, Vincenzo, Chris D’Souza, and Athula Ginige (2013). “Visually mod-

elling data intensive web applications to assist end-user development”. In:

Proceedings of the 6th International Symposium on Visual Information Commu-

nication and Interaction - VINCI ’13, p. 17.

Díaz, Oscar, Cristóbal Arellano, and Maider Azanza (2013). “A Language for

End-user Web Augmentation: Caring for Producers and Consumers Alike”. In:

ACM Transactions on the Web (TWEB) 7.2, 9:1–9:51.

Diederich, a (1997). “Dynamic Stochastic Models for Decision Making under

Time Constraints”. In: Journal of mathematical psychology 41.3, pp. 260–74.

Diederich, Adele and Jerome R. Busemeyer (2003). “Simple matrix methods for

analyzing diffusion models of choice probability, choice response time, and

simple response time”. In: Journal of Mathematical Psychology 47.3, pp. 304–

322.

228 Bibliography

Dong, Yifei, Xiaoqun Du, Gerard J. Holzmann, and Scott A. Smolka (2003).

“Fighting livelock in the GNU i-protocol: a case study in explicit-state model

checking”. In: International Journal on Software Tools for Technology Transfer

4.4, pp. 505–528.

ECMA International (2015). ECMAScript Language Specification (Standard ECMA-

262). URL: http://www.ecma-international.org/publications/standa

rds/Ecma-262.htm (Retrieved Mar. 28, 2015).

Eick, Stephen G., Todd L. Graves, Alan F. Karr, J. S. Marron, and Audris Mockus

(2001). “Does Code Decay? Assessing the Evidence from Change Management

Data”. In: IEEE Trans. Softw. Eng. 27.1, pp. 1–12. URL: http://dx.doi.org/

10.1109/32.895984.

Escalona, Maria José and Nora Koch (2007). “Metamodeling the Requirements

of Web Systems”. In: Web Information Systems and Technologies. Ed. by

Joaquim Filipe, José Cordeiro, and Vitor Pedrosa. Vol. 1. Lecture Notes in

Business Information Processing. Springer Berlin Heidelberg, pp. 267–280.

Eugster, Patrick Th., Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Ker-

marrec (2003). “The Many Faces of Publish/Subscribe”. In: ACM Computing

Surveys (CSUR) 35.2, pp. 114–131.

Fielding, Roy Thomas/Chair-Taylor (2000). “Architectural styles and the design

of network-based software architectures”. PhD thesis. University of California,

Irvine.

Fischer, G., E. Giaccardi, Y. Ye, A. G. Sutcliffe, and N. Mehandjiev (2004). “Meta-

design: A Manifesto for End-user Development”. In: Communications of the

ACM 47.9, pp. 33–37.

Fischer, Gerhard (2009). “End-user development and meta-design: Founda-

tions for cultures of participation”. In: Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics) 5435 LNCS, pp. 3–14.

Bibliography 229

Fitzgerald, Brian and Gerard Hartnett (2005). “A Study of the Use of Agile Meth-

ods within Intel”. In: Business Agility and Information Technology Diffusion.

Ed. by RichardL. Baskerville, Lars Mathiassen, Jan Pries-Heje, and JaniceI.

DeGross. Vol. 180. IFIP International Federation for Information Processing.

Springer US, pp. 187–202.

Forrester Research (2015). Why Firms Struggle To Analyze More Data. Tech. rep.

November, p. 8.

Forsberg, Kevin; and Harold Mooz (1994). “The Relationship of System En-

gineering to the Project Cycle”. In: The 12th INTERNET World Congress on

Project Management, p. 12.

Förster, Jens, E. Tory Higgins, and Amy Taylor Bianco (2003). “Speed/accu-

racy decisions in task performance: Built-in trade-off or separate strategic

concerns?” In: Organizational Behavior and Human Decision Processes 90.1,

pp. 148–164.

Franks, J, P Hallam-Baker, and J Hostetler (1999). “RFC 2617: HTTP Authenti-

cation: Basic and Digest Access Authentication”. In: Internet RFCs, pp. 1–35.

URL: https://www.ietf.org/rfc/rfc2617.txt (Retrieved Mar. 28, 2015).

Franks, J., P. Hallam-Baker, J. Hostetler, S. Lawrence, et al. (1999). HTTP

Authentication: Basic and Digest Access Authentication. Internet Engineering

Task Force. URL: http://www.ietf.org/rfc/rfc2617.txt (Retrieved

Mar. 28, 2015).

Fuggetta, Alfonso (1993). “A Classification of CASE Technology”. In: Computer

26.12, pp. 25–38. URL: http://dx.doi.org/10.1109/2.247645.

Gachet, Alexandre and Pius Haettenschwiler (2006). “Development Processes

of Intelligent Decision-making Support Systems: Review and Perspective”.

English. In: Intelligent Decision-making Support Systems. Decision Engineering.

Springer London, pp. 97–121. URL: http://dx.doi.org/10.1007/1-84628-

231-4_6.

Gaedke, Martin and Guntram Gräf (2001). “Development and Evolution of Web-

Applications Using the WebComposition Process Model”. In: Web Engineering

2016, pp. 58–76.

230 Bibliography

Gaedke, Martin and Jörn Rehse (2000). “Supporting compositional reuse in

component-based Web engineering”. In: Proceedings of the 2000 ACM sympo-

sium on Applied, pp. 927–933.

Gaffney, J. E. and T. A. Durek (1989). “Software Reuse&Mdash;Key to Enhanced

Productivity: Some Quantitative Models”. In: Inf. Softw. Technol. 31.5, pp. 258–

267.

Ghiani, Giuseppe, Fabio Paternò, and L Spano (2011). “Creating mashups

by direct manipulation of existing web applications”. In: End-User Deve-

lopment, pp. 42–52. URL: http : / / www . springerlink . com / index / D5X

8150851042663.pdf.

Ghosh, S., S. Ramaswamy, and R.P. Jetley (2013). “Towards Requirements

Change Decision Support”. In: Software Engineering Conference (APSEC),

2013 20th Asia-Pacific. Vol. 1, pp. 148–155.

Gigerenzer, Gerd and Peter M. Todd (2000). Simple Heuristics That Make Us

Smart (Evolution and Cognition). Oxford University Press, U.S.A., p. 438.

Gluchowski, Peter, Roland Gabriel, and Carsten Dittmar (2008). Management

Support Systeme und Business Intelligence. Springer, p. 432.

Gordon, Paul M K, Ken Barker, and Christoph W. Sensen (2010). “Programming-

by-example meets the Semantic Web: Using ontologies and web services to

close the semantic gap”. In: Proceedings - 2010 IEEE Symposium on Visual

Languages and Human-Centric Computing, VL/HCC 2010, pp. 133–140.

Guenther, P. and T. Showalter (2008). Sieve: An Email Filtering Language. Inter-

net Engineering Task Force. URL: http://www.ietf.org/rfc/rfc5228.txt

(Retrieved Mar. 28, 2015).

Güth, Werner, Rolf Schmittberger, and Bernd Schwarze (1982). “An experimen-

tal analysis of ultimatum bargaining”. In: Journal of Economic Behavior &

Organization 3.4, pp. 367–388.

Haas, Hugo and Allen Brown (2004). Web Services Glossary. W3C. URL: http:

//www.w3.org/TR/ws-gloss/ (Retrieved Mar. 28, 2015).

Hadley, Marc J. (2009). Web Application Description Language. URL: http://

www.w3.org/Submission/wadl/ (Retrieved Mar. 28, 2015).

Bibliography 231

Hardt, Dick (2012). The OAuth 2.0 Authorization Framework. RFC 6749. Fre-

mont, CA, USA: RFC Editor. URL: http://tools.ietf.org/html/rfc6749

(Retrieved July 4, 2015).

Harris, Robert (2012). Introduction to Decision Making. URL: http : / / www .

virtualsalt.com/crebook5.htm (Retrieved Mar. 28, 2015).

Hartmann, Björn, Leslie Wu, Kevin Collins, and Scott R. Klemmer (2007).

“Programming by a Sample: Rapidly Creating Web Applications with D.Mix”.

In: Proceedings of the 20th Annual ACM Symposium on User Interface Software

and Technology. UIST ’07. Newport, Rhode Island, USA: ACM, pp. 241–250.

Hedgebeth, Darius (2007). “Data-driven decision making for the enterprise:

an overview of business intelligence applications”. In: VINE 37.4, pp. 414–

420. eprint: http : / / dx . doi . org / 10 . 1108 / 03055720710838498. URL:

http://dx.doi.org/10.1108/03055720710838498.

Heineman, George T. and William T. Councill, eds. (2001). Component-based

Software Engineering: Putting the Pieces Together. Boston, MA, USA: Addison-

Wesley Longman Publishing Co., Inc.

Henschen, Douglas (2012). InformationWeek 2012 Enterprise Applications Survey.

Tech. rep. InformationWeek, p. 33. URL: http://reports.informationweek.

com/abstract/1/8954/Application-Performance-Optimization/resea

rch-2012-enterprise-applications-survey-.html?cid=pub_analyt_

_iwk_20120813 (Retrieved July 4, 2015).

Hertel, Michael (2012). “Analyse von existierenden Widget-Formaten und En-

twicklung eines Verfahrens zu deren Transformation in das W3C-Format”.

Bachelorarbeit. Technische Universität Chemnitz.

