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Abstract

In this paper we consider an age-duration-structured population model for HIV infection in a homosex-
ual community. First we investigate the invasion problem to establish the basic reproduction ratio R0 for
the HIV/AIDS epidemic by which we can state the threshold criteria: The disease can invade into the com-
pletely susceptible population if R0 > 1, whereas it cannot if R0 < 1. Subsequently, we examine existence
and uniqueness of endemic steady states. We will show sufficient conditions for a backward or a forward
bifurcation to occur when the basic reproduction ratio crosses unity. That is, in contrast with classical epi-
demic models, for our HIV model there could exist multiple endemic steady states even if R0 is less than
one. Finally, we show sufficient conditions for the local stability of the endemic steady states.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

During the past two decades, human immunodeficiency virus (HIV) disease has become one of
the major public health problems in the world. For example, for many countries in Africa, AIDS
has been already a major cause of death, it is predicted that it will soon become so in Asian
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countries having a larger scale of populations. From theoretical point of view, the HIV/AIDS
dynamics provides a large number of new problems to mathematicians, biologists and epidemiol-
ogists, since it has a lot of features different from traditional infectious diseases. Hence, the study
of HIV/AIDS has stimulated the recent development of mathematical epidemiology. In the
following we briefly discuss the characters which should be taken into account in mathematical
models for the HIV dynamics.

First it is well known that HIV virus has the long incubation and infectious period. In the early
stage of AIDS pandemic, its longest estimate was from 8 to 10 years, while now it could be pro-
longed by effective medical treatments. During the incubation period, the infectivity of infected
people is varying depending on the time since infection. Thus, the time scale of HIV transmission
is so long that demographic change of the host population could affect the transmission process.
On the other hand, the death rate caused by AIDS is too high to be neglected, so the presence of
HIV regulates the demographic structure of the host population. In summary, for HIV case we
have to consider true interaction between demography and epidemics. This aspect has been often
neglected in traditional epidemic models for common infectious diseases, since the time scale of
the spread of such diseases is rather short in compare with the demographic time scale.

Next there exist various kind of risk groups for the HIV infection. HIV virus is transmitted by
homosexual or heterosexual intercourse, needle sharing between drug abusers, blood transfusion,
etc. Therefore, in the real, the susceptible population is composed of subgroups, each of which has
a different susceptibility to the transmission of HIV virus. Even in a subgroup, individuals can be
distinguished by the degree of risky behavior. Moreover, age-structure of the host population
would play an important role, since social or sexual behavior of people heavily depends on their
chronological age.

The whole dynamics of the spread of HIV/AIDS is so complex that we could not analyze it all
at once. In this paper, we consider an age-duration-structured population model for the HIV
infection in a homosexual community, while we neglect complexity which is caused by pair for-
mation phenomena related to sex and persistence of unions. The reader interested in those aspects
may refer to [10]. After the formulation of the basic system, we consider the initial invasion phase
to calculate the basic reproduction ratio R0, by which we can state the threshold criteria, that is,
the disease can invade into the completely susceptible population if R0 > 1, whereas it cannot if
R0 < 1. Next we consider the existence, uniqueness and bifurcation of endemic steady states.
Finally, we examine the stability of endemic steady states.
2. The basic model

In the following, we consider an age-duration-structured population of homosexual men with a
constant birth rate. For simplicity, individuals are assumed to be homogeneous with respect to
their sexual activity, though the following argument could be easily extended to the risk-based
model without any essential modification. Individuals have sexual contacts with each other at
random and the duration of an exclusive partnership is negligibly short. We divide the homosex-
ual population into three groups: S (uninfected but susceptible), I (HIV infected) and A (fully
developed AIDS symptoms). We do not introduce a latent class, since the latent period of
AIDS is negligibly short in compare with its long incubation period. Thus, it is assumed that
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all of I-individuals are infectious. A-individuals are assumed to be sexually inactive, so it is not
involved with the transmission process.

Let S(t,a) be the age-density of susceptible population at time t and age a and let B be the birth
rate of susceptible population. Let I(t,s; a) be the density of infected population at time t and dis-
ease-age (duration since infection) s with the age of infection a. That is, I(t,s; a) is the density of
an infection cohort. Let A(t,s; a) be the density of AIDS population at time t and duration s for
individuals who have developed AIDS at age a. Let l(a) be the age-specific natural death rate,
c(s;a) the rate of developing AIDS at disease-age s for individuals who have been infected at
age a, d(s;a) the death rate at duration s due to AIDS for individuals who have developed AIDS
at age a and let k(t,a) be the infection rate (the force of infection) at age a and time t. Then, the
dynamics of the population is governed by the following system:
o

ot
þ o

oa

� �
Sðt; aÞ ¼ �ðlðaÞ þ kðt; aÞÞSðt; aÞ; ð2:1aÞ

o

ot
þ o

os

� �
Iðt; s; aÞ ¼ �ðlðaþ sÞ þ cðs; aÞÞIðt; s; aÞ; ð2:1bÞ

o

ot
þ o

os

� �
Aðt; s; aÞ ¼ �ðlðaþ sÞ þ dðs; aÞÞAðt; s; aÞ; ð2:1cÞ

Sðt; 0Þ ¼ B; ð2:1dÞ
Iðt; 0; aÞ ¼ kðt; aÞSðt; aÞ; ð2:1eÞ

Aðt; 0; aÞ ¼
Z a

0

cðs; a� sÞIðt; s; a� sÞds. ð2:1fÞ
The force of infection k(t,a) is assumed to have the following expression:
kðt; aÞ ¼
Z x

0

Z b

0

bða; b; sÞnða; b;Nðt; �ÞÞ Iðt; s; b� sÞ
Nðt; bÞ dsdb; ð2:2Þ
where N(t,a) is the age-density of sexually active population at time t given by
Nðt; aÞ ¼ Sðt; aÞ þ
Z a

0

Iðt; s; a� sÞds; ð2:3Þ
b(a,b,s) is the transmission probability that a susceptible person of age a becomes infected by sex-
ual contact with an infected partner of age b and disease-age s and x denotes the upper bound of
age of the sexually active population.

The mating function n(a,b,N(t, Æ)) depending on the population density N(t,Æ) denotes the aver-
age number of sexual partners of age b an individual aged a has per unit time at time t. From its
physical meaning, the mating function must satisfy the following condition:
Nðt; aÞnða; b;Nðt; �ÞÞ ¼ Nðt; bÞnðb; a;Nðt; �ÞÞ. ð2:4Þ

In the following we assume that the mating function can be expressed as
nða; b;Nðt; �ÞÞ ¼ CðP ðtÞÞNðt; bÞ
P ðtÞ ; ð2:5Þ
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where P(t) is the total size of sexually active population given by
P ðtÞ ¼
Z x

0

Nðt;rÞdr;
and C(P) denotes the mean number of sexual partners an average individual has per unit time
when the population size is P. It is easy to see that the mating function (2.5) satisfies the condition
(2.4). Under the above assumptions, the force of infection can be written as
kðt; aÞ ¼ CðP ðtÞÞ
P ðtÞ

Z x

0

Z b

0

bða; b; sÞIðt; s; b� sÞdsdb. ð2:6Þ
From its biological meaning, it is reasonable to assume that the function C(P): R+ ! R+ is
monotone increasing and upper bounded. Typical examples for C(P) is given as follows:
ðiÞ CðP Þ ¼ a0P ; ðiiÞ CðP Þ ¼ a0a1P
a0P þ a1

; ðiiiÞ CðPÞ ¼ a1; ð2:7Þ
where a0 and a1 are given positive numbers. Note that the saturating contact law (ii) approaches
to mass action type contact law (i) when P! 0, while it becomes the homogeneous of degree one
(scale independent) contact law (iii) if P! 1 . In the following, we assume the Lipschitz conti-
nuity as follows:

Assumption 2.1. C(x)/x is a monotone decreasing function for xP 0. There exists a constant
L > 0 for any x, y P 0 such that
jCðxÞ=x� CðyÞ=yj 6 Ljx� yj. ð2:8Þ
To simplify system (2.1), let us introduce new functions s, i, n by
Sðt; aÞ ¼ sðt; aÞB‘ðaÞ; ð2:9aÞ
Iðt; s; aÞ ¼ iðt; s; aÞB‘ðaþ sÞCðs; aÞ; ð2:9bÞ
Nðt; aÞ ¼ nðt; aÞB‘ðaÞ; ð2:9cÞ
where ‘(a) and C(s;a) are the survival functions defined by
‘ðaÞ :¼ exp �
Z a

0

lðrÞdr
� �

;

Cðs; aÞ :¼ exp �
Z s

0

cðr; aÞdr
� �

.

ð2:10Þ
Then, ‘(a) is the probability that an individual survives to age a under the natural death rate and
1 � C(s;a) gives the incubation distribution for individuals infected at age a. We assume that
‘(x) = 0, that is,

R x
0 lðrÞdr ¼ 1. By the above transformation, we obtain a new simplified system

for (s, i) as follows:
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o

ot
þ o

oa

� �
sðt; aÞ ¼ �kðt; aÞsðt; aÞ; ð2:11aÞ

o

ot
þ o

os

� �
iðt; s; aÞ ¼ 0; ð2:11bÞ

sðt; 0Þ ¼ 1; ð2:11cÞ
iðt; 0; aÞ ¼ kðt; aÞsðt; aÞ; ð2:11dÞ

kðt; aÞ ¼ CðPðtÞÞ
P ðtÞ

Z x

0

Z b

0

Kða; b; sÞiðt; s; b� sÞdsdb; ð2:11eÞ
where the functions K and P are given by
Kða; b; sÞ :¼ bða; b; sÞB‘ðbÞCðs; b� sÞ; ð2:11fÞ

PðtÞ ¼
Z x

0

B‘ðaÞ sðt; aÞ þ
Z a

0

Cðs; a� sÞiðt; s; a� sÞds
� �

da. ð2:11gÞ
Mathematical well posedness of the time evolution problem (2.11) can be proved by several
approach. In Appendix A, we see that the semigroup solution can be constructed by using the
perturbation method of non-densely defined operators [21], since the semigroup approach would
be most advantageous to establish the principle of linearized stability.

In the following, from technical reason, we adopt the following assumption:

Assumption 2.2. Age-dependent functions as ‘(a), K(a,b,s) and C(s;a) are extended as zero-
valued functions outside of the age interval [0,x] and for b < s. Moreover, b is a uniformly
bounded function and
inf
aP0

lðaÞ ¼: l > 0; inf
aP0

cðrÞ ¼: c > 0. ð2:12Þ
Here, we remark that it follows from the above assumption that the kernel K has an estimate as
follows:
jKða; b; sÞj 6 kbk1Be�lb�cs; ð2:13Þ
where kbk1 :¼ supaP0,bPsP0jb(a,b,s)j.
3. The initial invasion phase

In this section we mainly consider the initial invasion phase of the epidemic. Of our concern
here is to induce a threshold condition which determines whether the epidemic outbreak will occur
or not when a small infecteds invade into the completely susceptible population.

System (2.11) has a disease-free steady state (s*, i*) = (1,0). In the early stage of the epidemic,
the dynamics of the infected population can be described by the linearized equation at the dis-
ease-free steady state (1,0) as follows:
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o

ot
þ o

os

� �
iðt; s; aÞ ¼ 0; ð3:1aÞ

iðt; 0; aÞ ¼ CðP 0Þ
P 0

Z 1

0

Z b

0

Kða; b; sÞiðt; s; b� sÞdsdb; ð3:1bÞ

ið0; s; aÞ ¼ i0ðs; aÞ; ð3:1cÞ
where i0 is the initial data and P0 denotes the size of totally susceptible host population given by
P 0 :¼

R x
0 B‘ðaÞda.

