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Abstract

In the fetus, adipose tissue comprises both brown and
white adipocytes for which brown fat is characterised as
possessing the unique uncoupling protein (UCP)1. The
dual characteristics of fetal fat reflect its critical role at birth
in providing lipid that is mobilised rapidly following
activation of UCP1 upon cold exposure to the extra-
uterine environment. A key stage in the maturation of
fetal fat is the gradual rise in the abundance of UCP1.
For species with a mature hypothalamic–pituitary axis
at birth there is a gradual increase in the amount and
activity of UCP1 during late gestation, in conjunction
with an increase in the plasma concentrations of catechol-
amines, thyroid hormones, cortisol, leptin and prolactin.
These may act individually, or in combination, to promote
UCP1 expression and, following the post-partum surge
in each hormone, UCP1 abundance attains maximal
amounts.

Adipose tissue grows in the fetus at a much lower
rate than in the postnatal period. However, its growth is
under marked nutritional constraints and, in contrast to
many other fetal organs that are unaffected by nutritional
manipulation, fat mass can be significantly altered by
changes in maternal and, therefore, fetal nutrition. Fat
deposition in the fetus is enhanced during late gestation
following a previous period of nutrient restriction up to
mid gestation. This is accompanied by increased mRNA
abundance for the receptors of IGF-I and IGF-II. In
contrast, increasing maternal nutrition in late gestation
results in less adipose tissue deposition but enhanced
UCP1 abundance. The pronounced nutritional sensitivity
of fetal adipose tissue to both increased and decreased
maternal nutrition may explain why the consequences of
an adverse nutritional environment persist into later life.
Journal of Endocrinology (2003) 179, 293–299

Introduction

Brown fat is characterised as possessing a unique un-
coupling protein (UCP)1 that when maximally activated is
able to produce up to 300 W/kg tissue of heat compared
with 1–2 W/kg tissue by most other tissues (Power 1989).
A primary function of fetal fat development, particularly in
precocious thermoregulators, is to ensure that sufficient
UCP1 is synthesised to enable effective thermoregulation
following cold exposure to the extra-uterine environment
(Clarke et al. 1997c). This adaptation is determined by the
pre-partum development of the fetal endocrine mech-
anisms that ensure the maturation of a range of fetal organs
for life after birth. The activation of UCP1 at birth is
accompanied by a dramatic increase in lipolysis and
mobilisation of lipids within fat depots (Power 1989) that
also show white adipose tissue characteristics (Bispham
et al. 2002). For both sheep and humans, brown fat is located
primarily around the core organs and constitutes 2% of birth

weight (Symonds & Lomax 1992). Despite the relatively
small amount of adipose tissue present in the fetus, its
growth is under marked nutritional constraints. In contrast
to many other fetal organs that are unaffected by nutritional
manipulation, fat mass can be significantly altered by
changes in maternal and, therefore, fetal nutrition (Budge
et al. 2003). The present review will therefore consider the
following critical aspects of fetal adipose tissue development:

1. The normal ontogenic development of the endocrine
systems necessary for ensuring maximal UCP1 abundance
around the time of birth.

2. Can specific endocrine stimulation of the fetus or
newborn promote UCP1 abundance and thus mimic in
part the endocrine stimulation that occurs around the time
of birth?

3. The extent to which targeted nutritional manipu-
lations may act to increase or decrease fetal fat deposition
and the potential consequences for UCP1 function after
birth.
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Ontogeny of fetal adipose tissue

The fetus grows and develops in an environment in which
substrate availability is limited. Compared with the
mother, the fetus is subjected to persistent hypoxia and
hypoglycaemia. It is not therefore unexpected that as a
consequence of the much higher metabolic demands for
fat compared with protein deposition that fetal adipose
tissue growth is much lower compared with after birth
(Clarke et al. 1997b). Fetal fat possesses the dual charac-
teristics of brown and white adipocytes (e.g. Casteilla et al.
1987, Devasker et al. 2002) from which leptin secretion
may provide a ‘lipostatic’ role before birth (McMillen et al.
2004). In species such as humans and sheep that are born
with a mature hypothalamic–pituitary axis and are pre-
cocial thermoregulators, brown fat abundance is maximal
around the time of birth (Clarke et al. 1997a) and is then
not normally detectable after the postnatal period (Lean
1989, Finn et al. 1998). For altricial species, such as
rodents, in which the newborn maintain their body

temperature by huddling together in a nest, maximal
UCP1 abundance occurs postnatally coincident with
maturation of the hypothalamic–pituitary axis (Cannon
et al. 1988). Functional brown fat is then retained through-
out the life cycle in rodents.