Hertel, Michael, Alexey Tschudnowsky, and Martin Gaedke (2015). “Conflict

Resolution in Collaborative User Interface Mashups”. In: Engineering the Web

in the Big Data Era. Ed. by Philipp Cimiano, Flavius Frasincar, Geert-Jan

Houben, and Daniel Schwabe. Vol. 9114. Lecture Notes in Computer Science.

Springer International Publishing, pp. 659–662.

Hickson, Ian (2013). Web Storage. Ed. by Ian Hickson. W3C. URL: http://www.

w3.org/TR/webstorage/ (Retrieved Apr. 7, 2015).

232 Bibliography

Hickson, Ian, Robin Berjon, Steve Faulkner, Travis Leithead, et al. (2014).

HTML5: A vocabulary and associated APIs for HTML and XHTML. W3C. URL:

http://www.w3.org/TR/2014/CR- html5- 20140731/ (Retrieved July 5,

2015).

Hodgkinson, Gerard P and William H Starbuck (2008). The Oxford handbook of

organizational decision making. Oxford Handbooks Online.

Hurwitz, Judith, Fern Halper, and Marcia Kaufman (2005). Dashboards – En-

abling Insight and Action. Tech. rep. Hurwitz & Associates, p. 17.

Hwang, Mark I. (1994). “Decision making under time pressure: A model for

information systems research”. In: Information & Management 27.4, pp. 197–

203. URL: http : / / www . sciencedirect . com / science / article / pii /

0378720694900485.

Imran, Muhammad, Felix Kling, Stefano Soi, Florian Daniel, et al. (2012). “ResE-

val Mash: A Mashup Tool for Advanced Research Evaluation”. In: Proceedings

of the 21st International Conference Companion on World Wide Web. WWW

’12 Companion. Lyon, France: ACM, pp. 361–364.

Inacio, Chris (1998). Software Fault Tolerance. URL: http://users.ece.cmu.

edu/~koopman/des%5C_s99/sw%5C_fault%5C_tolerance/ (Retrieved

Mar. 28, 2015).

International Organization for Standardization (1998). ISO 9241-11: Ergonomic

requirements for office work with visual display terminals (VDTs) - Part 11:

Guidance on usability. Tech. rep. International Organization for Standardiza-

tion (ISO), p. 22. URL: http://www.iso.org/iso/home/store/catalogue%

5C_tc/catalogue%5C_detail.htm?csnumber=16883 (Retrieved Mar. 28,

2015).

Irvine, C.A. (1976). “The Software Engineer: Role, Responsibilities and Educa-

tion”. English. In: Software Engineering Education. Ed. by AnthonyI. Wasser-

man and Peter Freeman. Springer New York, pp. 23–27. URL: http://dx.

doi.org/10.1007/978-1-4612-9898-4_6.

Isaksson, Erik and Matthias Palmer (2010). “Usability and inter-widget commu-

nication in PLEs”. In: MUPPLE-10. Aachen: Sun SITE Central Europe, RWTH

Aachen.

Bibliography 233

Isenberg, Daniel J (1984). “How Senior Managers Think”. In: Harvard Business

Review 62, pp. 81–90.

The Economics Of Software Maintenance in the Twenty First Century Version

(2006). URL: http://www.compaid.com/caiinternet/ezine/%20capersjo

nes-maintenance.pdf (Retrieved Mar. 28, 2015).

Juhnke, Ernst, Tim Dörnemann, Sebastian Kirch, Dominik Seiler, and Bernd

Freisleben (2010). “SimpleBPEL: Simplified modeling of BPEL workflows for

scientific end users”. In: Proceedings of the 36th EUROMICRO Conference on

Software Engineering and Advanced Applications (SEAA 2010), pp. 137–140.

Kaye, Doug (2003). Loosely Coupled: The Missing Pieces of Web Services. RDS

Press.

Kielstra, Paul, Denis McCauley, and Mike Kenny (2007). In Search of Clarity.

Unravelling the Complexities of Executive Decision-Making. Tech. rep. Economist

Intelligence Unit, p. 23.

Kim, Seung Han and Jae Wook Jeon (2007). “Programming LEGO Mindstorms

NXT with visual programming”. In: ICCAS 2007 - International Conference on

Control, Automation and Systems, pp. 2468–2472.

Kim, Won, Ok-Ran Jeong, and Sang-Won Lee (2010). “On Social Web Sites”. In:

Inf. Syst. 35.2, pp. 215–236. URL: http://dx.doi.org/10.1016/j.is.2009.

08.003.

Kleppe, Anneke, Jos Warmer, and Wim Bast (2003). MDA Explained: The Model

Driven Architecture: Practice and Promise. Vol. 83. Addison-Wesley Longman

Publishing Co., Inc, p. 192.

Ko, AJ and BA Myers (2004). “Designing the whyline: a debugging interface for

asking questions about program behavior”. In: Proc. of the SIGCHI Conf. on

Human Factors in Computing Systems. Vol. 6. 1, pp. 151–158.

Ko, Andrew J., Robin Abraham, Laura Beckwith, Alan Blackwell, et al. (2011).

“The State of the Art in End-user Software Engineering”. In: ACM Comput.

Surv. 43.3, 21:1–21:44. URL: http://doi.acm.org/10.1145/1922649.

1922658.

234 Bibliography

Koch, Nora and Fast GmbH (2006). “Transformation Techniques in the Model-

Driven Development Process of UWE”. In: Workshop Proceedings of the Sixth

International Conference on Web Engineering (ICWE’06).ACM, p. 3.

Koch, Nora, Alexander Knapp, Gefei Zhang, and Hubert Baumeister (2007).

“UML-based Web Engineering: An Approach Based on Standards”. In: Web

Engineering: Modelling and Implementing Web Applications. Ed. by Gustavo

Rossi, Oscar Pastor, Daniel Schwabe, and Luis Olsina. Springer Science &

Business Media. Chap. 7, p. 462.

Kocher, Martin G. and Matthias Sutter (2006). “Time is money—Time pressure,

incentives, and the quality of decision-making”. In: Journal of Economic

Behavior & Organization 61.3, pp. 375–392. URL: http://www.sciencedire

ct.com/science/article/pii/S0167268105001873.

Krug, Michael, Fabian Wiedemann, and Martin Gaedke (2013). “Media Enrich-

ment on Distributed Displays by Selective Information Presentation: A First

Prototype”. English. In: Current Trends in Web Engineering. Ed. by QuanZ.

Sheng and Jesper Kjeldskov. Vol. 8295. Lecture Notes in Computer Science.

Springer International Publishing, pp. 51–53.

Kruglanski, Arie W and Tallie Freund (1983). “The freezing and unfreezing

of lay-inferences: Effects on impressional primacy, ethnic stereotyping, and

numerical anchoring”. In: Journal of Experimental Social Psychology 19.5,

pp. 448–468.

Kumar, Rajeev (2013). “Efficient Customization of Software Applications of an

Organization”. In: International Journal of Business and Social Science 4.11.

Lau, Kung-Kiu, F.M. Taweel, and C.M. Tran (2011). “The W Model for Component-

Based Software Development”. In: Software Engineering and Advanced Appli-

cations (SEAA), 2011 37th EUROMICRO Conference on, pp. 47–50.

Lau, Tessa (2001). “Programming by Demonstration : a Machine Learning

Approach”. In: Journal of Experimental 16, pp. 161–188.

Le Hors, Arnaud, Philippe Le Hégaret, Lauren Wood, Gavin Thomas Nicol, et

al. (2004). Document Object Model (DOM) Level 3 Core Specification. W3C.

URL: http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407

(Retrieved July 5, 2015).

Bibliography 235

Lehman, Meir M. and Juan F. Ramil (2003). “Software Evolution: Background,

Theory, Practice”. In: Inf. Process. Lett. 88.1-2, pp. 33–44. URL: http://dx.

doi.org/10.1016/S0020-0190(03)00382-X.

Leone, Stefania, Alexandre De Spindler, Moira C. Norrie, and Dennis McLeod

(2013). “Integrating component-based web engineering into content man-

agement systems”. In: Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7977

LNCS, pp. 37–51.

Leshed, Gilly, Eben M. Haber, Tara Matthews, and Tessa Lau (2008). “CoScripter:

Automating & Sharing How-to Knowledge in the Enterprise”. In: Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems. CHI ’08.

Florence, Italy: ACM, pp. 1719–1728.

Leue, Stefan, Alin Ştefănescu, and Wei Wei (2006). “A Livelock Freedom Analysis

for Infinite State Asynchronous Reactive Systems”. English. In: CONCUR 2006

– Concurrency Theory. Ed. by Christel Baier and Holger Hermanns. Vol. 4137.

Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 79–94.

Lieberman, Henry (2001). Your Wish is My Command. Ed. by Henry Lieberman.

Morgan Kaufmann.

Lieberman, Henry, Fabio Paternó, Markus Klann, Fabio Paternò, and Volker

Wulf (2006). “End-user development: An emerging paradigm”. In: End user

development 9, pp. 1–8.

Lim, Wayne C. (1994). “Effects of Reuse on Quality, Productivity, and Economics”.

In: IEEE Software 11.5, pp. 23–30. URL: http://dx.doi.org/10.1109/52.

311048.

Litvinova, Evgenia, Markku Laine, and Petri Vuorimaa (2012). “XIDE: Expanding

End-User Web Development”. In: The Eighth International Conference on Web

Information Systems and Technologies (WEBIST’12), pp. 123–128.