From (3.1a), by using the method of characteristic lines, we obtain
iðt; s; aÞ ¼
Bðt � s; aÞ; ðt > sÞ;
i0ðs� t; aÞ; ðs P tÞ;

�
ð3:2Þ
where B(t,a) :¼ i(t, 0;a). By inserting (3.2) into the boundary condition (3.1b) and changing the
order of integration, we have
Bðt; aÞ ¼ Gðt; aÞ þ CðP 0Þ
P 0

Z t

0

Z 1

s
Kða; b; sÞBðt � s; b� sÞdbds; ð3:3Þ
where G is given by
Gðt; aÞ :¼ CðP 0Þ
P 0

Z 1

t

Z 1

s
Kða; b; sÞi0ðs� t; b� sÞdbds.
Let us consider G(t,a) and B(t,a) as L1-valued functions of t > 0 and letP(s) be a linear positive
operator from L1(0,x) into itself defined by
ðPðsÞwÞðaÞ :¼ CðP 0Þ
P 0

Z x

s
Kða; b; sÞwðb� sÞdb. ð3:4Þ
Then, we can rewrite (3.3) as an abstract renewal integral equation in L1:
BðtÞ ¼ GðtÞ þ
Z t

0

PðsÞBðt � sÞds; t > 0. ð3:5Þ
Just the same as the case of one-dimensional renewal equation, the asymptotic behavior can be
investigated by the Laplace transformation technique. The Laplace transformation of a vector-
valued function f(t), 0 6 t < +1 is defined by f̂ ðkÞ ¼

R1
0

e�ktf ðtÞdt whenever the integral is defined
with respect to the norm topology. Using a priori estimate for the growth bound of B(t), we know
that Laplace transform of B(t) exists for complex values k when Rek is sufficiently large. Since
Laplace transforms of G(t) and P(s) exist for all complex values k, it follows from (3.5) that
B̂ðkÞ ¼ ĜðkÞ þ P̂ðkÞB̂ðkÞ; ð3:6Þ

for complex k with large real part. Let us define a set of characteristic value as
K :¼ fk 2 C : ðI � P̂ðkÞÞ�1 does not existg ¼ fk 2 C : 1 2 rðP̂ðkÞÞg;
where r(A) denotes the spectrum of the operator A. Then, it follows that
B̂ðkÞ ¼ ðI � P̂ðkÞÞ�1ĜðkÞ for k 2 C n K. ð3:7Þ
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Since I � P̂ðkÞ is invertible for k with large real part, B(t) could be expressed by the inverse La-
place transform:
BðtÞ ¼ 1

2pi

Z xþi1

x�i1
ektðI � P̂ðkÞÞ�1ĜðkÞdk;
where x is a large real number such that supk2KRk < x. Then, the asymptotic behavior of B(t) is
determined by the distribution of singular points K. In fact, if there exists the dominant real ele-
ment kd 2 K such that kd > Rk for any k 2 Kn{kd} and it is the simple pole of ðI � P̂ðkÞÞ�1, it can
be proved that there exists a function �(t) such that
BðtÞ ¼ ekd t
hfd ; ĜðkdÞi
hfd ;�K1wdi

wd þ �ðtÞ
" #

; lim
t!1

�ðtÞ ¼ 0; ð3:8Þ
where wd is the eigenvector of P̂ðkdÞ corresponding to the eigenvalue one, P̂ðkdÞwd ¼ wd , fd is the
eigenfunctional of the adjoint operator P̂ðkdÞ� corresponding to the eigenvalue one and �K1 is a
positive operator given by
�K1 ¼ � d

dk
P̂ðkÞ

����
k¼kd

.

For more detailed argument for the asymptotic analysis of the abstract Volterra integral equation
and the proof of (3.8), the reader may refer to [6].

By changing the order of integral, we have the following expression for the operator P̂ðkÞ:
ðP̂ðkÞwÞðaÞ ¼
Z x

0

/kða; zÞwðzÞdz; ð3:9Þ

/kða; zÞ :¼
CðP 0Þ
P 0

Z x

z
e�kðb�zÞKða; b; b� zÞdb. ð3:10Þ
On the real axis, P̂ðkÞ is a positive operator, so we can apply the Perron–Frobenius theory of
non-supporting operator to determine the distribution of singular points K (see Appendix A
and [6,9]).

If w is the age-distribution of primary cases at a moment, P̂ð0Þw gives the age-distribution of
secondary cases produced by w. Hence, in terms of mathematical epidemiology, the positive oper-
ator P̂ð0Þ is called as the next-generation operator. Moreover, according to the definition by Diek-
mann et al. [3,4], the basic reproduction ratio, denoted by R0, is the asymptotic per-generation
growth factor for the norm of the infected population distribution, hence R0 is calculated as
the spectral radius of the next-generation operator, that is, for our HIV epidemic model,
R0 ¼ rðP̂ð0ÞÞ, where r(A) denotes the spectral radius of the operator A.

In order to guarantee the existence of the dominant real element kd of K, here we adopt the
following technical assumption:

Assumption 3.1. We extend the domain of K(a,b,s) such that K = 0 for a, b 2 (�1, 0) \ (x,1)
and s 2 (�1, 0) \ (b,1), so K(a,b,s) is assumed to be an essentially bounded, non-negative
measurable function on R3.
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(1) The following holds uniformly for b, s 2 R:
lim
h!0

Z 1

�1
jKðaþ h; b; sÞ � Kða; b; sÞjda ¼ 0.
(2) There exists a non-negative function �(s) such that K(a,b,s) P �(s) for all a and b, and there
exists a small number g 2 (0,x) such that �(s) > 0 for any s 2 (x � g,x).
Lemma 3.2. Under Assumption 3.1, the operator P̂ðkÞ is compact and non-supporting for all k 2 R.

Proof. Under Assumption 3.1, it is easy to see from the well-known compactness criterium in L1

[26, p. 275] that the operator P̂ðkÞ is compact for all k. Next for k 2 R, let us define a positive
functional Fk as
hF k;wi :¼
CðP 0Þ
P 0

Z x

0

Z x

z
e�kðb�zÞ�ðb� zÞdbwðzÞdz.
From Assumption 3.1-(2), Fk is a strictly positive functional and we have
P̂ðkÞw P hF k;wie; lim
k!�1

hF k; ei ¼ þ1; ð3:11Þ
where e � 1 is a quasi-interior point in L1
þ. Moreover, for any integer n, we have
P̂ðkÞnþ1w P hF k;wihF k; eine.
Then, we obtain hF ; P̂nðkÞwi > 0; n P 1 for every pair w 2 L1
þ n f0g; F 2 ðL1

þÞ
� n f0g, that is, we

know that P̂ðkÞ is a non-supporting operator. h

Proposition 3.3. Under Assumption 3.1, the following holds:

(1) K ¼ fk 2 C : 1 2 P rðP̂ðkÞÞg, where Pr(A) denotes the set of point spectrum of the operator A.
(2) The spectral radius rðP̂ðkÞÞ; k 2 R is strictly decreasing from +1 to zero.
(3) There exists a unique k0 2 R \ K such that rðP̂ðk0ÞÞ ¼ 1 and k0 > 0 if rðP̂ð0ÞÞ > 1; k0 = 0 if

rðP̂ð0ÞÞ ¼ 1; k0 < 0 if rðP̂ð0ÞÞ < 1.
(4) k0 > supfRk : k 2 K n fk0gg.
Proof. Since P̂ðkÞ is compact, rðP̂ðkÞÞ n f0g ¼ P rðP̂ðkÞÞ n f0g, hence result (1) follows. Next
P̂ðkÞ; k 2 R is non-supporting, it follows from Proposition A.1 that rðP̂ðkÞÞ; k 2 R is strictly
decreasing. For k 2 R, let fk be a positive eigenfunctional corresponding to the eigenvalue
rðP̂ðkÞÞ of positive operator P̂ðkÞ. Then, we have
hfk; P̂ðkÞei ¼ rðP̂ðkÞÞhfk; ei P hF k; eihfk; ei.
Since fk is strictly positive, we obtain rðP̂ðkÞÞ P hF k; ei. It follows from (3.11) that
limk!�1rðP̂ðkÞÞ ¼ þ1. On the other hand, it is clear that limk!1rðP̂ðkÞÞ ¼ 0. Then, rðP̂ðkÞÞ is
strictly decreasing from +1 to zero when k moves from �1 to +1, which is result (2). Result
(3) is the direct consequence of result (2). Finally, we show result (4). For any k 2 K, there is an
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eigenfunction wk such that P̂ðkÞwk ¼ wk. Then, we have jwkj ¼ jP̂ðkÞwkj 6 P̂ðRkÞjwkj. Let fRk be
the positive eigenfunctional corresponding to the eigenvalue rðP̂ðRkÞÞ of P̂ðRkÞ, we obtain that
hfRk; P̂ðRkÞjwkji ¼ rðP̂ðRkÞÞhfRk; jwkji P hfRk; jwkji.

Hence, we have rðP̂ðRkÞÞ P 1 and Rk 6 k0 because rðP̂ðxÞÞ is strictly decreasing for x 2 R and
rðP̂ðk0ÞÞ ¼ 1. If Rk ¼ k0, then P̂ðk0Þjwkj ¼ jwkj. In fact, if P̂ðk0Þjwj > jwj, taking duality pairing
with the eigenfunctional fk0 corresponding to the eigenvalue rðP̂ðk0ÞÞ ¼ 1 on both sides yields
hfk0 ; P̂ðk0Þjwkji ¼ hfk0 ; jwkji > hfk0 ; jwkji which is a contradiction. Then, we can write that
jwkj = cw0, where w0 is the eigenfunction corresponding to the eigenvalue rðP̂ðk0ÞÞ ¼ 1. Hence,
without loss of generality, we can assume that c = 1 and write wk(a) = w0 (a)exp(ia(a)) for some
real function a(a). If we substitute this relation into
P̂ðk0Þw0 ¼ w0 ¼ jwkj ¼ jP̂ðkÞwkj;

then we have
Z x

0

/k0ða; zÞw0ðzÞdz ¼
Z x

0

/k0þiIkða; zÞw0ðzÞ expðiaðzÞÞdz
����

����.

From [6, Lemma 6.12], we obtain that �Ikðb� zÞ þ aðzÞ ¼ h for some constant h. From
P̂ðkÞwk ¼ wk, we have eihP̂ðk0Þw0 ¼ w0e

ia, so h = a(a), which implies that Ik ¼ 0. Then, there is
no element k 2 K such that Rk ¼ k0 and k 5 k0 , hence result (4) holds. h

Though in general it is not easy task to calculate the basic reproduction ratio, there exists an
important exceptional case for which we can pay an attention:

Assumption 3.4. Suppose that the transmission coefficient b(a,b,s) can be factorized as
b(a,b,s) = b1(a)b2(b,s). If this factorization is possible, we call it as the proportionate mixing
assumption.