For humans and sheep, fetal adipose tissue deposition
occurs primarily over the final third of gestation. In fetal
sheep at least 80% of this fat is located around the kidneys
(i.e. perirenal-abdominal adipose tissue) with very little, if
any, fat present in the omental region which only develops
after birth. During late gestation, as fetal fat mass expands,
there is a concomitant increase in hormone receptor
populations which, together with the development of the
sympathetic nervous system, acts to ensure that UCP1
abundance peaks at birth (Symonds & Stephenson 1999).
The following adaptations, therefore, occur within adipose
tissue during late gestation as summarised in Fig. 1:

1. Rise in sympathetic innervation (Gemmel &
Alexander 1972), �-adrenergic receptor density (Casteilla
et al. 1994) and plasma catecholamine concentrations

Figure 1 Summary of the endocrine regulation of fetal adipose tissue maturation in preparation for life after birth. PRL, prolactin; NA,
noradrenaline; �3, �3-adrenergic receptor; NEFA, non-esterified fatty acids; T3, triiodothyronine; UCP, uncoupling protein.
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(Eliot et al. 1981), which are likely to be the primary
stimulus for the initial appearance of UCP1.

2. Increase in plasma prolactin (Houghton et al. 1995)
and prolactin receptor abundance (Symonds et al.
1998) that may directly stimulate further expression of
UCP1.

3. Increase in plasma thyroid hormones (Fraser &
Liggins 1989) and enhanced capacity to convert thyroxine
to the metabolically active tri-iodothyronine (T3) via the
enzyme 5�-monodeiodinase (Clarke et al. 1997a). This
may result in a localised rise in T3 within the adipocyte
that would be predicted to up-regulate and stabilise UCP1
expression (Stein et al. 1994, Guerra et al. 1996) and
abundance (Heasman et al. 2000) via T3-responsive
sequences on the UCP1 gene (Rabelo et al. 1995,
Cassard-Doulcier et al. 1998).

The sensitivity of fetal adipose tissue to stimulation from
endocrine factors appears to be greater than in the adult,
when opposite effects can occur. For example, in the
juvenile and adult rat, prolactin administration down-
regulates UCP1 abundance (Chan & Swaminathan 1990,
Pearce et al. 2003a) compared with up-regulation in the
fetus (Budge et al. 2002). This distinct difference is likely
to reflect the critical role of adipose tissue in the neonatal
period as the newborn is subjected to physical and
environmental stresses of an intensity seldom encountered
again through life. The process of normal parturition at
term, and concomitant squeezing through the birth canal,
act to ensure maximal endocrine stimulation of the
newborn (Clarke et al. 1997c). The peak in UCP1 on the
inner mitochondrial membrane is accompanied by a high
abundance of other mitochondrial proteins involved in
energy metabolism (Mostyn et al. 2003b). These include
voltage-dependent anion channel (VDAC), located on the
outer mitochondrial membrane, which has a role in
regulating the supply of mitochondrial ATP and ADP
(Gottlieb 2000). VDAC abundance in fetal adipose tissue
is not nearly as responsive to endocrine stimulation as
UCP1 (Budge et al. 2002, Yuen et al. 2002, 2003, Mostyn
et al. 2003a).