Lizcano, David, Javier Soriano, Marcos Reyes, and Juan J. Hierro (2008). “EzWe-

b/FAST: Reporting on a successful mashup-based solution for developing and

deploying composite applications in the upcoming "Ubiquitous SOA"”. In: Pro-

ceedings - The 2nd International Conference on Mobile Ubiquitous Computing,

Systems, Services and Technologies, UBICOMM 2008, pp. 488–495.

236 Bibliography

Loveman, Gary (2003). “Diamonds in the Data Mine”. In: Harvard Business

Review 81.

Lucchi, Roberto, Michel Millot, and Christian Elfers (2008). “Resource Oriented

Architecture and REST”. In: Assessment of impact and advantages on INSPIRE

Ispra European Communities, p. 16.

Maccomascaigh, Mick, Mark R. Gilbert, Jim Murphy, and Gavin Tay (2013).

Magic Quadrant for Web Content Management. Tech. rep. Gartner, Inc. URL:

https://www.gartner.com/doc/2565615/magic-quadrant-web-content

-management (Retrieved Mar. 28, 2015).

Mackay, Wendy E. (1990). “Users And Customizable Software: A Co-Adaptive

Phenomenon”. Ph.D. Thesis. Sloan School of Management, Massachusetts

Institute of Technology.

Madhavji, Nazim H, Juan Fernandez-Ramil, and Dewayne Perry (2006). Software

evolution and feedback: Theory and practice. John Wiley & Sons.

Martin, Robert C (2002). Agile Software Development, Principles, Patterns, and

Practices. Prentice Hall Computer, p. 529.

Matera, Maristella, Matteo Picozzi, Michele Pini, and Marco Tonazzo (2013).

“PEUDOM: A Mashup Platform for the End User Development of Common

Information Spaces”. English. In: Web Engineering. Ed. by Florian Daniel,

Peter Dolog, and Qing Li. Vol. 7977. Lecture Notes in Computer Science.

Springer Berlin Heidelberg, pp. 494–497.

Maule, A John and Isabel Andrade (1997). “The effects of time pressure on

decision making: how harassed managers cope”. In: Decision Making and

Problem Solving (Digest No: 1997/366), IEE Colloquium on. IET, pp. 4–1.

Mehandjiev, Nikolay and Leonardo Bottaci (1996). “User-enhanceability for

organisational information systems through visual programming”. English.

In: Advanced Information Systems Engineering. Ed. by Panos Constantopoulos,

John Mylopoulos, and Yannis Vassiliou. Vol. 1080. Lecture Notes in Computer

Science. Springer Berlin Heidelberg, pp. 432–456.

Mehandjiev, Nikolay, Freddy Lécué, Usman Wajid, and Abdallah Namoun (2010).

“Assisted service composition for end users”. In: Proceedings - 8th IEEE Euro-

pean Conference on Web Services, ECOWS 2010, pp. 131–138.

Bibliography 237

Mehandjiev, Nikolay, Alistair Sutcliffe, and Darren Lee (2006). “Organizational

View of End-User Development”. In: End User Development. Ed. by Henry

Lieberman, Fabio Paternò, and Volker Wulf. Vol. 9. Human-Computer Interac-

tion Series. Springer Netherlands, pp. 371–399.

Meliá, Santiago, Andreas Kraus, and Nora Koch (2005). “MDA Transformations

Applied to Web Application Development”. In: Web Engineering. Ed. by David

Lowe and Martin Gaedke. Vol. 3579. Lecture Notes in Computer Science.

Springer Berlin Heidelberg, pp. 465–471.

Miah, Shah Jahan and Footscray Park (2012). “An Emerging Decision Support

Systems Technology for Disastrous Actions Management”. In: Emerging In-

formatics - Innovative Concepts and Applications. Ed. by Shah Jahan Miah.

InTech, pp. 101–110.

Microsoft (2015a). COM Component Object Model Technologies. URL: http :

//www.microsoft.com/com (Retrieved Mar. 30, 2015).

Microsoft (2015b). Microsoft .NET. URL: http://www.microsoft.com/net

(Retrieved Mar. 15, 2015).

Miller, Michael (2008). Cloud computing: Web-based applications that change the

way you work and collaborate online. Que publishing, p. 293.

Mørch, Anders I, Gunnar Stevens, Markus Won, Markus Klann, et al. (2004).

“Component-Based Technologies for End-User Development”. In: Communica-

tions of the ACM 44.9, pp. 59–62.

Mosterd, Igor, Christel G Rutte, and Igor Mosterd (2000). “Effects of time

pressure and accountability to constituents on negotiation”. In: International

Journal of Conflict Management 11(2000).3, pp. 227–247.

Myers, Brad, John Pane, and Andy Ko (2004). “Natural Programming Languages

and Environments”. In: Communications of the ACM 47.9, pp. 47–52.

Nah, Fiona Fui-Hoon (2004). “A study on tolerable waiting time: how long

are Web users willing to wait?” In: Behaviour & Information Technology 23.3,

pp. 153–163.

Nardi, Bonnie A (1993). A Small Matter of Programming: Perspectives on End

User Computing. Vol. 26. MIT Press, p. 162.

238 Bibliography

Nestler, Tobias, Abdallah Namoun, and Alexander Schill (2011). “End-user

development of service-based interactive web applications at the presentation

layer”. In: Proceedings of the 3rd ACM SIGCHI symposium on Engineering

interactive computing systems, pp. 197–206.

Ngu, A.H.H., M.P. Carlson, Q.Z. Sheng, and Hye-young Paik (2010). “Semantic-

Based Mashup of Composite Applications”. In: IEEE Transactions on Services

Computing 3.1, pp. 2–15.

Nightingale, Jim (2007). Think Smart - Act Smart: Avoiding The Business Mistakes

That Even Intelligent People Make. 1st ed. Wiley, p. 176.

Nottingham, M and R Sayre (2005). The Atom Syndication Format. URL: http:

//www.ietf.org/rfc/rfc4287.txt (Retrieved Mar. 28, 2015).

OMELETTE Consortium (2013a). D2.3 - Final Specification of Mashup Description

Language and Telco Mashup Architecture. Public Deliverable. The OMELETTE

Project (FP7/2010-2013 grant agreement Nr. 257635).

OMELETTE Consortium (2013b). D7.3 - Final Demonstrators. Public Deliverable.

The OMELETTE Project (FP7/2010-2013 grant agreement Nr. 257635).

OMELETTE Consortium (2013c). D7.4 - Evaluations of Demonstrators Report.

Public Deliverable. The OMELETTE Project (FP7/2010-2013 grant agreement

Nr. 257635).

OMG (2015). CORBA. URL: http://www.corba.org/ (Retrieved Mar. 30, 2015).

OpenAjax Alliance (2009). OpenAjax Hub 2.0 Specification. URL: http://www.op

enajax.org/member/wiki/OpenAjax%5C_Hub%5C_2.0%5C_Specification

(Retrieved Apr. 13, 2015).

OpenSocial and Gadgets Specification Group (2014). OpenSocial Specification

2.5.0. URL: http : / / opensocial . github . io / spec / 2 . 5 / OpenSocial -

Specification.xml (Retrieved July 4, 2015).

O’Reilly, Tim (2005). What is web 2.0? Design Patterns and Business Models for

the Next Generation of Software. URL: http://oreilly.com/pub/a/web2/

archive/what-is-web-20.html?page=1 (Retrieved July 4, 2015).

Bibliography 239

Orts, Daryl (2005). “Dashboard Development and Deployment”. In: KM World

14.1, S17. URL: http://proquest.umi.com/pqdweb?did=783713271%5C&

Fmt=7%5C&clientId=65345%5C&RQT=309%5C&VName=PQD (Retrieved July 4,

2015).

OSGi Alliance (2015). OSGi Alliance Specifications. URL: http://www.osgi.

org/Specifications/HomePage (Retrieved Mar. 30, 2015).

Panko, Raymond R (2008). “What We Know About Spreadsheet Errors”. In:

Journal of End User Computing’s 10, pp. 15–21.

Pedrinaci, Carlos, Dong Liu, Maria Maleshkova, David Lambert, et al. (2010).

“IServe: A linked services publishing platform”. In: Proceedings of 1st Inter-

national Workshop on Ontology Repositories and Editors for the Semantic Web

(ORES 2010). Vol. 596, pp. 71–82.

Pérez, Francisca, Pedro Valderas, and Joan Fons (2011). “Allowing end-users to

participate within model-driven development approaches”. In: Proceedings

- 2011 IEEE Symposium on Visual Languages and Human Centric Computing,

VL/HCC 2011, pp. 187–190.

Pietschmann, Stefan, Carsten Radeck, Klaus Meißner, and Klaus Meissner De

(2011). “Semantics-Based Discovery, Selection and Mediation for Presentation-

Oriented Mashups”. In: Proceedings of the 5th International Workshop on Web

APIs and Service Mashups. ACM New York, 7:1–7:8.

Pietschmann, Stefan, Martin Voigt, and Klaus Meißner (2012). “Rich Commu-

nication Patterns for Mashups”. English. In: Web Engineering. Ed. by Marco

Brambilla, Takehiro Tokuda, and Robert Tolksdorf. Vol. 7387. Lecture Notes

in Computer Science. Springer Berlin Heidelberg, pp. 315–322.