Biologically speaking, the proportionate mixing assumption means that there is no correlation
between the age of susceptibles and the age of infectives, hence it is not necessarily realistic but
very much helpful for theoretical analysis. If the proportionate assumption holds, the kernel
K(a,b,s) is also factorized as
Kða; b; sÞ ¼ k1ðaÞk2ðb; sÞ ¼ b1ðaÞb2ðb; sÞB‘ðbÞCðs; b� sÞ. ð3:12Þ

Then, the next generation operator becomes a one-dimensional operator whose range is spanned
by k1(a) :¼ b1(a), hence we can easily calculate its spectral radius as follows:

Proposition 3.5. Let us assume that the transmission rate is given by the proportionate mixing form
as K(a,b,s) = k1(a)k2(b,s). Then, the basic reproduction ratio is given by
R0 ¼
CðP 0Þ
P 0

Z x

0

k1ðzÞ
Z x

z
k2ðb; b� zÞdbdz; ð3:13Þ
and the set of characteristic root K is given by
K ¼ k 2 C :
CðP 0Þ
P 0

Z x

0

Z x

z
e�kðb�zÞk2ðb; b� zÞdbk1ðzÞdz ¼ 1

� �
. ð3:14Þ
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Proof. From the proportionate mixing assumption, we can write
ðP̂ðkÞwÞðaÞ ¼ CðP 0Þ
P 0

k1ðaÞ
Z x

0

Z x

z
e�kðb�zÞk2ðb; b� zÞdbwðzÞdz.
That is, P̂ðkÞ is a one-dimensional map and it can be written as
P̂ðkÞw ¼ hfk;wik1;
where the functional fk is given by
hfk;wi :¼
CðP 0Þ
P 0

Z x

0

Z x

z
e�kðb�zÞk2ðb; b� zÞdbwðzÞdz.
It is easily seen that
P̂ðkÞnw ¼ hfk; k1in�1hfk;wik1.
Then, we conclude that
R0 ¼ rðP̂ð0ÞÞ ¼ lim
n!1

kP̂ð0Þnk1=n ¼ hf0; k1i ¼
CðP 0Þ
P 0

Z x

0

Z x

z
k2ðb; b� zÞdbk1ðzÞdz.
On the other hand, since P̂ðkÞw ¼ w if and only if k 2 K, if we insert ck1 (where c is an arbitrary
complex number) into the equation P̂ðkÞw ¼ w, we arrive at (3.14). This completes our proof. h

From the above argument, we can conclude that the solution B(t) of (3.5) is stable if and only if
R0 < 1. Therefore, it follows from the principle of linearized stability that the disease-free steady
state of the basic system (2.11) is locally asymptotically stable if R0 < 1 and it is unstable if R0 > 1.
Then, we can state the following threshold criteria:

Proposition 3.6. The disease can invade into the host susceptible population if R0 > 1, whereas it
cannot if R0 < 1.
4. Endemic steady states

Subsequently, we consider the existence and bifurcation of endemic steady states of the system
(2.11). Let (s*, i*) be the steady state for system (2.11) and let k*(a) be the force of infection in the
steady state. Then, it follows that
s�ðaÞ ¼ e
�
R a

0
k�ðnÞ dn

; ð4:1aÞ
i�ðs; aÞ ¼ k�ðaÞs�ðaÞ. ð4:1bÞ
It follows from (2.11e) that k* must satisfy the non-linear integral equation as follows:
k�ðaÞ ¼ CðP ½k��Þ
P ½k��

Z x

0

Z b

0

Kða; b; sÞk�ðb� sÞe�
R b�s

0
k�ðnÞ dn

dsdb; ð4:2Þ
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where P[k*] denotes the size of steady state population with force of infection k* given by
P ½k�� :¼
Z x

0

B‘ðaÞ e
�
R a

0
k�ðnÞ dn þ

Z a

0

Cða� s; sÞk�ðsÞe�
R s

0
k�ðnÞ dn

ds

� �
da. ð4:3Þ
It is clear that k* = 0 is a trivial solution for the integral equation (4.2) corresponding to the dis-
ease-free steady state.

Let us define a non-linear positive operator F on L1(0,x) as follows:
F ðkÞðaÞ :¼ CðP ½k�Þ
P ½k�

Z x

0

Z b

0

Kða; b; sÞkðb� sÞe�
R b�s

0
kðnÞ dn

dsdb; k 2 L1. ð4:4Þ
Then, the endemic steady state exists if and only if F has a fixed point in the positive cone. First
under a restrictive assumption, we give an elementary proof for the existence of positive fixed
point for the operator F. For this purpose, let us observe the following lemma:

Lemma 4.1. Suppose that c(r; a) is differentiable with respect to the age of infection a and
oc(s; a)/oa 6 0 for any s P 0. Then, P[k] is a monotone decreasing functional with respect to k and it
follows that
P ½k� P
Z x

0

B‘ðsÞCðs; 0Þds; 8k 2 L1
þ. ð4:5Þ
Proof. By changing the order of integration and integrating by parts, it follows that
Z x

0

B‘ðaÞ
Z a

0

Cðs; a� sÞkða� sÞe�
R a�s

0
kðnÞ dn

dsda

¼
Z x

0

B‘ðaÞ
Z a

0

Cða� s; sÞkðsÞe�
R s

0
kðnÞ dn

dsda

¼
Z x

0

B‘ðaÞ
Z a

0

Cða� s; sÞ o

os
�e

�
R s

0
kðnÞ dn

� 	
dsda

¼
Z x

0

B‘ðaÞ �e
�
R a

0
kðnÞ dn þ Cða; 0Þ þ

Z a

0

oCða� s; sÞ
os

e
�
R s

0
kðnÞ dn

ds

� �
da.
Then, we have
P ½k� ¼
Z x

0

B‘ðaÞ Cða; 0Þ þ
Z a

0

oCða� s; sÞ
os

e
�
R s

0
kðnÞ dn

ds

� �
da. ð4:6Þ
Observe that
oCða� s; sÞ
os

¼ e
�
R a�s

0
cðn;sÞ dn cða� s; sÞ �

Z a�s

0

ocðn; sÞ
os

dn

� �
.

Then, we know that P[k] is decreasing with respect to k if oc(s;a)/oa 6 0 for any s P 0. (4.5)
follows immediately from (4.6). This completes our proof. h
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We here remark that if P[k] is decreasing with respect to k, C(P[k])/P[k] is monotone increasing
with respect to k, since we assume that C(x)/x is decreasing (Assumption 2.1). Moreover, we can
state the monotonicity of F itself as follows:

Lemma 4.2. Assume that K(a,b,s) is differentiable with respect to b and s. If C(P[k])/P[k] is
monotone increasing with respect to k, F is also a monotone increasing operator on the cone L1þ if
either one of the following conditions holds:
oKða; b; sÞ
ob

6 0; 8ða; b; sÞ; ð4:7Þ

Kða; s; 0Þ �
Z x

s

oKða; b; b� sÞ
os

db P 0; 8ða; b; sÞ. ð4:8Þ
Proof. By changing the order of integration and integrating by parts, it follows that
Z x

0

Z b

0

Kða;b; sÞkðb� sÞe�
R b�s

0
kðnÞdn

dsdb¼
Z x

0

Z x

s
Kða;b; sÞ � o

ob
e
�
R b�s

0
kðnÞdn

� �
dbds

¼
Z x

0

Kða; s; sÞ þ
Z x

s

oKða;b; sÞ
ob

e
�
R b�s

0
kðnÞdn

db
� �

ds.
Then, if oK/ob 6 0, the integral part of (4.4) is increasing with respect to k. Since we assume that
C(P[k])/P[k] is monotone increasing with respect to k, then, we can conclude that the operator F is
also monotone increasing. Next observe that
Z x

0

Z b

0

Kða; b; sÞkðb� sÞe�
R b�s

0
kðnÞ dn

dsdb

¼
Z x

0

ds
Z x

s
Kða; b; b� sÞdbkðsÞe�

R s

0
kðnÞ dn

¼
Z x

0

ds
Z x

s
Kða; b; b� sÞdb � o

os
e
�
R s

0
kðnÞ dn

� �

¼
Z x

0

Kða; b; bÞdb�
Z x

0

Kða; s; 0Þ �
Z x

s

oKða; b; b� sÞ
os

db
� �

e
�
R s

0
kðnÞ dn

ds.
Then, if (4.8) is satisfied, the integral part of (4.4) is increasing with respect to k. Again if
C(P[k])/P[k] is monotone increasing with respect to k, the operator F is also monotone
increasing. h

Note that (4.8) is satisfied if K(a,b,s) is duration independent, hence F is also a monotone
increasing operator if C(P[k])/P[k] is monotone increasing.

Proposition 4.3. Suppose that Assumption 3.1 holds and F is monotone increasing. If R0 ¼
rðP̂ð0ÞÞ > 1, then F has at least one positive fixed point, while if the following inequality holds for
0 < t < 1
CðP ½tk�Þ
P ½tk� P

CðP ½k�Þ
P ½k� ; ð4:9Þ
then F has at most one positive fixed point.
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Proof. Observe that for k 2 L1
þ we have
F ðkÞðaÞ P CðP ½0�Þ
P ½0� e�kkkL1

Z x

0

Z x

s
Kða; b; sÞkðb� sÞdbds ¼ e�kkkL1

Z x

0

ðPðsÞkÞðaÞds

¼ e�kkkL1 ðP̂ð0ÞkÞðaÞ.
Let x0 be a positive eigenvector of the next generation operator P̂ð0Þ corresponding to R0 and let
k0 :¼
logR0

kx0kL1
x0 2 L1

þ.
Thus, we have
F ðk0Þ P e�kk0kL1 P̂ð0Þk0 ¼ k0.
Since F is monotone increasing, we can define a monotone sequence by
kn ¼ F ðkn�1Þ; k0 6 k1 6 � � � 6 kn 6 knþ1 6 � � �
Since kn is bounded above, it follows from B. Levi’s theorem that there exists k1 2 L1
þ such that

limn!1kn = k1, which is no other than a positive fixed point of F. Then, there exists at least one
endemic steady state corresponding to the force of infection k1.

Subsequently, observe that for a number t 2 (0,1),
F ðtkÞ � tF ðkÞ ¼ CðP ½tk�Þ
P ½tk� � CðP ½k�Þ

P ½k�

� �
GðtkÞ þ CðP ½k�Þ

P ½k� ðGðtkÞ � tGðkÞÞ;
where operator G : L1: ! L1 is defined by
GðkÞðaÞ :¼
Z x

0

Z b

0

Kða; b; sÞkðb� sÞe�
R b�s

0
kðnÞ dn

dsdb.
Therefore, if (4.9) holds, we have
F ðtkÞ � tF ðkÞ P CðP ½k�Þ
P ½k� ðGðtkÞ � tGðkÞÞ;
where
GðtkÞ � tGðkÞ ¼ t
Z x

0

Z b

0

Kða; b; sÞkðb� sÞe�t
R b�s

0
kðnÞ dnð1� e

�ð1�tÞ
R b�s

0
kðnÞ dnÞdsdb P 0.
Now let us define positive functionals a1 and a2 on L1
þ by
a1ðwÞ :¼
CðP ½k�Þ
P ½k�

Z x

0

Z b

0

�ðsÞkðb� sÞe�
R b�s

0
kðnÞ dn

dsdb;

a2ðwÞ :¼
CðP ½k�Þ
P ½k� K

Z x

0

Z b

0

kðb� sÞe�
R b�s

0
kðnÞ dn

dsdb;
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where K :¼ sup jKða; b; sÞj. Then, it is easy to see that the following inequality holds for
w 2 L1

þ n f0g:
a1ðwÞe 6 F ðwÞ 6 a2ðwÞe;
where e = 1. Moreover, for 0 < t < 1, we obtain
F ðtkÞ P tF ðkÞ þ gðk; tÞe;
where g is a positive functional given by
gðk; tÞ :¼ CðP ½k�Þ
P ½k� ðGðtkÞ � tGðkÞÞ.
Then, we know that F is a concave operator satisfying the condition (A.1) (see Appendix A),
hence we can conclude from Lemma A.3 that F has at most one positive fixed point. This com-
pletes our proof. h

Corollary 4.4. If C(P) = a0P and (4.7) hold, there exists a unique endemic steady state if R0 > 1.