Endocrine stimulation of fetal adipose tissue
function

During late gestation, a range of metabolic hormones have
significant effects on fetal adipose tissue maturation. These
roles have been established primarily in the sheep, which
is arguably the optimum animal model for conducting this
type of study. In the ovine fetus, therefore, specific
endocrine manipulations have been shown to prematurely
activate fetal UCP1. Chronic fetal infusion of the
�-adrenergic receptor agonist ritodrine promotes the
thermogenic potential of UCP1 and enhances lipolysis
within the fetus (Bassett & Symonds 1998). The same
response is not observed when endogenous ligands of the

adrenergic receptors, adrenaline and noradrenaline are
infused, which could reflect greater receptor stimulation
by synthetic agonists compared with the natural ligands. A
5-day period of continuous leptin infusion, sufficient to
raise fetal plasma leptin five-fold, also results in raised
UCP1 abundance, in conjunction with an increase in the
proportion of multilocular compared with unilocular
adipocytes whose size is reduced (Yuen et al. 2003). This
is accompanied by a down-regulation of leptin mRNA
abundance and could indicate that it is the relative size of
an adipocyte which determines its capacity to synthesise
leptin.

The adrenal gland is essential for the pre-partum rise in
UCP1 (Mostyn et al. 2003a) but the extent to which
cortisol alone, or in conjunction with parallel changes in
plasma T3, affects adipose tissue development remains to
be established. An intact thyroid is necessary for the
maximal appearance of UCP1 at birth (Schermer et al.
1996), with the weight of the thyroid gland being posi-
tively correlated with UCP1 abundance in the neonate. A
compensatory fetal response to the lack of thyroid hor-
mones and reduced UCP1 is an increase in lipid content of
fat, indicating that these two characteristics of fetal adipose
tissue can be inversely correlated.

Endocrine manipulation of the mother has also been
shown to promote UCP1 maturation in the rat fetus.
Prolactin administration throughout gestation to the
mother which results in substantial transfer of prolactin
into the fetus (Yang et al. 2002) promotes UCP1 abun-
dance at the same time as reducing lipid locule size (Budge
et al. 2002). Taken together, the above findings strongly
suggest that an increased abundance of stimulatory endo-
crine factors are of greater importance in regulating fetal
adipose tissue development than placental inhibitory
factors such as adenosine and prostaglandin (Gunn &
Gluckman 1995). Placental factors have not been shown to
have any direct maturational effects on UCP1 and only act
to limit the rate of lipolysis (Gunn & Gluckman 1995),
which is not necessary for UCP1 expression (Mostyn et al.
2003a).

The post-partum surge in catecholamines and T3 are
critical for the maximal activation of UCP1 in the new-
born (Symonds et al. 2000), but it has not been elucidated
whether cortisol, prolactin or leptin can have similar
roles. Both prolactin and leptin are able to elicit a
transient thermoregulatory effect in the newborn (Mostyn
et al. 2002, Pearce et al. 2003b), which acts to delay the
decline in colonic temperature over the first 2 days of
neonatal life. This response is mediated by an increase in
the activity of pre-existing UCP1 rather than a further
increase in UCP1 expression. Given the critical role
that UCP1 has in preventing hypothermia in the
newborn, particularly in sheep (Clarke et al. 1997c), it
is not unexpected that a number of complementary
control mechanisms act to ensure maximal recruit-
ment. These may, however, be less efficient in preterm
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deliveries in which hormone receptor abundance can be
reduced.

Nutritional regulation of fetal adipose tissue
deposition

It is not only the abundance of UCP1 that is critical in
determining heat production at birth – it is also the
amount of fat (Symonds et al. 1992). Prolonged manipu-
lation of maternal nutrition has pronounced effects on
fetal adiposity (Fig. 2), which can occur in the absence
of any change in the weight of other fetal organs (Budge
et al. 2003). The consequences of maternal nutritional
manipulation of the fetus with respect to fat deposition
are strongly dependent on the time of the nutritional
intervention. For sheep, maternal nutrient restriction
between 28 and 80 days’ gestation (term=147 days),
which is coincident with the time of uterine attachment
(�28 days) to the stage at which placental growth ceases
(�80 days), has no initial effect on adipose tissue growth
(Clarke et al. 1998). These fetuses do, however, subse-
quently deposit more adipose tissue up to term following
the restoration of maternal diet to the same level as controls
(Bispham et al. 2003). This adaptation is accompanied by