Power, D (2004). “Specifying An Expanded Framework for Classifying and

Describing Decision Support Systems”. In: Communications of the Association

for Information Systems 13, pp. 158–166. URL: http://aisel.aisnet.org/

cais/vol13/iss1/13 (Retrieved July 4, 2015).

Power, Daniel J. (2002). Decision Support Systems: Concepts and Resources for

Managers. Quorum Books, p. 272.

240 Bibliography

Power, Daniel J. (2008). “Decision Support Systems Concept”. In: Encyclopedia of

Decision Making and Decision Support Technologies. Ed. by Patrick Humphreys

Frederic Adam. Information Science Reference, pp. 232–235.

Radeck, Carsten, Gregor Blichmann, and Klaus Meißner (2013). “CapView –

Functionality-Aware Visual Mashup Development for Non-programmers”. In:

Web Engineering. Ed. by Florian Daniel, Peter Dolog, and Qing Li. Vol. 7977.

Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 140–155.

Reich, Siegfried, Gerti Kappel, and Birgit Pr (2006). Web Engineering: The

Discipline of Systematic Development of Web Applications. Ed. by Gerti Kappel,

Birgit Proll, Siegfried Reich, and Werner Retschitzegger. Vol. 4. John Wiley &

Sons, Ltd, p. 387.

Repenning, Alexander and Andri Ioannidou (2006). “What makes end-user

development tick? 13 design guidelines”. In: End User Development, pp. 1–41.

Rivero, José Matías, Sebastian Heil, Julián Grigera, Martin Gaedke, and Gus-

tavo Rossi (2013). “MockAPI: An Agile Approach Supporting API-first Web

Application Development”. In: Web Engineering. Ed. by Florian Daniel, Peter

Dolog, and Qing Li. Vol. 7977. Lecture Notes in Computer Science. Springer

Berlin Heidelberg, pp. 7–21.

Robie, Jonathan, Don Chamberlin, Michael Dyck, and John Snelson (2011).

XQuery 3.0: An XML Query Language. W3C. URL: http://www.w3.org/TR/

xquery-30 (Retrieved Mar. 28, 2015).

Rode, Jochen, Yogita Bhardwaj, ManuelA. Pérez-Quiñones, MaryBeth Rosson,

and Jonathan Howarth (2005). “As Easy as "Click": End-User Web Engineer-

ing”. In: Web Engineering. Ed. by David Lowe and Martin Gaedke. Vol. 3579.

Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 478–488.

Rosson, M.B., H. Sinha, M. Bhattacharya, and Dejin Zhao (2007). “Design

Planning in End-User Web Development”. In: IEEE Symposium on Visual

Languages and Human-Centric Computing, 2007. VL/HCC 2007. IEEE, pp. 189–

196.

Bibliography 241

Roy Chowdhury, Soudip, Olexiy Chudnovskyy, Matthias Niederhausen, Stefan

Pietschmann, et al. (2013). “Complementary Assistance Mechanisms for

End User Mashup Composition”. In: Proceedings of the 22nd International

Conference on World Wide Web Companion. WWW ’13 Companion. Rio de

Janeiro, Brazil: International World Wide Web Conferences Steering Commit-

tee, pp. 269–272.

Roy Chowdhury, Soudip, Carlos Rodríguez, Florian Daniel, and Fabio Casati

(2012). “Baya: Assisted Mashup Development As a Service”. In: Proceedings

of the 21st International Conference Companion on World Wide Web. WWW

’12 Companion. Lyon, France: ACM, pp. 409–412.

Royce, W. W. (1987). “Managing the Development of Large Software Systems:

Concepts and Techniques”. In: Proceedings of the 9th International Conference

on Software Engineering. ICSE ’87. Monterey, California, USA: IEEE Computer

Society Press, pp. 328–338.

Rümpel, Andreas, Carsten Radeck, Gregor Blichmann, Alexander Lorz, and

Klaus Meißner (2011). “Towards Do-It-Yourself Development of Composite

Web Applications”. In: International Conference on Internet Technologies &

Society ITS 2011, pp. 330–332.

Saleem, Rizwan, Anwar ul Haq Shah, and Muhammad Waqas (2011). “Effect of

time pressure and human judgment on decision making in three public sector

organizations of Pakistan”. In: International Journal of Human Sciences 8.1,

p. 1188.

Sambra, Andrei, Henry Story, and Tim Berners-Lee (2014). WebID 1.0: Web

Identity and Discovery. W3C Editor’s Draft. W3C. URL: http://www.w3.org/

TR/turtle/ (Retrieved July 4, 2015).

Sauter, Vicki L (2014). Decision support systems for business intelligence. John

Wiley & Sons.

Scacchi, Walt (2006). “Understanding open source software evolution”. In:

Software Evolution and Feedback: Theory and Practice, pp. 181–206.

Schadler, Ted, Stephen Powers, and Steven Kesler (2015). The Forrester Wave:

Web Content Management Systems, Q1 2015. Tech. rep. Forrester.

242 Bibliography

Schmidt, Douglas C (1999). “Why software reuse has failed and how to make it

work for you”. In: C++ Report 11.1, p. 1999.

Schmiedel, Philipp (2013). “Eine gemeinsame Sprache finden: Unterstützung

der Datentransformation bei Inter-Widget-Kommunikation”. Diplomarbeit.

Technische Universität Chemnitz.

Schwabe, Daniel, Guilherme Szundy, Sabrina Silva De Moura, and Fernanda

Lima (2004). “Design and Implementation of Semantic Web Applications”.

In: WWW Workshop on Application Design, Development and Implementation

Issues in the Semantic Web.

Segal, Judith and Chris Morris (2008). “Developing scientific software”. In: IEEE

software 25.4, pp. 18–20.

Shawish, Ahmed and Maria Salama (2014). “Cloud Computing: Paradigms

and Technologies”. In: Inter-cooperative Collective Intelligence: Techniques and

Applications. Springer, pp. 39–67.

Skrobo, Daniel (2009). “Widget-Oriented Consumer Programming”. In: AU-

TOMATIKA: Journal for Control, Measurement, Electronics, Computing and

Communications 50.3-4, pp. 252–264.

Smith, D Leasel, Dean G Pruitt, and Peter J Carnevale (1982). “Matching and

mismatching: The effect of own limit, other’s toughness, and time pressure on

concession rate in negotiation.” In: Journal of Personality and Social Psychology

42.5, p. 876.

Solana, E., V. Baggiolini, M. Ramluckun, and J. Harms (1996). “Automatic

and Reliable Elimination of E-mail Loops Based on Statistical Analysis”. In:

Proceedings of the 10th USENIX Conference on System Administration. LISA ’96.

Chicago, IL: USENIX Association, pp. 139–144.

Souza Bomfim, MauricioHenrique de and Daniel Schwabe (2011). “Design and

Implementation of Linked Data Applications Using SHDM and Synth”. In:

Web Engineering. Ed. by Sören Auer, Oscar Díaz, and GeorgeA. Papadopoulos.

Vol. 6757. Lecture Notes in Computer Science. Springer Berlin Heidelberg,

pp. 121–136.

Bibliography 243

Spahn, Michael and Volker Wulf (2009). “End-User Development of Enterprise

Widgets”. In: Second International Symposium on End User Development (IS-

EUD 2009). Springer, pp. 106–125.

Spira, Jonathan B.. and Joshua B. Feintuch (2005). The Cost of Not Paying

Attention: How Interruptions Impact Knowledge Worker Productivity. Tech. rep.

Basex. URL: http://www.brigidschulte.com/wp-content/uploads/2014/

02/costofnotpayingattention.basexreport- 2.pdf (Retrieved July 4,

2015).

Stiemerling, O, H Kahler, and V Wulf (1997). “How to Make Software Softer -

Designing Tailorable Applications”. In: Symposium on Designing Interactive

Systems, pp. 365–376.

Stuhlmacher, Alice F and Matthew V Champagne (2000). “The impact of time

pressure and information on negotiation process and decisions”. In: Group

Decision and Negotiation 9, pp. 471–491.

Sugiura, Atsushi, Atsushi Sugiura, Yoshiyuki Koseki, and Yoshiyuki Koseki

(1996). “Simplifying Macro Definition in Programming by Demonstration”.

In: 9th Annual ACM Symposium on User-Interface Software and Technology,

pp. 173–182.

Sumathi, S. and P. Surekha (2007). LabVIEW based advanced instrumentation

systems. Springer Berlin Heidelberg, p. 728.

Sun Microsystems (2003). JSR-168 Portlet Specification 1.0. URL: https://jcp.

org / aboutJava / communityprocess / final / jsr168/ (Retrieved June 9,

2015).

Sun Microsystems (2009). JSR-286 Portlet Specification 2.0. URL: http : / /

download . oracle . com / otndocs / jcp / portlet - 2 . 0 - fr - oth - JSpec/

(Retrieved Apr. 13, 2015).

Sun Microsystems, Inc (2009). JSR-000318 Enterprise JavaBeans(tm) ("Specifi-

cation"). URL: http://download.oracle.com/otndocs/jcp/ejb-3.1-fr-

eval-oth-JSpec/ (Retrieved Mar. 30, 2015).

Sutter, Matthias, Martin Kocher, and Sabine Strauß (2003). “Bargaining under

time pressure in an experimental ultimatum game”. In: Economics Letters 81,

pp. 341–347.