If we use the Krasnoselskii’s theorem (Proposition A.4), we can prove the following more gen-
eral existence result for endemic threshold without the assumption of Proposition 4.3:

Proposition 4.5. Suppose that Assumption 3.1 holds. If R0 > 1, then there exists at least one endemic
steady state.

Proof. First observe that the operator F maps a cone L1
þ into a bounded set. In fact, for k 2 L1

þ,
F ðkÞðaÞ 6 sup
k2L1þ

CðP ½k�Þ
P ½k� K

Z x

0

db
Z b

0

dskðb� sÞe�
R b�s

0
kðnÞ dn

¼ sup
k2L1þ

CðP ½k�Þ
P ½k� K

Z x

0

1� e
�
R b

0
kðnÞ dn

� �
db 6 sup

k2L1þ

CðP ½k�Þ
P ½k� Kx.
Observe that the Fréchet derivative of F at k = 0 is given by the next-generation operator P̂ð0Þ.
Since the next generation operator is assumed to be non-supporting with the Frobenius eigenvalue
R0 > 1, it does not have positive eigenvector with eigenvalue one. Therefore, by using Krasnosel-
skii’s theorem, we can conclude that F has at least one positive (non-zero) fixed point, which
means that there exists an endemic steady state if R0 > 1. h

On the other hand, if the basic reproduction ratio is small enough, there is no endemic steady
state and the disease-free steady state becomes globally stable. That is, we can show the following
results:

Proposition 4.6. Suppose that the next generation operator P̂ð0Þ is compact and non-supporting,
and there exists a number a > 0 such that for any / 2 L1þð0;xÞ n f0g, it holds that
F 0½0�/� aF ð/Þ 2 L1
þ n f0g. ð4:10Þ
Then, if R0 ¼ rðP̂ð0ÞÞ ¼ rðF 0½0�Þ 6 a, the disease-free steady state is only steady state.
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Proof. Suppose that R0 6 a. If F has a non-zero fixed point / 2 L1
þ n f0g, we have a/ ¼

aF ð/Þ 6 P̂ð0Þ/. Let w� 2 ðL1
þÞ

� n f0g be the adjoint eigenvector corresponding to the eigenvalue
R0 of P̂ð0Þ. Then, w* is a strictly positive functional. We write the value of w* at / 2 L1

þ as h/,w*i.
Then, it follows from our assumption that for any / 2 L1

þ

hF 0½0�/� aF ð/Þ;w�i ¼ ðR0 � aÞh/;w�i > 0.
Then, we have R0 > a, which contradicts our assumption. That is, F has no non-zero fixed point
and there is no endemic steady state. h

Proposition 4.7. Let M :¼ supxP0C(x)/x <1 and define a > 0 such that
a ¼ M�1 CðP ½0�Þ
P ½0� ;
then if R0 6 a, there is no endemic steady state. Moreover, if R0 < a, the disease-free steady state is
globally asymptotically stable.

Proof. From the assumption, we have
CðP ½0�Þ
P ½0� P a

CðP ½k�Þ
P ½k� 8k 2 L1

þ.
Then, it is easily seen that the condition (4.10) holds, hence if R0 6 a, there is no endemic steady
state. Next in order to use comparative argument, let us consider a linear system as follows:
�stðt; aÞ þ �saðt; aÞ ¼ ��iðt; 0; aÞ;
�itðt; s; aÞ þ�isðt; s; aÞ ¼ 0;

�sðt; 0Þ ¼ 1;

�iðt; 0; aÞ ¼ �sðt; aÞ CðP ½0�Þ
aP ½0�

R x
0

R b
0
Kða; b; sÞ�iðt; s; b� sÞdsdb.

8>>>>><
>>>>>:

ð4:11Þ
Then, given the same initial condition, we can see that 0 6 �iðt; 0; aÞ 6 iðt; 0; aÞ and
limt!1�iðt; 0; aÞ ¼ 0 if R0/a < 1. Then, the disease-free steady state is globally asymptotically stable
if R0 < a. h

Corollary 4.8. Suppose that C(P) = a0P. Then there is no endemic steady state if R0 < 1.

Here, we remark that the sufficient condition (4.7) for monotonicity of the map F may not nec-
essarily be satisfied for HIV infection. For example, if we can assume that the rate of developing
AIDS is irrelevant to the age of infection and the transmission rate is not increasing with respect
to the age of infecteds, (4.7) is satisfied. But if the immune system becomes weaker by ageing, the
rate of developing AIDS c(s;a) will be an increasing function of the age of infection a. Moreover,
in the case of HIV infection, it may be reasonable to assume that C(x) is constant or it is given by
a saturation function as (2.7)-(ii), hence the condition (4.9) also does not hold in general. In sum-
mary, it would be difficult to expect the uniqueness of endemic steady state for HIV infection for
realistic situation.
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In fact, even for the proportionate mixing case, we can show that multiple endemic steady states
could exist. Let us adopt the assumption (3.12) again, so F(k) can be expressed as
F ðkÞðaÞ ¼ k1ðaÞ
CðP ½k�Þ
P ½k�

Z x

0

Z b

0

k2ðb; sÞkðb� sÞe�
R b�s

0
kðnÞ dn

dsdb.
Since the range of F is one-dimensional, then k is a positive fixed point of F if and only if there
exists a positive constant a such that k = ak1 and
1 ¼ CðP ðaÞÞ
P ðaÞ

Z x

0

Z b

0

k2ðb; sÞk1ðb� sÞe�a
R b�s

0
k1ðnÞ dn dsdb; ð4:12Þ
where
P ðaÞ :¼
Z x

0

B‘ðaÞ e
�a
R a

0
k1ðnÞ dn þ

Z a

0

Cða� s; sÞak1ðsÞe�a
R s

0
k1ðnÞ dnds

� �
da.
Let us define a continuous function FðaÞ; a P 0 as
FðaÞ :¼ CðP ðaÞÞ
P ðaÞ

Z x

0

Z b

0

k2ðb; sÞk1ðb� sÞe�a
R b�s

0
k1ðnÞ dndsdb.
From (3.13), we know that R0 ¼ Fð0Þ. It follows from Lemma 4.1 that if oc(s;a)/oa 6 0,
C(P(a))/P(a) is a non-decreasing function with respect to a and bounded above
lim
a!1

CðP ðaÞÞ=P ðaÞ ¼ CðPð1ÞÞ=P ð1Þ;
where Pð1Þ :¼ lima!1PðaÞ ¼
R x
0 B‘ðaÞCða; 0Þda > 0.

Therefore, F is a product of a non-decreasing function and a monotone decreasing function
and lima!1FðaÞ ¼ 0. Then, if Fð0Þ ¼ R0 > 1, we know that FðaÞ ¼ 1 has at least one positive
root, which corresponds to an endemic steady state. Moreover, if R0 ¼ Fð0Þ is less than one
but very near to unity, we can expect that FðaÞ ¼ 1 has at least two positive roots if
F0ð0Þ > 0. This means that the backward bifurcation at R0 = 1 of non-trivial steady states is a
possible scenario to produce multiple endemic steady states. We see below that this scenario
can be realized.
5. Bifurcation of endemic steady states

Of our concern here is to show that a backward bifurcation of endemic steady state can occur.
Since we know that for largeR0, there always exists an endemic steady state, a backward bifurcation
at R0 = 1 could be a possible mechanism to produce multiple endemic steady states when R0 < 1.

It has been so far pointed out by several authors that the backward bifurcation can occur
for complex epidemic models, hence endemic steady states could exist even in case that the basic
reproduction ratio is less than one and the disease-free steady state is locally stable
[5,7,13,14,16,24]. For HIV epidemic models, Huang et al. [7] have shown that a multiple group
model could have multiple endemic steady states produced by the backward bifurcation, but
Thieme and Castillo-Chavez [22] found that the infection-age-dependent one-sex model without
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age structure has at most one endemic steady state. In the following, we show that the backward
bifurcation could occur for our age-duration-structured HIV epidemic model for a homogeneous
community, and it could produce multiple endemic steady states for the proportionate mixing
case.

In order to make use of bifurcation argument, let us introduce a bifurcation parameter � such
that C(x) is replaced by �C(x), and call the basic system with the parameter � as the parameterized
system. Then, the fixed point equation to determine the force of infection k is rewritten as follows:
Wðk; �Þ :¼ �F ðkÞ � k ¼ 0; ðk; �Þ 2 L1ð0;xÞ � Rþ; ð5:1Þ

where the map F is given by (4.4). Now we assume thatW (k,�) is analytic with respect to (k, �) and
r(F 0[0]) = 1. That is, the non-supporting operator F 0[0] has a unique positive eigenvalue one.
Then, � gives the basic reproduction ratio of the parameterized system. Now we are interested
in the structure of solution set
W�1ð0Þ :¼ fðk; �Þ 2 L1ð0;xÞ � Rþ : Wðk; �Þ ¼ 0g. ð5:2Þ

From the Implicit Function Theorem, we can expect a bifurcation from the trivial branch (0,�)
only for those values � such that the linear mapping
Lð�Þ :¼ D1Wð0; �Þ ¼ �F 0½0� � I ;
is not boundedly invertible, where D1 denotes the Fréchet derivative for the first element and I is
the identity operator. Since F 0[0] has a unique positive eigenvalue one, the only possible bifurca-
tion from the trivial branch can occur at � = 1. In the following, we look for a bifurcating solution
by using the standard argument of Lyapunov–Schmidt method, see [20, chapter VII].

Let X :¼ L1(0,x) and let r(�) be the simple real strictly dominant eigenvalue of L(�), /(�) the
eigenvector of L(�) and /*(�) the eigenvector of L*(�) (the adjoint operator of L(�)) associated with
r(�) such that h/(�),/*(�)i = 1, where h/,/*i is the value of /* at /. Since /(1) is the Frobenius
eigenvector of the non-supporting operator F 0[0] corresponding to the eigenvalue one, there exist a
projection P to the one-dimensional eigenspace spanned by /(1) and a projection Q = I � P such
that PL(1) = L(1)P, QL(1) = L(1)Q, and the linear mapping L : QX ! QX defined by Ly ¼
Lð1Þy for y 2 QX is boundedly invertible.