an increased abundance of mRNA for insulin-like growth
factors (IGF)-I and II receptors, which is likely to increase
adipose tissue sensitivity to the potential anabolic effects of
IGFs (Teruel et al. 1996). A combination of enhanced
responsiveness to IGFs in conjunction with increased
abundance of glucose to previously nutrient-restricted
fetuses (Dandrea et al. 2001) may act to promote the
anabolic effect of glucose on fetal fat deposition (Stevens
et al. 1990). No effect was found on mitochondrial
protein abundance, suggesting a divergence of endocrine
control between adipose tissue deposition and functional
consequences in terms of UCP1 expression. An increase in
the amount of adipose tissue alone would, however, be
sufficient to promote total UCP1 abundance in the
newborn.

Surprisingly, increasing maternal nutrition in late
gestation can have reciprocal effects on adipose tissue
deposition and UCP1 abundance. When maternal food
intake is unrestricted, this results in proportionately less
adipose tissue per kilogram of fetus but increased UCP1
abundance (Budge et al. 2000). At the same time there is
an inverse relationship between mRNA for UCP1 and
leptin in adipose tissue samples from well-fed, but not
control, fetuses (Mühlhäusler et al. 2003) suggesting a
change in both brown and white adipocyte characteristics

Figure 2 Summary of the differential effects of maternal nutritional manipulation of fetal adipose tissue growth.
PRLR, prolactin receptor; IGF, insulin-like growth factor; UCP, uncoupling protein.
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with increased nutrition. These adaptations may reflect the
modest rise in both fetal plasma glucose and insulin in
well-fed animals, although these were not of sufficient
magnitude to promote fat deposition. Raised maternal
food intake also results in higher fetal plasma prolactin
(Stephenson et al. 2001) in conjunction with increased
abundance of the long, but not short, form of the prolactin
receptor (Budge et al. 2000). The long and short forms of
prolactin receptor result from differential splicing of a
single gene transcript (Bignon et al. 1997) and although
these splice variants differ in their intracellular signalling
regions they have identical extracellular domains.
Nutritional enhancement of the long form of the prolactin
receptor, in conjunction with raised prolactin, may be
important in promoting UCP1 abundance in the fetus
(Budge et al. 2000, 2002).

Reduced maternal nutrition in late gestation results in
smaller fat depots with less UCP1 (Symonds et al. 1998,
Budge et al. 2001), in conjunction with lower fetal plasma
glucose and insulin, but has no effect of fetal leptin or
prolactin receptor mRNA abundance (Symonds et al.
1998, Yuen et al. 2002). After birth, however, there
appears to be a compensatory increase in VDAC abun-
dance in nutrient-restricted offspring (Budge et al. 2003)
that is maintained up to at least 1 month of age (Mostyn
et al. 2003b). This is accompanied by an increase in UCP2,
which, in contrast to UCP1, only appears to be present
after birth. A higher abundance of UCP2 may have
adverse consequences as this can result in enhanced
susceptibility to infection and death from toxoplasmosis
(Arsenijevic et al. 2000). It has also been shown that in
obese women UCP2 gene exon 8 may affect susceptibility
to obesity through an interaction with leptin (Cassell et al.
1999). Enhanced abundance of both UCP2 and VDAC
could result in an accelerated rate of apoptosis (Voehringer
et al. 2000). Clearly, the longer-term consequences of
these different nutritional models of adipose tissue
manipulation need to be established.

In conclusion, fetal adipose tissue growth is a co-
ordinated process that involves the accumulation of lipid
and synthesis of the brown adipose tissue specific UCP1.
In species with a mature hypothalamic–pituitary axis, a
major end point of endocrine regulation is to maximise
UCP1 synthesis that can then be activated rapidly at birth
to ensure effective adaptation to cold exposure of the
extra-uterine environment. The apparent nutritional sen-
sitivity of adipose tissue growth to both increased and
decreased maternal nutrition may not only have conse-
quences in the immediate peri-partum period but could
persist into later life.
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