244 Bibliography

Tai, Kuo-Chung (1994). “Definitions and Detection of Deadlock, Livelock, and

Starvation in Concurrent Programs”. In: Proceedings of the 1994 International

Conference on Parallel Processing - Volume 02. ICPP ’94. Washington, DC, USA:

IEEE Computer Society, pp. 69–72.

Tam, R. Chung-Man, David Maulsby, and Angel R. Puerta (1998). “U-TEL: A

Tool for Eliciting User Task Models from Domain Experts”. In: Proceedings

of the 3rd International Conference on Intelligent User Interfaces. IUI ’98. San

Francisco, California, USA: ACM, pp. 77–80.

Tanimoto, Steven L. (1990). “VIVA: A visual language for image processing”. In:

Journal of Visual Languages & Computing 1, pp. 127–139.

Tarjan, Robert E (1983). Data Structures and Network Algorithms. Philadelphia:

SIAM, p. 131.

Thomas H. Davenport, Jeanne G. Harris (2007). Competing on Analytics: The

New Science of Winning. Harvard Business Press, p. 218.

Tietz, Vincent, Stefan Pietschmann, Gregor Blichmann, Klaus Meißner, et al.

(2011). “Towards Task-based Development of Enterprise Mashups”. In: Pro-

ceedings of the 13th International Conference on Information Integration and

Web-based Applications and Services. iiWAS ’11. Ho Chi Minh City, Vietnam:

ACM, pp. 325–328.

Tockey, S. (1999). “Recommended skills and knowledge for software engineers”.

In: Software Engineering Education and Training, 1999. Proceedings. 12th

Conference on, pp. 168–176.

Trinkfass, Gabriele (1997). “Testing the empirical relevance of the innovation spi-

ral”. English. In: The Innovation Spiral. Deutscher Universitätsverlag, pp. 108–

259. URL: http://dx.doi.org/10.1007/978-3-663-09041-0_4.

Tschudnowsky, Alexey and Martin Gaedke (2015). “Loop Discovery in Publish-

Subscribe-Based User Interface Mashups”. In: Engineering the Web in the Big

Data Era. Ed. by Philipp Cimiano, Flavius Frasincar, Geert-Jan Houben, and

Daniel Schwabe. Vol. 9114. Lecture Notes in Computer Science. Springer

International Publishing, pp. 683–686.

Bibliography 245

Tschudnowsky, Alexey, Michael Hertel, Fabian Wiedemann, and Martin Gaedke

(2014). “Towards Real-time Collaboration in User Interface Mashups”. In:

ICE-B 2014 - Proceedings of the 11th International Conference on e-Business.

Vienna, Austria, pp. 193–200.

Tschudnowsky, Alexey, Stefan Pietschmann, Matthias Niederhausen, and Martin

Gaedke (2014). “Towards Awareness and Control in Choreographed User

Interface Mashups”. In: Proceedings of the Companion Publication of the 23rd

International Conference on World Wide Web Companion. WWW Compan-

ion ’14. Seoul, Korea: International World Wide Web Conferences Steering

Committee, pp. 389–390.

Tschudnowsky, Alexey, Stefan Pietschmann, Matthias Niederhausen, Michael

Hertel, and Martin Gaedke (2014). “From Choreographed to Hybrid User

Interface Mashups: A Generic Transformation Approach”. In: Web Engineering.

Ed. by Sven Casteleyn, Gustavo Rossi, and Marco Winckler. Vol. 8541. Lecture

Notes in Computer Science. Springer International Publishing, pp. 145–162.

Wallmüller, E. (2001). Software-Qualitätsmanagement in der Praxis: Software-

Qualität durch Führung und Verbesserung von Software-Prozessen. Hanser.

Weinhold, Frank, Olexiy Chudnovskyy, Hendrik Gebhardt, and Martin Gaedke

(2011). “Geschäftsprozessintegration auf Basis von Telco-Mashups”. In: IN-

FORMATIK 2011. Ed. by Pepper Heiß and Schneider Schlingloff. Berlin, Ger-

many: Gesellschaft für Informatik e.V. (GI), p. 376.

Wiedenbeck, Susan (2005). “Facilitators and inhibitors of end-user development

by teachers in a school environment”. In: Proceedings - 2005 IEEE Symposium

on Visual Languages and Human-Centric Computing 2005.1, pp. 215–222.

Wierenga, Berend and Gerrit H. Van Bruggen (2001). “Developing a Customized

Decision-support System for Brand Managers”. In: Interfaces 31.3 - b, pp. 128–

145. URL: http://dx.doi.org/10.1287/inte.31.4.128.9678.

Wild, Stefan, Olexiy Chudnovskyy, Sebastian Heil, and Martin Gaedke (2013a).

“Customized Views on Profiles in WebID-Based Distributed Social Networks”.

In: Web Engineering. Ed. by Florian Daniel, Peter Dolog, and Qing Li. Vol. 7977.

Lecture Notes in Computer Science. Heidelberg: Springer, pp. 498–501.

246 Bibliography

Wild, Stefan, Olexiy Chudnovskyy, Sebastian Heil, and Martin Gaedke (2013b).

“Protecting User Profile Data in WebID-Based Social Networks Through Fine-

Grained Filtering”. In: Current Trends in Web Engineering. Ed. by Quan Z.

Sheng and Jesper Kjeldskov. Vol. 8295. Lecture Notes in Computer Science.

Springer, pp. 269–280.

Wild, Stefan, Fabian Wiedemann, Sebastian Heil, Alexey Tschudnowsky, and

Martin Gaedke (2015). “ProProtect3: An Approach for Protecting User Profile

Data from Disclosure, Tampering, and Improper Use in the Context of WebID”.

In: Transactions on Large-Scale Data- and Knowledge-Centered Systems. Lecture

Notes in Computer Science 8990: Special Issue on Big Data and Open Data XIX.

Ed. by Abdelkader Hameurlain, Josef Küng, Roland Wagner, Devis Bianchini,

et al., pp. 87–127.

Wilde, Erik and Martin Gaedke (2008). “Web Engineering Revisited”. In: Proceed-

ings of the 2008 International Conference on Visions of Computer Science: BCS

International Academic Conference. VoCS’08. London, UK: British Computer

Society, pp. 41–49.

Wilson, Scott, Florian Daniel, Uwe Jugel, and Stefano Soi (2012). “Orchestrated

User Interface Mashups Using W3C Widgets”. In: Current Trends in Web

Engineering. Vol. 7059. LNCS. Springer Berlin Heidelberg, pp. 49–61.

Winer, D. (2003). RSS 2.0 Specification. Berkman Center for Internet & Society.

URL: http://cyber.law.harvard.edu/rss/rss.html (Retrieved Apr. 7,

2012).

Won, Markus, Oliver Stiemerling, and Volker Wulf (2006). “Component-based

approaches to tailorable systems”. In: End User Development, pp. 1–27.

Xiao, Hua, Ying Zou, Ran Tang, Joanna Ng, and Leho Nigul (2010). “A Frame-

work for Automatically Supporting End-Users in Service Composition”. In:

The Smart Internet. Ed. by Mark Chignell, James Cordy, Joanna Ng, and

Yelena Yesha. Vol. 6400. Lecture Notes in Computer Science. Springer Berlin

Heidelberg, pp. 115–136.

Ye, Yunwen and Gerhard Fischer (2007). “Designing for Participation in Socio-

technical Software Systems”. In: Universal Acess in Human Computer Interac-

tion. Coping with Diversity 4554, pp. 312–321.

Bibliography 247

Yeh, Tom, Tsung-Hsiang Chang, and Robert C Miller (2009). “Sikuli: using GUI

screenshots for search and automation”. In: Proceedings of the 22nd annual

ACM symposium on User interface software and technology, pp. 183–192.

Yu, Jin, Boualem Benatallah, Fabio Casati, and Florian Daniel (2008). “Under-

standing Mashup Development”. In: IEEE Internet Computing 12.5, pp. 44–

52.

Zeng, Daniel, Hsinchun Chen, R. Lusch, and Shu-Hsing Li (2010). “Social Media

Analytics and Intelligence”. In: Intelligent Systems, IEEE 25.6, pp. 13–16.