Now every x 2 X can be expressed as x = Px + Qx = a/(1) + Qx, we can assume that the
bifurcating steady solution k of W(k, �) = 0 around the trivial solution (0,1) is expressed as
follows:
k ¼ a/ð1Þ þ x2;
where, x2 2 QX and a = hk,/*(1) i.
If we define W2(x1,x2,�) :¼ QW(x1 + x2, �) for (x1,x2, �) 2 PX · QX · R, then D2W2(0,0,1) =

QD1W(0,1) is an invertible operator on QX, hence we can apply the Implicit Function Theorem
to show that there exist numbers g > 0, d > 0 such that for every jx1j + j� � 1j < d there is a unique
solution x2(x1,�) of QW(x1 + x2, �) = 0 with jx2j < g, and it follows that
x2ð0; 1Þ ¼ D1x2ð0; 1Þ ¼ D2x2ð0; 1Þ ¼ 0. ð5:3Þ

Then, note that x2 = O(jx1j2). By using this solution, we can set
k ¼ a/ð1Þ þ x2ða/ð1Þ; �Þ.
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Since W = PW + QW, we know that if PW(a/(1) + x2(a/(1), �),�) = 0, we conclude that (k,�) is
a bifurcation solution. Therefore, we arrive at a one-dimensional bifurcation equation as
gða; sÞ :¼ hWða/ð1Þ þ zða; sÞ; 1þ sÞ;/�ð1Þi ¼ 0;
where s :¼ � � 1 and z(a,s) :¼ x2(a/(1), �).
By expanding W at (0,1), we can observe that
hWðk; �Þ;/�ð1Þi ¼


Wð0; 1Þ þ D1Wð0; 1Þkþ D2Wð0; 1Þð�� 1Þ þ 1

2
fD2

2Wð0; 1Þð�� 1Þ2

þ 2D1D2Wð0; 1Þðk; �� 1Þ þ D2
1Wð0; 1Þðk; kÞg þ � � � ;/�ð1Þ

�
; ð5:4Þ
where note that
Wð0; 1Þ ¼ D2Wð0; 1Þð�� 1Þ ¼ D2
2Wð0; 1Þð�� 1Þ2 ¼ 0.
Substituting k = a/(1) + z(a,s) into the above expansion, we obtain that
gða; sÞ ¼


D1Wð0; 1Þzþ D1D2Wð0; 1Þðk; sÞ þ 1

2
D2

1Wð0; 1Þðk; kÞ þ � � � ;/�ð1Þ
�
; ð5:5Þ
Since g(a,s) = O(a), we can define h(a,s) :¼ g(a,s)/a and observe that
hð0; 0Þ ¼ 0;

o

os
hð0; 0Þ ¼ hD1D2Wð0; 1Þ/ð1Þ;/�ð1Þi ¼ hF 0½0�/ð1Þ;/�ð1Þi ¼ 1.
Again from the Implicit Function Theorem, there exist positive numbers g > 0 and d > 0 such that
for every jaj < d there exists a unique js(a)j < g such that g(a,s(a)) = ah(a,s(a)) = 0. So the bifur-
cating solution can be expressed as
kðaÞ ¼ a/ð1Þ þ zða; sðaÞÞ.
Substituting the Taylor series sðaÞ ¼
P1

n¼1sna
n into (5.5) and equating the power of a, we have
D1Wð0; 1Þzþ a2s1D1D2Wð0; 1Þ/ð1Þ þ a2
1

2
D2

1Wð0; 1Þð/ð1Þ;/ð1ÞÞ ¼ 0. ð5:6Þ
From the Fredholm Alternative [1, Theorem 6.71], (5.6) has a solution z if and only if


s1D1D2Wð0; 1Þ/ð1Þ þ 1

2
D2

1Wð0; 1Þð/ð1Þ;/ð1ÞÞ;/�ð1Þ
�

¼ 0.
Since hD1D2W(0,1)/(1),/*(1)i = hF 0[0]/(1),/*(1)i = 1, we obtain that
s1 ¼ � 1

2
hD2

1Wð0; 1Þð/ð1Þ;/ð1ÞÞ;/�ð1Þi. ð5:7Þ
Then, we can conclude the following bifurcation result:
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Proposition 5.1. The bifurcation at (0,1) is subcritical if s1 < 0, and it is supercritical if s1 > 0.

Corollary 5.2. The bifurcation at (0,1) is supercritical if
C0ðP ½0�Þ P CðP ½0�Þ
P ½0� . ð5:8Þ
In particular, if the number of contacts per unit time C(P) is proportional to the host population size
P (the mass action law), the bifurcation is supercritical.

Proof. Let k1 = /(1). The partial derivative D2
1Wð0; 1Þð/ð1Þ;/ð1ÞÞ can be calculated as follows:
D2
1Wð0; 1Þð/ð1Þ;/ð1ÞÞ ¼ o

2

ohok
F ððhþ kÞk1Þ

����
ðh;kÞ¼ð0;0Þ

¼ 2
C0ðP ½0�Þ
CðP ½0�Þ �

1

P ½0�

� �
P 0½0�k1 � 2F 0½0�w;
where we have used the fact that F 0[0]k1 = k1 and w, P[0] and P 0[0] are given by
wðaÞ :¼ k1ðaÞ
Z a

0

k1ðrÞdr; P ½0� ¼
Z x

0

B‘ðaÞda;

P 0½0�k1 ¼ �
Z x

0

B‘ðaÞ
Z a

0

ð1� Cða� s; sÞÞk1ðsÞdsda.
Then, we conclude from Proposition 5.1 that the bifurcation at (0,1) is supercritical if (5.8) is
satisfied. h

Subsequently, in order to proceed the above calculation more concretely, let us again assume
the proportionate mixing assumption, that is, the kernel K can be decomposed as K(a,b,s) = -
k1(a)k2(b,s). Then, the Frobenius eigenvector corresponding to the eigenvalue one is given by
k1 and the next generation operator is a one-dimensional map given by
F 0½0�/ ¼ CðP ½0�Þ
P ½0�

Z x

0

Z b

0

k2ðb; b� sÞ/ðsÞdsdb
� �

k1; ð5:9Þ
and its spectral radius can be expressed as
rðF 0½0�Þ ¼ CðP ½0�Þ
P ½0�

Z x

0

Z b

0

k2ðb; b� sÞk1ðsÞdsdb. ð5:10Þ
If we denote /*(1) as the adjoint eigenvector of F 0[0] corresponding to the eigenvalue one such
that hk1, /*(1)i = 1, then for any / 2 L1, it follows that
h/;/�ð1Þi ¼ h/; F 0½0��/�ð1Þi ¼ hF 0½0�/;/�ð1Þi

¼ hk1;/�ð1ÞiCðP ½0�Þ
P ½0�

Z x

0

Z b

0

k2ðb; b� sÞ/ðsÞdsdb

¼ CðP ½0�Þ
P ½0�

Z x

0

Z b

0

k2ðb; b� sÞ/ðsÞdsdb. ð5:11Þ
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That is, we obtain
F 0½0�/ ¼ h/;/�ð1Þik1. ð5:12Þ
By using the above facts, we can calculate s1 as
s1 ¼ � d

dx
CðxÞ
x

����
x¼P ½0�

P 0½0� P ½0�
CðP ½0�Þ þ hF 0½0�w;/�ð1Þi

¼ d

dx
CðxÞ
x

����
x¼P ½0�

Z x

0

Z b

0

k2ðb; b� sÞk1ðsÞdsdb
Z x

0

B‘ðaÞ
Z a

0

ð1� Cða� s; sÞÞk1ðsÞdsda

þ CðP ½0�Þ
P ½0�

Z x

0

Z b

0

k2ðb; b� sÞk1ðsÞ
Z s

0

k1ðfÞdfdsdb;
where we have used the normalization condition as
1 ¼ CðP ½0�Þ
P ½0�

Z x

0

Z b

0

k2ðb; b� sÞk1ðsÞdsdb. ð5:13Þ
Then, using Proposition 5.1 and the fact that P ½0� ¼
R x
0 B‘ðaÞda, we arrive at the following

statement:

Proposition 5.3. Suppose that the kernel K is decomposed as K(a,b,s) = k1(a)k2(b,s). Then, for the
parameterized system the bifurcation at (0,1) is subcritical if and only if
1� C0ðP ½0�Þ
CðP ½0�Þ P ½0�

� �Z x

0

‘ðaÞR x
0
‘ðaÞda

Z a

0

ð1� Cða� s; sÞÞk1ðsÞdsda

>

R x
0

R b
0
k2ðb; b� sÞk1ðsÞ

R s
0
k1ðfÞdfdsdbR x

0

R b
0 k2ðb; b� sÞk1ðsÞdsdb

. ð5:14Þ
It would be an interesting question under what kind of parameter values the condition (5.14)
can be realized. For demonstration purpose, let us consider the most simple case that C(x), k1,
k2 and c are all constant. Under this condition, (5.14) can be calculated as follows:
Z x

0

‘ðaÞR x
0
‘ðaÞda

Z a

0

ð1� e�csÞdsda >
x
3
;

where we interpret x as an upper bound of sexually active age. It is easy to see that the above
inequality can hold if the natural death rate is small enough (that is, ‘(a) is almost constant) dur-
ing the sexually active age.

Finally, let us confirm that the backward bifurcation can produce multiple endemic steady
states. Under the proportionate mixing assumption K(a,b,s) = k1(a)k2(b,s), the endemic steady
state is given by ak1(a) with positive root a > 0 of the characteristic equation as follows:
wða; �Þ :¼ �FðaÞ � 1 ¼ 0; ð5:15Þ
where the transmission kernel is normalized such that w(0,1) = 0. Now we can observe that
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ow
oa

ð0; 1Þ ¼ �
R x
0

R b
0
k2ðb; b� sÞk1ðsÞ

R s
0
k1ðfÞdfdsdbR x

0

R b
0 k2ðb; b� sÞk1ðsÞdsdb

þ 1� C0ðP ð0ÞÞ
CðP ð0ÞÞ P ð0Þ

� �Z x

0

‘ðaÞR x
0
‘ðaÞda

Z a

0

ð1� Cða� s; sÞÞk1ðsÞdsda;
where we have used the normalization condition (5.13).
If we assume that ow(0,1)/oa 5 0, it follows from the Implicit Function Theorem that w(a,�) =

0 can be solved as a = a(�) with a(1) = 0 at the neighborhood of (a,�) = (0,1) and
dað1Þ
d�

¼ � w�ð0; 1Þ
wað0; 1Þ

¼ � 1

wað0; 1Þ
.

If the bifurcation at � = 1 is backward, that is, wa(0,1) > 0, for small g > 0, we have a(�) > 0
such that w(a(�),�) = 0 for � 2 (1 � g, 1). Let us fix such a � 2 (1 � g, 1) and consider w(a, �) as a
function of a. Then, we know that w(0,�) = � � 1 < 0, w(a(�),�) = 0 and w(1,�) = �1. Moreover,
ow/oa is positive at a = a(�) if � is small enough, because ow/oa > 0 at a = 0. Therefore, we can
conclude from the Intermediate Value Theorem that there exists at least two positive roots for
w(a,�) = 0. Since � is no other than the basic reproduction ratio, we can state that the backward
bifurcation at R0 = 1 can produce multiple endemic steady states.

Proposition 5.4. Under the proportionate mixing assumption, if (5.14) holds and the basic
reproduction ratio R0 is less than one but very near to the unity, there exist at least two endemic
steady states.
6. Stability of endemic steady states

In this section, let us consider the stability of endemic steady states. First we introduce a line-
arized system of (2.11) at the endemic steady state (s*(a), i*(s;a)). Let us define the perturbation x
and y as
sðt; aÞ ¼ s�ðaÞ þ xðt; aÞ; iðt; s; aÞ ¼ i�ðs; aÞ þ yðt; s; aÞ. ð6:1Þ

Moreover, we define P* and k*(a) as the total size of host population and the force of infection at
the endemic steady state respectively. That is,
k�ðaÞ ¼ CðP �Þ
P �

Z x

0

Z b

0

Kða; b; sÞi�ðs; b� sÞdsdb; ð6:2Þ

PðtÞ ¼ P � þ �ðxðtÞ; yðtÞÞ; ð6:3Þ
where the functional � : X! R is defined by
�ðx; yÞ :¼
Z x

0

B‘ðaÞ xðaÞ þ
Z a

0

Cðs; a� sÞyðs; a� sÞds
� �

da; ð6:4Þ
where X = L1(0,x : E) and E = R · L1 (0,x). Inserting (6.1) and (6.3) into (2.11) and neglecting
the second-order term, we arrive at the linearized system:
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o

ot
þ o

oa

� �
xðt; aÞ ¼ �yðt; 0; aÞ; ð6:5aÞ

o

ot
þ o

os

� �
yðt; s; aÞ ¼ 0; ð6:5bÞ

xðt; 0Þ ¼ 0; ð6:5cÞ

yðt; 0; aÞ ¼ A1ðaÞ
Z x

0

Z b

0

Kða; b; sÞyðt; s; b� sÞdsdbþ A2ðaÞ�ðxðtÞ; yðtÞÞ þ k�ðaÞxðt; aÞ;

ð6:5dÞ
where A1 and A2 are given by
A1ðaÞ :¼ s�ðaÞCðP
�Þ

P � ; ð6:6aÞ

A2ðaÞ :¼
d

dP
CðP Þ
P

����
P¼P�

s�ðaÞ
Z x

0

Z b

0

Kða; b; sÞi�ðs; b� sÞdsdb. ð6:6bÞ
It follows from (6.5b) that
yðt; s; aÞ ¼
yðt � s; 0; aÞ; t � s > 0;

y0ðs� t; aÞ; s� t > 0;

�
ð6:7Þ
where y0(s;a) 2 L1(0,x; L1(0,x)) is a given initial data. Let us define
zðt; aÞ :¼ yðt; 0; aÞ.
For integrals in (6.5d) and �(x,y), we observe that
Z x

0

Z b

0

Kða; b; sÞyðt; s; b� sÞdsdb ¼
Z x

0

ds
Z x

s
Kða; b; sÞyðt; s; b� sÞdb

¼ g1ðtÞ þ
R t
0 ds

R x
s Kða; b; sÞzðt � s; b� sÞdb; t 6 x;R x

0 ds
R x
s Kða; b; sÞzðt � s; b� sÞdb; t > x;

(

Z x

0

Z a

0

B‘ðaÞCðs; a� sÞyðt; s; a� sÞdsda ¼
Z x

0

ds
Z x

s
B‘ðaÞCðs; a� sÞyðt; s; a� sÞda

¼ g2ðtÞ þ
R t
0 ds

R x
s B‘ðaÞCðs; a� sÞzðt � s; a� sÞda; t 6 x;R x

0
ds
R x
s B‘ðaÞCðs; a� sÞzðt � s; a� sÞda; t > x;

(

where g1 and g2 are given initial functions defined by
g1ðtÞ :¼
Z x

t
ds
Z x

s
Kða; b; sÞy0ðs� t; b� sÞdb;

g2ðtÞ :¼
Z x

t
ds
Z x

s
B‘ðaÞCðs; a� sÞy0ðs� t; a� sÞda.
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On the other hand, it follows from (6.5a) that
xðt; aÞ ¼ x0ða� tÞ �
R t
0
zðr; a� t þ rÞdr; a� t > 0;

�
R a
0 zðt � r; a� rÞdr; t � a > 0;

(
ð6:8Þ
where x0(a) is a given initial data. By inserting above relations into (6.5d), for t > x we arrive at
the following homogeneous integral equation for z(t,a):
zðt; aÞ ¼ A1ðaÞ
Z x

0

ds
Z x

s
kða; b; sÞzðt � s; b� sÞdb� k�ðaÞ

Z a

0

zðt � s; a� sÞds

� A2ðaÞ
Z x

0

ds
Z x

s
B‘ðaÞð1� Cðs; a� sÞÞzðt � s; a� sÞda. ð6:9Þ
By the principle of linearized stability, it is sufficient to see the stability of zero solution of (6.9)
in order to know the stability of the endemic steady state. Though it is so complex to handle the
most general case, let us again use the proportionate mixing assumption, that is, the transmission
kernel K(a,b,s) is written as K(a,b,s) = k1(a)k2(b,s). Let us consider the exponential solution of
(6.9). By inserting z(t,a) = eztw(a), z 2 C into (6.9), we can derive the equation for w(a) as follows:
wðaÞ ¼ A1ðaÞk1ðaÞh1ðz;wÞ þ A2ðaÞh2ðz;wÞ � k�ðaÞ
Z a

0

e�zða�xÞwðxÞdx. ð6:10Þ
In the above equation, h1 and h2 are numbers defined by
h1ðz;wÞ :¼
Z x

0

ds
Z x

s
k2ðb; sÞe�zswðb� sÞdb ¼

Z x

0

p1ðz; xÞwðxÞdx;

h2ðz;wÞ :¼ �
Z x

0

ds
Z x

s
B‘ðaÞð1� Cðs; a� sÞÞe�zswða� sÞda ¼ �

Z x

0

p2ðz; xÞwðxÞdx;
where integral kernels p1 and p2 are given by
p1ðz; xÞ :¼
Z x

0

k2ðsþ x; sÞe�zs ds; ð6:11aÞ

p2ðz; xÞ :¼
Z x

0

B‘ðsþ xÞð1� Cðs; xÞÞe�zs ds. ð6:11bÞ
Note that from the estimate (2.13), we obtain
jp1ðz; xÞj 6
kbk1Be�lx

lþ cþRz
; Rz > �ðlþ cÞ; ð6:12aÞ

jp2ðz; xÞj 6
Be�lx

lþRz
; Rz > �l. ð6:12bÞ
Define /ðaÞ :¼
R a
0 e

�zða�xÞwðxÞdx. Then, (6.10) can be written as a first-order ordinary differen-
tial equation as
/0ðaÞ þ ðzþ k�ðaÞÞ/ðaÞ ¼ A1ðaÞk1ðaÞh1ðz;wÞ þ A2ðaÞh2ðz;wÞ. ð6:13Þ

Therefore, we obtain
/ðaÞ ¼
Z a

0

e
�zða�xÞ�

R a

x
k�ðrÞ dr½A1ðxÞk1ðxÞh1ðz;wÞ þ A2ðxÞh2ðz;wÞ�dx. ð6:14Þ
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Combining (6.10) and (6.14), we have the expression as
wðaÞ ¼ h1ðz;wÞ A1ðaÞk1ðaÞ � k�ðaÞ
Z a

0

e
�zða�xÞ�

R a

x
k�ðrÞ drA1ðxÞk1ðxÞdx

� �

þ h2ðz;wÞ A2ðaÞ � k�ðaÞ
Z a

0

e
�zða�xÞ�

R a

x
k�ðrÞ drA2ðxÞdx

� �
. ð6:15Þ
Multiplying pj(z,a) to both sides of (6.15) and integrating from zero to x with respect to a, we
can arrive at the simultaneous equations for (h1,h2):
h1
h2

� �
¼

a11ðz; k�Þ; a12ðz; k�Þ
a21ðz; k�Þ; a22ðz; k�Þ

� �
h1
h2

� �
; ð6:16Þ
where coefficients aij(z,k*) are given by
a11ðz; k�Þ :¼
Z x

0

p1ðz; xÞ A1ðxÞk1ðxÞ � k�ðxÞ
Z x

0

e
�zðx�nÞ�

R x

n
k�ðrÞ dr

A1ðnÞk1ðnÞdn
� �

dx;

a12ðz; k�Þ :¼
Z x

0

p1ðz; xÞ A2ðxÞ � k�ðxÞ
Z x

0

e
�zðx�nÞ�

R x

n
k�ðrÞ dr

A2ðnÞdn
� �

dx;

a21ðz; k�Þ :¼ �
Z x

0

p2ðz; xÞ A1ðxÞk1ðxÞ � k�ðxÞ
Z x

0

e
�zðx�nÞ�

R x

n
k�ðrÞ dr

A1ðnÞk1ðnÞdn
� �

dx;

a22ðz; k�Þ :¼ �
Z x

0

p2ðz; xÞ A2ðxÞ � k�ðxÞ
Z x

0

e
�zðx�nÞ�

R x

n
k�ðrÞ dr

A2ðnÞdn
� �

dx.
From (6.16) we know that there exist non-trivial solutions hj(z,w) if and only if the following
condition holds:
det
a11ðz; k�Þ � 1; a12ðz; k�Þ
a21ðz; k�Þ; a22ðz; k�Þ � 1

� �
¼ 0. ð6:17Þ
Thus, the possible characteristic roots z are given as elements of the set K defined by
K :¼ fz 2 C : f ðz; k�Þ ¼ 1g;

where f(z,k*), z 2 C is defined by
f ðz; k�Þ :¼ a11ðz; k�Þ þ a22ðz; k�Þ þ a12ðz; k�Þa21ðz; k�Þ � a11ðz; k�Þa22ðz; k�Þ.

It is clear that f(z,k*) is an analytic function and limRz!1f ðz; k�Þ ¼ �1, then supz2KRz < 1.
Moreover, just the same as the Lotka’s characteristic equation, it follows from the uniqueness the-
orem for analytic function and the Riemann–Lebesgue Lemma that there can be only finitely
many z 2 K in any finite strip a 6 Rz 6 b [25, p. 189, Theorem 4.10]. Then, we can state as

Proposition 6.1. There exists a dominant characteristic root z0 2 K such that for any z 2 K;
Rz 6 Rz0.

In particular, if the steady state is trivial one, we have a12 = a22 = 0, and it is easy to see that
(6.17) is reduced to a11(z, 0) = 1, hence K is given by (3.14), and there exists a unique real domi-
nant characteristic root.
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The principle of linearized stability can be applied to our infinite-dimensional dynamical system
(2.11), though here we omit its the proof, the reader may refer to Appendix A for the outline.
Then, we can state as follows:

Proposition 6.2. If Rz0 < 0, the endemic steady state is locally asymptotically stable, while if
Rz0 > 0, it is unstable.

Even under the assumption of proportionate mixing, it is difficult to know the stability of en-
demic steady states, since the characteristic Eq. (6.17) is very complex. However, as far as the
bifurcating solution is small enough, we could expect the principle of stability change to hold.
Thus, we again use the bifurcation parameter � introduced in Section 5 such that C(x) is replaced
by �C(x) and r(F 0[0]) = 1. Then, we can prove the following:

Proposition 6.3. Suppose that the transmission rate is given by the proportionate mixing assumption
as K(a,b,s) = k1(a)k2(b,s). Then, as long as k* is sufficiently small, the corresponding endemic steady
state bifurcating from the disease-free steady state is locally asymptotically stable in case of a
forward bifurcation, and it is unstable in case of a backward bifurcation.