248 Bibliography

ASchemes

A.1 XSD schema of the proposed W3C

configuration document extension

Listing A.1: XML Schema Definition (XSD) Schema of the Proposed W3C

Configuration Document Extension

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

attributeFormDefault="unqualified"

elementFormDefault="qualified"

targetNamespace="http://www.openajax.org/hub">

<xs:element name="topics">

<xs:complexType>

<xs:sequence>

<xs:element name="topic" maxOccurs="unbounded"

minOccurs="0">

<xs:complexType mixed="true">

<xs:sequence>

<xs:element type="xs:string" name="description"

minOccurs="0" />

<xs:element type="xs:string" name="schema"

minOccurs="0" />

</xs:sequence>

<xs:attribute type="xs:anyURI" name="name"

use="required" />

249

<xs:attribute type="xs:ID" name="id" use="required" />

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="publications">

<xs:complexType>

<xs:sequence>

<xs:element name="publication" maxOccurs="unbounded"

minOccurs="0">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute type="xs:IDREF" name="topic"

use="required" />

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="subscriptions">

<xs:complexType>

<xs:sequence>

<xs:element name="subscription" maxOccurs="unbounded"

minOccurs="0">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute type="xs:IDREF" name="topic"

use="required" />

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

</xs:sequence>

250 Chapter A Schemes

</xs:complexType>

</xs:element>

</xs:schema>

A.2 XSD schema of the proposed OMDL

extension

Listing A.2: XSD Schema of the Proposed OMDL Extension

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

attributeFormDefault="unqualified"

elementFormDefault="qualified"

targetNamespace="http://www.openajax.org/hub"

xmlns:oa="http://www.openajax.org/hub">

<xs:element name="transformations">

<xs:complexType>

<xs:sequence>

<xs:element name="transformation">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute type="xs:anyURI" name="source" />

<xs:attribute type="xs:anyURI" name="target" />

<xs:attribute name="type">

<xs:annotation>

<xs:documentation>

javascript,xslt,jsont

</xs:documentation>

</xs:annotation>

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="javascript" />

<xs:enumeration value="xslt" />

<xs:enumeration value="jsont" />

</xs:restriction>

A.2 XSD schema of the proposed OMDL extension 251

</xs:simpleType>

</xs:attribute>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="restrictions">

<xs:complexType>

<xs:sequence>

<xs:element name="restriction">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute type="xs:IDREF" name="source"

use="required"/>

<xs:attribute type="xs:IDREF" name="target"

use="required"/>

<xs:attribute type="xs:anyURI" name="topic"

use="required"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="isolations">

<xs:complexType>

<xs:sequence>

<xs:element name="isolation">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute type="xs:IDREF" name="source"

use="required"/>

252 Chapter A Schemes

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

A.2 XSD schema of the proposed OMDL extension 253

BEvaluation
Materials

B.1 Awareness and Control Facilities

B.1.1 Questionnaire

Pre-Questionnaire

104. On a scale of 1 to 5, how would you describe your English language
skills?

105. How would you describe your computer skills? (programmer,
expert user, intermediate, basic)

106. Have you ever configured the user interface of a web portal that
you use?

107. Do you know what a "widget" is? (yes, no, not sure)

108. Do you know what a "mashup" is? (yes, no, not sure)

255

Tasks: Test group

A221. Find the CHEAPEST flat in Chemnitz with 3 rooms and a size of
70 to 85 m2. Afterwards find a similar flat in Dresden with the following
characteristics

• same number of rooms

• same level

• similar size (± 5m2)

• similar distance to center (± 1km)

• the same extras (plus optional additional ones), e.g., kitchen,
parking space, ..

You may use the control mechanisms that have just been described.

Post-Questionnaire: Test group

What is your opinion on the following statements? (strongly agree,
agree, undecided, disagree, strongly disagree)

A222. I found the possibility to adjust data exchange useful.

A222. Adjusting the data exchange felt cumbersome.

A223. Do you have additional comments or suggestions regarding the
IWC control mechanisms?

256 Chapter B Evaluation Materials

Tasks: Control group

B221. Find the CHEAPEST flat in Chemnitz with 3 rooms and a size of
70 to 85 m2. Afterwards find a similar flat in Dresden with the following
characteristics

• same number of rooms

• same level

• similar size (± 5m2)

• similar distance to center (± 1km)

• the same extras (plus optional additional ones), e.g., kitchen,
parking space, ..

You may use the pen and paper if you like.

Post-Questionnaire: Control group

B223. Do you have additional suggestions on how to control data
exchange between widgets?

B.1 Awareness and Control Facilities 257

B.1.2 Results

T
im

e
s
ta

m
p

P
a
rt

.
C

o
d

e

1
0

4
.

E
n

g
li

s
h

 s
k

il
ls

1
0

5
.

C
o

m
p

u
te

r
s

k
il

ls

1
0

6
.

P
o

rt
a

l
U

I
c

o
n

fi
g

1
0

7
.

K
n

o
w

s
 "

w
id

g
e

t"
 t

e
rm

1
0
8
.

K
n

o
w

s
 "

m
a
s
h

u
p

"
 t

e
rm

G
ro

u
p

A
2

2
1

.
T

im
e

A
2

2
2

.
IW

C
 c

o
n

tr
o

l
u

s
e

fu
l

A
2

2
2

.
IW

C
 c

o
n

tr
o

l
c

u
m

b
e

rs
o

m
e

G
ro

u
p

B
2

2
1

.
T

im
e

5.8.2013�9:55:18 ANN09DR PRE 3 expert�user never Yes. I'm�not� TASKS TEST 290 5 1
5.8.2013�11:27:17 FRA03FR PRE 3 intermediate never Yes. No. TASKS TEST 80 5 2
5.8.2013�13:57:22 KRI19MO PRE 4 intermediate never Yes. Yes. TASKS TEST 370 4 4

5.13.2013�16:50:27 SAS15BI PRE 3 intermediate never No. No. TASKS TEST 228 5 4
5.15.2013�14:53:33 AAR05GR PRE 4 intermediate never I'm�not� I'm�not� TASKS TEST 76 5 1
5.22.2013�13:33:59 ARM21OV PRE 4 intermediate never Yes. Yes. TASKS TEST 193 4 3
5.22.2013�16:04:50 AZI15HA PRE 4 intermediate never Yes. I'm�not� TASKS TEST 93 3 3
5.14.2013�17:30:39 CHR18KÄ PRE 4 expert�user Start� Yes. Yes. TASKS TEST 141 5 1
5.15.2013�11:40:13 CHR31SC PRE 4 expert�user never Yes. I'm�not� TASKS TEST 145 4 4
5.22.2013�11:57:09 JOA02SH PRE 4 intermediate never Yes. Yes. TASKS TEST 112 5 1
5.22.2013�14:29:56 JOR76NV PRE 4 intermediate never Yes. No. TASKS TEST 116 5 1
5.14.2013�11:34:55 JUE12JA PRE 5 programmer added�/� Yes. Yes. TASKS TEST 78 4 1
5.16.2013�9:48:16 PAU10AL PRE 3 intermediate never I'm�not� No. TASKS TEST 113 5 1
5.7.2013�13:53:56 THO25FI PRE 3 programmer never Yes. I'm�not� TASKS TEST 125 5 2

5.16.2013�13:43:53 ANJ24KO PRE 4 intermediate never I'm�not� No. TASKS CONTROL 56
5.7.2013�15:26:57 CAR11BR PRE 4 intermediate never Yes. I'm�not� TASKS CONTROL 137

5.22.2013�17:00:59 ELS19HJ PRE 4 intermediate never Yes. No. TASKS CONTROL 107
5.15.2013�13:49:42 KAT29SE PRE 4 intermediate never No. I'm�not� TASKS CONTROL 132
5.13.2013�15:11:07 SUS25PO PRE 4 expert�user Jira,� Yes. I'm�not� TASKS CONTROL 162
5.13.2013�11:18:06 CHR18MI PRE 4 expert�user never Yes. Yes. TASKS CONTROL 186
5.21.2013�15:16:38 MAR10ME PRE 4 intermediate never I'm�not� No. TASKS CONTROL 165
5.21.2013�17:45:00 Morgen25 PRE 3 basic never No. No. TASKS CONTROL 78
5.21.2013�16:25:09 RAF27RO PRE 4 intermediate never Yes. No. TASKS CONTROL 192

5.7.2013�9:45:59 RAK24 PRE 3 intermediate never Yes. No. TASKS CONTROL 102
5.14.2013�13:42:46 STE21BR PRE 3 programmer never Yes. Yes. TASKS CONTROL 355
5.13.2013�9:48:51 THO02MA PRE 3 expert�user never Yes. Yes. TASKS CONTROL 347

5.14.2013�15:20:39 ULF16FR PRE 4 expert�user color,� Yes. I'm�not� TASKS CONTROL 61

Figure B.1.: Results of Awareness and Control Facilities User Study

258 Chapter B Evaluation Materials

B.2 Transformation Editor

B.2.1 Questionnaire

The questionnaire has been translated from german.

Pre-Questionnaire

Name: —

Skills: —(basic, advanced, programmer)

Tasks

The study comprises two tasks. You will be shown a mashup, whose com-
ponents do not exchange any data. The goal is to create a connection
between the components using the given tool.

1. An address book and a map should be combined. Create a con-
nection between the two, so that anytime an address is selected, a
corresponding marker on the map appears.

2. An address book and a postcard service should be combined.
Establish an appropriate connection. Additionally, a print of “Hallo
<First name ><Last name >,” should appear on the post card
(values in the angle brackets should be replaced by appropriate
elements).

B.2 Transformation Editor 259

Post-Questionnaire

1. I learned the tool quickly (strongly disagree, disagree, agree,
strongly agree)

2. It was clear how to solve the task using the tool (strongly disagree,
disagree, agree, strongly agree)

3. The creation of transformations should be simpler (strongly dis-
agree, disagree, agree, strongly agree)

There was a situation, where i didn’t know how to proceed: —

The following improvements could make the tool more comprehensive:
—

Other comments: —

Time for task 1: —

Time for task 2: —

260 Chapter B Evaluation Materials

B.2.2 Results

The collected data is shown in Figure B.2.
D

a
te

P
a
rt

.
C

o
d

e

P
C

 s
k
il
ls

T
im

e
 T

a
s
k
 1

T
im

e
 T

a
s
k
 2

L
e

a
rn

e
d

 T
o

o
l

q
u

ic
k

ly

S
o

lu
ti

o
n

 c
le

a
r

S
o

lu
ti

o
n

 c
o

u
ld

 b
e

e
a
s
ie

r

09.12.2014 Stefanie PRE basic TASKS 2,6 8,4 POST 3 2 4

09.12.2014 Jürgen PRE basic TASKS 3,4 9,2 POST 4 3 2

03.12.2014 Jens PRE average TASKS 3,1 5,4 POST 3 4 3

04.12.2014 Jessica PRE average TASKS 1,2 7,2 POST 4 3 1

03.12.2014 Michel PRE programmer TASKS 1 6,6 POST 2 2 4

09.12.2014 Philipp PRE programmer TASKS 1 4,1 POST 4 3 3

03.12.2014 Candida PRE programmer TASKS 1,3 6,4 POST 4 2 3

Figure B.2.: Results of Transformation Editor User Study

B.2 Transformation Editor 261

B.3 Automatic Discovery and

Composition Engine

B.3.1 Questionnaire

Pre-Questionnaire

See Appendix B.1.1

Tasks: Test group

Your goal is to build, i.e., populate a workspace with widgets. To this
end, please use the “AUTOMATIC COMPOSITION WIDGET” (ACE). It
should be already present in the workspace.