Proof. We use the setting in Section 5. From (6.2), (4.1) and the proportionate mixing assump-
tion, we have the expression k*(a) = c*k1(a), where the number c* is a unique positive root of
the characteristic equation as
1 ¼ �
CðP ½c�k1�Þ
P ½c�k1�

Z x

0

p1ð0; xÞk1ðxÞe�c�
R x

0
k1ðrÞ drdx; ð6:18Þ
where p1(0, Æ), k1(Æ) and C(Æ) are normalized as
CðP ½0�Þ
P ½0�

Z x

0

p1ð0; xÞk1ðxÞdx ¼ 1. ð6:19Þ
Let us define a function G as
Gð�; c�Þ :¼ �
CðP ½c�k1�Þ
P ½c�k1�

Z x

0

p1ð0; xÞk1ðxÞe�c�k1ðrÞ drdx� 1.
Observe that G(1,0) = 0 and
Gc�ð1; 0Þ ¼
oGð�; c�Þ

oc�

����
ð�;c�Þ¼ð1;0Þ

¼ � d

dx
CðxÞ
x

����
x¼P ½0�

Z x

0

p1ð0; xÞk1ðxÞdx
Z x

0

p2ð0; xÞk1ðxÞdx

� CðP ½0�Þ
P ½0�

Z x

0

p1ð0; xÞk1ðxÞ
Z x

0

k1ðfÞdfdx.
From the above calculation, we can see that Gc�ð1; 0Þ equals �s1 calculated in Section 5. From the
Implicit Function Theorem, under the condition of Gc�ð1; 0Þ 6¼ 0;G ¼ 0 defines locally c* = c*(�)
with c*(1) = 0 near the point (�,c*) = (1,0). In particular, we have�
dc�

d�

���
�¼1

¼ � G�ð1; 0Þ
Gc�ð1; 0Þ

¼ � 1

Gc�ð1; 0Þ
. ð6:20Þ
Then, we know that if Gc�ð1; 0Þ > 0, then dc*(1)/d� < 0 and the bifurcation at � = 1 is backward,
while if Gc�ð1; 0Þ < 0, then dc*(1)/d� > 0 and the bifurcation at � = 1 is forward.
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From the way of introducing � into the basic system, we know that A1 and A2 are proportional
to �. Then, the characteristic Eq. (6.17) can be rewritten as follows:
F ðz; �Þ :¼ a11ðz; c�ð�Þk1Þ þ a22ðz; c�ð�Þk1Þ
þ �½a12ðz; c�ð�Þk1Þa21ðz; c�ð�Þk1Þ � a11ðz; c�ð�Þk1Þa22ðz; c�ð�Þk1Þ� � 1. ð6:21Þ
It follows from (6.18) that (z, �) = (0,1) is a solution of (6.21). Then, we know that F = 0 defines
locally a function z = z(�) with z(1) = 0 provided oF/oz 5 0 around (z, �) = (0,1). Note that
z(1) = 0 is a real strictly dominant characteristic root for the equation F(z, 1) = 0. After a long cal-
culation, we can conclude that
F zð0; 1Þ ¼ �
Z x

0

Z x

0

sk2ðsþ x; sÞdsk1ðxÞdx;

F �ð0; 1Þ ¼ f ð0; 0Þ þ of ð0; 0Þ
ok�

dc�ð1Þ
d�

¼ 1þ 2Gc�ð1; 0Þ
dc�ð1Þ
d�

¼ �1;
where we have used (6.19). From the Implicit Function Theorem, we have
dzð�Þ
d�

����
�¼1

¼ � F �ð0; 1Þ
F zð0; 1Þ

¼ � 1R x
0

R x
0 sk2ðsþ x; sÞdsk1ðxÞdx

< 0.
Then, we know that z 0(1) < 0. Therefore, if the bifurcation at � = 1 is forward, then the dominant
characteristic root z(�) goes to the left half plane as � increases from unity, while if the bifurcation
at � = 1 is backward, then the dominant characteristic root z(�) enters into the right half plane as �
decreases from unity.

Finally, observe that we can expand F(z, �) at � = 1 as
F ðz; �Þ ¼ /̂ðzÞ þ hðz; �Þ; ð6:22Þ
where /̂ðzÞ ¼ F ðz; 1Þ ¼
R1
0

e�zs/ðsÞds denotes the Laplace transform of a function / given by
/ðsÞ :¼ CðP ½0�Þ
P ½0�

Z x

0

k2ðsþ x; sÞk1ðxÞdx;
and h(z, �) = O(j� � 1j). It follows from our assumption that /̂ð0Þ ¼ 1. More precisely, we can
state that there exist numbers L > 0, �0 > 0 and f > 0 such that
jhðz; �Þj ¼ jF ðz; �Þ � F ðz; 1Þj < Lj�� 1j; ð6:23Þ

uniformly for Rz P �f and j�j < �0. In fact, all given parameter functions are assumed to be
essentially uniformly bounded, hence from (6.12) if we choose f as 0 < f < l, we can prove that
jF�j is uniformly bounded for Rz P �f and j�j < �0. Then, the Lipschitz condition with respect
to � as (6.23) follows. For the unperturbed characteristic equation /̂ðzÞ ¼ 1; z ¼ 0 is a strictly dom-
inant root. Now we can apply the argument given in [8, p. 71] to conclude that as long as j� � 1j is
sufficiently small, z(�) is a unique characteristic root in the half plane Rz P �f and characteristic
roots other than the dominant root z(�) stay in the left half plane Rz < �f. Therefore, as long as
k* = c*(�)k1 is sufficiently small, the corresponding endemic steady state bifurcating from the dis-
ease-free steady state is locally asymptotically stable in case of a forward bifurcation, and it is
unstable in case of a backward bifurcation. h
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7. Discussion

In this paper we consider an age-duration-structured population model for the HIV infection in
a homosexual community. We have shown that the basic reproduction ratio R0 is given by the
spectral radius of a positive integral operator (the next generation operator) and the threshold cri-
teria holds, that is, the disease can invade into the completely susceptible population if R0 > 1,
whereas it cannot if R0 < 1. Next we have proved that there exists at least one endemic steady state
if R0 > 1, and shown the condition to guarantee the unique existence of the endemic steady state.
Moreover, it is shown that there could exist a backward bifurcation depending on the type of the
force of infection, so there could exist multiple endemic steady states even if R0 6 1. A necessary
and sufficient condition for the backward bifurcation to exist is given in case of the proportionate
mixing assumption.

The presence of a backward bifurcation has practically important consequences for the control
of infectious diseases. If the bifurcation of endemic state is forward one when the basic reproduc-
tion ratio is crossing unity, the size of infected population would be proportional to R0 � 1. On
the other hand, in the case of a backward bifurcation, the endemic steady state that exists for R0

just above one could have a large infectious population, so the result of R0 rising above one would
be a drastic change in the number of infecteds. Conversely, reducing R0 back below one would not
eradicate the disease, as long as its reduction is not sufficient. That is, if the disease is already
endemic, in order to eradicate the disease, we have to reduce the basic reproduction ratio so
far that it enters the region where the disease-free steady state is globally asymptotically stable
and there is no endemic steady state.

It is clear that the stability of bifurcating solutions is crucial with respect to whether it would be
practically significant or not. It is easy to see that the disease-free steady state is locally stable if
R0 < 1 and unstable if R0 > 1, moreover, we can show that it is globally stable if R0 is small
enough. For the stability of endemic steady states, we can derive the characteristic equation,
and in the case of proportionate mixing, we have shown that as long as the force of infection
sufficiently small, the corresponding endemic steady state bifurcating from the disease-free steady
state is locally asymptotically stable for the forward bifurcation, and it is unstable for the back-
ward bifurcation. However it remains as an open problem to understand stability and instability
for the endemic steady states corresponding to larger force of infection, and to see whether sus-
tained oscillation is possible.

Although we so far consider a one-sex model, the transmission of HIV by heterosexual contact
is more important in the worldwide spread of HIV/AIDS epidemic, since the risk group for het-
erosexual contact is composed of almost all adult populations with sexual activity. As far as we
assume random mating and neglect the persistence of couples, it is not difficult to extend our mod-
el to a two-sex model. However, serious mathematical difficulties would appear when we intend to
take into account the fact that individuals form partnership for non-negligible periods of time.
Though such a model would be too complex to analyse, the monogamous partnership between
susceptibles forms the immunity to sexually transmitted diseases, so it would play a crucial role
in the spread of sexually transmitted diseases. We still know very little about two-sex age-struc-
tured population dynamics with persistent unions. However note that if we concentrate to the
invasion problem of the two-sex model with persistent union, we can directly start from construct-
ing a linear model to describe the initial phase for the spread of the HIV infection, then we can
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calculate the basic reproduction ratio. The readers who are interested in this aspect of the problem
may refer to [10].
Appendix A

A.1. Positive operator theory

For readers’ convenience, here we summarize some definitions and results of the positive oper-
ator theory on the ordered Banach space. For more complete exposition, the reader may refer to
[6,15,19]. Let E be a real or complex Banach space and let E* be its dual (the space of all linear
functionals on E). We write the value of f 2 F* at w 2 E as hf,wi. A non-empty closed subset E+ is
called a cone if the following holds: (1) E+ + E+�E+, (2) kE+�E+ for k P 0, (3) E+ \ (�E+) =
{0}. We can define the order in E such that x 6 y if and only if y � x 2 E+ and x < y if and only
if y � x 2 E+n{0}. The cone E+ is called total if the set {w � /:w, / 2 E+} is dense in E. The dual
cone E�

þ is the subset of E* consisting of all positive linear functionals on E, that is, f 2 E�
þ if and

only if hf,wi P 0 for all w 2 E+. w 2 E+ is called quasi-interior point if hf,wi > 0 for all
f 2 E�

þ n f0g. f 2 F �
þ is called strictly positive if hf,wi > 0 for all w 2 E+n{0}.

Let B(E) be the set of bounded linear operators from E to E. T 2 B(T) is called positive if
T(E+) � E+. For T, S 2 B(E), we say TP S if (T � S)(E+) � E+. A positive operator T 2 B(E)
is called non-supporting if for every pair w 2 Eþ n f0g; f 2 E�

þ n f0g, there exists a positive integer
p = p(w, f) such that hf, Tnwi > 0 for all n P p. The spectral radius of T 2 B(E) is denoted as r(T).
r(T) denotes the spectrum of T and Pr(T) denotes the point spectrum of T.

From results by Sawashima [19] and Marek [15], we can state the following:
Proposition A.1. Let E be a Banach lattice and let T 2 B(E) be compact and non-supporting. Then,
the following holds:

(1) r(T) 2 Pr(T)n{0} and r(T) is a simple pole of the resolvent, that is, r(T) is an algebraically sim-
ple eigenvalue of T.

(2) The eigenspace corresponding to r(T) is one-dimensional and the corresponding eigenvector
w 2 E+ is a quasi-interior point. The relation T/ = l/ with / 2 E+ implies that / = cw for
some constant c.

(3) The eigenspace of T* corresponding to r(T) is also one-dimensional subspace of E* spanned by a
strictly positive functional f 2 E�

þ.
(4) Let S, T 2 B(E) be compact and non-supporting. Then, S 6 T, S5 T and r(T)5 0 implies

r(S) < r(T).
Definition A.2. Let E+ be a cone in a real Banach space E and 6 be the partial ordering defined
by E+. A positive operator A : E+ ! E+ is called a concave operator if there exists a w0 2 E+n{0}
which satisfies the following: (1) for any w 2 E+n{0} there exist a = a(w) > 0 and b = b(w) > 0
such that aw0 6 Aw 6 bw0, (2) A(tw) P tA(w) for 0 6 t 6 1 and for every w 2 E+ such that
a(w)w0 6 w 6 b(w)w0 with a(w) > 0 and b(w) > 0.
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The proof of the following lemma is given in Inaba [9], though we omit it.

Lemma A.3. Suppose that the operator A : E+ ! E+ is monotone and concave. If for any w 2 E+

satisfying a1w0 6 w 6 b1w0 with a1 = a1(w) > 0 and b1 = b1(w) > 0 and any 0 < t < 1, there exists
g = g(w, t) > 0 such that
AðtwÞ P tAwþ gw0; ðA:1Þ
then A has at most one positive fixed point.