A101. Imagine you live in the city of “Dresden” and there is a flood
warning. Build a workspace to gather more information on the situa-
tion:

1. list messages from your social networks,

2. check where emergency incidents were reported, and

3. compare the flood levels at these locations.

Post-Questionnaire: Test group

What is your opinion on the following statements? (strongly agree,
agree, undecided, disagree, strongly disagree)

A102. The Automatic Composer was useful for creating my workspace.

262 Chapter B Evaluation Materials

A103. I like the idea of being guided throughout the composition.

A104. I would use the Automatic Composer again, for creating new
workspaces.

A105. Do you have further suggestions for improving the Automatic
Composer?

Tasks: Control group

Your goal is to build, i.e., populate a workspace with widgets. To this
end, please use the Widget Store.

B101. Imagine you live in the city of “Dresden” and there is a flood
warning. Build a workspace to gather more information on the situa-
tion:

1. list messages from your social networks,

2. check where emergency incidents were reported, and

3. compare the flood levels at these locations.

Post-Questionnaire: Control group

What is your opinion on the following statements? (strongly agree,
agree, undecided, disagree, strongly disagree)

B102. It was easy to find the right widgets.

B103. I’m sure that I’ve found the right widgets.

B104. Do you have further suggestions for improving the Widget
Store?

B.3 Automatic Discovery and Composition Engine 263

B.3.2 Results

See also Appendix B.1.2 for pre-questionnaire responses. Figure B.3
shows the collected data.

T
im

e
s

ta
m

p

P
a
rt

.
C

o
d

e

G
ro

u
p

A
1

0
1

.
T

im
e

A
1

0
2

.
A

C
E

 w
a

s
 u

s
e

fu
l

A
1
0
3
.
L

ik
e
 b

e
in

g
 g

u
id

e
d

A
1

0
4

.
A

C
E

 r
e

u
s

e

G
ro

u
p

B
1

0
1

.
T

im
e

B
1

0
2

.
E

a
s

y
 t

o
 f

in
d

 t
h

e
 r

ig
h

t

w
id

g
e

ts
.

B
1

0
3

.
S

u
re

 t
h

a
t

I'
v

e
 f

o
u

n
d

 t
h

e
 r

ig
h

t

w
id

g
e

ts
.

5.8.2013�9:55:18 ANN09DR TEST 210 5 4 5
5.8.2013�11:27:17 FRA03FR TEST 85 4 5 4
5.8.2013�13:57:22 KRI19MO TEST 15 4 3 4
5.13.2013�16:50:27 SAS15BI TEST 180 5 5 5
5.15.2013�14:53:33 AAR05GR TEST 218 4 4 3
5.22.2013�13:33:59 ARM21OV TEST 253 2 3 4
5.22.2013�16:04:50 AZI15HA TEST 130 4 4 4
5.14.2013�17:30:39 CHR18KÄ TEST 144 5 5 5
5.15.2013�11:40:13 CHR31SC TEST 110 5 5 5
5.22.2013�11:57:09 JOA02SH TEST 140 4 4 4
5.22.2013�14:29:56 JOR76NV TEST 144 4 4 3
5.14.2013�11:34:55 JUE12JA TEST 94 4 5 4
5.16.2013�9:48:16 PAU10AL TEST 207 4 2 4
5.7.2013�13:53:56 THO25FI TEST 123 4 5 5
5.16.2013�13:43:53 ANJ24KO CONTROL 102 4 4
5.7.2013�15:26:57 CAR11BR CONTROL 175 5 4
5.22.2013�17:00:59 ELS19HJ CONTROL 88 4 3
5.15.2013�13:49:42 KAT29SE CONTROL 135 4 5
5.13.2013�15:11:07 SUS25PO CONTROL 192 4 4
5.13.2013�11:18:06 CHR18MI CONTROL 300 4 4
5.21.2013�15:16:38 MAR10ME CONTROL 160 5 4
5.21.2013�17:45:00 Morgen25 CONTROL 159 4 4
5.21.2013�16:25:09 RAF27RO CONTROL 346 4 2
5.7.2013�9:45:59 RAK24 CONTROL 78 4 3
5.14.2013�13:42:46 STE21BR CONTROL 112 4 4
5.13.2013�9:48:51 THO02MA CONTROL 116 4 4
5.14.2013�15:20:39 ULF16FR CONTROL 145 2 3

Figure B.3.: Results of ADCE User Study

264 Chapter B Evaluation Materials

B.4 WebComposition/EUD ICCI

Extender

B.4.1 Questionnaire

Pre-Questionnaire

How would you describe your JavaScript skills (1 – no skills, 2 – basic,
3 – advanced, 4 - expert)?

How would you describe your familiarity with Web-based widgets (1 –
never heard about, 2 – used in my operating system (e.g. Mac gadgets)
or on the Web (e.g. iGoogle), 3 – developed on my own)?

How would you describe your familiarity with W3C widgets (1 – never
heard about, 2 – used on the Web, 3 – developed on my own)?

How would you describe your familiarity with Inter-Widget-Communi-
cation (1 – never heard about, 2 – have seen it working, 3 – developed
on my own)?

How would you describe your familiarity with Open-Ajax Hub (1 – never
heard about, 2 – have seen it working, 3 – used during development)?

Tasks

To start, please open the page:

http://localhost:8080/portal

Username: canonical

B.4 WebComposition/EUD ICCI Extender 265

Password: canonical

Go to the Tab “Movies”.

The mashup consists of three widgets: Movie List, Wikipedia and
Youtube. By typing keywords into the widgets, one can search for
movies, articles and videos related to the entered keyword. Currently
widgets do not communicate with each other, so that input has to be
repeated in each of the widgets. Your goal is to make the three widgets
communicate. Basic functionality: A keyword typed into the MovieList
widget should be passed both to the Wikipedia and the Youtube widgets.
Both the widgets should immediately display the search results to the
entered keyword. Advanced functionality (optional): if a keyword is
entered into Wikipedia widget, it should be propagated to the both
other widgets.

Task 1 Perform the extension manually by modifying the source code of
the corresponding widgets.

Time for basic functionality: —

Time for advanced functionality (max 15min): —

Advanced functionality solved (yes/no): —

Task 2 Perform the same extension with the help of the IWC-Extender.
The IWC-Extender is available at: http://localhost:22222/

Time for basic functionality: —

Time for advanced functionality (max 15min): —

Advanced functionality solved (yes/no): —

266 Chapter B Evaluation Materials

Post-Questionnaire

What is your opinion on the following statements? (strongly agree,
agree, undecided, disagree, strongly disagree)

1. It was cumbersome to extend widgets with IWC functionality
manually

2. The IWC-Extender was easy to use for extending the given widgets.

3. I learned the tool quickly

4. As for my experience with widgets, the tool would be well appli-
cable to a wide range of different widgets and scenarios

5. I would use the IWC-Extender again for adjusting other widgets.

Do you have suggestions for improving the IWC-Extender?

Which steps or actions during manual extension of widgets towards IWC
do you think are the most cumbersome and have to be supported/auto-
mated by tools?

B.4 WebComposition/EUD ICCI Extender 267

B.4.2 Results

D
a

te

P
a

rt
.

C
o

d
e

 J
a

v
a

s
c

ri
p

t
s

k
il

ls

F
a

m
il

ia
ri

ty
 w

it
h

 W
e

b
-b

a
s

e
d

W
id

g
e

ts

F
a

m
il

ia
ri

ty
 w

it
h

 W
3

C
 W

id
g

e
ts

F
a

m
il

ia
ri

ty
 w

it
h

 I
W

C

F
a

m
il

ia
ri

ty
 w

it
h

 O
p

e
n

A
ja

x
H

u
b

T
im

e
 B

a
s

ic
 (

s
e

c
)

A
d

v
a

n
c

e
d

 s
o

lv
e

d
 w

it
h

in
 1

5
 m

in

T
im

e
 B

a
s

ic
 w

it
h

 T
o

o
l

(s
e

c
)

T
im

e
 A

d
v

a
n

c
e

d
 s

o
lv

e
d

 w
it

h
 T

o
o

l

T
im

e
 A

d
v

a
n

c
e

d
 w

it
h

 T
o

o
l

A
1

.
M

a
n

u
a

ll
y

 i
s

 c
u

m
b

e
rs

o
m

e

A
2

.
E

x
te

n
d

e
r

is
 e

a
s

y
 t

o
 u

s
e

A
3

.
L

e
a

rn
e

d
 q

u
ic

k
ly

A
4

.
W

e
ll

 a
p

p
li

c
a

b
le

A
5

.
W

o
u

ld
 r

e
u

s
e

09.12.2014 AND14SE PRE 2 1 1 2 2 TASKS 1625 0 1346 1 889 POST 4 4 4 4 5

09.12.2014 PHI04AV PRE 3 3 2 3 2 TASKS 807 1 164 1 120 POST 4 4 4 4 5

03.12.2014 HAI12RE PRE 2 3 3 2 1 TASKS 3935 0 215 1 215 POST 2 4 4 4 4

04.12.2014 MIC08HE PRE 3 3 2 3 2 TASKS 840 1 100 1 130 POST 4 5 4 3 4

03.12.2014 SEB17JO PRE 3 3 2 3 3 TASKS 1372 0 403 1 133 POST 4 4 5 4 4

09.12.2014 ALE01AL PRE 2 2 1 2 1 TASKS 1301 0 249 1 205 POST 4 4 4 2 3

03.12.2014 FAB01PU PRE 3 3 2 3 2 TASKS 1220 1 368 1 125 POST 3 5 5 2 3

10.12.2014 MAR17RE PRE 3 2 2 2 1 TASKS 909 1 330 1 52 POST 3 4 5 4 5

10.12.2014 MIC18KA PRE 3 3 3 3 3 TASKS 881 1 138 1 108 POST 4 5 5 4 5

10.12.2014 TOB06HA PRE 2 2 2 2 1 TASKS 1915 0 425 1 115 POST 5 5 5 4 5

Figure B.4.: Results of WebComposition/IE User Study

268 Chapter B Evaluation Materials

B.5 Performance Evaluation of the

WebComposition/EUD Artifact Library

Table B.1.: Median Response Times of WebComposition/EUD-AL in Seconds

(10 Runs for Each Test)

Test / Number

of components

10 100 1000 5000 10000 50000 100000 200000 250000 268242

SPARQL re-
quest using
contains

0.036 0.031 0.093 0.328 0.608 2.792 5.569 10.109 11.919 12.651

SPARQL re-
quest using
regex

0.036 0.046 0.093 0.312 0.577 2.793 5.600 10.249 12.137 12.839

SPARQL re-
quest using
search:text

0.039 0.031 0.032 0.047 0.047 0.047 0.047 0.031 0.047 0.047

SPARQL re-
quest for
superclass

0.036 0.046 0.203 0.905 1.179 9.048 18.112 23.104 30.530 33.041

SPARQL re-
quest for
subclass 1
(Netvibes)

0.036 0.046 0.187 0.779 1.529 7.683 15.397 11.388 15.132 16.583

SPARQL re-
quest for
subclass 2
(W3C)

0.036 0.031 0.187 0.779 1.529 7.675 15.366 11.450 15.210 16.552

Publishing of
one component

0.249 0.234 0.141 0.125 0.109 0.109 0.203 0.265 0.608 0.593

Accessing a
random compo-
nent

0.036 0.046 0.032 0.062 0.062 0.188 0.358 0.656 0.842 0.889

B.5 Performance Evaluation of the WebComposition/EUD Artifact
Library 269

Figures

2.1 FireView Dashboard: A Software Solution for Fire and
Emergency Response Agencies 10

2.2 JReport Dashboards: A Web Application for Visualization
of KPIs . 12

2.3 Immobilienscout24: A Web Application for Real Estate
Management . 13

3.1 Exploratory and Evolutionary Development of Software by
Scientists . 25

3.2 Adaptation of Waterfall Model Towards Component-Based
Development . 29

3.3 The Y model for Component-Based Software Development 31

3.4 The W model for Component-Based Software Development 32

3.5 Evolution of Web Applications Based on WebComposition
Process Model . 33

3.6 Lifecycle Model of Web Mashups 34

3.7 Model-Driven Development Process 36

3.8 WebML Development Process 38

3.9 End-User-Friendly Dashboard for Administration of WCMS 42

3.10 Example of a Dashboard Implemented Using Liferay . . . 46

3.11 Specification of Report Layout in JReport 47

3.12 A Platform for End-User Tailoring of Component-Based
Software . 50

3.13 Yahoo Pipes: a Data Mashup Editor 54

271

3.14 ServFace Builder: a WYSIWYG Service Composition envi-
ronment . 55

3.15 PEUDOM: a Visual Environment for Development of UI
Mashups . 57

4.1 Quality-ensuring Design Measures of the WebComposition/EUD
Approach . 64

4.2 WebComposition/EUD Component Model 68

4.3 WebComposition/EUD Composition Model 72

4.4 Example DSS for Flood Catastrophe Management 75

4.5 WebComposition/EUD Role Model 78

4.6 WebComposition/EUD Process Model 79

4.7 WebComposition/EUD Toolkit and Corresponding Target
Roles . 87

5.1 Conceptual Architecture of the WebComposition/EUD Com-
position Platform . 92

5.2 Example of a W3C Packaged App Content 94

5.3 Extensions of W3C Configuration Document to Describe
ICC Behavior . 95

5.4 OMDL Extensions to Describe ICC Configuration 100

5.5 Implementation of the Composition Platform 103

5.6 Awareness and Control Facilities 108

5.7 Visual Definition of Transformation Functions 109

5.8 Evaluation Application for Testing Usability of Awareness
and Control Facilities . 112

5.9 Impact of Awareness and Control Facilities on Efficiency of
Composition Developers 114

5.10 Usability Evaluation of Awareness and Control Facilities . 114

5.11 Tasks for Evaluation of Transformations Editor 116

5.12 Usability Evaluation of the Transformations Editor 118

6.1 Discovery and Composition Process 123

6.2 Excerpt from the ADCE Domain Ontology 124

6.3 Excerpt from the ADCE Goal Ontology 125

6.4 Dialog-based Solution Discovery and Composition 128

6.5 Acceleration of Mashup Creation 131

272 Figures

6.6 Acceptance of the Guidance Idea 132

6.7 Perceived Usefulness (Left) and Reuse Willingness (Right)
of ADCE . 132

6.8 Observation and Automation of Repeated Input 150

7.1 Conversion of Proprietary Widgets into WebComposition/EUD
Components . 161

7.2 Metamodel WebComposition/EUD Component Packages
(based on W3C Packaged Web Apps) 162

7.3 Success Rate of WebComposition/EUD-CC 168

7.4 Interactive Demonstration of Desired ICC Functionality . . 174

7.5 Architecture of the WebComposition/EUD-IE 176

7.6 WebComposition/EUD-IE: Evaluation tasks 181

7.7 WebComposition/EUD-IE: Performance and Success Rate
Increase . 181

7.8 WebComposition/EUD-IE: Ease of Use and Learnability . . 182

7.9 WebComposition/EUD-IE: Applicability and Reuse Willing-
ness . 183

7.10 Architecture of the WebComposition/EUD-AL 187

7.11 Processing of SPARQL Templates 193

7.12 Response Times of DGS for Component Search Queries by
Keyword . 198

7.13 Response Times of DGS for Component Search Queries by
Component Type . 199

7.14 Response Times of DGS for Adding and Accessing New
Components . 200

8.1 Application of the WebComposition/EUD Framework to
build a Public Information Screen 208

8.2 Application of the WebComposition/EUD Framework to
Travel Planning Domain 209

8.3 Application of the WebComposition/EUD Framework to
Implement Telecommunication Dashboards 211

B.1 Results of Awareness and Control Facilities User Study . . 258

B.2 Results of Transformation Editor User Study 261

B.3 Results of ADCE User Study 264

Figures 273

B.4 Results of WebComposition/IE User Study 268

274 Figures

Tables

3.1 Comparison of Analyzed State-of-the-Art Technologies . . 60

8.1 Comparison of the WebComposition/EUD Framework with
State-of-the-Art Technologies 205

B.1 Median Response Times of WebComposition/EUD-AL in
Seconds (10 Runs for Each Test) 269

275

Listings

5.1 Inter-Component Communication using OpenAjax Hub . 96
5.2 Extension of the W3C Configuration Document 97
5.3 Topic Declaration using a JSON-Scheme Document . . . 98
5.4 OMDL Description of the Emergency Response Application 99
5.5 Example of Proposed OMDL Extension to Describe ICC

Configuration . 102

7.1 Definition of XQuery Templates 189
7.2 Automatic Extraction and Publishing of Packaged Web

App Metadata . 191
7.3 Automatic Extraction and Publishing of Image Metadata 192
7.4 Example of Access Control Rules Definition in Data Grid

Service . 195

A.1 XSD Schema of the Proposed W3C Configuration Docu-
ment Extension . 249

A.2 XSD Schema of the Proposed OMDL Extension 251

277

Doctoral Dissertations in Web
Engineering and Web Science

(1) Heinrich, Matthias (2014)
Enriching Web Applications Efficiently with Real-Time Collabora-
tion Capabilities
ISBN 978-3-941003-25-9
Volltext: http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-

149948

(2) Speicher, Maximilian (2016)
Search Interaction Optimization: A Human-Centered Design Ap-
proach
ISBN 978-3-944640-99-0
Volltext: http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-

208102

(3) Wild, Stefan (2017)
Enhancing Security in Managing Personal Data by Web Systems
ISBN 978-3-96100-010-4
Volltext: http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-

217284

(4) Tschudnowsky, Alexey (2017)
End-User Development of Web-based Decision Support Systems
ISBN 978-3-96100-014-2
Volltext: http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-

21982