Proposition A.4. Let the positive operator W (W(0) = 0) in the cone K have a strong Fréchet deriv-
ative T :¼ W 0(0), let T have an eigenvector v0 in the positive cone K corresponding to the eigenvalue
k0 > 1 and let T does not have an eigenvector in K which corresponds to the eigenvalue one. If the
operator W is completely continuous and W(K) is bounded, the operator W has at least one non-zero
fixed point in K.

Though the assumption of the above theorem is slightly modified from the original theorem, the
reader may easily find its proof in [12].

A.2. Semigroup approach

In this appendix, we briefly sketch the semigroup approach to show the existence and unique-
ness result and the principle of linearized stability for the basic system (2.11). For their proofs, the
reader may refer to [21,23,11,16].

Let us define a population vector as p(t,a) :¼ (s(t,a), i(t,a;f))s (s denotes the transpose of the
vector). Then, it takes a value in a positive cone of a Banach space E :¼ R · L1(0,x). It is natural
to assume that the state space of the population vector is X :¼ L1(0,x : E) with the following
norm:
kpkX ¼
Z x

0

jsðaÞjdaþ
Z x

0

Z x

0

jiða; fÞjdfda;
since kpkX gives the total size of the sexually active population. Next define a mapping F from X to
E and a mapping G from X into X as follows:
GðpÞðaÞ :¼ �sðaÞ CðHðpÞÞ
HðpÞ

R x
0

R b
0 Kða; b; sÞiðs; b� sÞdsdb

0

 !
;

F ðpÞ :¼
1

sðaÞ CðHðpÞÞ
HðpÞ

R x
0

R b
0
Kða; b; sÞiðs; b� sÞdsdb

 !
;

where p :¼ (s(a), i(a;f))s 2 X and H is a functional H : X ! R giving a total population size de-
fined by
HðpÞ :¼
Z x

0

B‘ðaÞ sðaÞ þ
Z a

0

Cðs; a� sÞiðs; a� sÞds
� �

da.
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Under Assumptions 2.1 and 3.1, the operators F and G are locally Lipschitz continuous operator
from X+ to E and to X+, respectively.

Now we can rewrite the system (2.11) as a general formula in age-dependent population
dynamics:
ptðt; aÞ þ paðt; aÞ ¼ Gðpðt; �ÞÞðaÞ; t > 0; a > 0;

pðt; 0Þ ¼ F ðpðt; �ÞÞ; t > 0;

pð0; aÞ ¼ /ðaÞ; a > 0;

8><
>: ðA:2Þ
where / 2 L1
þð0;x : EÞ is an initial data. The semigroup approach to age-dependent population

dynamics model has been systematically developed by several authors as Webb [25], Metz and
Diekmann [17] and Thieme [21].

Let us introduce an extended state space Z as Z :¼ E · X and its closed subspace Z0 by
Z0 :¼ {0} · X. Define an operator A acting on Z such that Að0;wÞ :¼ ð�wð0Þ;�w0Þ for
ð0;wÞ 2 DðAÞ :¼ f0g � DðAÞ, where A is a differential operator acting on X defined by
(Aw)(a) :¼ w 0(a), D(A) = {w 2 L1:w 2W1,1}, and W1,1 :¼ {w 2 X:w is absolutely continuous,
almost everywhere differentiable and w 0 2 L1}. Then, the operator A is densely defined in X.
Let Z0+ :¼ {0} · X+ be a positive cone of Z0. Define a bounded perturbation B : Z0þ ! Z as
Bð0;wÞ ¼ ðF ðwÞ;GðwÞÞ for (0,w) 2 Z0+. Note that B is not necessarily a positive operator, but
it is locally Lipschitz continuous under our assumptions.

Using the above definitions, we can formally rewrite system (A.2) as an abstract semilinear
Cauchy problem with non-densely defined operator on Z:
duðtÞ
dt

¼ AuðtÞ þBuðtÞ; uð0Þ ¼ ð0;/Þ 2 Z0þ. ðA:3Þ
Since p is the density of population, we are interested in solutions of (A.3) such that u(t) 2 Z0+,
tP 0. According to Busenberg et al. [2], let us consider the following system equivalent to (A.3):
duðtÞ
dt

¼ A� 1

�

� �
uðtÞ þ 1

�
ðI þ �BÞuðtÞ; uð0Þ ¼ ð0;/Þ 2 Z0þ; ðA:4Þ
where � is chosen so small that the operator I þ �B maps Z0+ into the positive cone of Z, denoted
by Z+. It is easily shown that this choice of � is possible for our system (A.3), since parameter
functions as C and K are assumed to be uniformly bounded. In the following, we mainly consider
the system (A.4) and for simplicity we use new notations as
A� :¼ A� 1

�
; B� :¼

1

�
ðI þ �BÞ.
Since the operator A* is not densely defined, hence we cannot apply the classical Hille–Yosida
theory to solve the ordinary differential equation (A.4) in the Banach space Z. However, the oper-
ator A� is proved to be Hille–Yosida type:

Lemma A.5. A� is a closed linear operator with non-dense domain and the following holds:
DðA�Þ ¼ Z0;A� satisfies the Hille–Yosida estimate such that for all k > �1/�,
kðk�A�Þ�1kZ P
1

kþ 1=�
ðA:5Þ
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and ðk�A�Þ�1ðXþÞ � Z0þ for k > 0. Moreover, B� is a locally Lipschitz continuous positive oper-
ator from Z0+ to Z+.

Hence, we can seek a solution in a weak sense: A function uðtÞ 2 C1ð0; T ;ZÞ \ DðA�Þ is called a
classical solution of the Cauchy problem (A.4) if it is satisfied for all t 2 [0,T). Further
u(t) 2 C(0,T;Z0) is called an integral solution of (A.4) if

R t
0 uðsÞds 2 DðA�Þ for all t 2 [0,T) and
uðtÞ ¼ uð0Þ þA�

Z t

0

uðsÞdsþ
Z t

0

B�uðsÞds. ðA:6Þ
Then, it is proved that the integral solution becomes a classical solution if uð0Þ 2 DðA�Þ;
A�uð0Þ þB�uð0Þ 2 DðA�Þ [21, Theorem 3.7]. Therefore, in what follows we are mainly concerned
with the integral solutions of (A.4). Define the part A0 of A� in Z0 as A0 ¼ A� on
DðA0Þ ¼ fð0;wÞ 2 DðA�Þ : A�ð0;wÞ 2 Z0g. Then, the following holds:

Lemma A.6. For the partA0;DðA0Þ ¼ Z0 holds andA0 generates a strongly continuous semigroup
T0ðtÞ; t P 0 on Z0 and T0ðZ0þÞ � Z0þ.

Using the semigroup T0ðtÞ; t P 0, we can formulate an extended variation of constants for-
mula for (A.4), see [21]:

Proposition A.7. A positive function u(t) 2 C(0,T; Z0) is an integral solution for (A.4) if and only if
u(t) is the positive continuous solution of the variation of constants formula on Z0
uðtÞ ¼ T0ðtÞuð0Þ þ lim
k!1

Z t

0

T0ðt � sÞkðk�A�Þ�1
B�uðsÞds. ðA:7Þ
From Proposition A.7, it is sufficient to solve the extended variation of constants formula (A.7)
to obtain the integral solution of (A.4). It is easy to see that without any essential modification to
the proof for the classical variation of constants formula, if B� is locally Lipschitz continuous
bounded perturbation, we can apply the contraction mapping principle to show the existence
of the positive local solution for the extended variation of constants formula (A.7) [18, chapter
6]. Since it is easy to see that the norm of the local solution grows at most exponentially, the local
solution can be extended to a global solution. Then, we conclude that the initial boundary value
problem (A.4) has a unique global positive integral solution.

Next let TðtÞ be a semigroup on Z0 induced by setting TðtÞuð0Þ ¼ uðtÞ, where u(t) is the inte-
gral solution of (A.4). Then, it follows that TðtÞ; t P 0 is a C0-semigroup generated by the part
A� þB� in Z0 ¼ DðA�Þ [21, Theorem 3.3]. Then, the principle of linearized stability for this evo-
lution system (A.4) with non-densely defined generator is stated as follows [21, Theorem 4.2]:

Proposition A.8. Let B� be continuously Frechet differentiable in Z0 and let u* be a steady state. If
x0ðA� þB0

�½u��Þ < 0, then for any x > x0ðA� þB0
�½u��Þ, there exists numbers M > 0 and d > 0

such that
kTðtÞu� u�k 6 Mextku� u�k
for all u 2 Z0 with ku � u*k 6 d, t P 0.
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Corollary A.9. Suppose that xessðA� þB0
�½u��Þ < 0. If all eigenvalues of A� þB0

�½u�� have strictly
negative real part, then there exists x < 0, 0 < d, M > 0 such that
kTðtÞu� u�k 6 Mextku� u�k

for all u 2 Z0 with ku � u*k 6 d, tP 0. If at least one eigenvalue ofA� þB0

�½u�� has strictly positive
real part, then u* is an unstable steady state.

In the above statements, B0
�½u�� denotes the Frechet derivative at u*, x0(A) denotes the growth

bound of the semigroup generated by A, xess(A) the essential growth bound of etA. By using the
above general result, we can state a local stability condition for our system:

Proposition A.10. The steady state u* of (A.4) is locally asymptotically stable if all eigenvalues of
A� þB0

�½u�� have strictly negative real part. On the other hand, if at least one eigenvalue of
A� þB0

�½u�� has strictly positive real part, then u* is an unstable steady state.

Proof. First we observe that the linearized operator B0
�ðu�Þ is expressed as
B0
�½u��ð0;wÞ ¼ ðF 0½u��ðwÞ;G0½u��ðwÞÞ; w 2 X ;
where F 0[u*] and G 0[u*] is given by
G0½u��ðwÞðaÞ ¼
�C1ðwÞ � C2ðwÞ

0

� �
; F 0½u��ðwÞ ¼

0

C1ðwÞ þ C2ðwÞ

� �
;

where operators Cj : X ! L1(0,x) (j = 1, 2) are defined by
C1ðwÞðaÞ ¼ k�ðaÞw1ðaÞ;

C2ðwÞðaÞ ¼ A1ðaÞ
Z x

0

Z b

0

Kða; b; sÞw2ðs; b� sÞdsdbþ A2ðaÞ�ðwÞ;
where Aj and �(w) are defined by (6.4) and (6.6). k* is given by (6.2), w = (w1,w2) 2 X+ and
u* = (s*, i*) 2 X+. Then, the bounded operator B0

�½u�� can be decomposed as follows:
B0
�½u�� ¼ K1 þK2;
where
K1ðwÞ ¼
0

C1ðwÞ

� �
;

�C1ðwÞ
0

� �� �
; K2ðwÞ ¼

0

C2ðwÞ

� �
;

�C2ðwÞ
0

� �� �
.

Then, it follows thatA� þK1 generates a nilpotent semigroupT1ðtÞ in Z and its perturbed semi-
group by the compact perturbation K2 is eventually compact [23, Theorem 3]. Hence, we have
xessðA� þB0

�½u��Þ ¼ �1. From Corollary A.9, we conclude that u* is locally asymptotically sta-
ble if all eigenvalues of A� þB0

�½u�� have strictly negative real part, and if at least one eigenvalue
of A� þB0

�½u�� has strictly positive real part, then u* is an unstable steady state. h

From the above proposition, we know that if all eigenvalues of the generator of linearized sys-
tem at a steady state have strictly negative part, the steady state is locally asymptotically stable,
otherwise at least one eigenvalue of the linearized generator has strictly positive real part, then the
steady state is unstable. This is the principle of linearized stability for (A.4), which is needed to
guarantee our argument in Section 5.
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